

A Cost-Benefit Approach to Fault
Tolerant Communication and
Information Access

Yair Amir
Department of Computer Science,
Johns Hopkins University

Final Report

Prepared for DARPA
Under contract F30602-00-2-0550

February 2004

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE 15-02-2004 2. REPORT TYPE Final Report 3. DATES COVERED
4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
F30602-00-2-0550

A Cost-Benefit Approach to Fault Tolerant Communication and Information
Access

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

Yair Amir

5e. TASK NUMBER

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
REPORT NUMBER

Johns Hopkins University
3400 N. Charles Street
Computer Science Department
224 NEB
Baltimore, MD 21218

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Col. Tim Gibson Mr. Alan Akins

DARPA/ATO AFRL/IFGA

3701 North Fairfax Drive 525 Brooks Rd. 11. SPONSOR/MONITOR’S REPORT
Arlington, VA 22203 Rome, NY 13441 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT
We develop the theory and algorithms required to overcome strong network faults and attacks, while providing
theoretically provable performance bounds. We build a system that incorporates these algorithms, and that
exhibits good performance in practice. Since we are interested in information access and communication, our work
focuses on two areas: network routing, and replication. Robust network routing allows passing and accessing
information even when the network is under heavy attack. Replication is required to allow information access even
when there is no network connectivity

15. SUBJECT TERMS
Fault tolerant communication, routing, wide-area replication, middleware

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18.
NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON
Yair Amir

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER
410-516-4803

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

Abstract

Fault tolerant information access and communication are becoming crucial for almost
every computer application. Even traditional computer applications that did not require
network connectivity just a few years ago, rely on the network for their smooth
execution. This trend will only increase with the proliferation of non-traditional
networked computing devices. At the same time, attacks on the network have become
more sophisticated and harder to contain. The distributed nature of network control
further complicates the problem.

Traditional network protocols were developed to handle simple adversaries, such as
network problems resulting from normal operational events. For example, link congestion
can lead to buffer overflow, which then causes message omission. Another example is
infrequent link downtime that may lead to short-term network partitions. While existing
protocols can handle such problems, they will fail miserably under slightly more
sophisticated attacks.

We develop the theory and algorithms required to overcome strong network faults and
attacks, while providing theoretically provable performance bounds. We build a system
that incorporates these algorithms, and that exhibits good performance in practice. Since
we are interested in information access and communication, our work focuses on two
areas: network routing, and replication. Robust network routing allows passing and
accessing information even when the network is under heavy attack. Replication is
required to allow information access even when there is no network connectivity

 i

Table of Contents

1. Summary 1

2. Introduction 2

3. Fault Tolerant Routing 3

 3.1. An On-Demand Secure Routing Protocol
 Resilient to Byzantine Failures 3

 3.2. Reliable Communication in Overlay Networks 4

4. Highly Available Information Access 7

 4.1. N-Way Fail-Over Infrastructure for Reliable
 Servers and Routers 7

 4.2. From Total Order to Database Replication 8

 4.3. Practical Wide-Area Database Replication 10

5. Conclusions 12

Appendix A. 13

 1

1. Summary

The goal of this project was to develop a Cost-Benefit framework for fault tolerant
communication and information access that addresses extremely powerful adversaries
that were never handled in the past. The project develops the theory and algorithms
required to overcome strong network attacks, while providing theoretically provable
performance bounds. We build a system that incorporates these algorithms, and that
exhibits good performance in practice.

We present a suite of novel routing protocols tailored to the above adversary models and
prove that these protocols perform in a near-optimal manner. Specifically, we present
novel solutions that, in case an operational path exists, will be able to find it.

We then develop an overlay network architecture that will make these protocols practical
since they are too complex to have any hope to be implemented in general Internet
routers anytime soon. In order to better analyze and understand the overlay networks
paradigm in an environment defined by weaker semantics, we developed a stand alone
prototype called Spines, using the client-daemon architecture that is able to build and
automatically configure a dynamic overlay network. Our Overlay Network is very
scalable, as it does not have any limitation in number of nodes or links, other than what
the routing protocol used can support.

When there is no theoretic possibility of communication, say in the case of a cut in the
network, one can still continue the operation by making sure that the data is replicated in
most areas, or at least in the areas where disconnection is likely. We develop a suite of
replication protocols that can handle a range of adversaries and can gracefully degrade
performance and semantics as the network hostility increases. Our goal is to replicate an
ACID database as this is the most demanding replication problem. We show how we
seamlessly replicate the Postgres database without the applications (or the database)
knowing that they operate in a replicated system. We demonstrate the practicality of our
method by replicating Postgres over a nation-wide network.

 2

2. Introduction

Fault tolerant information access and communication are becoming crucial for almost
every computer application. Even traditional computer applications that did not require
network connectivity just a few years ago, rely on the network for their smooth
execution. This trend will only increase with the proliferation of non-traditional
networked computing devices. At the same time, attacks on the network have become
more sophisticated and harder to contain. The distributed nature of network control
further complicates the problem.

Traditional network protocols were developed to handle simple adversaries, such as
network problems resulting from normal operational events. For example, link congestion
can lead to buffer overflow, which then causes message omission. Another example is
infrequent link downtime that may lead to short-term network partitions. While existing
protocols can handle such problems, they will fail miserably under slightly more
sophisticated attacks.

This project was focused on designing algorithms and building protocols that will provide
resilient communication and information access in the presence of strong adversaries.

Since we are interested in information access and communication, our work focuses on
two areas: Fault tolerant routing, and replication. Robust network routing allows passing
and accessing information even when the network is under heavy attack. A certain degree
of replication is required to allow information access even when there is no network
connectivity.

The remainder of this report is organized as follows. Section 2 is focused on fault tolerant
routing and has two parts. The first part describes an on demand routing algorithm that is
resilient to Byzantine behavior of routers. The second part describes an overlay network
approach for reliable communication. Section 3 is focused on highly available
information access techniques and has three parts. The first part describes the Wackamole
mechanism for making servers and routers fault tolerant. The second part describes an
algorithm that allows consistent replication with strong properties and. The third part
applies this algorithm to replicate a database over wide area networks. Section 4
concludes the report.

 3

3. Fault Tolerant Routing

3.1. An On-Demand Secure Routing Protocol Resilient to Byzantine Failures
Ad hoc wireless networks are self-organizing multi-hop wireless networks where all the
hosts (nodes) take part in the process of forwarding packets. Ad hoc networks can easily
be deployed since they do not require any fixed infrastructure, such as base stations or
routers. Therefore, they are highly applicable to emergency deployments, natural
disasters, military battlefields, and search and rescue missions.

A key component of ad hoc wireless networks is an efficient routing protocol, since all of
the nodes in the network act as routers. Some of the challenges faced in ad hoc wireless
networks include high mobility and constrained power resources. Consequently, ad hoc
wireless routing protocols must converge quickly and use battery power efficiently.
Traditional proactive routing protocols (link-state and distance vectors), which use
periodic updates or beacons which trigger event based updates, are less suitable for ad
hoc wireless networks because they constantly consume power throughout the network,
regardless of the presence of network activity, and are not designed to track topology
changes occurring at a high rate. On-demand routing protocols are more appropriate for
wireless environments because they initiate a route discovery process only when data
packets need to be routed. Discovered routes are then cached until they go unused for a
period of time, or break because the network topology changes.

Many of the security threats to ad hoc wireless routing protocols are similar to those of
wired networks. For example, a malicious node may advertise false routing information,
try to redirect routes, or perform a denial of service attack by engaging a node in resource
consuming activities such as routing packets in a loop. Furthermore, due to their
cooperative nature and the broadcast medium, ad hoc wireless networks are more
vulnerable to attacks in practice. Although one might assume that once authenticated, a
node should be trusted, there are many scenarios where this is not appropriate. For
example, when ad hoc networks are used in a public Internet access system (airports or
conferences), users are authenticated by the Internet service provider. However, this
authentication does not imply trust between the individual users of the service. Also,
mobile devices are easier to compromise because of reduced physical security, so
complete trust should not be assumed.

We focus on providing routing survivability under an adversarial model where any
intermediate node or group of nodes can perform Byzantine attacks such as creating
routing loops, misrouting packets on non-optimal paths, or selectively dropping packets
(black hole). Only the source and destination nodes are assumed to be trusted. We
propose an on-demand routing protocol for wireless ad hoc networks that operate under
this strong adversarial model.

It is provably impossible under certain circumstances, for example when a majority of the
nodes are malicious, to attribute a Byzantine fault occurring along a path to a specific
node, even using expensive and complex Byzantine agreement. Our protocol circumvents
this obstacle by avoiding the assignment of “guilt” to individual nodes. Instead it reduces
the possible fault location to two adjacent nodes along a path, and attributes the fault to

 4

the link between them. As long as a fault-free path exists between two nodes, they can
communicate reliably even if an overwhelming majority of the network acts in a
Byzantine manner.

Our protocol consists of the following phases:

• Route discovery with fault avoidance. Using flooding and a faulty link weight list,
this phase finds a least weight path from the source to the destination.

• Byzantine fault detection. This phase discovers faulty links on the path from the
source to the destination. Our adaptive probing technique identifies a faulty link after
log n faults have occurred, where n is the length of the path.

• Link weight management. This phase maintains a weight list of links discovered by
the fault detection algorithm. A multiplicative increase scheme is used to penalize
links which are then rehabilitated over time. This list is used by the route discovery
phase to avoid faulty paths.

Our protocol establishes a reliability metric based on past history and uses it to select the
best path. The metric is represented by a list of link weights where high weights
correspond to low reliability. Each node in the network maintains its own list, referred to
as a weight list, and dynamically updates that list when it detects faults. Faulty links are
identified using a secure adaptive probing technique that is embedded in the normal
packet stream. These links are avoided using a secure route discovery protocol that
incorporates the reliability metric. We describe this work in our “An On Demand Secure
Routing Protocol Resilient to Byzantine Failures” paper by B. Awerbuch, D. Holmer, C.
Nita-Rotaru and H. Rubens that appeared in the ACM International Workshop on Wireless
Security (WiSe02), found in Appendix A.

3.2. Reliable Communication in Overlay Networks
Reliable point-to-point communication is one of the main utilizations of the Internet,
where over the last few decades TCP has served as the dominant protocol. Over the
Internet, reliable communication is performed end-to-end in order to address the severe
scalability and interoperability requirements of a network in which potentially every
computer on the planet could participate. Thus, all the work required in a reliable
connection is distributed only to the two end nodes of that connection, while intermediate
nodes route packets without keeping any information about the individual packets they
transfer.

Overlay networks are opening new ways to Internet usability, mainly by adding new
services (e.g. built-in security) that are not available or cannot be implemented in the
current Internet, and also by providing improved services such as higher availability.
However, the usage of overlay networks may come with a price, usually in added latency
that is incurred due to longer paths created by overlay routing, and by the need to process
the messages in the application level by every overlay node on the path.

Reliable communication in overlay networks is usually achieved by applying TCP on the
edges of a connection. This surely works. However, we prove that employing hop-by-hop
reliability techniques considerably reduces the average latency and jitter of reliable

 5

communication. When using such an approach one has to consider networking aspects
such as congestion control, fairness, and flow control and end-to-end reliability. We
demonstrate through simulation that our approach provides tremendous benefit for the
application as well as for the network itself, even when very few packets are lost.
Simulations usually do not take into account many practical issues such as processing
overhead, CPU scheduling, and most important, the fact that overlay network processing
is performed at the application level of general purpose computers. These may have
considerable impact on real-life behavior and performance. Therefore, we test our
approach in practice on an overlay network platform called Spines that we have built. We
show that the benefit of hop-by-hop reliability greatly overcomes the overhead of overlay
routing and achieves much better performance compared to standard end-to-end TCP
connections deployed on the same overlay network.

An overlay network constructs a user level graph on top of an existing networking
infrastructure such as the Internet, using only a subset of the available network links and
nodes. An overlay link is a virtual edge in this graph and may consist of many actual
links in the underlying network. Overlay nodes act as routers, forwarding packets to the
next overlay link toward the destination. At the physical level, packets traveling along a
virtual edge between two overlay nodes follow the actual physical links that form that
edge.

Overlay networks have two main drawbacks. First, the overlay routers incur some
overhead every time a message is processed, which requires delivering the message to the
application level, processing it, and resending the message to the next overlay router.
Second, the placement of overlay routers in the topology of the physical network is often
far from optimal, because the creator of the overlay network rarely has control over the
physical network (usually the Internet) or even the knowledge about its actual topology.
Therefore, overlay networks provide longer paths that have higher latency than point to
point Internet connections.

The easiest way to achieve reliability in Overlay Networks is to use a reliable protocol,
usually TCP, between the end points of a connection. This mechanism has the benefit of
simplicity in implementation and deployment, but pays a high price upon recovery from a
loss. As overlay paths have higher delays, it takes a relatively long time to detect a loss,
and data packets and acknowledgments are sent on multiple overlay hops in order to
recover the missed packet

We propose a mechanism that recovers the losses only on the overlay hop on which they
occurred, localizing the congestion and enabling faster recovery. Since an overlay link
has a lower delay compared to an end-to-end connection that traverses multiple hops, we
can detect the loss faster and resend the missed packet locally. Moreover, the congestion
control on the overlay link can increase the congestion window back faster than an end-
to-end connection, as it has a smaller round-trip time.

Hop-by-hop reliability involves buffers and processing in the intermediate overlay nodes.
These nodes need to deploy a reliable protocol, and keep track of packets,
acknowledgments and congestion control, in addition to their regular routing
functionality. Although such an approach may not be feasible to implement at the level of
the Internet routers due to scalability limitations, we can easily deploy it at the level of an

 6

overlay network, thus allowing us to pinpoint the congestion, limiting the problem to the
congested part of the network. We describe this work in our “Reliable Communication in
Overlay Networks” paper by Y. Amir and C. Danilov that appeared in the Proceedings of the
International Conference on Dependable Systems and Networks (DSN03), found in Appendix A.

 7

4. Highly Available Information Access

4.1. N-Way Fail-Over Infrastructure for Reliable Servers and Routers
Maintaining the availability of critical network servers is an important concern for many
organizations. Server redundancy is the traditional approach to provide availability in the
presence of failures. From the client perspective, a network-accessible service is resolved
via a set of public IP addresses specified for this service. Therefore, the continued
availability of a service via these IP addresses is a prerequisite for providing
uninterrupted service to the client. In order to function correctly, each of the service’s
public IP addresses has to be covered by exactly one physical server at any given time. If
no physical server covers a public IP address, the clients will not receive any service. On
the other hand, if more than one physical server is covering the same IP address at any
time, the network might not function properly and clients may not be served correctly.

A sizable market exists for hardware solutions that maintain the availability of IP
addresses, usually via a gateway that hides the actual servers behind a smart switch or
router in a centralized manner. We present Wackamole, a high availability tool for
clusters of servers. Wackamole ensures that all the public IP addresses of a service are
available to its clients. Wackamole is a completely distributed software solution based on
a provably correct algorithm that negotiates the assignment of IP addresses among the
available servers upon detection of faults and recoveries, and provides N-way fail-over,
so that any one of a number of servers can cover for any other.

Using a simple algorithm that utilizes strong group communication semantics,
Wackamole demonstrates the application of group communication to address a critical
availability problem at the core of the system, even in the presence of cascading network
or server faults and recoveries. We also demonstrate how the same architecture is
extended to provide a similar service for highly-available routers.

Our solution has three main components:

• An IP address control (acquire and release) mechanism.

• A state synchronization algorithm (the Wackamole Algorithm).

• A membership service provided by a group communication toolkit.

The group communication toolkit maintains a membership service among the currently
connected servers and notifies the synchronization algorithm of any view changes that
occur due to server crashes and recoveries, or network partitions and remerges.

The synchronization algorithm manages the logical assignment of virtual IP addresses
among the currently connected members, avoiding conflicts that can occur upon merges
and recoveries and covering the “holes” that can arise as a result of a crash or partition.
The IP address control mechanism enforces the decisions of the synchronization
algorithm by acquiring and releasing the IP addresses accordingly. These mechanisms are
highly specific to the operating system on which the Wackamole system runs. The
correctness as well as the efficiency of the system depends on the use of a group
communication system that provides reliable, totally ordered multicast and group

 8

membership notifications for a cluster of servers. Wackamole was implemented using the
Spread group communication toolkit. Spread is a general-purpose group communication
system for wide-and local-area networks. It provides reliable and ordered delivery of
messages (FIFO, causal, agreed ordering) as well as Virtual Synchrony and Extended
Virtual Synchrony membership services.

Spread uses a client-daemon architecture. Node crashes/recoveries and network
partitions/remerges are detected by Spread at the daemon level; upon detecting such an
event, the Spread daemons install the new daemon membership and inform their clients
of the corresponding changes in the group membership that are introduced by the failure.
Clients are also notified when changes in the group membership are triggered by a
graceful leave or join of any client. The Spread toolkit is optimized to support the latter
situation without triggering a full daemon membership reconfiguration, but rather
informing only the participating group about the new group membership.

Wackamole’s state synchronization algorithm is implemented using group membership
and messaging services offered by the Spread Toolkit. Immediately upon startup, the
Wackamole daemon connects to a Spread daemon running on the same host and joins the
wackamole group. It then relies on the regular membership messages sent by Spread to
determine the current set of available hosts, and to initiate state transfer upon view-
change detection. Spread is also used to ensure that messages are sent in a total order
among Wackamole daemons, that old messages which must be discarded upon receipt
can be identified properly, and that endian conflicts across platforms are handled
correctly.

A Wackamole daemon that becomes disconnected from Spread will drop all of its virtual
interfaces and enter a cycle in which it periodically attempts to reconnect to Spread,
because it cannot ensure correctness without the services Spread provides. This behavior
allows clusters to survive changes to the Spread daemons with which they communicate,
such as version. All routing from the internal network will not be affected unless the
designated router fails. In this case, Wackamole reassigns another router to control the
virtual router address and the hand-off is complete as soon as Wackamole reconfigures
without additional need to transfer routing information. We describe this work in our “N-
Way Fail-Over Infrastructure for Reliable Servers and Routers” paper by Y. Amir, R. Caudy, A.
Munjal, T. Schlossnagle and C. Tutu that appeared in the Proceedings of the International
Conference on Dependable Systems and Networks (DSN03), found in Appendix A.

4.2. From Total Order to Database Replication

Database replication is quickly becoming a critical tool for providing high availability,
survivability and high performance for database applications. However, to provide useful
replication one has to solve the non-trivial problem of maintaining data consistency
between all the replicas.

The state machine approach to database replication ensures that replicated databases that
start consistent will remain consistent as long as they apply the same deterministic
actions (transactions) in the same order. Thus, the database replication problem is
reduced to the problem of constructing a global persistent consistent order of actions.

 9

This is often mistakenly considered easy to achieve using the Total Order service (e.g.
ABCAST, Agreed order, etc) provided by group communication systems.

Early models of group communication, such as Virtual Synchrony, did not support
network partitions and merges. The only failures tolerated by these models were process
crashes, without recovery. Under this model, total order is sufficient to create global
persistent consistent order. When network partitions are possible, total order service does
not directly translate to a global persistent consistent order. Existing solutions that
provide active replication either avoid dealing with network partitions, or require
additional end-to-end acknowledgements for every action after it is delivered by the
group communication and before it is admitted to the global consistent persistent order
(and can be applied to the database).

We describe a complete and provably correct algorithm that provides global persistent
consistent order in a partitionable environment without the need for end-to-end
acknowledgments on a per action basis. In our approach, end-to-end acknowledgements
are only used once for every network connectivity change event (such as network
partition or merge) and not per action. Our algorithm builds a generic replication engine
which runs outside the database and can be seamlessly integrated with existing databases
and applications. The replication engine supports various semantic models, relaxing or
enforcing the consistency constraints as needed by the application. We implemented the
replication engine on top of the Spread toolkit and provide experimental performance
results, comparing the throughput and latency of the global consistent persistent order
using our algorithm, the COReL algorithm, and a two-phase commit algorithm. These
results demonstrate the impact of eliminating the end-to-end acknowledgments on a per-
action basis.

An action defines a transition from the current state of the database to the next state; the
next state is completely determined by the current state and the action. We view actions
as having a query part and an update part, either of which can be missing. Client
transactions translate into actions that are applied to the database. The basic model best
fits one-operation transactions, but in Section 6 we show how other transaction types can
also be supported.

In the presence of network partitions, the replication layer identifies at most a single
component of the server group as a primary component; the other components of a
partitioned group are non-primary components. A change in the membership of a
component is reflected in the delivery of a view-change notification by the group
communication layer to each server in that component. The replication layer implements
a symmetric distributed algorithm to determine the order of actions to be applied to the
database. Each server builds its own knowledge about the order of actions in the system.

In many systems, processes exchange information only as long as they have a direct and
continuous connection. In contrast, our algorithm propagates information by means of
eventual path: when a new component is formed, the servers exchange knowledge
regarding the actions they have, their order and color. This exchange process is only
invoked immediately after a view change. Furthermore, all the components exhibit this
behavior, whether they will form a primary or non-primary component. This allows the
information to be disseminated even in non-primary components, reducing the amount of

 10

data exchange that needs to be performed once a server joins the primary component. We
describe this work in our “From Total Order to Database Replication” paper by Y. Amir and C.
Tutu that appeared in the Proceedings of the IEEE International Conference on Distributed
Computing System (ICDCS02), found in Appendix A.

4.3. Practical Wide Area Database Replication
In many Internet applications, a large number of users that are geographically dispersed
may routinely query and update the same database. In this environment, the location of
the data can have a significant impact on application response time and availability. A
centralized approach manages only one copy of the database. This approach is simple
since contradicting views between replicas are not possible. The centralized approach
suffers from two major drawbacks:

• Performance problems due to high server load or high communication latency for
remote clients.

• Availability problems caused by server downtime or lack of connectivity. Clients in
portions of the network that are temporarily disconnected from the server cannot be
serviced.

The server load and server downtime problems can be addressed by replicating the
database servers to form a cluster of peer servers that coordinate updates. However,
communication latency and server connectivity remain a problem when clients are
scattered on a wide area network and the cluster is limited to a single location. Wide area
database replication coupled with a mechanism to direct the clients to the best available
server (network-wise and load-wise) can greatly enhance both the response time and
availability.

A fundamental challenge in database replication is maintaining a low cost of updates
while assuring global system consistency. The problem is magnified for wide area
replication due to the high latency and the increased likelihood of network partitions in
wide area settings. We explore a novel replication architecture and system for local and
wide area networks. Our architecture provides peer replication, where all the replicas
serve as master databases that can accept both updates and queries. Our failure model
includes network partitions and merges, computer crashes and recoveries, and message
omissions, all of which are handled by our system. We rely on the lower level network
mechanisms to handle message corruptions, and do not consider Byzantine faults.

Our replication architecture includes two components: a wide area group communication
toolkit, and a replication server. The group communication toolkit supports the Extended
Virtual Synchrony model. The replication servers use the group communication toolkit to
efficiently disseminate and order actions, and to learn about changes in the membership
of the connected servers in a consistent manner. Based on a sophisticated algorithm that
utilizes the group communication semantics, the replication servers avoid the need for
end-to-end acknowledgements on a per-action basis without compromising consistency.
End-to-end acknowledgments are only required when the membership of the connected
servers changes due to network partitions, merges, server crashes and recoveries. This
leads to high system performance. When the membership of connected servers is stable,

 11

the throughput of the system and the latency of actions are determined mainly by the
performance of the group communication and the single node database performance,
rather than by other factors such as the number of replicas. When the group
communication toolkit scales to wide area networks, our architecture automatically scales
to wide area replication.

We implemented the replication system using the Spread Group Communication Toolkit
and the PostgreSQL database system. We then define three different environments to be
used as test-beds: a local area cluster with fourteen replicas, the CAIRN wide area
network that spans the U.S.A with seven sites, and the Emulab emulated wide area test
bed. We conducted an extensive set of experiments on the three environments, varying
the number of replicas and clients, and varying the mix of updates and queries. Our
results show that sophisticated algorithms and careful distributed systems design can
make symmetric, synchronous, peer database replication a reality over both local and
wide area networks. We describe this work in our “Practical Wide Area Database
Replication” CNDS-2002-1 technical report by Y. Amir, C. Danilov, Michal Miskin-Amir, J.
Stanton and C. Tutu, found in Appendix A.

 12

5. Conclusions

We developed the theory and algorithms required to overcome strong network faults and
attacks, while providing theoretically provable performance bounds. We built a system
that incorporates these algorithms, and that exhibits good performance in practice. We
focused on two areas: network routing and replication. We designed and built a routing
protocol that is resilient to Byzantine faults. We designed and built a general overlay
network system that achieves high performance in practice. We designed a generic
replication algorithm that allows information access even at times when there is no
network connectivity. We implemented the algorithm in the environment of the Postgres
database and deployed it over wide area networks, proving the practicality of this
approach.

 13

Appendix A.

• “An On Demand Secure Routing Protocol Resilient to Byzantine Failures”, B.
Awerbuch, D. Holmer, C. Nita-Rotaru and H. Rubens, In the ACM International
Workshop on Wireless Security (WiSe02)Atlanta, Georgia, September 2002.

• “Reliable Communication in Overlay Networks”, Y. Amir and C. Danilov. In
Proceedings of the International Conference on Dependable Systems and
Networks (DSN03), pages 511-520, San Francisco CA, June 2003.

• “N-Way Fail-Over Infrastructure for Reliable Servers and Routers”, Y. Amir, R. Caudy,
A. Munjal, T. Schlossnagle and C. Tutu. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN03), pages 403-412, San Francisco CA, June
2003

• “From Total Order to Database Replication”, Y. Amir and C. Tutu In the
Proceedings of the IEEE International Conference on Distributed Computing
System (ICDCS02), pages 494-503, Vienna, Austria, July 2002.

• “Practical Wide Area Database Replication” Y. Amir, C. Danilov, Michal Miskin-
Amir, J. Stanton and C. Tutu. Technical Report CNDS-2002-1, Center for
Networking and Distributed Systems, Johns Hopkins University,
www.cnds.jhu.edu.

An On-Demand Secure Routing Protocol Resilient to
Byzantine Failures

Baruch Awerbuch, David Holmer, Cristina Nita-Rotaru and Herbert Rubens
Department of Computer Science

Johns Hopkins University
3400 North Charles St.

Baltimore, MD 21218 USA
{baruch, dholmer, crisn, herb}@cs.jhu.edu

ABSTRACT
An ad hoc wireless network is an autonomous self-organizing
system of mobile nodes connected by wireless links where
nodes not in direct range can communicate via intermediate
nodes. A common technique used in routing protocols for ad
hoc wireless networks is to establish the routing paths on-
demand, as opposed to continually maintaining a complete
routing table. A significant concern in routing is the abil-
ity to function in the presence of byzantine failures which
include nodes that drop, modify, or mis-route packets in an
attempt to disrupt the routing service.

We propose an on-demand routing protocol for ad hoc
wireless networks that provides resilience to byzantine fail-
ures caused by individual or colluding nodes. Our adaptive
probing technique detects a malicious link after log n faults
have occurred, where n is the length of the path. These
links are then avoided by multiplicatively increasing their
weights and by using an on-demand route discovery proto-
col that finds a least weight path to the destination.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; C.2.1 [Network

Architecture and Design]: Wireless communication; C.2.2
[Network Protocols]: Routing protocols

General Terms
Algorithms, Design, Reliability, Security, Theory

Keywords
ad hoc wireless networks, on-demand routing, security, byzan-
tine failures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSe’02, September 28, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-585-8/02/0009 ...$5.00.

1. INTRODUCTION
Ad hoc wireless networks are self-organizing multi-hop

wireless networks where all the hosts (nodes) take part in
the process of forwarding packets. Ad hoc networks can
easily be deployed since they do not require any fixed in-
frastructure, such as base stations or routers. Therefore,
they are highly applicable to emergency deployments, nat-
ural disasters, military battle fields, and search and rescue
missions.

A key component of ad hoc wireless networks is an ef-
ficient routing protocol, since all of the nodes in the net-
work act as routers. Some of the challenges faced in ad
hoc wireless networks include high mobility and constrained
power resources. Consequently, ad hoc wireless routing pro-
tocols must converge quickly and use battery power effi-
ciently. Traditional proactive routing protocols (link-state
[1] and distance vectors [1]), which use periodic updates or
beacons which trigger event based updates, are less suit-
able for ad hoc wireless networks because they constantly
consume power throughout the network, regardless of the
presence of network activity, and are not designed to track
topology changes occurring at a high rate.

On-demand routing protocols [2, 3] are more appropriate
for wireless environments because they initiate a route dis-
covery process only when data packets need to be routed.
Discovered routes are then cached until they go unused for
a period of time, or break because the network topology
changes.

Many of the security threats to ad hoc wireless routing
protocols are similar to those of wired networks. For exam-
ple, a malicious node may advertise false routing informa-
tion, try to redirect routes, or perform a denial of service
attack by engaging a node in resource consuming activities
such as routing packets in a loop. Furthermore, due to their
cooperative nature and the broadcast medium, ad hoc wire-
less networks are more vulnerable to attacks in practice [4].

Although one might assume that once authenticated, a
node should be trusted, there are many scenarios where this
is not appropriate. For example, when ad hoc networks are
used in a public Internet access system (airports or con-
ferences), users are authenticated by the Internet service
provider, but this authentication does not imply trust be-
tween the individual users of the service. Also, mobile de-
vices are easier to compromise because of reduced physical
security, so complete trust should not be assumed.

Our contribution. We focus on providing routing surviv-
ability under an adversarial model where any intermediate
node or group of nodes can perform byzantine attacks such
as creating routing loops, misrouting packets on non-optimal
paths, or selectively dropping packets (black hole). Only the
source and destination nodes are assumed to be trusted. We
propose an on-demand routing protocol for wireless ad hoc
networks that operates under this strong adversarial model.

It is provably impossible under certain circumstances, for
example when a majority of the nodes are malicious, to at-
tribute a byzantine fault occurring along a path to a specific
node, even using expensive and complex byzantine agree-
ment. Our protocol circumvents this obstacle by avoiding
the assignment of “guilt” to individual nodes. Instead it re-
duces the possible fault location to two adjacent nodes along
a path, and attributes the fault to the link between them.
As long as a fault-free path exists between two nodes, they
can communicate reliably even if an overwhelming majority
of the network acts in a byzantine manner.

Our protocol consists of the following phases:

• Route discovery with fault avoidance. Using flooding
and a faulty link weight list, this phase finds a least
weight path from the source to the destination.

• Byzantine fault detection. This phase discovers faulty
links on the path from the source to the destination.
Our adaptive probing technique identifies a faulty link
after log n faults have occurred, where n is the length
of the path.

• Link weight management. This phase maintains a weight
list of links discovered by the fault detection algorithm.
A multiplicative increase scheme is used to penalize
links which are then rehabilitated over time. This list
is used by the route discovery phase to avoid faulty
paths.

The rest of the paper is organized as follows. Section 2
summarizes related work. We further define the problem
we are addressing and the model we consider in Section 3.
We then present our protocol in Section 4 and provide an
analysis in Section 5. We conclude and suggest directions
for future work in Section 6.

2. RELATED WORK
Secure routing protocols for ad hoc wireless networks is a

fairly new topic. Although routing in ad hoc wireless net-
works has unique aspects, many of the security problems
faced in ad hoc routing protocols are similar to those faced
by wired networks. In this section, we review the work done
in securing routing protocols for both ad hoc wireless and
wired networks.

One of the problems addressed by researchers is providing
an effective public key infrastructure in an ad hoc wireless
environment which by nature is decentralized. Examples
of these works are as follows. Hubaux et al.[5] proposed
a completely decentralized public-key distribution system
similar to PGP [6]. Zhou and Haas [7] explored threshold
cryptography methods in a wireless environment. Brown et
al.[8] showed how PGP, enhanced by employing elliptic curve
cryptography, is a viable option for wireless constrained de-
vices.

A more general trust model where levels of security are de-
fined for paths carrying specific classes of traffic is suggested

in [9]. The paper discusses very briefly some of the crypto-
graphic techniques that can be used to secure on-demand
routing protocols: shared key encryption associated with a
security level and digital signatures for data source authen-
tication.

As mentioned in [10], source authentication is more of a
concern in routing than confidentiality. Papadimitratos and
Haas showed in [11] how impersonation and replay attacks
can be prevented for on-demand routing by disabling route
caching and providing end-to-end authentication using an
HMAC [12] primitive which relies on the existence of secu-
rity associations between sources and destinations. Dahill
et al.[16] focus on providing hop-by-hop authentication for
the route discovery stage of two well-known on-demand pro-
tocols: AODV [2] and DSR [3], relying on digital signatures.
Other significant works include SEAD [13] and Ariadne [4]
that provide efficient secure solutions for the DSDV [14] and
DSR [3] routing protocols, respectively. While SEAD uses
one-way hash chains to provide authentication, Ariadne uses
a variant of the Tesla [15] source authentication technique
to achieve similar security goals.

Marti et al.[18] address a problem similar to the one we
consider, survivability of the routing service when nodes se-
lectively drop packets. They take advantage of the wireless
cards promiscuous mode and have trusted nodes monitor-
ing their neighbors. Links with an unreliable history are
avoided in order to achieve robustness. Although the idea of
using the promiscuous mode is interesting, this solution does
not work well in multi-rate wireless networks because nodes
might not hear their neighbors forwarding communication
due to different modulations. In addition, this method is
not robust against collaborating adversaries.

Also, relevant work has been done in the wired network
community. Many researchers focused on securing classes
of routing protocols such as link-state [10, 19, 20, 21] and
distance-vector [22]. Others addressed in detail the secu-
rity issues of well-known protocols such as OSPF [23] and
BGP [24]. The problem of source authentication for rout-
ing protocols was explored using digital signatures [23] or
symmetric cryptography based methods: hash chains [10],
chains of one-time signatures [20] or HMAC [21]. Intrusion
detection is another topic that researchers focused on, for
generic link-state [25, 26] or OSPF [27].

Perlman [28] designed the Network-layer Protocol with
Byzantine Robustness (NPBR) which addresses denial of
service at the expense of flooding and digital signatures.
The problem of byzantine nodes that simply drop packets
(black holes) in wired networks is explored in [29, 30]. The
approach in [29] is to use a number of trusted nodes to probe
their neighbors, assuming a limited model and without dis-
cussing how probing packets are disguised from the adver-
sary. A different technique, flow conservation, is used in [30].
Based on the observation that for a correct node the number
of bytes entering a node should be equal to the number of
bytes exiting the node (within a threshold), the authors sug-
gest a scheme where nodes monitor the flow in the network.
This is done by requiring each node to have a copy of the
routing table of their neighbors and reporting the incoming
and outgoing data. Although interesting, the scheme does
not work when two or more adversarial nodes collude.

3. PROBLEM DEFINITION AND MODEL
In this section we discuss the network and security as-

sumptions we make in this paper and present a more precise
description of the problem we are addressing.

3.1 Network Model
This work relies on a few specific network assumptions.

Our protocol requires bi-directional communication on all
links in the network. This is also a requirement of most
wireless MAC protocols, including 802.11 [31] and MACAW
[32]. We focused on providing a secure routing protocol,
which addresses threats to the ISO/OSI network layer. We
do not specifically address attacks against lower layers. For
example, the physical layer can be disrupted by jamming,
and MAC protocols such as 802.11 can be disrupted by at-
tacks using the special RTS/CTS packets. Though MAC
protocols can detect packet corruption, we do not consider
this a substitute for cryptographic integrity checks [33].

3.2 Security Model and Considered Attacks
In this work we consider only the source and the destina-

tion to be trusted. Nodes that can not be authenticated do
not participate in the protocol, and are not trusted. Any
intermediate node on the path between the source and des-
tination can be authenticated and can participate in the
protocol, but may exhibit byzantine behavior. The goal of
our protocol is to detect byzantine behavior and avoid it.
We define byzantine behavior as any action by an authenti-
cated node that results in disruption or degradation of the
routing service. We assume that an intermediate node can
exhibit such behavior either alone or in collusion with other
nodes. More generally, we use the term fault to refer to
any disruption that causes significant loss or delay in the
network. A fault can be caused by byzantine behavior, ex-
ternal adversaries, lower layer influences, and certain types
of normal network behavior such as bursting traffic.

An adversary or group of adversaries can intercept, mod-
ify, or fabricate packets, create routing loops, drop packets
selectively (often referred to as a black hole), artificially de-
lay packets, route packets along non-optimal paths, or make
a path look either longer or shorter than it is. All the above
attacks result in disruption or degradation of the routing
service. In addition, they can induce excess resource con-
sumption which is particularly problematic in wireless net-
works.

There are strong attacks that our protocol can not pre-
vent. One of these strong attacks, referred to as a wormhole
[4], is where two attackers establish a path and tunnel pack-
ets from one to another. For example, the attackers can
tunnel route request packets that can arrive faster than the
normal route request flood. This may result in non-optimal
adversarial controlled routing paths. Our protocol addresses
this attack by treating the wormhole as a single link which
will be avoided if it exhibits byzantine behavior, but does not
prevent the wormhole formation. Also, we do not address
traditional denial of service attacks which are characterized
by packet injection with the goal of resource consumption.

Whenever possible, our protocol uses efficient cryptographic
primitives. This requires pairwise shared keys1 which are
established on-demand. The public-key infrastructure used

1We discourage group shared keys since this is an invitation
for impersonation in a cooperative environment.

Route
Discovery

Byzantine
Fault

Detection

Link
Weight

Management

Weight List Path Faulty Link

Figure 1: Secure Routing Protocol Phases

for authentication can be either completely distributed (as
described in [5]), or Certificate Authority (CA) based. In
the latter case, a distributed cluster of peer CAs sharing a
common certificate and revocation list can be deployed to
improve the CA’s availability.

3.3 Problem Definition
The goal of this work is to provide a robust on-demand

ad hoc routing service which is resilient to byzantine be-
havior and operates under the network and security models
described in Sections 3.1 and 3.2. We attempt to bound the
amount of damage an adversary or group of adversaries can
cause to the network.

4. SECURE ROUTING PROTOCOL
Our protocol establishes a reliability metric based on past

history and uses it to select the best path. The metric is
represented by a list of link weights where high weights cor-
respond to low reliability. Each node in the network main-
tains its own list, referred to as a weight list, and dynami-
cally updates that list when it detects faults. Faulty links
are identified using a secure adaptive probing technique that
is embedded in the normal packet stream. These links are
avoided using a secure route discovery protocol that incor-
porates the reliability metric.

More specifically, our routing protocol can be separated
into three successive phases, each phase using as input the
output from the previous (see Figure 1):

• Route discovery with fault avoidance. Using flooding,
cryptographic primitives, and the source’s weight list
as input, this phase finds and outputs the full least
weight path from the source to the destination.

• Byzantine fault detection. The goal of this phase is
to discover faulty links on the path from the source
to the destination. This phase takes as input the full
path and outputs a faulty link. Our adaptive prob-
ing technique identifies a faulty link after log n faults
occurred, where n is the length of the path. Crypto-
graphic primitives and sequence numbers are used to
protect the detection protocol from adversaries.

• Link weight management. This phase maintains a weight
list of links discovered by the fault detection algo-
rithm. A multiplicative increase scheme is used to
penalize links which are then rehabilitated over time.
The weight list is used by the route discovery phase to
avoid faulty paths.

4.1 Route Discovery with Fault Avoidance
Our route discovery protocol floods both the route request

and the response in order to ensure that if any fault free path
exists in the network, a path can be established. However,
there is no guarantee that the established path is free of

Procedure list:

CreateSignSend(item1, item2, ...) - creates a message of the concatenated item list, signed by the current node, and broadcasts it
Broadcast(message) - broadcasts a message
VerifySignature(node, signature) - verifies the signature and exits the procedure if the signature is not valid
Find(list, item) - returns an item in a list, or NULL if the item does not exist
InsertList(list, item) - inserts an item in a list
UpdateList(list, item) - replaces the item in a list
LinkWeight(weight list, A, B) - returns the listed weight of the link between A and B, or one if the link is not listed

Code executed at node source when a new route to node destination is needed:
(1) CreateSignSend(REQUEST, destination, source, req sequence, weight list)

Code executed at node this node when a request message req is received:
(2) if(Find(requests list, req) = NULL)
(3) VerifySignature(req.source, req.signature)
(4) if(this node = req.destination)
(5) CreateSignSend(RESPONSE, req.destination, req.source, req.req sequence, req.high weights list)
(6) else

(7) Broadcast(req)
(8) endif

(9) InsertList(requests list, req)
(10) endif

Code executed at node this node when a response message res is received:
(11) update = false

(12) prev node = res.destination
(13) total weight = 0
(14) for(i = 0; i < res.no hops; i++)
(15) total weight += LinkWeight(res.weight list, prev node, res.hops[i].node)
(16) prev node = res.hops[i].node
(17) endfor
(18) res.total weight = total weight + LinkWeight(res.weight list, prev node, this node)
(19) prev response = Find(responses list, res)
(20) if(prev response 6= NULL)
(21) if(res.total weight ≥ prev response.total weight)
(22) update = true

(23) endif

(24) else
(25) update = true

(26) endif

(27) if(update)
(28) VerifySignature(res.destination, res.signature)
(29) for(i = 0; i < res.no hops; i++)
(30) VerifySignature(res.hops[i].node, res.hops[i].signature)
(31) endfor

(32) if(this node = source)
(33) UpdateList(path list, res)
(34) else

(35) CreateSignSend(res, this node)
(36) UpdateList(responses list, res)
(37) endif

(38) endif

Figure 2: Route Discovery Algorithm

adversarial nodes. The initial flood is required to guarantee
that the route request reaches the destination. The response
must also be flooded because if it was unicast, a single ad-
versary could prevent the path from being established. If an
adversary was able to prevent routes from being established,
the fault detection algorithm would be unable to detect and
avoid the faulty link since it requires a path as input in order
to operate.

A digital signature is used to authenticate the source.
This is required to prevent unauthorized nodes from initi-
ating resource consuming route requests. An unauthorized
route request would fail verification and be dropped by each
of the requesting node’s immediate neighbors, preventing
the request from flooding through the network.

At the completion of the route discovery protocol, the
source is provided with the complete path to the destina-
tion. Many on-demand routing protocols use route caching
by intermediate nodes as an optimization; we do not con-
sider it in this work because of the security implications. We
intend to address route caching optimizations with strong
security semantics in a future work.

Our route discovery protocol uses link weights to avoid
faults. A weight list is provided by the link weight man-
agement phase (Section 4.3). The route discovery protocol
chooses a route that is a minimum weight path between the
source and the destination. This path is found during a
flood by accumulating the cost hop by hop and forwarding
the flood only if the new cost is less than the previously
forwarded cost. The protocol uses digital signatures at each
hop to prevent an adversary from specifying an arbitrary
path. For example, it can stop an adversary from invent-
ing a short path in an attempt to draw packets into a black
hole. Since the cost associated with signing a message at
each hop is very high, the weights are accumulated as part
of the response flood instead of the request flood in order to
minimize the cost of route requests to unreachable destina-
tions.

If only the source verifies all of the weights and signa-
tures, then the protocol becomes vulnerable to attacks on
the response flood propagation. The adversaries could block
correct information from reaching the source by propagating
low cost fabricated responses. The source can ignore non-
authentic responses, however, since intermediate nodes only
re-send lower cost information, a valid response would never
reach the source. Therefore, each intermediate node must
verify the weights and the signatures carried by a response,
in order to guarantee that a path will be established.

An adversary can still influence the path selection by cre-
ating what we refer to as virtual links. A virtual link is
formed when adversaries form wormholes, as described in
Section 3.2, or any other type of shortcuts in the network.
A virtual link can be created by deleting one or more hops
from the end of the route response. Our detection algorithm
(Section 4.2) can identify and avoid virtual links if they ex-
hibit byzantine behavior, but our route discovery algorithm
does not prevent their formation. We present a detailed
analysis of the effect of virtual links in Section 5.

As part of the route discovery protocol, each node main-
tains a list of recent requests and responses that it has al-
ready forwarded. The following five steps comprise the route
discovery protocol (see also Figure 2):

I. Request Initiation. The source creates and signs a re-
quest that includes the destination, the source, a sequence
number, and a weight list (see Line 1, Figure 2). The source
then broadcasts this request to its neighbors. The source’s
signature allows the destination and intermediate nodes to
authenticate the request and prevents an adversary from
creating a false route request.

II. Request Propagation. The request propagates to the
destination via flooding which is performed by the interme-
diate nodes as follows. When receiving a request, the node
first checks its list of recently seen requests for a matching
request (one with the exact same destination, source, and
request identifiers). If there is no matching request in its list,
and the source’s signature is valid, it stores the request in
its list and rebroadcasts the request (see Lines 2-10, Figure
2). If there is a matching request, the node does nothing.

III. Request Receipt / Response Initiation. Upon receiv-
ing a new request from a source for the first time, the des-
tination verifies the authenticity of the request, creates and
signs a response that contains the source, the destination, a
response sequence number and the weight list from the re-
quest packet. The destination then broadcasts this response
(see Lines 2-10, Figure 2).

IV. Response Propagation. When receiving a response,
the node computes the total weight of the path by sum-
ming the weight of all the links on the specified path to this
node (Lines 12-18, Figure 2). If the total weight is less than
any previously forwarded matching response (same source,
destination and response identifiers), the node verifies the
signatures of the response header and every hop listed on
the packet so far2 (Lines 28-31, Figure 2). If the entire
packet is verified, the node appends its identifier to the end
of the packet, signs the appended packet, and broadcasts
the modified response (Lines 35-36, Figure 2).

V. Response Receipt. When the source receives a response,
it performs the same computation and verification as the
intermediate nodes as described in the response propagation
step. If the path in the response is better than the best path
received so far, the source updates the route used to send
packets to that specific destination (see Line 33, Figure 2).

4.2 Byzantine Fault Detection
Our detection algorithm is based on using acknowledg-

ments (acks) of the data packets. If a valid ack is not re-
ceived within a timeout, it is assumed that the packet has
been lost. Note that this definition of loss includes both ma-
licious and non-malicious causes. A loss can be caused by
packet drop due to buffer overflow, packet corruption due to
interference, a malicious attempt to modify the packet con-
tents, or any other event that prevents either the packet or
the ack from being received and verified within the timeout.

A network operating “normally” exhibits some amount of
loss. We define a threshold that sets a bound on what is
considered a tolerable loss rate. In a well behaved network
the loss rate should stay below the threshold. We define a
fault as a loss rate greater than or equal to the threshold.

2To maximize the performance of multiple verifications we
use RSA keys with a low public exponent.

The value of the threshold also specifies the amount of loss
that an adversary can create without being detected. Hence,
the threshold should be chosen as low as possible, while still
greater than the normal loss rate. The threshold value is
determined by the source, and may be varied independently
for each route to accommodate different situations, but this
work uses a fixed threshold.

While this threshold scheme may seem overly “simple”,
we would like to emphasize that our protocol provides fault
avoidance and never disconnects nodes from the network.
Thus, the impact of false positives, due to normal events
such as bursting traffic, is drastically reduced. This pro-
vides a much more flexible solution than one where nodes
are declared faulty and excluded from the network. In ad-
dition, this avoidance property allows the threshold to be
set very low, where it may be periodically triggered by false
positives, without severely impacting network performance
or affecting network connectivity.

A substantial advantage of our protocol is that it limits
the overhead to a minimum under normal conditions. Only
the destination is required to send an ack when no faults
have occurred. If losses exceed the threshold, the protocol
attempts to locate the faulty link. This is achieved by re-
quiring a dynamic set of intermediate nodes, in addition to
the destination node, to send acks to the source.

Normal topology changes occur frequently in ad hoc wire-
less networks. Although our detection protocol locates “faulty
links” that are caused by these changes, an optimized mech-
anism for detecting them would decrease the overhead and
detection time. Any of the mechanisms described in the
route maintenance section of the DSR protocol [3], for in-
stance MAC layer notification, can be used as an optimized
topology change detector. When our protocol receives noti-
fication from such a detector, it reacts by creating a route
error message that is propagated along the path back to the
source. The node that generates this message, signs it, in
order to provide integrity and authentication. Upon receipt
of an authenticated route error message, the source passes
the faulty link to the link weight management phase. Note
that an intermediate node exhibiting byzantine behavior can
always incriminate one of its links, so adding a mechanism
that allows it to explicitly declare one of its links faulty, does
not weaken the security model.

Fault Detection Overview. Our fault detection protocol
requires the destination to return an ack to the source, for
every successfully received data packet. The source keeps
track of the number of recent losses (acks not received over
a window of recent packets). If the number of recent losses
violates the acceptable threshold, the protocol registers a
fault between the source and the destination and starts a
binary search on the path, in order to identify the faulty
link. A simple example is illustrated in Figure 3.

The source controls the search by specifying a list of in-
termediate nodes on data packets. Each node in the list, in
addition to the destination, must send an ack for the packet.
We refer to the set of nodes required to send acks as probed
nodes, or for short probes. Since the list of probed nodes
is specified on legitimate traffic, an adversary is unable to
drop traffic without also dropping the list of probed nodes
and eventually being detected.

The list of probes defines a set of non-overlapping intervals
that cover the whole path, where each interval covers the

Source Destination

Trusted End Point

Intermediate Router

Successful Probe

Failed Probe

Fault Location

Good Interval

Faulty Interval

Unknown Interval

Success

Failure 1

Failure 2

Failure 3

Failure 4

Figure 3: Byzantine Fault Detection

sub-path between the two consecutive probes that form its
endpoints. When a fault is detected on an interval, the
interval is divided in two by inserting a new probe. This
new probe is added to the list of probes appended to future
packets. The process of sub-division continues until a fault is
detected on an interval that corresponds to a single link. In
this case, the link is identified as being faulty and is passed
as input to the link weight management phase (see Figure
1). The path sub-division process is a binary search that
proceeds one step for each fault detected. This results in the
identification of a faulty link after log n faults are detected,
where n is the length of the path.

We use shared keys between the source and each probed
node as a basis for our cryptographic primitives in order to
avoid the prohibitively high cost of using public key cryp-
tography on an per packet basis. These pairwise shared keys
can be established on-demand via a key exchange protocol
such as Diffie-Hellman [34], authenticated using digital sig-
natures. The on-demand key exchange must be fully inte-
grated into the fault detection protocol in order to maintain
the security semantics. The integrated key exchange oper-
ates similarly to the probe and ack specification discussed
below (see also Figure 4), but it is not described in detail in
this work.

Probe Specification. The mechanism for specifying the
probe list on a packet is essential for the correct operation of
the detection protocol. The probes are specified in the list
in the same order as they appear on the path. The list is
“onion” encrypted [17]. Each probe is specified by the iden-
tifier of the node, an HMAC of the packet (not including the
list), and the encrypted remaining list (see Lines 3-6, Figure
4). Both the HMAC and the encrypted remaining list are
computed with the shared key between the source and that
node. An HMAC [12] using a one-way hash function such as
SHA1 [35] and a standard block cipher encryption algorithm
such as AES [36] can be used.

A node can detect if it is required to send acks by checking
the identifier at the beginning of the list (see Lines 8-12,
Figure 4). If it matches, then it verifies the HMAC of the
packet and replaces the list on the packet with the decrypted
version of the remaining list. This mechanism forces the

Procedure list:
Cat(a, b, ...) - returns the concatenation of a, b, etc.
Hmac(data, key) - compute and return the hmac of data using key
Encrypt/Decrypt(data, key) - encrypt/decrypt data with key and return result
Report Loss and Return(node) - reports that a loss was detected on the interval before node and exit the procedure

Code executed at source when sending a packet with the contents data to destination :

(1) body = Cat(destination.id, source.id, destination.counter++, Encrypt (data, destination.key))
(2) tail = Hmac(body, destination.key)
(3) for(i = probe list.length - 1, i ≥ 0, i−−)
(4) tail = Encrypt(tail, probe list[i].key)
(5) tail = Cat(probe list[i].id, Hmac(body, probe list[i].key), tail)
(6) endfor

(7) Send(Cat(body, tail))

Code executed at this node when receiving a packet with the contents source, destination,
enc data, id, hmac, enc remainder :

(8) if(id = this node and hmac = Hmac(enc data, source.key)
(9) Send(Cat(source, destination, enc data, Decrypt(enc remainder, key))
(10) waiting for ack = true

(11) Schedule ack timer()
(12) endif

Code executed at destination when receiving a packet with the contents source, destination, counter, enc data, hmac:
(13) if(counter > prev counter and hmac = Hmac(Cat(source, destination, counter, enc data)))
(14) Deliver(Decrypt(enc data, source.key))
(15) Send(Cat(source.id, destination.id, counter, Hmac(Cat(destination.id, counter), source.key)))
(16) endif

Code executed at probed node when receiving an ack with the contents source, ack node, counter, enc remainder:
(17) if(waiting for ack)
(18) encrypted ack = Encrypt(Cat(ack node, counter, enc remainder), source.key)
(19) Send(Cat(source.id, probed node.id, counter, enc ack, Hmac(Cat(probed node.id, counter, enc ack), source.key)))
(20) waiting for ack = false

(21) Unschedule ack timer()
(22) endif

Code executed at this node when ack timer expires:

(23) waiting for ack = false

(24) Send(Cat(source, this node.id, counter, Hmac(Cat(this node.id, counter), source.key)))

Code executed at source when ack timer expires:

(25) waiting for ack = false

(26) Report Loss and Return(probe list[0])

Code executed at source when receiving an ack with the contents source, ack node, counter, enc remainder, hmac:
(27) if(wait for ack and ack node = probe list[0].id and hmac = Hmac(Cat(ack node, counter, enc remainder), ack node.key))
(28) waiting for ack = false
(29) Unschedule ack timer()
(30) for(i = 1, i < probe list.length, i++)
(31) if(enc remainder = NULL)
(32) Report Loss and Return(probe list[i])
(33) endif

(34) ack node, counter, enc remainder, hmac = Decrypt(enc remainder, probe list[i-1].key)
(35) if(ack node 6= probe list[i].id or hmac 6= Hmac(Cat(ack node, counter, enc remainder), ack node.key))
(36) Report Loss and Return(probe list[i])
(37) endif

(38) endfor
(39) if(enc remainder = NULL)
(40) Report Loss and Return(destination)
(41) endif

(42) ack node, counter, hmac = Decrypt(enc remainder, probe list[i-1].key)
(43) if(ack node 6= destination or hmac 6= Hmac(Cat(ack node, counter), destination.key))
(44) Report Loss and Return(destination)
(45) return

(46) endif
(47) Success()
(48) endif

Figure 4: Probe and Acknowledgement Specification

packet to traverse the probes in order, which verifies the
route taken. Additionally, it verifies the contents of the
packet at every probe point. The onion encryption prevents
the adversary from incriminating other links by removing
specific nodes from the probe list. Note that the adversary is
able to remove the entire probe list, but this will incriminate
one of its own links.

Acknowledgment Specification. If the adversary can drop
individual acks, it can incriminate any arbitrary link along
the path. In order to prevent this, each probe does not send
its ack immediately, but waits for the ack from the next
probe and combines them into one ack. Each ack consists of
the identifier of the probe, the identifier of the data packet
that is being acknowledged, the ack received from the next
probe encrypted with the key shared by this probe and the
source, and an HMAC of the new combined ack (see Lines
15 and 18-19, Figure 4).

If no ack is received within a timeout, the probe gives up
waiting, and creates and sends its ack (see Line 24, Figure
4). The timeouts are set up in such a way that if there is a
failure, all the acks before the failure point can be combined
without other timeouts occurring. This is accomplished by
setting the timeout for each probe to be the upper bound of
the round-trip from it to the destination.

Upon receipt of an ack, the source checks the acks from
each probe by successively verifying the HMACs and de-
crypting the next ack (see Lines 27-54, Figure 4). The source
either verifies all the acks up through the destination, or dis-
covers a loss on the interval following the last ack.

Interval and Probe Management. Let τ be the accept-
able threshold loss rate. By using the above probe and ac-
knowledgment specifications, it is simple to attribute losses
to individual intervals. A loss is attributed to an interval
between two probes when the source successfully received
and verified an ack from the closer probe, but does not from
the further probe. When the loss rate on an interval exceeds
τ , the interval is divided in two.

Maintaining probes adds overhead to our protocol, so it is
desirable to retire probes when they are no longer needed.
The mechanism for deciding when to retire probes is based
on the loss rate τ and the number of lost packets. The goal
is to amortize the cost of the lost packets over enough good
packets, so that the aggregate loss rate is bounded to τ .

Each interval has an associated counter C that specifies
its lifetime. Initially, there is one interval with a counter
of zero (there are initially no losses between the source and
destination). When a fault is detected on an interval with a
counter C, a new probe is inserted which divides the interval.
Each of the two new intervals have their counters initialized
to µ/τ + C, where µ is the number of losses that caused
the fault. The counters are decremented for every ack that
is successfully received, until they reach zero. When the
counters of both intervals on either side of a probe reach
zero, the probe is retired joining the two intervals.

In the worst case scenario, a dynamic adversary can cause
enough loss to trigger a fault, then switch to causing loss just
under τ in order to wait out the additional probe, and then
repeat when the probe is removed. This results in a loss
rate bounded to 2τ . If the adversary attempts to create a
higher loss rate, the algorithm will be able to identify the
faulty link.

4.3 Link Weight Management
An important aspect of our protocol is its ability to avoid

faulty links in the process of route discovery by the use of
link weights. The decision to identify a link as faulty is made
by the detection phase of the protocol. The management
scheme maintains the weight list using the history of faults
that have been detected. When a link is identified as faulty,
we use a multiplicative increase scheme to double its weight.

The technique we use for reseting a link weight is similar
to the one we use for retiring probes (see Section 4.2). The
weight of a link can be reset to half of the previous value
after the counter associated with that link returns to zero. If
µ is the number of packets dropped while identifying a faulty
link, then the link’s counter is increased by µ/τ where τ is
the threshold loss rate. Each non-zero counter is reduced by
1/m for every successfully delivered packet, where m is the
number of links with non-zero counters. This bounds the
aggregate loss rate to 2τ in the worst case.

5. ANALYSIS
Our protocol ensures that, even in a highly adversarial

controlled network, as long as there is one fault-free path,
it will be discovered after a bounded number of faults have
occurred. As defined in Section 4.2, a fault means a violation
of the threshold loss rate. We consider a network of n nodes
of which k exhibit adversarial behavior. The adversaries
cooperate and create the maximum number of virtual links
possible in order to slow the convergence of our algorithm.

We provide an analysis of the upper bound for the total
number of packets lost while finding the fault free path. This
bound is defined by the number of losses that result in an
increase of the costs of all adversarial controlled paths above
the cost of the fault free path.

Let q− and q+ be the total number of lost packets and
successfully transmitted packets, respectively. Ideally, q− −
ρ · q+ ≤ 0, where ρ is the transmission success rate, slightly
higher than the original threshold. This means the number
of lost packets is a ρ-fraction of the number of transmitted
packets. While this is not quite true, it is true “up to an
additive constant”, i.e. ignoring a bounded number φ of
packets lost. Specifically, we prove that there exists an upper
bound φ for the previous expression. We show that:

q− − ρ · q+ ≤ φ (1)

Assume that there are k adversarial nodes, k < n. We de-
note by Ẽ the set of “virtual links” controlled by adversarial
nodes. The maximum size of Ẽ is kn.

Consider a faulty link e, convicted je times and rehabili-
tated ae times. Then, its weight, we, is at most n, we = n
means that the whole path is adversarial. By the algorithm,
we is given by the formula:

we = 2je−ae (2)

The number of convictions is at least q−

µ
, so

q−

µ
−

�

e∈Ẽ

je < 0. (3)

Also, the number of rehabilitations is at most q+

µ/ρ
, so

�

e∈Ẽ

ae −
q+

µ/ρ
< 0 (4)

where µ is the number of lost packets that exposes a link.
Thus

q−

µ
−

q+

µ/ρ
≤

�

e∈Ẽ

(je − ae) (5)

From Eq. 2 we have je − ae = log we. Therefore:
�

e∈Ẽ

(je − ae) =
�

e∈Ẽ

log we (6)

By combining Eq. 5 and 6, we obtain

q− − ρ · q+ ≤ µ
�

e∈Ẽ

log we ≤ µ · kn · log n (7)

and since µ = b log n, where b is the number of lost packets
per window, Eq. 7 becomes

q− − ρ · q+ ≤ b · kn · log2 n (8)

Therefore, the amount of disruption a dynamic adversary
can cause to the network is bounded. Note that kn rep-
resents the number of links controlled by an adversary. If
there is no adversarial node Eq. 8 becomes the ideal case
where q− − ρ · q+ ≤ 0.

6. CONCLUSIONS AND FUTURE WORK
We presented a secure on-demand routing protocol re-

silient to byzantine failures. Our scheme detects malicious
links after log n faults occurred, where n is the length of the
routing path. These links are then avoided by the route dis-
covery protocol. Our protocol bounds logarithmically the
total amount of damage that can be caused by an attacker
or group of attackers.

An important aspect of our protocol is the algorithm used
to detect that a fault has occurred. However, it is difficult to
design such a scheme that is resistant to a large number of
adversaries. The method suggested in this paper uses a fixed
threshold scheme. We intend to explore other methods, such
as adaptive threshold or probabilistic schemes which may
provide superior performance and flexibility.

In order to further enhance performance, we would like to
investigate ways of taking advantage of route caching with-
out breaching our security guarantees.

We also plan to evaluate the overhead of our protocol with
respect to existing protocols, in normal, non-faulty condi-
tions as well as in adversarial environments. Finally, we
are interested in investigating means of protecting routing
against traditional denial of service attacks.

Acknowledgments
We are grateful to Giuseppe Ateniese, Avi Rubin, Gene
Tsudik and Moti Yung for their comments. We would like to
thank Jonathan Stanton and Ciprian Tutu for helpful feed-
back and discussions. We also thank the anonymous referees
for their comments.

We would like to thank the Johns Hopkins University In-
formation Security Institute for providing the funding that
made this research possible.

7. REFERENCES
[1] J. Kurose and K. Ross, Computer Networking, a top

down approach featuring the Internet. Addison-Wesley
Longman, 2000.

[2] C. E. Perkins and E. M. Royer, Ad hoc Networking,
ch. Ad hoc On-Demand Distance Vector Routing.
Addison-Wesley, 2000.

[3] D. B. Johnson, D. A. Maltz, and J. Broch, DSR: The
Dynamic Source Routing Protocol for Multi-Hop
Wireless Ad Hoc Networks. in Ad Hoc Networking,
ch. 5, pp. 139–172. Addison-Wesley, 2001.

[4] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A
secure on-demand routing protocol for ad hoc
networks,” in The 8th ACM International Conference
on Mobile Computing and Networking, September
2002. To appear.

[5] J.-P. Hubaux, L. Buttyan, and S. Capkun, “The quest
for security in mobile ad hoc networks,” in The 2nd
ACM Symposium on Mobile Ad Hoc Networking and
Computing, October 2001.

[6] P. Zimmermann, The Official PGP User’s Guide. MIT
Press, 1995.

[7] L. Zhou and Z. Haas, “Securing ad hoc networks,”
IEEE Network Magazine, vol. 13,
November/December 1999.

[8] M. Brown, D. Cheung, D. Hankerson, J. Hernandez,
M. Kirkup, and A. Menezes., “PGP in constrained
wireless devices,” in The 9th USENIX Security
Symposium, USENIX, August 2000.

[9] S. Yi, P. Naldurg, and R. Kravets, “Security-aware ad
hoc routing for wireless networks,” in The 2nd ACM
Symposium on Mobile Ad Hoc Networking and
Computing, October 2001.

[10] R. Hauser, T. Przygienda, , and G. Tsudik, “Reducing
the cost of security in link-state routing,” in
Symposium of Network and Distributed Systems
Security, 1997.

[11] P. Papadimitratos and Z. Haas, “Secure routing for
mobile ad hoc networks,” in SCS Communication
Networks and Distributed Systems Modeling and
Simulation Conference, pp. 27–31, January 2002.

[12] The Keyed-Hash Message Authentication Code
(HMAC). No. FIPS 198, National Institute for
Standards and Technology (NIST), 2002.
http://csrc.nist.gov/publications/fips/index.html.

[13] Y.-C. Hu, D. B. Johnson, and A. Perrig, “SEAD:
Secure efficient distance vector routing for mobile
wireless ad hoc networks,” in The 4th IEEE Workshop
on Mobile Computing Systems and Applications,
IEEE, June 2002.

[14] C. E. Perkins and P. Bhagwat, “Highly dynamic
destination-sequenced distance-vector routing (DSDV)
for mobile computers,” in ACM SIGCOMM’94
Conference on Communications Architectures,
Protocols and Applications, 1994.

[15] A. Perrig, R. Canetti, D. Song, and D. Tygar,
“Efficient and secure source authentication for
multicast,” in Network and Distributed System
Security Symposium, February 2001.

[16] B. Dahill, B. Levine, C. Shields, and E. Royer, “A
secure routing protocol for ad hoc networks,” Tech.
Rep. 01-37, Department of Computer Science,

University of Massachusetts, August 2001.

[17] P. F. Syverson, D. M. Goldschlag, and M. G. Reed,
“Anonymous connections and onion routing,” in IEEE
Symposium on Security and Privacy, 1997.

[18] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating
routing misbehavior in mobile ad hoc networks,” in
The 6th ACM International Conference on Mobile
Computing and Networking, August 2000.

[19] S. Cheung, “An efficient message authentication
scheme for link state routing,” in The 13th Annual
Computer Security Applications Conference,
pp. 90–98, December 1997.

[20] K. Zhang, “Efficient protocols for signing routing
messages,” in Symposium on Networks and Distributed
Systems Security, 1998.

[21] M. T. Goodrich, “Efficient and secure network routing
algorithms.” Provisional patent filing., January 2001.

[22] B. R. Smith, S. Murthy, and J. Garcia-Luna-Aceves,
“Securing distance-vector routing protocols,” in
Symposium on Networks and Distributed Systems
Security, 1997.

[23] S. L. Murphy and M. R. Badger, “Digital signature
protection of the OSPF routing protocol,” in
Symposium on Networks and Distributed Systems
Security, 1996.

[24] B. Smith and J. Garcia-Luna-Aceves, “Efficient
security mechanisms for the border gateway routing
protocol,” Computer Communications (Elsevier),
vol. 21, no. 3, pp. 203–210, 1998.

[25] S. F. Wu, F. yi Wang, B. M. Vetter, W. R.
Cleaveland, Y. F. Jou, F. Gong, and C. Sargor,
“Intrusion detection for link-state routing protocols,”
in IEEE Symposium on Security and Privacy, 1997.

[26] D. Qu, B. M. Vetter, F. Wang, R. Narayan, S. F. Wu,
Y. F. Jou, F. Gong, and C. Sargor, “Statistical
anomaly detection for link-state routing protocols,” in
IEEE Symposium on Security and Privacy (5
Minutes), May 1997.

[27] S. Wu, H. Chang, D. Qu, F. W. F. Jou, F. Gong,
C. Sargor, and R. Cleaveland, “JiNao: Design and
implementation of a scalable intrusion detection
system for the OSPF routing protocol,” Journal of
Computer Networks and ISDN Systems, 1999.

[28] R. Perlman, Network Layer Protocols with Byzantine
Robustness. PhD thesis, MIT LCS TR-429, October
1988.

[29] S. Cheung and K. Levitt, “Protecting routing
infrastructures from denial of service using
cooperative intrusion detection,” in New Security
Paradigms Workshop, 1997.

[30] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee,
and R. A. Olsson, “Detecting disruptive routers: A
distributed network monitoring approach,” in IEEE
Symposium on Security and Privacy, 1998.

[31] ANSI/IEEE Std 802.11, 1999 Edition. 1999.
http://standards.ieee.org/catalog/olis/lanman.html.

[32] V. Bharghavan, A. J. Demers, S. Shenker, and
L. Zhang, “MACAW: A media access protocol for
wireless LAN’s,” in SIGCOMM, pp. 212–225, 1994.

[33] J. Stone and C. Partridge, “When the CRC and TCP
checksum disagree,” in ACM SIGCOM,

August/September 2000.

[34] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Trans. Inform. Theory,
vol. IT-22, pp. 644–654, November 1976.

[35] Secure Hash Standard (SHA1). No. FIPS 180-1,
National Institute for Standards and Technology
(NIST), 1995.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[36] Advanced Encryption Standard (AES). No. FIPS 197,
National Institute for Standards and Technology
(NIST), 2001. http://csrc.nist.gov/encryption/aes/.

Reliable Communication in Overlay Networks

Yair Amir and Claudiu Danilov
Johns Hopkins University�

yairamir, claudiu � @cs.jhu.edu

Abstract

Reliable point-to-point communication is usually
achieved in overlay networks by applying TCP on the end
nodes of a connection. This paper presents a hop-by-hop
reliability approach that considerably reduces the latency
and jitter of reliable connections. Our approach is feasible
and beneficial in overlay networks that do not have the
scalability and interoperability requirements of the global
Internet.

The effects of the hop-by-hop reliability approach are
quantified in simulation as well as in practice using a newly
developed overlay network system that is fair with the ex-
ternal traffic on the Internet. The experimental results show
that the overhead associated with overlay network process-
ing at the application level does not play an important fac-
tor compared with the considerable gain of the approach.

1 Introduction

Reliable point-to-point communication is one of the
main utilizations of the Internet, where over the last few
decades TCP has served as the dominant protocol. Over the
Internet, reliable communication is performed end-to-end in
order to address the severe scalability and interoperability
requirements of a network in which potentially every com-
puter on the planet could participate. Thus, all the work
required in a reliable connection is distributed only to the
two end nodes of that connection, while intermediate nodes
route packets without keeping any information about the in-
dividual packets they transfer.

Overlay networks are opening new ways to Internet us-
ability, mainly by adding new services (e.g. built-in secu-
rity) that are not available or cannot be implemented in the
current Internet, and also by providing improved services
such as higher availability [2]. However, the usage of over-
lay networks may come with a price, usually in added la-
tency that is incurred due to longer paths created by overlay
routing, and by the need to process the messages in the ap-
plication level by every overlay node on the path.

Reliable communication in overlay networks is usually
achieved by applying TCP on the edges of a connection.
This surely works. However, this paper argues that employ-
ing hop-by-hop reliability techniques considerably reduces
the average latency and jitter of reliable communication.
When using such an approach one has to consider network-
ing aspects such as congestion control, fairness, flow con-
trol and end-to-end reliability. We discuss these aspects and
our design decisions in Section 2.

In Section 3, we demonstrate through simulation that our
approach provides tremendous benefit for the application as
well as for the network itself, even when very few packets
are lost. Simulations usually do not take into account many
practical issues such as processing overhead, CPU schedul-
ing, and most important, the fact that overlay network pro-
cessing is performed at the application level of general pur-
pose computers. These may have considerable impact on
real-life behavior and performance. Therefore, we test our
approach in practice on an overlay network platform called
Spines that we have built.

We introduce Spines in Section 4. Spines [16] is an open
source research platform that allows deployment of over-
lay networks in the Internet. We run the same experiments
that were simulated, on a Spines overlay network. The re-
sults are presented in Section 5. We show that the benefit
of hop-by-hop reliability greatly overcomes the overhead of
overlay routing and achieves much better performance com-
pared to standard end-to-end TCP connections deployed on
the same overlay network.

We describe existing related work and compare it with
our approach in Section 6, and end the paper, concluding
that hop-by-hop reliability is a viable and beneficial ap-
proach to reliable communication in overlay networks.

2 Hop-by-hop reliable communication in
overlay networks

An overlay network constructs a user level graph on top
of an existing networking infrastructure such as the Inter-
net, using only a subset of the available network links and
nodes. An overlay link is a virtual edge in this graph and

may consist of many actual links in the underlying network.
Overlay nodes act as routers, forwarding packets to the next
overlay link toward the destination. At the physical level,
packets traveling along a virtual edge between two overlay
nodes follow the actual physical links that form that edge.

Overlay networks have two main drawbacks. First, the
overlay routers incur some overhead every time a message
is processed, which requires delivering the message to the
application level, processing it, and resending the message
to the next overlay router. Second, the placement of overlay
routers in the topology of the physical network is often far
from optimal, because the creator of the overlay network
rarely has control over the physical network (usually the
Internet) or even the knowledge about its actual topology.
Therefore, overlay networks provide longer paths that have
higher latency than point to point Internet connections.

The easiest way to achieve reliability in Overlay Net-
works is to use a reliable protocol, usually TCP, between the
end points of a connection. This mechanism has the benefit
of simplicity in implementation and deployment, but pays a
high price upon recovery from a loss. As overlay paths have
higher delays, it takes a relatively long time to detect a loss,
and data packets and acknowledgments are sent on multiple
overlay hops in order to recover the missed packet.

2.1 Hop-by-hop reliability

We propose a mechanism that recovers the losses only on
the overlay hop on which they occurred, localizing the con-
gestion and enabling faster recovery. Since an overlay link
has a lower delay compared to an end-to-end connection
that traverses multiple hops, we can detect the loss faster
and resend the missed packet locally. Moreover, the con-
gestion control on the overlay link can increase the conges-
tion window back faster than an end-to-end connection, as
it has a smaller round-trip time.

Hop-by-hop reliability involves buffers and processing
in the intermediate overlay nodes. These nodes need to de-
ploy a reliable protocol, and keep track of packets, acknowl-
edgments and congestion control, in addition to their regular
routing functionality. Although such an approach may not
be feasible to implement at the level of the Internet routers
due to scalability limitations, we can easily deploy it at the
level of an overlay network, thus allowing us to pinpoint
the congestion, limiting the problem to the congested part
of the network.

Let’s consider a simple overlay network composed of
five 10 millisecond links in a chain, as shown in Figure 1.
Such a network may span a continent such as North Amer-
ica or Europe. Every time a packet is lost (say on link C-
D), it will take at least 50 milliseconds from the time that
packet was sent until the receiver detects the loss, and at
least 50 additional milliseconds until the sender learns about

A B C D E F

A-F

10ms
10Mbps

Unicast flow

0.1ms
100Mbps

A-F

0.1ms
100Mbps

10ms
10Mbps

10ms
10Mbps

10ms
10Mbps

10ms
10Mbps

B-C C-D D-E E-FA-B

Figure 1. Chain Network Setup

it. The sender will retransmit the lost packet that will travel
50 more milliseconds until the receiver will get it. This ac-
counts for a total of at least 150 milliseconds to recover a
packet. If the sender continues to send packets during the
recovery period, even if the new packets arrive at the re-
ceiver in time (assuming no loss for them), they will not be
delivered at the receiver until the missing packet is recov-
ered, as they are not in order. Our experimental results pre-
sented in Sections 3 and 5 show that the number of packets
delayed is much higher than the number of packets lost.

Let us assume that we use five reliable hops of 10 mil-
liseconds each instead of one end-to-end connection. Sup-
pose the same message is lost on the same intermediate link,
as in the above scenario. On that particular link (with 10
milliseconds delay) it will take only about 30 milliseconds
for the receiver to recover the missed packet. Moreover, as
the recovery period is smaller, a smaller number of out of
order packets will be delayed. This effect is more visible as
the throughput increases.

2.2 End-to-end reliability and congestion control

Simply having reliable overlay links does not guarantee
end-to-end reliability. Intermediate nodes may crash, over-
lay links may get disconnected. However, such events are
not likely to happen and most of the reliability problems
(generated by network losses) are indeed handled locally at
the level of each hop. Therefore we still need to send some
end-to-end acknowledgments from the end-receiver to the
initial sender, at least once per round-trip time, but not for
every packet. This means that for some of the packets we
will pay the price of sending two acknowledgments, one
on each of the overlay hops for local reliability, and one
end-to-end, that will traverse the entire path. However, ac-
knowledgments are small and are piggy-backed on the data
packets whenever possible. We believe that the penalty of
sending double acknowledgments for some of the packets
is drastically reduced by resending the missed data packets
(which are much bigger than the acknowledgments) only
locally, on the hop where the loss occurred, and not on the
entire end-to-end path.

Intermediate overlay nodes handle reliability and con-

2

gestion control only for the links to their immediate neigh-
bors and do not keep any state for individual flows in the
system. Packets are forwarded and acknowledged per link,
regardless of their originator. This is essensial for the scal-
ability with the number of reliable sessions in the system.

Since the packets are not needed in order at the interme-
diate overlay nodes, but only at the final destination, in case
of a loss there is no need to delay the following packets lo-
cally on each link in order to forward them FIFO on the next
link. We choose to forward the packets even if out of order
on intermediate hops, and reestablish the initial order at the
end receiver.

Our tests show that out of order forwarding reduces the
burstiness inside the network. It also contributes to the re-
duction of the end-to-end latency (although that contribu-
tion is not as significant as the latency reduction achieved
by the hop-by-hop reliability). The latency effect of out
of order forwarding is magnified when multiple flows use
the same overlay link. In that case, they do not need to re-
order packets with respect to each other but only according
to their own packets. The same occurs when more than one
overlay link is congested and looses packets.

Overlay links are seen as individual point-to-point con-
nections by the underlying network. Since overlay flows
coexist with external traffic, each overlay link needs to have
a congestion control mechanism in place. Our approach
uses a window-based congestion control on each overlay
link, that very closely follows the slow start and congestion
avoidance of TCP [11].

The available bandwidth is different on each overlay
link, depending on the underlying network characteristics,
and is also dynamic, as the overlay link congestion con-
trol adjusts to provide fairness with the external traffic. If,
at an intermediate node, the incoming traffic is bigger than
the outgoing available bandwidth of the overlay link, that
node will buffer the incoming packets, but if the condition
persists it will either store an infinite number of packets or
will start dropping them. Since end-to-end recovery is ex-
pensive, there needs to exist a congestion control mecha-
nism that will limit, or even better, avoid packet losses at
the overlay level. As opposed to the regular mechanism in
TCP that uses packet losses to signal congestion, we use
an explicit congestion notification scheme [15] where con-
gested routers stamp the header of the data packets. Upon
receiving such a stamped packet, the end receiver will send
an end to end acknowledgment signaling the congestion im-
mediately, and the sender’s congestion control will treat that
acknowledgment as a loss, even though the sender will not
resend the corresponding packet. Note that the initial sender
still sends retransmissions if necessary (e.g. in case of node
failures and rerouting).

Since end-to-end acknowledgments are not sent for ev-
ery packet, the end-to-end window may advance in big

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
C

P
T

hr
ou

gh
pu

t (
K

bp
s)

Loss rate (%)

 TCP 10ms
 TCP 50ms

Figure 2. TCP throughput (analytical model)

chunks once a cummulative acknowledgment is received.
If the network path is not congested, this phenomenon
does not affect the burstiness of the traffic, as the sending
throughput is anyway smaller than the size of the window.
However, in case of congestion the receiver sends end-to-
end acknowledgments for every packet (stamped by an in-
termediate overlay router) until the congestion is resolved.

2.3 Fairness

Since we intend to deploy our protocols on the Internet
we need to share the global resources fairly with the ex-
ternal TCP traffic. A “TCP-compatible” flow is defined in
[3] as one that is responsive to congestion notification, and
in steady state, it uses no more bandwidth than a confor-
mant TCP running under comparable conditions (loss rate,
round-trip time, packet size, etc.).

The throughput obtained by a conformant TCP flow is
evaluated analytically in [13], where the authors approxi-
mate the bandwidth � of a TCP flow as a function of packet
size � , loss rate � and round-trip time ����� , where ��� is the
retransmission timeout and 	 is the number of packets that
have to be received before sending an acknowledgment.

��
 �
�����

� ������� � ���
� � ���� ����� � ��� � ��

Considering 	�
 � and � �
!�"�#� in the ideal case, on
a network topology such as in in Figure 1 the throughput
obtained by an end-to-end TCP connection (50 millisecond
delay) and by a short one hop TCP connection (10 millisec-
ond delay on link CD) sending 1000 byte packets are shown
in Figure 2 as a function of loss rate.

Clearly, an end-to-end reliable connection with a delay
of 50 milliseconds will achieve less bandwidth than a hop-
by-hop flow that will be limited only by the short bottle-
neck link C-D with 10 milliseconds delay, where the losses
occur. This phenomenon happens because TCP through-
put is biased against long connections. Analytically, �����

3

appears at the denominator of the throughput formula, and
in practice it will take more time for the long connection
to recover its congestion window (the congestion avoidance
protocol adds one to the congestion window for each �����).

Note that achieving more throughput by a hop-by-hop
flow does not happen with respect to external TCP connec-
tions that run outside of the overlay traffic. Each of the
overlay links provides fairness and congestion control with
respect to the external flows. A comparison of the through-
put obtained by a single flow traversing multiple hops on
the overlay network with one that uses the Internet directly
cannot be done because of several factors:

� Flows that run within the overlay network usually have
longer paths (higher delay) than direct Internet connec-
tions (due to the overlay routing which is usually far
from optimal), and therefore achieve less throughput.

� In general, multiple connections coexist within an
overlay network, so there is more than one stream us-
ing a single overlay link. In that case, multiple streams
will share a single overlay link using only a part of
what they could get if each of them used the Internet
directly by opening a separate TCP connection. One
way to overcome this problem is to open multiple con-
nections between two overlay nodes depending on the
number of internal flows using that overlay link. How-
ever, we see an overlay network as a single distributed
application, no matter how many internal flows it car-
ries; therefore, it should get only one share of the avail-
able bandwidth.

Some mechanisms can be deployed in order to limit the
internal hop-by-hop throughput to the one obtained by an
end-to-end connection that uses the overlay network. Such
mechanisms can evaluate the loss rate and round-trip time
of a path and adjust the sending rate accordingly, in a way
similar to [7]. We believe such mechanisms are not neces-
sary in our case - since we provide end-to-end congestion
control, obtaining more throughput is just an effect of pin-
pointing the congestion and resolving it locally. However,
in all the experiments of this paper we choose a conservative
approach and limit the sending throughput to values achiev-
able by both end-to-end and hop-by-hop flows, and focus
only on the latency of the connections.

3 Simulation Environment and Results

In this section we analyze the multihop reliability behav-
ior using the ns2 simulator [12]. We run a simple end-to-end
TCP connection from node A to node F on a network setup
as shown in Figure 1, while changing the packet loss rate on
link C-D. Since this paper focuses on the latency of reliable
connections, we limit the sending throughput to the same

value for end-to-end and hop-by-hop flows in order to keep
the same network parameters for our latency measurements.

We record the delay of each packet for the different send-
ing rates and packet loss for both end-to-end and hop-by-
hop reliability approaches. We define the delay of a packet
as the difference between the time the packet was received
at the destination, and the time it was initiated by a constant
rate sending application. Note that there is a difference be-
tween the time a packet is sent by an application and the
time that packet is actually put on the network by the reli-
able protocol (in our case, TCP). If TCP shrinks its window
or reaches a timeout, it will not accept or send new pack-
ets until it has enough room for them. During this time, the
new packets generated by the application will be stored in
a buffer owned either by the host operating system or by
the application itself. We believe that a delay measurement
that is fair to the application would count the time spent by
packets in these buffers as well.

The ns2 simulator offers a variety of TCP implementa-
tions. Out of these, we used TCP-Fack - TCP with forward
acknowledgments - as we believe it resembles a behavior
closest to the actual TCP implementation in the Linux Red-
hat 7.1, that we use in Section 5. The Linux kernel allows
adjustment of different TCP parameters (for example, turn-
ing off forward acknowledgments would give us a version
similar to TCP-SACK), however we opted for leaving the
default protocol in the kernel unaltered.

Table 1 shows the average packet delay given by differ-
ent TCP variations in ns2, as well as the Linux TCP imple-
mentation and the Spines link protocol (described in Sec-
tion 4) when a 500Kbps stream is sent on an end-to-end A-
F connection in the network showed in Figure 1, with link
C-D experiencing 1% loss. The Redhat 7.1 TCP and the
Spines link protocol delays were measured on an emulated
network setup described in Section 5.

We compare the performance of the standard end-to-end
approach to that of our hop-by-hop approach, where we for-
ward packets reliably on each link, A-B, B-C, ... up to link
E-F. For hop-by-hop reliability we use a modified version
of TCP-Fack: the initial sender (at node A) adds its orig-
inal sequence number in an additional packet header, in-
termediate receivers deliver packets out of order, and the
destination delivers packets FIFO according to the original
sequence number available in the new header. We did not
change the congestion control or the send and acknowledge
mechanisms in any way. We verified that our modified TCP
and the original TCP-Fack in ns2 behave identically with
respect to each packet on a point-to-point connection under
different loss rates. All the simulations in this section were
run for 5000 seconds, sending 1000 byte messages.

Figure 3 shows that the average delay for a 500 Kbps
data stream increases faster with an end-to-end connection
while a hop-by-hop flow maintains a low average delay even

4

Table 1. Average latency for under loss
Protocol Tahoe Reno NewReno SACK Fack Vegas Redhat 7.1 Spines

Avg. delay (ms) 407.49 217.52 155.76 144.70 84.66 74.07 90.06 117.55

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 d
el

ay
 (

m
s)

Loss rate (%)

 End-to-End
 Hop-by-Hop

Figure 3. Average delay for a 500 Kbps stream
(simulation)

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 d
el

ay
 (

m
s)

Loss rate (%)

 End-to-End
 Hop-by-Hop

Figure 4. Average delay for a 1000 Kbps
stream (simulation)

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Ji
tte

r
(m

s)

Loss rate (%)

 End-to-End
 Hop-by-Hop

Figure 5. Average jitter for a 500 Kbps stream
(simulation)

0

5

10

15

20

25

30

60 80 100 120 140 160 180 200 220 240 260 280

Pe
rc

en
ta

ge
 o

f
pa

ck
et

s
(%

)

Delay more than (ms)

 End-to-End
 Hop-by-Hop

Figure 6. Packet delay distribution for a 500
Kbps stream (simulation)

when it experiences a considerable loss rate. This phe-
nomenon is magnified as the throughput required by the
flow increases, as depicted by Figure 4 for a 1000 Kbps
data stream.

Jitter is an important aspect of network protocols behav-
ior due to its impact both on other flows at the network level
and on the application served by the flow. Figure 5 shows
that the jitter of an end-to-end connection is considerably
higher and increases faster than the jitter of a hop-by-hop
connection for a 500 Kbps stream. We computed the jitter
as the standard deviation of the packet delay.

It is interesting to see the distribution of the packet de-
lay for a certain loss rate. In Figure 6, we see that for a
500 Kbps data stream under 1% loss rate, over 27% of the
packets are delayed more than 60 milliseconds (including
the 50 milliseconds network delay) for an end-to-end con-
nection, while for a hop-by-hop connection only about 3%
of the packets are delayed more than 60 milliseconds. Sim-
ilarly, about 18% of the packets are delayed more than 100
milliseconds by the end-to-end connection, while for a hop-
by-hop connection only 1% of the packets are delayed as
much. Note that the actual number of packets delayed is
much higher than the number of packets lost.

We studied how the performance is affected by the num-
ber of intermediate reliable hops in an overlay network. We
consider the same network of 50 milliseconds delay, and
we measure the percentage of packets that are delayed as
we increase the number of intermediate hops from 1 to 10,
while keeping the total path latency constant. First, we use
two hops of 25 milliseconds each, then three hops of 16.66
milliseconds each, and so forth. Figure 7 shows the per-

5

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10

D
el

ay
ed

 p
ac

ke
ts

 (
%

)

Number of hops

 2% loss
 1% loss

Figure 7. Increasing the number of hops (sim-
ulation)

centage of packets delayed more than 60 milliseconds (10
milliseconds more than the path latency) for a 500 Kbps
data stream with 1% and 2% packet loss as the number of
hops increases. It is interesting to note that two to four hops
appear to be sufficient to capture almost all of the benefit
associated with hop-by-hop reliability. This is encouraging
as small overlay networks are relatively easy to deploy.

The important factor in obtaining better performance
with hop-by-hop reliability is the latency of the lossy link
rather than the number of hops in the end-to-end connec-
tion. The reason for the phenomenon depicted in Figure 7 is
that increasing the number of hops from one to two reduces
the latency of the lossy link by approximately 50 percent
(25 milliseconds in our case), while increasing the number
of hops from nine to ten reduces the latency of the lossy link
only by approximately 1 percent (0.55 milliseconds).

It is important how well we can isolate a potentially lossy
or congested Internet link in an overlay link that is as short
as possible. This can be achieved in practice by placing a
few overlay nodes such that we create close to equal latency
overlay links, as we do not usually know in advance which
Internet connections will be congested.

We believe that the simulation results are promising. The
reminder of the paper will investigate whether the same be-
havior is not limited to our simulation environment but is in
fact achieved in practice.

4 The Spines Overlay Network

In this section we introduce Spines, an open source re-
search platform that allows the deployment of an overlay
network in the Internet. We use Spines to evaluate the hop-
by-hop reliability properties in practice.

Spines instantiates overlay nodes on participating com-
puters and creates virtual links between these nodes. Once
a message is sent on a Spines overlay network it will be for-
warded on the overlay links until it reaches the destination.

Many Spines overlays can coexist in the Internet, and even
overlap on some of the nodes or links. Both the source and
the destination of a connection should be part of the same
Spines overlay network.

Spines runs a software daemon on each of the overlay
nodes. The daemon acts both as a router, forwarding pack-
ets toward other nodes, and as a server, providing network
services to client applications.

Clients use a library to connect to a daemon through
an API very similar to the Unix Socket interface. A
spines socket() call will return a socket, which is actually a
TCP/IP connection to the daemon. The application can use
that socket to bind, listen, connect, send and receive, using
Spines library calls (e.g. a spines bind() call is the equiv-
alent to the regular bind(), etc.). The interface is almost
transparent, and virtually any socket-based application can
be easily adapted to work with Spines. In addition to the
TCP-like interface, the Spines API also provides UDP-like
functions for unreliable, best effort communication.

The Spines daemon communicates with clients through
a Session layer as seen in Figure 8. There is one session
for each client connection, and if the client requests a reli-
able connection, the daemon will instantiate an end-to-end
Reliable Session module that will take care of end-to-end
reliability, FIFO ordering, and end-to-end congestion con-
trol.

An overlay link consists of three logical components.

� An Unreliable Data Link sends and receives data pack-
ets with no regard to ordering and reliability. It is used
for unreliable, best effort, fast communication as it has
no buffering other than the ones provided by the oper-
ating system.

� A Reliable Data Link provides link reliability through
a selective repeat protocol and congestion control, but
does not provide FIFO ordering. Packets are buffered
before being sent on a Reliable Data Link only in case
the congestion control or available link capacity limit
the outgoing bandwidth to a lower value than the in-
coming throughput. The explicit congestion notifica-
tion mentioned in Section 2 is based on the size of
these buffers. The link congestion control allows the
deployment of Spines in the Internet, providing fair-
ness with external TCP traffic. Figure 9 shows the
throughput obtained by an end-to-end TCP stream and
by the Spines link protocol for a 10 and a 50 millisec-
ond delay link of 10 Mbps capacity under different lev-
els of losses, and compares it to the analytical TCP
model from [13]. The throughput achieved by Spines
is very close to that of a TCP connection under simi-
lar conditions. Note that for a 10 millisecond link, as
the throughput of both TCP and Spines approaches the
maximum capacity of 10Mbps, they start developing

6

Datalink (UDP/IP unicast)

Control Link
Unreliable
Data Link

Reliable
Data Link

Reliable
Datagram

Hello
Protocol

Link state
Protocol

Routing

Data
Forwarder

Session
Reliable
Session

API
Library

Daemon-Client Interface

Overlay
Node

O
v
er

la
y
 L

in
k

Figure 8. Spines daemon architecture

their own additional losses in order to probe the avail-
able bandwidth. This is why they appear to achieve
less than the analytical model that takes into account
only the original losses we enforced on the link.

� A Control Link is used for sending and receiving con-
trol information between two neighbor daemons. It
provides both reliable and unreliable communication.
In case of buffering for the reliable data, the unreliable
packets will bypass the buffer and go directly on the
network.

The overlay node is responsible for maintaining connec-
tions to its neighbors and forwarding data packets either on
the overlay links or to its own clients. A Data Forwarder
parses the header of each message and sends it on the next
link or to the daemon-client interface. The Data Forwarder
allows any combination of reliable and unreliable session
and reliable and unreliable link in order to experiment with
different forwarding mechanisms. The type of Session and
Data Link requested are stamped in the header of each mes-
sage. For example, one can create a reliable end-to-end ses-
sion using either unreliable links or reliable links.

Neighboring overlay nodes ping each other periodically
using unreliable hello packets. The Spines Hello Protocol
is responsible for creating, destroying and monitoring over-
lay links between neighbor daemons. Each Spines daemon
sends information about the links to its neighbors through a
reliable link state protocol, only when the state of its links
change, or periodically at large intervals for garbage collec-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

K
bp

s)

Loss rate (%)

 TCP 10ms
 Spines 10ms

 Analytic 10ms
 TCP 50ms

 Spines 50ms
 Analytic 50ms

Figure 9. Spines congestion control (Emulab)

tion. The link state protocol provides a complete informa-
tion about the existing overlay links, out of which a Routing
module chooses the neighbor providing the shortest path to
each destination. The choice of link state routing is purely
arbitrary, any other routing protocol could have been used
without afecting the hop by hop reliablility mechanisms.

In addition to the IP and UDP headers, Spines adds
its own headers for routing and reliability. Also, for re-
liable connections Spines sends acknowledgments for ev-
ery packet at the level of each link for hop reliability and
at least four acknowledgments per end-to-end window for
end-to-end reliability and congestion control. When pos-
sible acknowledgments are piggybacked with data packets.
The control traffic is relatively small, being composed only

7

A B C D E F10ms
10Mbps

10ms
10Mbps

10ms
10Mbps

10ms
10Mbps

10ms
10Mbps

LAN

0.1m
s

100M
bps

0.1m
s

100M
bps

0.1m
s

100M
bps

0.
1m

s
10

0M
bp

s

0.
1m

s
10

0M
bp

s

0.
1m

s

10
0M

bp
s

Figure 10. Emulab Network Setup

by hello packets (currently, two 28 byte packets per second
on each link) and link state packets that are sent only when
the network conditions change. A single link state packet
can contain information about up to 90 links, depending on
the dispersion of the network. Due to this overhead, our ex-
periments show that when compared with a standard TCP
connection running alone on a network link with capacity
ranging from 500 Kbps to 100 Mbps, the Spines link proto-
col achieves about 3.5% less data throughput, and the end-
to-end connection that uses both levels of reliability and
congestion control (on the hop and end-to-end) shows an
overhead of at most 5.7%. The best effort, unreliable proto-
col in Spines has an overhead of about 2.3%.

5 Experimental results

In this section we evaluate the hop-by-hop reliability be-
havior using the Spines overlay network deployed on the
Emulab testbed. Emulab 1 [5] is a network facility that al-
lows real instantiation in a hardware network (composed of
actual computers and network switches) of a given topol-
ogy, simply by using an ns script in the configuration setup.
Link latencies, loss rates and bandwidths are emulated with
additional nodes that delay packets or drop them according
to specified link characteristics.

We instantiated on Emulab the network setup presented
in Figure 10 that follows the topology used in our Section 3
simulations. In addition to the five links A-B, B-C,... E-F
we also connected the nodes through a fast, local area net-
work that was used to obtain accurate clock measurements
between the overlay nodes.

The routing was set up such that all the experiment traf-
fic went on the 10 millisecond links, while on the local area
network we continuously measured (every 100 millisec-
onds) the clock difference between the computers making
the end nodes of a connection. The one-way delay of the
data packets was calculated as the difference between the
timestamp at the sender and the current time at the receiver,
adjusted with the clock difference between the end nodes.

On the overlay network, the round-trip delay between
nodes A and F measured with ping under no traffic was
99.96 milliseconds, and the throughput achieved by a TCP
connection on each of the 10 millisecond links was about

1The Utah Network Emulation Testbed (www.emulab.net) is primarily
supported by NSF grant ANI-00-82493 and Cisco Systems

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 d
el

ay
 (

m
s)

Loss rate (%)

 End-to-End
 Hop-by-Hop

Figure 11. Average delay for a 500 Kbps
stream (Emulab)

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 d
el

ay
 (

m
s)

Loss rate (%)

 End-to-End
 Hop-by-Hop

Figure 12. Average delay for a 1000 Kbps
stream (Emulab)

9.59 Mbps. On the local area network the round-trip de-
lay between any two nodes was about 0.135 milliseconds,
which gave us a very good accuracy in measuring the clock
difference and one-way delay of the packets. For each ex-
periment in this section we sent 200000 messages of 1000
bytes each.

We compared the packet delay of a data stream using
an end-to-end TCP connection between nodes A and F,
with that of a hop-by-hop connection using Spines on the
overlay nodes, while varying the sending rate (at node A)
and the loss rate on the intermediate link C-D. Note that
the end-to-end TCP connection does not go through the
Spines application-level routers, but only through the over-
lay nodes A, B, ... F - so it is not affected in any way by the
Spines overhead in user-level processing and added head-
ers.

Figure 11 and Figure 12 show that the low latency ef-
fect of hop-by-hop reliability is very signifficant also in the
experimental setting, overcoming by far the overhead of
user-level processing at the level of the intermediate over-
lay network nodes. The latency of a real TCP connection
is lower than the simulation result (presented in Figure 3

8

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Ji
tte

r
(m

s)

Loss rate (%)

 End-to-End
 Hop-by-Hop

Figure 13. Average jitter for a 500 Kbps stream
(Emulab)

0

5

10

15

20

25

30

35

40

60 80 100 120 140 160 180 200 220 240 260 280

Pe
rc

en
ta

ge
 o

f
pa

ck
et

s
(%

)

Delay more than (ms)

 End-to-End
 Hop-by-Hop

Figure 14. Packet delay distributuin for a 500
Kbps stream (Emulab)

and Figure 4), especially at high loss rates, which shows
us that the TCP model we used in the simulation (TCP-
Fack), even though the closest, does not resemble exactly
the Linux kernel implementation. The latency achieved by
Spines hop-by-hop reliability is slightly higher than the la-
tency obtained in the simulator, mainly due to simplifying
assumptions of the simulation. However, the hop-by-hop
latency remains very low, and increases much slower com-
pared to the latency of the end-to-end TCP connection.

Jitter follows a similar pattern, as seen in Figure 13 (and
compared with Figure 5). Packets sent through the Spines
overlay network arrive at the destination with a jittter up
to three to four times smaller than the jitter of an end-to-
end connection. In Figure 14, although the delay distribu-
tion for the end-to-end TCP connection is almost identical
to the result of the simulation (Figure 6), the overhead of the
application-level routing is clearly visible in the hop-by-hop
delay distribution. However, even with this overhead, the
number of packets delayed by Spines is significantly (more
than three times) lower than the number of packets delayed
by the end-to-end connection.

6 Related Work

The idea of using reliable intermediate links is not new.
In 1976 the International Committee for Telegraph and
Telephony (CCITT) recommended X.25 as a store-and-
forward connection oriented protocol between end-nodes
(DTE) and routers (DCE). In [14], the authors give a de-
tailed description of the X.25 protocol. However, since the
Internet was developed as a conectionless, best-effort net-
work (which allows better scalability and interoperability),
it did not incorporate the X.25 specifications, but relied on
end-to-end protocols such as TCP to provide reliable con-
nections.

One of the early uses of overlay networks in the Inter-
net was in a proposed overlay network called EON (Exper-
imental OSI-based Network) [10] on top the IP network,
that would allow experimentation with the OSI network
layer. The scheme was only experimental and did not spec-
ify hop-by-hop reliability. More recently, overlay networks
emerged mainly by providing new services to the applica-
tion. The Mbone [6] is a routing mechanism that creates an
overlay infrastructure over the global Internet and extends
the use of IP multicast by creating virtual tunnels between
the networks that support native IP multicast. The Mbone
facilitates the use of multicast services on the global Inter-
net but does not provide reliability by itself.

TRAM [4] is a tree-based reliable multicast protocol that
uses repair trees to localize recoveries, and aggregates end-
to-end acknowlegenents at intermediate nodes. TRAM was
designed specifically for single-source multicast. If applied
to multiple flows (unicast or multicast), TRAM requires in-
termediate nodes to keep packet-based state for each end-
to-end session in order to provide end-to-end reliability and
congestion control. Since we use two completely sepa-
rated levels of reliability (hop-by-hop and end-to-end) our
approach allows an unlimited number of reliable sessions,
as per flow information is only handled at the end nodes.
SRM [8] provides a form of localized recovery for reliable
multicast by using randomized timeouts for sending retrans-
mission requests and the retransmissions themselves. SRM
does not guarantee recovery from the nearest node, as the
closest one may set its timeout to be higher than that of an
upstream node. Its probabilistic algorithm allows for double
retransmission requests and recovery messages to be sent.
The Spread system [1] uses a network of daemons to pro-
vide wide area group communication, where missed mes-
sages are recovered from the nearest daemon on the path,
localizing message recovery in a way similar to ours. The
system is confined to group communication and does not
provide a generic service such as ours.

Yoid [9] is a set of protocols that allows host-based con-
tent distribution using unicast tunnels and, where available,
IP multicast. Yoid has the option of using TCP as the link

9

protocol on the overlay network, but does not guarantee ei-
ther end-to-end congestion control or end-to-end reliability.
In addition to these guarantees, our approach uses an out of
order forwarding mechanism that provides less burstiness at
the network level, and lower packet latency and jitter.

The X-Bone [17] is a system that uses a graphical user
interface for automatic configuration of IP-based overlay
networks. RON [2] creates a fully connected graph between
several nodes, monitors the connectivity between them, and,
in case of Internet route failures, re-directs packets through
alternate overlay nodes. Both X-Bone, and RON are imple-
mented at the IP level, do not provide reliability other than
the regular end-to-end offered by TCP, and are complemen-
tary to our work.

7 Conclusion

This paper presented a hop-by-hop reliability approach
that considerably reduces the latency and jitter of reliable
connections in overlay networks. We first quantified these
effects in simulation.

Overlay networks pay a performance price due to the
need to process each message at the application level, and
to maintain the overlay. The paper presented experimental
results with a new overlay network software we have built.
These results resemble the simulation results and show that
the overhead associated with overlay network processing
does not play an important factor compared with the con-
siderable gain of the approach. We also learned that having
a small number of approximately equal hops (two to four)
is sufficient to capture most of the performance benefit.

While network bandwidth increases exponentially over
time, latency is very slow to improve. This work shows
how coupling cheap processing and memory with the pro-
grammable platform provided by overlay networks and pay-
ing a small price in throughput overhead, can considerably
improve the latency characteristics of reliable connections.

Acknowledgment

The authors would like to thank Mike Dahlin for insight-
ful comments and discussions.

This work was partially funded by DARPA grant
F30602-00-2-0550 to Johns Hopkins University.

References

[1] Y. Amir, C. Danilov, and J. Stanton. A low latency, loss
tolerant architecture and protocol for wide area group com-
munication. In Proceeding of International Conference on
Dependable Systems and Networks, pages 327–336. IEEE
Computer Society Press, Los Alamitos, CA, June 2000.

[2] D. G. Andersen, H. Balakrishnan, and M. F. K. R. Morris.
Resilient overlay networks. In Operating Systems Review,
pages 131–145, December 2001.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering,
D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partrige,
L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroklawski,
and L. Zhang. Recommendations on queue management and
congestion avoidance in the internet. RFC 2309, April 1998.

[4] D. M. Chiu, M. Kadanski, J. Provino, J. Wesley, H.-P.
Bischof, and H. Zhu. A congestion control algorithm for
tree-based reliable multicast protocols. In Proceeding of
IEEE Infocom, pages 1209–1217, June 2002.

[5] The Utah network emulation facility.
http://www.emulab.net/.

[6] H. Eriksson. Mbone: the multicast backbone. In Communi-
cations of the ACM, volume 37, pages 54–60, August 1994.

[7] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-
based congestion control for unicast applications. In ACM
Computer Communications Review: Proceedings of SIG-
COMM 2000, volume 30, pages 43–56, Stockholm, Sweden,
August 2000.

[8] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang. A reliable multicast framework for light-weight
sessions and application level framing. IEEE/ACM Transac-
tions on Networking, 5(6):784–803, Dec. 1997.

[9] P. Francis. Yoid: Extending the internet multicast archi-
tecture. http://www.icir.org/yoid/docs/yoidArch.ps, April
2000.

[10] R. Hagens, N. Hall, and M. Rose. Use of the internet as a
subnetwork for experimentation with the osi network layer.
RFC 1070, February 1989.

[11] V. Jacobson. Congestion avoidance and control. ACM Com-
puter Communication Review; Proceedings of the Sigcomm
’88 Symposium in Stanford, CA, August, 1988, 18, 4:314–
329, 1988.

[12] ns2 network simulator. Available at
http://www.isi.edu/nsnam/ns/.

[13] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling
TCP throughput: A simple model and its empirical valida-
tion. In ACM Computer Communications Review: Proceed-
ings of SIGCOMM 1998, pages 303–314, Vancouver, CA,
1998.

[14] R. Perlman. Interconnections: Bridges, Routers, Switches,
and Internetworking Protocols. Addison- Wesley Profes-
sional Computing Series, second edition, 1999.

[15] K. K. Ramakrishnan and S. Floyd. A proposal to add explicit
congestion notification (ECN) to IP. RFC 2481, January
1999.

[16] The Spines overlay network. http://www.spines.org/.
[17] J. Touch and S. Hotz. X-bone: a system for automatic net-

work overlay deployment. Third Global Internet Mini Con-
ference in conjunction with Globecom98, November 1998.

10

N-Way Fail-Over Infrastructure for Reliable Servers and Routers

Yair Amir Ryan Caudy Ashima Munjal Theo Schlossnagle Ciprian Tutu

Johns Hopkins University
Computer Science Department

{yairamir, wyvern, munjal, theos, ciprian}@cnds.jhu.edu

Abstract

Maintaining the availability of critical servers and
routers is an important concern for many organizations.
At the lowest level, IP addresses represent the global
namespace by which services are accessible on the In-
ternet.

We introduce Wackamole, a completely distributed
software solution based on a provably correct algorithm
that negotiates the assignment of IP addresses among the
currently available servers upon detection of faults. This
reallocation ensures that at any given time any public IP
address of the server cluster is covered exactly once, as
long as at least one physical server survives the network
fault. The same technique is extended to support highly
available routers.

The paper presents the design considerations, algo-
rithm specification and correctness proof, discusses the
practical usage for server clusters and for routers, and
evaluates the performance of the system.

1 Introduction

Maintaining the availability of critical network servers
is an important concern for many organizations. Server
redundancy is the traditional approach to provide avail-
ability in the presence of failures. From the client per-
spective, a network-accessible service is resolved via a set
of public IP addresses specified for this service. There-
fore, the continued availability of a service via these IP
addresses is a prerequisite for providing uninterrupted
service to the client. In order to function correctly, each of
the service’s public IP addresses has to be covered by ex-
actly one physical server at any given time. If no physical
server covers a public IP address, the clients will not re-
ceive any service. On the other hand, if more than one
physical server is covering the same IP address at any
time, the network might not function properly and clients

may not be served correctly.
A sizable market exists for hardware solutions that

maintain the availability of IP addresses, usually via a
gateway that hides the actual servers behind a smart
switch or router in a centralized manner. We present
Wackamole, a high availability tool for clusters of servers.
Wackamole ensures that all the public IP addresses of a
service are available to its clients. Wackamole is a com-
pletely distributed software solution based on a provably
correct algorithm that negotiates the assignment of IP ad-
dresses among the available servers upon detection of
faults and recoveries, and provides N-way fail-over, so
that any one of a number of servers can cover for any
other.

Using a simple algorithm that utilizes strong group
communication semantics, Wackamole demonstrates the
application of group communication to address a critical
availability problem at the core of the system, even in the
presence of cascading network or server faults and recov-
eries. We also demonstrate how the same architecture is
extended to provide a similar service for highly-available
routers.

The remainder of this paper is organized as follows.
Section 2 introduces the system architecture. Section 3
describes the system model and the core algorithm behind
the engine of Wackamole and discusses its correctnes.
Section 5 analyzes practical considerations and presents
two applications for the system. Section 6 presents per-
formance results concerning the reconfiguration time of
Wackamole clusters. We discuss related work in Section
7 and conclude in Section 8.

2 System Overview

Our solution has three main components, presented in
Figure 1:

• An IP address control (acquire and release) mecha-
nism.

Group Communication
System

Wackamole

State
Sychronization

Algorithm

IP
Address
Manager

IP Addresses
xxx.yyy.221.151
xxx.yyy.221.152
xxx.yyy.221.155

Group Communication
System

Wackamole

IP Addresses
xxx.yyy.221.153
xxx.yyy.221.154
xxx.yyy.221.156

System 1

System 2

Network

State
Sychronization

Algorithm

IP
Address
Manager

Figure 1. Wackamole Architecture

• A state synchronization algorithm (the Wackamole
Algorithm).

• A membership service provided by a group commu-
nication toolkit.

The group communication toolkit maintains a mem-
bership service among the currently connected servers
and notifies the synchronization algorithm of any view
changes that occur due to server crashes and recoveries,
or network partitions and remerges.

The synchronization algorithm manages the logical as-
signment of virtual IP addresses among the currently con-
nected members, avoiding conflicts that can occur upon
merges and recoveries and covering the “holes” that can
arise as a result of a crash or partition.

The IP address control mechanism enforces the deci-
sions of the synchronization algorithm by acquiring and
releasing the IP addresses accordingly. These mech-
anisms are highly specific to the operating system on
which the Wackamole system runs.

The correctness of the system is dependent on the as-
sumption that the group communication system provides
an accurate view of the current network connectivity. If
there is additional connectivity beyond that reported by
the group communication system, there may be conflicts
in the assignment of IP addresses. On the other hand, if
the group communication system does not detect the dis-
connection of a server from the current membership in a
timely manner, the IP addresses that were covered by that
server will be unavailable to the clients, since the system
will not reconfigure without the proper notification.

3 The Wackamole Algorithm

In this section we present the state synchronization al-
gorithm that forms the core of the Wackamole system
and discuss its correctness, given the assumption that the
membership notifications issued by the group communi-
cation system reflect the actual network status.

3.1 System Model

In order to formally identify the problem that Wack-
amole attempts to solve, we define the system model and
introduce the correctness properties that the algorithm
and the implemented system need to maintain.

We consider a set S={s1, s2, ..., sm} of servers that
provide service to outside client applications. The servers
are all located in the same Local Area Network (LAN),
but are susceptible to crashes and temporary network par-
titions1 . During a network partition, the servers are sep-
arated into two or more components that are unable to
communicate with each other.

The client applications access the services through IP
addresses in the set I={i1, i2, ..., in}. The servers in S are
responsible for covering the set I of virtual IP addresses.
We refer to the IP addresses in I as virtual in order to
distinguish them from the stationary default IP addresses,
that do not change, used by the servers for intercommu-
nication.

The client applications are oblivious to the stationary
IP addresses of the servers in S or to the possible parti-
tioning that may exist among the servers.

In order to guarantee correct service, the following
properties need to be maintained.

Property 1 (Correctness) Every IP address in the set I is
covered exactly once by a server in each subset Sk, where
Sk is a maximal connected component whose servers are
in the operational (RUN) state.

Property 2 (Liveness) If there is a time t from which
a set of connected servers does not experience any
crashes/recoveries or network partitions/merges, the
servers will switch to the operational (RUN) state.

In order to guarantee these properties we rely on the
group communication system to follow the Virtual Syn-
chrony properties [6, 14] in partitionable systems and to
provide Agreed message delivery. The Virtual Synchrony
property specifies that any two servers that advance to-
gether from one membership to the next one, will deliver
an identical set of messages in the first membership. The
Agreed delivery property guarantees that additionally, the
messages will be delivered in the same order at all servers.
Furthermore we assume that the group communication
system provides a membership service that provides each
server in the group a uniquely ordered list of the currently
connected participants.

3.2 Algorithm Specification

The algorithm runs according to the state machine pre-
sented in Figure 2.

1Partitions can occur even in LAN environments due, for instance,
to a switch failure in one of the subnetworks.

2

BALANCE COMPLETE

BALANCE TIMEOUTREALLOCATION COMPLETE

GATHER RUN BALANCE

VIEW_CHANGE

BALANCE_MSGVIEW_CHANGE

Figure 2. Wackamole Algorithm

Each server maintains a table current table that con-
tains the virtual IP allocation during the current member-
ship. During normal operation, the algorithm is in the
RUN state. In this state, each server is responsible for
a set of virtual IP addresses and will answer all the re-
quests directed to those IP addresses. While in the RUN
state, the current table information is conflict-free and
the complete IP set is covered, maintaining the correct-
ness guarantees of the algorithm. When the group com-
munication system delivers a VIEW CHANGE event, a
backup of the IP table is created and a STATE MSG is
sent to every member of the new view containing the in-
formation about the IP addresses managed by the server
and the identifier of the view in which it is initiated. The
algorithm then moves to the GATHER state.

Algorithm 1 RUN State

1: when: VIEW CHANGE do
2: old table = current table
3: send STATE MSG
4: state = GATHER
5: when: receive BALANCE MSG do
6: Change IPs()

In the GATHER state each server incorporates the in-
formation received through the STATE MSGs in its cur-
rent table variable and checks for the existence of con-
flicts in the IP allocation; if members from previously
partitioned components are merged together, conflicts are
expected since each component covers the full IP address
set. ResolveConflicts() is a deterministic procedure in-
voked as soon as a new STATE MSG is received, that
checks whether the server that sent this message intro-
duces any conflict with respect to the information already
gathered about the set of covered IP addresses. If a con-
flict is detected, the server drops the addresses that are
overlapping, thus restoring consistency at the network
level as soon as possible.

When all the state messages (STATE MSG) have been
received, each server invokes a deterministic procedure
Reallocate IPs(). During the Reallocate IPs() procedure,
the servers make sure that all the virtual IPs are covered
by a server in the current configuration. In particular,
the procedure relies on the uniquely ordered membership
list provided by the group communication system to dis-

tributely decide which server covers which IP address.
If the GATHER state is interrupted by a cascad-

ing VIEW CHANGE event, the server clears its cur-
rent table, discarding the information already collected
and reverting to the information in the old table, then
sends a new STATE MSG to all members of the new con-
figuration.

Algorithm 2 GATHER State

1: when: receive STATE MSG with current view id do
2: update current table
3: ResolveConflicts()
4: if (received STATE MSG from all cur-

rent table.members) then
5: Reallocate IPs()
6: state = RUN
7: when: VIEW CHANGE do
8: clear current table
9: send STATE MSG

10: when: BALANCE MSG do
11: ignore

3.3 Correctness of the Algorithm

We consider a subset of servers S’< S that are in the
operational RUN state. Between the servers in S’, each
virtual IP address is covered exactly once. We consider a
VIEW CHANGE event that is detected by members of
S’. According to the group communication guarantees,
all members of S’ will receive VIEW CHANGE notifi-
cations, even though they are possibly disconnected from
each other. Following the algorithm, each server will pro-
ceed to the GATHER state and send a state message con-
taining its local knowledge base. Let’s consider a server
s that was part of S’ and is now part of S” as indicated
by the group communication. The group communication
system provides every s in S” an identically ordered list
of all the servers in S”.

Lemma 1 For every connected set S’ of servers in the
RUN state, every IP address is covered at most once by a
server in S’.

Proof:
We consider a set of servers that are connected after

a view change event, as indicated by the group commu-
nication notification. In order for the servers to advance
to the RUN state, the state transfer algorithm, executed
in the GATHER state, needs to complete. Therefore we
consider the situation where a set of servers S’ does not
detect further VIEW CHANGE events until they exit the
GATHER state.

Let’s assume that upon receiving the last STATE mes-
sage in the GATHER state (line 4 in Algorithm 2) there

3

exists a virtual IP address vip that is covered by two
servers p and q in S’. According to the Virtual Synchrony
and Agreed delivery guarantees of the group communi-
cation, both p and q received all the state messages that
were sent during the GATHER state, therefore they re-
ceived their own state messages. According to the man-
agement of the current table variable from the algorithm
(line 2 Algorithm 1 and lines 2,8 Algorithm 2) and the fact
that only STATE MSGs generated in the current view are
considered (line 1 of Algorithm 2), the variable will ac-
curately reflect at this point the state of the currently con-
nected component. During this stage, following the algo-
rithm, the servers don’t acquire new IP addresses, there-
fore both p and q were already covering vip from their
previous memberships. From the algorithm, in the Re-
solve Conflicts() procedure (line 3 in Algorithm 2), when
p receives the state message from q, it will notice the con-
flict in the coverage of vip and will adjust its IP coverage
table and release vip if p appears in the membership list of
S’ before q. The same reasoning applies for q; therefore
it is impossible for vip to be covered by both p and q at
this point. Furthermore, both p and q will have the same
view of the virtual ip coverage. Note that reaching agree-
ment does not assume any particular relation between the
initial states of p and q or of the other members of S’.

When all the state messages have been received each
server will execute the Reallocate IPs() procedure. Dur-
ing this procedure a server may acquire new IP addresses
only if there is a virtual IP that is not covered by any
server in S’. Since all the servers have the same view of
the coverage table, they will all detect the same set of
IP addresses that need to be covered. Furthermore, since
they all have the same uniquely ordered list of the mem-
bership of S’ the procedure Reallocate IPs() will guaran-
tee that each unallocated virtual IP address will be cov-
ered by exactly one server in S’. This concludes the proof
of the lemma.

2

Lemma 2 During the RUN state, every virtual IP ad-
dress in the set R is covered by at least one server.

Proof:
According to the algorithm, after a view-change, if the

connectivity remains stable allowing the GATHER pro-
cedure to complete, all the connected servers will exe-
cute the Reallocate IPs() procedure. As shown above, all
servers that start this procedure in the same component
will have identical views of the IP coverage and will de-
tect the same “holes” (IP addresses that are not covered
by any server in the current component). Following the
algorithm, these IP’s are covered at the end of the Re-
allocate IPs() procedure, ensuring the complete coverage
during the RUN state.

2

From the two lemmas above, we obtain the correctness
property as specified in section 3.1.

We will now prove the liveness property.
Proof:
Due to the properties of the group communication

delivery specification, if there is a time t from which
no view-change notifications occur, then every server is
guaranteed to deliver all the state messages that were sent
in that membership. At that time, each server will exe-
cute the finite procedure Reallocate IPs() and will switch
to the RUN state.

2

3.4 Practical Considerations

The algorithm presented so far satisfies the correctness
guarantees but can be further optimized in order to im-
prove its performance.

From a practical perspective we want to minimize the
amount of time that an IP address is covered by two or
more servers in the same connected component in order to
avoid network level conflicts. This is ensured by the fact
that the ResolveConflicts() procedure is invoked as soon
as a conflict is detected and one of the involved parties
will drop the offending IP.

Algorithm 3 BALANCE State

1: Balance IPs()
2: send BALANCE MSG
3: state = RUN
4: when: VIEW CHANGE or BALANCE MSG or

STATE MSG do
5: delay event

Of similar importance to the system is the fast comple-
tion of reconciliation during the GATHER state. The min-
imal task that needs to be executed in the Reallocate IPs()
procedure is the acquisition of non-allocated IP addresses
in order to guarantee the complete coverage. However, af-
ter several partitions/merges, the system may end up with
a very unbalanced allocation of IP addresses among the
set of connected servers. To avoid this we can modify the
Reallocate IPs() procedure to perform load-based reallo-
cation of IP addresses. However, this would extend the
time the system is in a non-operational state. We intro-
duce a re-balancing procedure which is triggered from the
RUN state by a set timeout and is executed only by one
member (representative) of the connected component, se-
lected based on the order in the membership list provided
by the group communication system. The representative
decides on the new IP allocation based on load balanc-
ing considerations and explicit preferences specified by
each server at startup and passed along through state mes-
sages. The representative broadcasts a BALANCE MSG

4

containing the new IP allocation and switches back to the
RUN state. Upon receiving a BALANCE MSG, a server
in the RUN state acquires or releases the necessary IP ad-
dresses. Note that the BALANCE state executes as an
atomic procedure with the server ignoring any potential
VIEW CHANGE notification from the group communi-
cation until it returns to the RUN state. Furthermore, even
when a VIEW CHANGE is detected before all servers re-
ceive and apply the BALANCE MSG the correctness of
the algorithm is not endangered since the GATHER pro-
cedure does not assume anything about the starting state
of the participating servers and treats any conflict as it is
discovered.

Another optimization was added in order to gracefully
bootstrap the system. A server s starts with the local vari-
able mature unset and without being responsible for any
IP addresses. Upon receiving a view change notification,
s switches to the GATHER state. If during the GATHER
state s receives a state message from a mature server, it
will mark itself as mature and continue the normal algo-
rithm execution. If all the servers that s can contact are not
mature, s will remain ”immature” until a certain timeout
expires after which it automatically sets itself as mature,
notifies the other servers, and starts managing the IP ad-
dresses. The reason for this optimization is to avoid quick
IP reallocations as the cluster is rebooted.

4 Implementation

Wackamole [23] has been implemented with cross-
platform interoperability in mind; it currently supports
FreeBSD, Linux, and Solaris systems. To more readily
accommodate its use on multiple platforms, the imple-
mentation is separated into two clearly delineated parts.
The first, comprised of generic ANSI C code, implements
the core algorithm presented above. The second, which
contains platform-specific code, implements the function-
ality needed to manage multiple interfaces and spoof ARP
caches on each supported operating system.

4.1 The Spread Toolkit

The correctness as well as the efficiency of the sys-
tem depends on the use of a group communication system
that provides reliable, totally ordered multicast and group
membership notifications for a cluster of servers. Wack-
amole was implemented using the Spread group commu-
nication toolkit [20, 3].

Spread is a general-purpose group communication sys-
tem for wide- and local-area networks. It provides re-
liable and ordered delivery of messages (FIFO, causal,
agreed ordering) as well as Virtual Synchrony and Ex-
tended Virtual Synchrony membership services. These

properties match the algorithm requirements specified in
Section 3.1

Spread uses a client-daemon architecture. Node
crashes/recoveries and network partitions/remerges are
detected by Spread at the daemon level; upon detecting
such an event, the Spread daemons install the new dae-
mon membership and inform their clients of the corre-
sponding changes in the group membership that are in-
troduced by the failure. Clients are also notified when
changes in the group membership are triggered by a
graceful leave or join of any client. The Spread toolkit is
optimized to support the latter situation without triggering
a full daemon membership reconfiguration, but rather in-
forming only the participating group about the new group
membership. The impact of this optimized approach will
become apparent in section 6.

The Spread toolkit is publicly available and is being
used by several organizations in both research and pro-
duction settings. It supports cross-platform applications
and has been ported to several Unix platforms as well as
to Windows and Java environments.

4.2 Implementation Considerations

Wackamole’s state synchronization algorithm is im-
plemented using group membership and messaging ser-
vices offered by the Spread Toolkit. Immediately upon
startup, the Wackamole daemon connects to a Spread dae-
mon running on the same host and joins the wackamole
group. It then relies on the regular membership messages
sent by Spread to determine the current set of available
hosts, and to initiate state transfer upon view-change de-
tection. Spread is also used to ensure that messages are
sent in a total order among Wackamole daemons, that old
messages which must be discarded upon receipt can be
identified properly, and that endian conflicts across plat-
forms are handled correctly.

As a consequence of Wackamole’s tightly-coupled re-
lationship with Spread, some of the fine-tuning decisions
that can be made to improve Wackamole’s response time
to network events are dependent on the way Spread is
configured. Modifying the Spread network-failure prob-
ing timeouts must be, however, done on a system-specific
basis. If not done properly, this tuning can be detrimental
to the performance of a Wackamole cluster by increasing
the number of false-positive network failures. The impact
of this tuning is analyzed in Section 6.

A Wackamole daemon that becomes disconnected
from Spread will drop all of its virtual interfaces and
enter a cycle in which it periodically attempts to recon-
nect to Spread, because it cannot ensure correctness with-
out the services Spread provides. This behavior allows
clusters to survive changes to the Spread daemons with
which they communicate, such as version changes and re-

5

Internet

Router
xxx.yyy.221.1

xxx.yyy.221.151
Webserver 3

xxx.yyy.221.153
Webserver 1

xxx.yyy.221.152
Webserver 2

xxx.yyy.221.151

xxx.yyy.221.153

Webserver 3Webserver 1

xxx.yyy.221.152
Webserver 2

Wackamole: Reallocate IP

Wackamole:
Arp Spoof

Internet

Router
xxx.yyy.221.1

Figure 3. N-Way Fail-Over for Web Clusters: The IP of the failed server is reassigned to one of the
available servers and the router is informed of the ARP change.

initializations for configuration modification, taking into
account the fact that Spread may be used for multiple ap-
plications concurrently.

In order to provide continuous service to the Wack-
amole daemons, Spread must bind to IP addresses that are
not subject to Wackamole’s management. Consequently,
it is possible (although not required) to run Spread on a
separate Network Interface Card (NIC) than the one be-
ing used for the virtual IP addresses managed by Wack-
amole. Also, Wackamole does not provide failure detec-
tion of any of the applications that may be relying on its
management, e.g. HTTP servers. Either of these two sit-
uations can cause failures that are not detectable by the
Spread membership service. This problem is not directly
addressed by Wackamole’s implementation, but a possi-
ble solution is to perform run-time checks on the avail-
ability of the NIC or of the specific applications that use
Wackamole, and trigger the virtual IP migration when a
failure is detected.

Another practical aspect of the Wackamole implemen-
tation is the addition of an input channel to allow admin-
istrative control of a cluster’s behavior. Also, the way
Wackamole handles network failures can be modified,
such that all decisions are made by a deterministically
chosen representative and imposed upon the other dae-
mons, rather than made independently by each daemon
through a deterministic decision process. This will enable
changing the way virtual address allocation decisions are
made without breaking version compatibility.

5 Practical Applications

The two primary applications for which Wackamole
was developed are clusters and fail-over routers. The im-
plementation of Wackamole takes these applications into

account and can be fine-tuned to make appropriate trade-
offs in either situation. We show how Wackamole pro-
vides availability for these applications.

5.1 N-Way Fail-over for Clusters

Web clustering is the application that drove the cre-
ation of Wackamole. In combination with Domain Name
Service (DNS), Wackamole provides the functionality to
enable websites served by multiple IP addresses and/or
hosted on a cluster of machines to be highly available.
The generic management of virtual addresses has already
been discussed. However, this class of application re-
quires Wackamole to perform an additional task: ARP
spoofing.

While IP addresses are used for routing on wide area
networks, on local area networks Media Access Control
(MAC) addresses are used. An IP address is resolved to
a MAC address using the Address Resolution Protocol
(ARP). In and of itself, this is not a problem for Wack-
amole. However, ARP data is cached on an IP address
basis. This cache must be updated for any virtual address
that is moved from one host to another, on each host that
has cached an <IP address, MAC address> pair for that
virtual address.

Since we assume that we are managing a local area
cluster, all requests to the server must come through a
router. That router’s ARP cache must be updated in order
to ensure that it correctly forwards packets to the appro-
priate machine whenever Wackamole alters the allocation
of virtual addresses within the cluster. Consequently, part
of Wackamole’s platform-specific code deals with spoof-
ing of ARP reply packets to force updates to the router
ARP cache.

An example layout for a Wackamole-assisted web
cluster (Figure 3) consists of a number of web servers and

6

Internet

Virtual Router

xxx.yyy.221.1
Private Cluster (DB)

192.168.0.1

xxx.yyy.222.101 Visible Cluster (Web)

Router 1

xxx.yyy.221.2

192.168.0.2

xxx.yyy.222.102

Router 2

xxx.yyy.221.3

192.168.0.3

xxx.yyy.222.103

Internet

Virtual Router

xxx.yyy.221.1

Router 1

xxx.yyy.221.2

192.168.0.2

xxx.yyy.222.102

Router 2

xxx.yyy.221.3

192.168.0.3

xxx.yyy.222.103

xxx.yyy.222.zzz

192.168.0.zzz

Private Cluster (DB)

192.168.0.1

192.168.0.zzz

xxx.yyy.222.101 Visible Cluster (Web)

xxx.yyy.222.zzz

Figure 4. N-Way Fail-Over for Routers: At any point, a single physical router acts as the virtual
router, managing the virtual addresses xxx.yyy.221.1, xxx.yyy.222.101, 192.168.0.1.

a single router through which outside requests are made.
Each of the web servers must be running a Spread dae-
mon, likely on a private IP address, and must be running
a Wackamole daemon, to ensure that virtual IP addresses
are correctly allocated. Each server must also be responsi-
ble for notifying the router to update its ARP cache when
it assumes responsibility for a new virtual address.

5.2 N-Way Fail-Over for Routers

Router management is another application that has
emerged as a common use for Wackamole. An exam-
ple layout for this application of Wackamole consists of
multiple physical routers that act as a single virtual router
as depicted in Figure 4. An indivisible set of virtual ad-
dresses on different interfaces is allocated to the physi-
cal router currently acting as the fail-over router. In the
figure, these IP’s are xxx.yyy.222.101, 192.168.0.1, and
xxx.yyy.221.1 which represent the logical IP addresses of
the router in the three networks that it serves. The picture
also shows the stationary IP addresses of each physical
router, on each of the three networks. These IPs are de-
picted in the figure inside the Virtual Router box.

If the interface through which the machine is con-
nected to Spread fails, or the machine itself crashes, the
set of virtual IP addresses will be reallocated to a different
machine. The set of physical routers running Wackamole,
each of which is potentially ”the” router, can be concep-
tualized as a single virtual router.

For the most part, the presented Wackamole architec-
ture can support this application without additional modi-
fications beyond what is needed for web clustering. How-
ever, a router needs to simultaneously exist on multiple
networks in order to route packets between said networks.
Therefore a set of virtual IP addresses must be consid-
ered as a single entity. As a result, Wackamole was mod-

ified to support grouping of multiple IP addresses, possi-
bly on different interfaces, as an indivisible set of virtual
addresses. This enables the correct handling of situations
where a single host being managed by Wackamole must
be accessible on multiple virtual addresses.

Furthermore, the notification mechanism for ARP
spoofing must be enhanced to update the ARP cache of
every host which has resolved the MAC address of the vir-
tual router. To facilitate the necessary notification, each
Wackamole daemon periodically sends data from its ARP
cache to all other daemons. This makes it possible for a
daemon to approximately know the set of machines that
must be notified when it assumes responsibility for a vir-
tual IP address. Obviously, this approach does not scale
well to very large LANs. We are investigating the poten-
tial of applying garbage collection techniques to make the
ARP spoof notification more accurately targeted towards
hosts that require such notification.

The method described above incurs additional delays
when the router is using any dynamic routing protocol
such as OSPF [15] or RIP [18] on one or more of its
interfaces. The fail-over router in such a case needs to
be updated with the current state of the relevant dynamic
routing tables before it is able to route messages properly.
This usually takes around 30 seconds. A different setup
can be used to avoid this delay. In this alternate setup,
all the participating fail-over routers act as separate enti-
ties in the dynamic routing protocol and all advertise the
same internal networks to the external dynamic networks.
Therefore, all of the fail-over routers are continuously up-
dated with route changes. On the internal network only
one of the fail-over routers actively routes, and Wack-
amole will ensure that its IP address is always covered
by one of the fail-over routers.

Using this setup, a failure of any of the routers will
only cause a minor service interruption, noticeable only

7

by the fraction of the external routing queries that are di-
rected to the failed router. All routing from the internal
network will not be affected unless the designated router
fails. In this case, Wackamole reassigns another router
to control the virtual router address and the hand-off is
complete as soon as Wackamole reconfigures without ad-
ditional need to transfer routing information. Essentially,
this setup is closer to the setup described in Section .

Our solution, in both scenarios, provides the additional
benefit of allowing a heterogenous set of physical routers
to collaborate in forming a virtual router. Using a vari-
ety of architectures and operating systems for the routers
provides increased protection of the virtual router against
security exploits that may target specific platforms.

6 Performance Results

In order to assess the performance of Wackamole, the
most relevant measurement is the length of the service
interruption perceived by a client when the server with
which it is communicating is made unavailable by a fault.
For this reason, we report results for the average avail-
ability interruption time when a computer running Wack-
amole fails and its virtual addresses must be reallocated
to another computer, as measured from a client.

In our experiment we place a simple server process
on each computer using Wackamole. The server re-
sponds to UDP packets by sending a packet containing
its hostname. A client process on another computer is in-
structed to continuously access a specific virtual address
by sending UDP request packets at a specified interval,
and record the hostname of the server that responds as
well as the time since the last response was received. For
our experiments, we used a 10ms interval between re-
quests. The value is the smallest that can be practically
used, and is determined by the linux context-switch times.
When a fault is induced by disconnecting the interface
through which Spread, Wackamole, and the experimental
server access the network, the client will stop receiving
responses to its requests. When Wackamole completes
the IP address reallocation procedure and the client’s ARP
cache is updated, the client resumes receiving responses
to its queries, this time from the computer that has aquired
its target address. The time elapsed between the receipt
of the last response from the disabled computer and the
first response from the new server is the availability inter-
ruption time from the experimental client’s point of view.
While there is a small possibility for error in this mea-
surement due to the interval between requests and fluc-
tuations in the network, our measurements represent an
upper bound on the actual interruption time.

As discussed, Wackamole depends upon the Spread
group communication toolkit for notification of member-
ship changes. For this reason, the availability interrup-

Parameter Name Default Spread Tuned Spread

Fault-detection timeout 5 1
Distributed Heartbeat timeout 2 0.4

Discovery timeout 7 1.4

Table 1. Spread timeout tuning (seconds)

tion time measures the total time to complete four actions:
Spread’s detection of membership changes, Spread’s dae-
mon and process group membership installation, Wack-
amole’s state transfer and virtual address reallocation, and
Wackamole’s ARP spoofing.

In light of this dependency, we performed two sets of
experiments. The first set uses the default Spread settings
with timeout intervals designed to perform adequately on
most networks, for a variety of applications. The second
set uses a fine-tuned version of Spread, in which we ad-
justed the relevant timeout intervals specifically for the
Wackamole application and our network setup. Both ex-
periments were run on a 100Mbit Ethernet LAN cluster,
maintaining 10 virtual IP addresses in a cluster, and vary-
ing the number of servers from 2 to 12.

Table 1 shows the differences between the two exper-
iment setups. The timeouts presented in the table cover
the major components of the time it takes Spread to notify
Wackamole of network faults. The distributed heartbeat
timeout specifies an interval after which a Spread daemon
notifies other daemons that it is still in operation. The
fault-detection timeout begins at approximately the same
time as the distributed heartbeat timeout; after the fault-
detection timeout expires, if a daemon has not specified
that it is operating, Spread assumes a fault has taken place
and attempts to reconfigure. Because a fault could occur
at any time during the heartbeat interval, the actual time
to detect a failure ranges from failure-detection timeout -
distributed heartbeat timeout to failure-detection timeout.
The discovery timeout is the time spent performing this
reconfiguration by determining the currently available set
of Spread daemons and installing this configuration view
at each daemon. Thus the time it takes the default Spread
to notify Wackamole of a failure (ignoring the minor over-
head of Spread’s group membership procedure) ranges
from 10 seconds to 12 seconds. For the tuned Spread,
this time ranges from 2 seconds to 2.4 seconds.

Figure 5 displays the average availability interruption
time when varying the cluster size, for each version of
Spread. We notice that the Spread timeouts account for
the majority of the interruption time recorded in our ex-
periments.

These results were obtained using a cluster of servers
under low average load. Both Wackamole and Spread can
be used in production on highly-loaded machines as well.
However, it is recommended that both daemon processes
be run with high priority (real-time priority under Linux)

8

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

A
va

ila
bi

lit
y

In
te

rr
up

tio
n

(s
ec

on
ds

)

Cluster Size

Average Availability Interruption

Default Spread
Fine-tuned Spread

Figure 5. Average Availability Interruption
with Varying Cluster Size

in these types of environments in order to avoid false pos-
itive errors. This has no adverse impact on the cluster
performance as Spread and Wackamole hardly consume
resources when used for this application.

Also relevant is the availability interruption time when
a Wackamole daemon leaves voluntarily, not as the result
of a failure. This is experienced when Wackamole dae-
mons are taken offline for administrative or policy rea-
sons. However, we found that this time interval is diffi-
cult to measure precisely, because it is more susceptible
to context switch times and other low-level fluctuations.
In general, our measurements suggest a conservative up-
per bound of 250 milliseconds of availability interruption
on our experimental cluster; most of our measurements
actually recorded an interruption time as small as 10ms.

7 Related Work

Wackamole, in its current state, has evolved from an
idea first introduced in [1]. There are two areas that relate
to the work presented in this paper. On one hand our solu-
tion benefits from extensive research in the areas of group
communication and distributed algorithms. On the other
hand, various other techniques have been employed to
provide availability for critical services. Additionally our
IP fail-over solution is usually used in conjunction with
load-balancing mechanisms. Wackamole is often used to-
gether with the mod-backhand load-balancing module for
web servers. We do not further address the coupling be-
tween Wackamole and various load-balancing techniques
as it is outside the scope of the paper.

Research in the group communication area has lead
to the implementation of several systems which pro-
vide properties similar to those required by the Wack-
amole algorithm. Among such systems we mention Ho-
rus [21], Ensemble [10], Totem [2]. The Wackamole al-

gorithm uses a design similar to the state machine ap-
proach for maintaining consistent state in distributed sys-
tems [19, 16]

Wackamole as a fail-over solution is designed to pre-
serve the IP presence of a service. The Virtual Router
Redundancy Protocol (VRRP) was designed to perform a
similar task for routers. VRRP specifies an election pro-
tocol that dynamically assigns responsibility for a virtual
router to one of the VRRP routers on a local area net-
work. VRRP design is chaired by an IETF working group
and has been formalized into an Internet Standard RFC
2338 [22]. A similar protocol is the Hot Standby Router
Protocol (HSRP) developed by Cisco [11]. In essence,
HSRP elects one router to be the active router and an-
other to be the standby router. The active and the standby
routers send hello messages. The standby router is the
candidate to take over the active role if the active router
faults. All other routers are monitoring the hello mes-
sages sent by the active and standby routers. Routers may
be assigned priorities. The router with the highest prior-
ity will become the active router after initialization. After
an certain Active timeout elapses without hearing hello
messages from the active router, the standby router takes
over. Similarly if a Standby timeout elapses, a monitor-
ing router (if such exist) with the lower IP address takes
over the standby role. By default, hello messages are sent
every 3 seconds and the Active and Stanby timeouts are
set to 10 seconds.

Aside from IP fail-over, front-end high-availability and
load-balancing devices are often used in front of mis-
sion critical networked services to provide uninterrupted
service in the event of a system failure. These devices
perform application level checks against machines in the
cluster and keep track of which machines are providing
service. They present a virtual IP address to which clients
connect, and then dynamically set the local endpoint of
the IP connection to an active machine in the local clus-
ter. These devices are in common use today to support
most large Internet sites and are provided by a variety
of vendors. Such devices include Cisco’s Arrowpoint
[4], Foundry’s ServerIron [12], F5’s BIG/ip [5], Coyote-
Point’s Equalizer [7], and Linux Virtual Server [13].

While these components may provide more than just
high-availability (specifically load balancing), they them-
selves must be made highly available – by itself, any such
component is a single point of failure. Each vendor has its
own method of providing High availability between two
of their devices, but an application independent protocol
such as VRRP or Wackamole could just as easily be used
to accomplish this.

Many services need high availability and only reme-
dial load-balancing techniques such as multiple DNS A
records. For these architectures, using an IP fail-over
protocol directly on the machine providing the service

9

in question reduces the need for complicated, expen-
sive and otherwise unnecessary high-availability/load-
balancing components.

The Linux Fake project [8] provides IP fail-over
through service-probing and ARP-spoofing. The avail-
ability of the main server is probed regularly and upon
failure detection a backup server instantiates a virtual IP
interface that will take over the failed one and send a gra-
tuitous ARP request to accelerate the transition.

The PolyServe Matrix HA [17] product provides a ser-
vice similar to Wackamole. The technical details of the
implementation or the soundness of the protocols cannot
be assessed as the product and procotols are unreleased.
Until recently the Polyserve solution only offered pair-
wise fail-over, where every server is covered by one other
specific server. The latest version of the software is re-
porting use of the Spread Toolkit and provides N:M, N:N,
and N:1 IP failover.

In their presentation of the Raincore Distributed Ses-
sion Service infrastructure [9], the authors mention a Vir-
tual IP Manager application that similarly to Wackamole
exploits underlying group communication guarantees to
provide fail-over for servers and also indicate that the
technology can be applied to firewalls or routers.

8 Conclusions

This paper presented a software-based distributed so-
lution for providing high availability for clusters and
routers at the IP addressing level. The core algorithm
relies on a group communication service to monitor the
currently connected membership and reallocate virtual IP
addresses that are accessible to client machines, between
the avaible servers. We presented the algorithm and dis-
cussed its correctness. We discussed two classes of practi-
cal applications of the system and provided experimental
performance results.

The Wackamole system has been available as an open-
source tool since August 2001 (www.wackamole.org).
During the past 20 months the system was downloaded
more than 1000 times and is actively used in production
environments for both the web-cluster and router avail-
ability applications described in this paper. This work
demonstrates how sound academic research can readily
make an impact in production environments.

8.1 Acknowledgements

We thank Jim Burns, Brian Coan, Gary Levin and San-
jai Narain from Telcordia Technologies for their insight-
ful discussions and suggestions.

References

[1] Y. Amir, Y. Gu, T. Schlossnagle, and J. Stanton. Practical
cluster applications of group communication. In Proceed-
ings of the IEEE International Conference on Dependable
Systems and Networks, New York, NY, 2000.

[2] Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal,
and P. Ciarfella. Fast message ordering and membership
using a logical token-passing ring. In Proceedings of the
13th IEEE International Conference on Distributed Com-
puting Systems, May 1993.

[3] Y. Amir and J. Stanton. The spread wide area group
communication system. Technical Report CNDS 98-4,
Johns Hopkins University, Center for Networking and
Distributed Systems, 1998.

[4] Cisco/arrowpoint. http://www.cisco.com/en/US/products/
hw/contnetw/ps792/index.html.

[5] BIG/ip. http://www.f5.com/f5products/bigip/.
[6] K. P. Birman and T. A. Joseph. Exploiting virtual syn-

chrony in distributed systems. In Proceedings of the ACM
Symposium on OS Principles, pages 123–138, 1987.

[7] Equalizer. http://www.coyotepoint.com/equalizer.htm.
[8] The Linux Fake Project.

http://www.vergenet.net/linux/fake.
[9] C. Fan and J. Bruck. The raincore distributed session ser-

vice for networking elements. In Workshop on Commu-
nication Architecture for Clusters. International Parallel
and Distributed Processing Symposium, 2001.

[10] M. Hayden. The Ensemble System. PhD thesis, Cornell
University, 1998.

[11] Hot Standby Router Protocol. http://www.cisco.com/ uni-
vercd/cc/td/doc/cisintwk/ics/cs009.htm.

[12] Foundry/ServerIron. http://www.foundrynet.com/products/
webswitches/serveriron/.

[13] Linux Virtual Server. http://www.linuxvirtualserver.org/.
[14] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A.

Agarwal. Extended virtual synchrony. In International
Conference on Distributed Computing Systems, pages 56–
65, 1994.

[15] Open Shortest Path First.
http://www.ietf.org/html.charters/ospf-charter.html.

[16] F. Pedone. The Database State Machine and Group
Communication Issues. PhD thesis, École Polytechnique
Fédérale de Lausanne, Switzerland, 1999.

[17] Polyserver Matrix HA. http://polyserve.com/.
[18] Routing Information Protocol.

http://www.ietf.org/html.charters/rip-charter.html.
[19] F. B. Schneider. Implementing fault-tolerant services us-

ing the state machine approach: A tutorial. ACM Comput-
ing Surveys, 22(4):299–319, Dec. 1990.

[20] The Spread Toolkit. http://www.spread.org.
[21] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A

flexible group communication system. Communications
of the ACM, 39(4):76–83, Apr. 1996.

[22] Virtual Router Redundancy Protocol.
http://www.ietf.org/html.charters/vrrp-charter.html.

[23] Wackamole. http://www.wackamole.org.

10

From Total Order to Database Replication

Yair Amir and Ciprian Tutu
Johns Hopkins University

Department of Computer Science
3400 N.Charles Street, Baltimore, MD 21218

fyairamir, cipriang@cnds.jhu.edu

Abstract

This paper presents in detail an efficient and provably
correct algorithm for database replication over partition-
able networks. Our algorithm avoids the need for end-to-
end acknowledgments for each action while supporting net-
work partitions and merges and allowing dynamic instan-
tiation of new replicas. One round of end-to-end acknowl-
edgments is required only upon a membership change event
such as a network partition. New actions may be intro-
duced to the system at any point, not only while in a primary
component. We show how performance can be further im-
proved for applications that allow relaxation of consistency
requirements. We provide experimental results that demon-
strate the efficiency of our approach.

1 Introduction

Database replication is quickly becoming a critical tool
for providing high availability, survivability and high per-
formance for database applications. However, to provide
useful replication one has to solve the non-trivial problem
of maintaining data consistency between all the replicas.

The state machine approach [25] to database replication
ensures that replicated databases that start consistent will re-
main consistent as long as they apply the same deterministic
actions (transactions) in the same order. Thus, the database
replication problem is reduced to the problem of construct-
ing a global persistent consistent order of actions. This is
often mistakenly considered easy to achieve using the Total
Order service (e.g. ABCAST, Agreed order, etc) provided
by group communication systems.

Early models of group communication, such as Virtual
Synchrony, did not support network partitions and merges.
The only failures tolerated by these models were process
crashes, without recovery. Under this model, total order is
sufficient to create global persistent consistent order.

When network partitions are possible, total order service
does not directly translate to a global persistent consistent
order. Existing solutions that provide active replication ei-
ther avoid dealing with network partitions [27, 23, 22] or
require additional end-to-end acknowledgements for every
action after it is delivered by the group communication and
before it is admitted to the global consistent persistent order
(and can be applied to the database) [16, 12, 26].

In this paper we describe a complete and provably cor-
rect algorithm that provides global persistent consistent or-
der in a partitionable environment without the need for end-
to-end acknowledgments on a per action basis. In our ap-
proach, end-to-end acknowledgements are only used once
for every network connectivity change event (such as net-
work partition or merge) and not per action. The basic con-
cept was first introduced as part of a PhD thesis [2]. This
paper presents our newly developed insight into the prob-
lem and goes beyond [2] by supporting online additions of
completely new replicas and complete removals of existing
replicas while the system executes.

Our algorithm builds a generic replication engine which
runs outside the database and can be seamlessly integrated
with existing databases and applications. The replication
engine supports various semantic models, relaxing or en-
forcing the consistency constraints as needed by the appli-
cation. We implemented the replication engine on top of the
Spread toolkit [4] and provide experimental performance
results, comparing the throughput and latency of the global
consistent persistent order using our algorithm, the COReL
algorithm introduced in [16], and a two-phase commit algo-
rithm. These results demonstrate the impact of eliminating
the end-to-end acknowledgments on a per-action basis.

The rest of the paper is organized as follows. The fol-
lowing subsection discusses related work. Section 2 de-
scribes the working model. Section 3 introduces a concep-
tual solution. Section 4 addresses the problems exhibited
by the conceptual solution in a partitionable system and in-
troduces the Extended Virtual Synchrony model as a tool to
provide global persistent order. Section 5 describes the de-

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

tailed replication algorithm and extends it to support online
removals and additions to the set of participating replicas.
Section 6 shows how the global persistent order guarantees
of the algorithm can be used to support various relaxed con-
sistency requirements. Section 7 evaluates the performance
of our prototype and Section 8 concludes the paper.

1.1 Related Work

Two-phase commit protocols [12] remain the main tech-
nique used to provide a consistent view in a distributed
replicated database system over an unreliable network.
These protocols impose a substantial communication cost
on each transaction and may require the full connectivity of
all replicas to recover from some fault scenarios. Three-
phase-commit protocols [26, 17] overcome some of the
availability problems of two-phase-commit protocols, pay-
ing the price of an additional communication round.

Some protocols optimize for specific cases: limiting the
transactional model to commutative transactions [24]; giv-
ing special weight to a specific processor or transaction
[28]. Explicit use of timestamps enables other protocols
[6] to avoid the need to claim locks or to enforce a global
total order on actions, while other solutions settle for re-
laxed consistency criteria [11]. Various groups investigated
methods to implement efficient lazy replication algorithms
by using epidemic propagation [8, 14] or by exploiting ap-
plication semantics [21].

Atomic Broadcast [13] in the context of Virtual Syn-
chrony [7] emerged as a promising tool to solve the replica-
tion problem. Several algorithms were introduced [27, 23]
to implement replication solutions based on total ordering.
All these approaches, however, work only in the context of
non-partitionable environments.

Keidar [16] uses the Extended Virtual Synchrony (EVS)
[20] model to propose an algorithm that supports net-
work partitions and merges. The algorithm requires that
each transaction message is end-to-end acknowledged, even
when failures are not present, thus increasing the latency
of the protocol. In section 7 we demonstrate the impact
of these end-to-end acknowledgements on performance by
comparing this algorithm with ours. Fekete, Lynch and
Shvartsman [9] study both [16] and [2] (which is our static
algorithm) to propose an algorithm that translates View
Synchrony, another specification of a partitionable group
service defined in the same work, into a global total order.

Kemme, Bartoli and Babaoglu[19] study the problem of
online reconfiguration of a replicated system in the presence
of network events, which is an important building block for
a replication algorithm. They propose various useful solu-
tions to performing the database transfer to a joining site
and provide a high-level description of an online reconfigu-
ration method based on Enriched Virtual Synchrony allow-

ing new replicas to join the system if they are connected
with the primary component. Our solution can leverage
from these database transfer techniques and adds the abil-
ity to allow new sites to join the running system without the
need to be connected to the primary component.

Kemme and Alonso [18] present and prove the correct-
ness for a family of replication protocols that support dif-
ferent application semantics. The protocols are introduced
in a failure-free environment and then enhanced to support
server crashes and recoveries. The model does not allow
network partitions, always assuming that disconnected sites
have crashed. In their model, the replication protocols rely
on external view-change protocols that provide uniform re-
liable delivery in order to provide consistency across all
sites. Our work shows that the transition from the group
communication uniform delivery notification to the strict
database consistency is not trivial, we provide a detailed al-
gorithm for this purpose and prove its correctness.

2 System Model

The system consists of a set of nodes (servers)
S=fS1; S2; :::; Sng, each holding a copy of the entire
database. Initially we assume that the set S is fixed and
known in advance. Later, in Section 5.1, we will show how
to deal with online changes to the set of potential replicas1.

2.1 Failure and Communication Model

The nodes communicate by exchanging messages. The
messages can be lost, servers may crash and network parti-
tions may occur. We assume no message corruption and no
Byzantine faults.

A server that crashes may subsequently recover retain-
ing its old identifier and stable storage. Each node executes
several processes: a database server, a replication engine
and a group communication layer. The crash of any of the
components running on a node will be detected by the other
components and treated as a global node crash.

The network may partition into a finite number of dis-
connected components. Nodes situated in different com-
ponents cannot exchange messages, while those situated in
the same component can continue communicating. Two or
more components may subsequently merge to form a larger
component.

We employ the services of a group communication layer
which provides reliable multicast messaging with ordering
guarantees (FIFO, causal, total order). The group communi-
cation system also provides a membership notification ser-
vice, informing the replication engine about the nodes that

1Note that these are changes to the system setup, not view changes
caused by temporary network events.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

can be reached in the current component. The notification
occurs each time a connectivity change, a server crash or
recovery, or a voluntary join/leave occurs. The set of par-
ticipants that can be reached by a server at a given moment
in time is called a view. The replication layer handles the
server crashes and network partitions using the notifications
provided by the group communication. The basic property
provided by the group communication system is called Vir-
tual Synchrony [7] and it guarantees that processes mov-
ing together from one view to another deliver the same (or-
dered) set of messages in the former view.

2.2 Service Model

A Database is a collection of organized, related data.
Clients access the data by submitting transactions. consist-
ing of a set of commands that follow the ACID properties.
A replication service maintains a replicated database in a
distributed environment. Each server from the server set
maintains a private copy of the database. The initial state
of the database is identical at all servers. Several models
of consistency can be defined, the strictest of which is one-
copy serializability that requires that the concurrent execu-
tion of transactions on a replicated data set is equivalent to
a serial execution on a non-replicated data set. We focus on
enforcing the strict consistency model, but we also support
weaker models (see Section 6).

An action defines a transition from the current state of
the database to the next state; the next state is completely
determined by the current state and the action. We view ac-
tions as having a query part and an update part, either of
which can be missing. Client transactions translate into ac-
tions that are applied to the database. The basic model best
fits one-operation transactions, but in Section 6 we show
how other transaction types can also be supported.

3 Replication Algorithm

In the presence of network partitions, the replication
layer identifies at most a single component of the server
group as a primary component; the other components of a
partitioned group are non-primary components. A change
in the membership of a component is reflected in the deliv-
ery of a view-change notification by the group communica-
tion layer to each server in that component. The replication
layer implements a symmetric distributed algorithm to de-
termine the order of actions to be applied to the database.
Each server builds its own knowledge about the order of ac-
tions in the system. We use the coloring model defined in
[1] to indicate the knowledge level associated with each ac-
tion. Each server marks the actions delivered to it with one
of the following colors:

Order is unknown

Order is known

(I know that)
Order is known to all

(Red)

(Green)

(White)

Figure 1. Action coloring

Red Action An action that has been ordered within the
local component by the group communication layer,
but for which the server cannot, as yet, determine the
global order.

Green Action An action for which the server has deter-
mined the global order.

White Action An action for which the server knows that
all of the servers have already marked it as green.
These actions can be discarded since no other server
will need them subsequently.

At each server, the white actions precede the green actions
which, in turn, precede the red ones. An action can be
marked differently at different servers; however, no action
can be marked white by one server while it is missing or is
marked red at another server.

The actions delivered to the replication layer in a primary
component are marked green. Green actions can be applied
to the database immediately while maintaining the strictest
consistency requirements. In contrast, the actions delivered
in a non-primary component are marked red. The global
order of these actions cannot be determined yet, so, under
the strong consistency requirements, these actions cannot
be applied to the database at this stage.

3.1 Conceptual Algorithm

The algorithm presented in this section should, intu-
itively, provide an adequate solution to the replication prob-
lem. This is not actually the case, as the algorithm is not
able to deal with some of the more subtle issues that can
arise in a partitionable system. We present this simplified
solution to provide a better insight into some of the prob-
lems the complete solution needs to cope with and to intro-
duce the key properties of the algorithm.

Figure 2 presents the state machine associated with the
conceptual algorithm. A replica can be in one of the follow-
ing four states:

� Prim State. The server belongs to the primary com-
ponent. When a client submits a request, it is multicast

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Prim Exchange
Non
Prim

Action (Green)

Last CPC

Construct

Action (Red)

No Prim

View-change

View-change

View-change

Possible
Prim

Recover

Figure 2. Conceptual Replication Algorithm

using the group communication to all the servers in the
component. When a message is delivered by the group
communication system to the replication layer, the ac-
tion is immediately marked green and is applied to the
database.

� NonPrim State. The server belongs to a non-primary
component. Client actions are ordered within the
component using the group communication system.
When a message containing an action is delivered by
the group communication system, it is immediately
marked red.

� Exchange State. A server switches to this state upon
delivery of a view change notification from the group
communication system. All the servers in the new
view will exchange information allowing them to de-
fine the set of actions that are known by some of them
but not by all. These actions are subsequently ex-
changed and each server will apply to the database the
green actions that it gained knowledge of. After this
exchange is finished each server can check whether the
current view has a quorum to form the next primary
component. This check can be done locally, without
additional exchange of messages, based on the infor-
mation collected in the initial stage of this state. If the
view can form the next primary component the server
will move to the Construct state, otherwise it will re-
turn to the NonPrim state.

� Construct State. In this state, all the servers in the
component have the same set of actions (they synchro-
nized in the Exchange state) and can attempt to install
the next primary component. For that they will send a
Create Primary Component (CPC) message. When a
server has received CPC messages from all the mem-
bers of the current component it will transform all its
red messages into green, apply them to the database
and then switch to the Prim state. If a view change
occurs before receiving all CPC messages, the server
returns to the Exchange state.

In a system that is subject to partitioning we must en-
sure that two different components do not apply contradic-

tory actions to the database. We use a quorum mechanism
to allow the selection of a unique primary component from
among the disconnected components. Only the servers in
the primary component will be permitted to apply actions
to the database. While several types of quorums could be
used, we opted to use dynamic linear voting [15]. Under
this system, the component that contains a (weighted) ma-
jority of the last primary component becomes the new pri-
mary component.

In many systems, processes exchange information only
as long as they have a direct and continuous connection.
In contrast, our algorithm propagates information by means
of eventual path: when a new component is formed, the
servers exchange knowledge regarding the actions they
have, their order and color. This exchange process is only
invoked immediately after a view change. Furthermore,
all the components exhibit this behavior, whether they will
form a primary or non-primary component. This allows the
information to be disseminated even in non-primary com-
ponents, reducing the amount of data exchange that needs
to be performed once a server joins the primary component.

4 From Total Order to Database Replication

Unfortunately, due to the asynchronous nature of the sys-
tem model, we cannot reach complete common knowledge
about which messages were received by which servers just
before a network partition occurs or a server crashes. In
fact, it has been proven that reaching consensus in asyn-
chronous environments with the possibility of even one fail-
ure is impossible [10]. Group communication primitives
based on Virtual Synchrony do not provide any guarantees
of message delivery that span network partitions and server
crashes. In our algorithm it is important to be able to tell
whether a message that was delivered to one server right
before a view change, was also delivered to all its intended
recipients.

A server p cannot know, for example, whether the last
actions it delivered in the Prim state, before a view-change
event occurred, were delivered to all the members of the
primary component; Virtual Synchrony guarantees this fact
only for the servers that will install the next view together
with p. These messages cannot be immediately marked
green by p, because of the possibility that a subset of the
initial membership, big enough to construct the next pri-
mary component, did not receive the messages. This subset
could install the new primary component and then apply
other actions as green to the database, breaking consistency
with the rest of the servers. This problem will manifest it-
self in any algorithm that tries to operate in the presence of
network partitions and remerges. A solution based on To-
tal Order cannot be correct in this setting without further
enhancement.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

4.1 Extended Virtual Synchrony

In order to circumvent the inability to know who re-
ceived the last messages sent before a network event oc-
curs we use an enhanced group communication paradigm
called Extended Virtual Synchrony (EVS) [20] that reduces
the ambiguity associated with the decision problem. Instead
of having to decide on two possible values, as in the con-
sensus problem, EVS will create three possible cases. To
achieve this, EVS splits the view-change notification into
two notifications: a transitional configuration change mes-
sage and a regular configuration change message. The tran-
sitional configuration message defines a reduced member-
ship containing members of the next regular configuration
coming directly from the same regular configuration. This
allows the introduction of another form of message deliv-
ery, safe delivery, which maintains the total order property
but also guarantees that every message delivered to any pro-
cess that is a member of a configuration is delivered to every
process that is a member of that configuration, unless that
process fails. Messages that do not meet the requirements
for safe delivery, but are received by the group communi-
cation layer, are delivered in the transitional configuration.
No new messages are sent by the group communication in
the transitional configuration.

The safe delivery property provides a valuable tool to
deal with the incomplete knowledge in the presence of net-
work failures or server crashes. We distinguish now three
possible cases:

1. A safe message is delivered in the regular configura-
tion. All guarantees are met and everyone in the con-
figuration will deliver the message (either in the regu-
lar configuration or in the following transitional con-
figuration) unless they crash.

2. A safe message is delivered in the transitional config-
uration. This message was received by the group com-
munication layer just before a partition occurs. The
group communication layer cannot tell whether other
components that split from the previous component re-
ceived and will deliver this message.

3. A safe message was sent just before a partition oc-
curred, but it was not received by the group commu-
nication layer in some detached component. The mes-
sage will, obviously, not be delivered at the detached
component.

The power of this differentiation lies in the fact that, with re-
spect to the same message, it is impossible for one server to
be in case 1, while another is in case 3. To illustrate the use
of this property consider the Construct phase of our algo-
rithm: If a server p receives all CPC messages in the regular
configuration, it knows that every server in that configura-
tion will receive all the messages before the next regular

Order is unknown

Order is known

(I know that)
Order is known to all

Transitional membership

(Red)

(Green)

(White)

(Yellow)

Figure 3. Updated coloring model

configuration is delivered, unless they crash; some servers
may, however, receive some of the CPC messages in a tran-
sitional configuration. Conversely, if a server q receives a
configuration change for a new regular configuration before
receiving all of the CPC messages, then no server could
have received a message that q did not receive as safe in
the previous configuration. In particular, no server received
all of the CPC messages as safe in the previous regular con-
figuration. Thus q will know that it is in case 3 and no other
server is in case 1. Finally, if a server r received all CPC
messages, but some of those were delivered in a transitional
configuration, then r cannot know whether there is a server
p that received all CPC messages in the regular configura-
tion or whether there is a server q that did not receive some
of the CPC messages at all; r does, however, know that there
cannot exist both p and q as described.

5 Replication Algorithm

Based on the above observations the algorithm skeleton
presented in Section 3.1 needs to be refined. We will take
advantage of the Safe delivery properties and of the differ-
entiated view change notification that EVS provides. The
two delicate states are, as mentioned, Prim and Construct.2

In the Prim state, only actions that are delivered as
safe during the regular configuration can be applied to the
database. Actions that were delivered in the transitional
configuration cannot be marked as green and applied to the
database before we know that the next regular configura-
tion will be the one defining the primary component of the
system. If an action a is delivered in the transitional mem-
bership and is marked directly as green and applied to the
database, then it is possible that one of the detached com-
ponents that did not receive this action will install the next
primary component and will continue applying new actions

2While the same problem manifests itself in any state, it is only these
two states where knowledge about the message delivery is critical, as it
determines either the global total order (in Prim) or the creation of the new
primary (Construct).

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Reg
Prim

Trans
Prim

Exchange
States

Non
Prim

Construct

Trans Conf

Exchange
ActionsUn No

Last
CPCLast

CPC

Last
State

Possible
Prim

No Prim
or

Trans Conf

Recover

Trans Conf

Reg ConfReg Conf
Trans Conf

Reg Conf

Reg ConfAction

Action (Red)Action (Yellow)Action (Green)

1a 1b ? 0

Figure 4. Replication State Machine

to the database, without applying a, thus breaking the con-
sistency of the database. To avoid this situation, the Prim
state was split into two states: RegPrim and TransPrim and
a new message color was introduced to the coloring model:

Yellow Action An action that was delivered in a transi-
tional configuration of a primary component.

A yellow action becomes green at a server as soon as this
server learns that another server marked the action green or
when this server becomes part of a primary component. As
discussed in the previous section, if an action is marked as
yellow at some server p, then there cannot exist r and s, in
this component, such that one marked the action as red and
the other marked it green.

In the presence of consecutive network changes, the pro-
cess of installing a new primary component can be inter-
rupted by another configuration change. If a transitional
configuration is received by a server p while in the Con-
struct state, before receiving all the CPC messages, the
server will not be able to install the new primary and will
switch to a new state: No. In this state p expects to re-
ceive the delivery of the new regular configuration which
will trigger the initiation of a new exchange round. How-
ever, if p receives all the rest of the CPC messages in No
(i.e. in the transitional configuration), it means that it is
possible that some server q has received all the CPC mes-
sages in Construct and has moved to RegPrim, completing
the installation of the new primary.

To account for this possibility, p will switch to another
new state: Un (undecided). If an action message is received
in this state then p will know for sure that there was a server
q that switched to RegPrim and even managed to generate
new actions before noticing the network failure that caused
the cascaded membership change. Server p, in this situa-
tion (1b), has to act as if installing the primary component
in order to be consistent, mark its old yellow/red actions
as green, mark the received action as yellow and switch to
TransPrim, “joining” q who will come from RegPrim as it
will also eventually notice the new configuration change. If
the regular configuration message is delivered without any

message being received in the Un state (transition marked ?
in Figure 4), p remains uncertain whether there was a server
that installed the primary component and will not attempt
to participate in the formation of a new primary until this
dilemma is cleared through exchange of information with
one or, in the worst case, all of the members that tried to
install the same primary as p.

Figure 4 shows the updated state machine. Aside from
the changes already mentioned, the Exchange state was also
split into ExchangeStates and ExchangeActions, mainly
for clarity reasons. From a procedural point of view, once a
view change is delivered, the members of each view will try
to establish a maximal common state that can be reached by
combining the information and actions held by each server.
After the common state is determined, the participants pro-
ceed to exchange the relevant actions. Obviously, if the new
membership is a subset of the old one, there is no need for
action exchange, as the states are already synchronized.

5.1 Dynamic Replica Instantiation and Removal

As mentioned in the description of the model, the algo-
rithm that we presented so far works under the limitation of
a fixed set of potential replicas. It is of great value, however,
to allow for the dynamic instantiation of new replicas as
well as for their deactivation. Moreover, if the system does
not support permanent removal of replicas, it is susceptible
to blocking in case of a permanent failure or disconnection
of a majority of nodes in the primary component.

However, dynamically changing the set of servers is not
straightforward: the set change needs to be synchronized
over all the participating servers in order to avoid confusion
and incorrect decisions such as two distinct components de-
ciding they are the primary, one being the rightful one in the
old configuration, the other being entitled to this in the new
configuration. Since this is basically a consensus problem,
it cannot be solved in a traditional fashion. We circumvent
the problem with the help of the persistent global total order
that the algorithm provides.

When a replica r wants to permanently leave the system,
it will broadcast a PERSISTENT LEAVE message that will
be ordered as if it was an action message. When this mes-
sage becomes green at replica s, s can update its local data
structures to exclude r from the list of potential replicas.
The PERSISTENT LEAVE message can also be adminis-
tratively inserted into the system to signal the permanent
removal, due to failure, of one of the replicas. The message
will be issued by a site that is still in the system and will
contain the server id of the dead replica.

A new replica r that wants to join the replicated system
will first need to connect to one of the members (s of the
system, without joining the group. s will act as a represen-
tative for the new site to the existing group by creating a

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

PERSISTENT JOIN message to announce r’s intention to
join the group. This message will be ordered as a regu-
lar action, according to the standard algorithm. When the
message becomes green at a server, that replica will up-
date its data structures to include the newcomer’s server id
and set the green line (the last globally ordered message
that the server has) for the joining member as the action
corresponding to the PERSISTENT JOIN message. Basi-
cally, from this point on the servers acknowledge the exis-
tence of the new member, although r is still not connected
to the group. When the PERSISTENT JOIN message be-
comes green at the peer server (the representative), the peer
server will take a snapshot of the database and start trans-
ferring it to the joining member. If the initial peer fails or
a network partition occurs before the transfer is finished,
the new server will try to establish a connection with a dif-
ferent member of the system and continue its update. If
the new peer already ordered the PERSISTENT JOIN mes-
sage sent by the first representative, it will know about r
and the state that it has to reach before joining the system,
therefore will be able to resume the transfer procedure. If
the new peer has not yet ordered the PERSISTENT JOIN
message it will issue another PERSISTENT JOIN message
for the r. PERSISTENT JOIN messages for members that
are already present in the local data structures are ignored
by the existing servers, so only the first ordered PERSIS-
TENT JOIN will define the entry point of the new site into
the system. Since the algorithm guarantees global total or-
dering, this entry point is uniquely defined. Finally, when
the transfer is complete, r will set the action counter to the
last action that was ordered by the system and will join
the group of replicas. This will be seen as a view change
by the existing members and they will go through the EX-
CHANGE states and continue according to the algorithm.

Another method for performing online reconfiguration is
described in [19]. This method requires the joining site to
be permanently connected to the primary component while
being updated. We maintain the flexibility of the engine and
we allow joining replicas to be connected to non-primary
components during their update stage. It can even be the
case that a new site is accepted into the system without
ever being connected to the primary component, due to the
eventual path propagation method. The insertion of a new
replica into the system in a non-primary component, can be
useful to certain applications as is shown in Section 6.

The static algorithm code was presented in [2], while the
complete algorithm code, including the dynamic capabili-
ties can be found in the extended version of this paper [5].

5.2 Proof of Correctness

The algorithm in its static form was proven correct in
[2]. The correctness properties that were guaranteed were

liveness, FIFO order and Total global order. Here, we prove
that the enhanced dynamic version of the algorithm still pre-
serves the same guarantees.

Lemma 1 (Global Total Order (static)) If both servers s
and r performed their ith actions, then these actions are
identical.

Lemma 2 (Global FIFO Order (static)) If server r per-
formed an action a generated by server s, then r already
performed every action that s generated prior to a.

These are the two properties that define the Safety cri-
terion in [2]. These specifications need to be refined to
encompass the removal of servers or the addition of new
servers to the system.

Theorem 1 (Global Total Order (dynamic)) If both
servers s and r performed their ith action, then these
actions are identical.
Proof: Consider the system in its start-up configuration set.
Any server in this configuration will trivially maintain this
property according to Lemma 1. Consider a server s that
joins the system. The safety properties of the static al-
gorithm guarantee that after ordering the same set of ac-
tions, all servers will have the same consistent database.
This is the case when a PERSISTENT JOIN action is or-
dered. According to the algorithm s will set its global action
counter to the one assigned by the system to the PERSIS-
TENT JOIN action. From this point on the behavior of s is
indistinguishable from a server in the original configuration
and the claim is maintained as per Lemma 1. 2

Theorem 2 (Global FIFO Order (dynamic)) If server r
performed an action a generated by server s, then r already
performed every action that s generated prior to a, or it
inherited a database state which incorporated the effect of
these actions.

Proof: According to Lemma 2, the theorem holds true
from the initial starting point until a new member is added
to the system. Consider r, a member who joins the system.
According to the algorithm, the joining member transfers
the state of the database as defined by the action ordered
immediately before the PERSISTENT JOIN message. All
actions generated by s and ordered before the PERSIS-
TENT JOIN will be incorporated in the database that r re-
ceived. From Theorem 1, the PERSISTENT JOIN message
is ordered at the same place at all servers. All actions gen-
erated by s and ordered after the PERSISTENT JOIN mes-
sage will be ordered similarly at every server, including r,
according to Theorem 1. Since Lemma 2 holds for any other
member, this is sufficient to guarantee that r will order all
other actions generated by s prior to a, and ordered after r
joined the system. 2

Lemma 3 (Liveness (static)) If server s orders action a
and there exists a set of servers containing s and r, and a

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

time from which on that set does not face any communi-
cation or process failures, then server r eventually orders
action a.
This is the liveness property defined in [2] and proven to
be satisfied by the static replication algorithm. This speci-
fication needs to be refined to include the notion of servers
permanently leaving the system.

Theorem 3 (Liveness (dynamic)) If server s orders action
a in a configuration that contains r and there exists a set of
servers containing s and r, and a time from which on that set
does not face any communication or process failures, then
server r eventually orders action a.
Proof: The theorem is a direct extension of Lemma 3,
which acknowledges the potential existence of different
server-set configurations. An action that is ordered by a
server in one configuration will be ordered by all servers
in the same configuration as a direct consequence of Theo-
rem 1. Servers that leave the system or crash do not meet
the requirements for the liveness property, while servers that
join the system will order the actions generated in any con-
figuration that includes them, unless they crash. 2

6 Supporting Various Application Semantics

The presented algorithm was designed to provide strict
consistency semantics by applying actions to the database
only when they are marked green and their global order is
determined. In the real world, where incomplete knowledge
is unavoidable, many applications would rather have an im-
mediate answer, than incur a long latency to obtain a com-
plete and consistent answer. Therefore, we provide addi-
tional service types for clients in a non-primary component.
The result of a weak query is obtained from a consistent, but
possibly obsolete state of the database, as reflected by the
green actions known to the server at the time of the query,
even while in a non-primary component. Other applications
prefer getting an immediate reply based on the latest infor-
mation available, although possibly inconsistent. In the pri-
mary component the state of the database reflects the most
updated situation and is always consistent. In a non-primary
component, however, red actions must be taken into account
in order to provide the latest, though not consistent, infor-
mation. We call this type of query a dirty query.

Different semantics can be supported also with respect
to updates. In the timestamp semantics case, the application
in interested only in the most recent information/ Location
tracking is a good example of an application that would em-
ploy such semantics. Similarly, commutative semantics are
used in applications where the order of action execution is
irrelevant as long as all actions are eventually applied. In
an inventory management application all operations on the
stock would be commutative. For both semantics, the one-

copy serializability property is not maintained in the pres-
ence of network partitions. However, after the network is re-
paired and the partitioned components merge, the databases
states converge.

The algorithm can be significantly optimized if the en-
gine has the ability to distinguish a query-only action from
an action that contains updates. A query issued at one server
can be answered as soon as all previous actions generated
by this server were applied to the database, without the need
to generate and order an action message.

Modern database applications exploit the ability to exe-
cute a procedure specified by a transaction. These are called
active transactions and they are supported by our algorithm,
provided that the invoked procedure is deterministic and de-
pends solely on the current database state. The procedure
will be invoked at the time the action is ordered, rather than
before the creation of the update.

Finally, we mentioned that our model best fits one-
operation transactions. Actually, any non-interactive trans-
actions that do not invoke triggers are supported in a similar
way. However, some applications need to use interactive
transactions which, within the same transaction, read data
and then perform updates based on a user decision, rather
than a deterministic procedure. Such behavior, cannot be
modeled using one action, but can be mimicked with the
aid of two actions. The first action reads the necessary data,
while the second one is an active action as described above.
This active action encapsulates the update dictated by the
user, but first checks whether the values of the data read
by the first action are still valid. If not, the update is not
applied, as if the transaction was aborted in the traditional
sense. Note that if one server “aborts”, all of the servers
will abort that (trans)action, since they apply an identical
deterministic rule to an identical state of the database.

7 Performance Analysis

In this section we evaluate our replication engine and
compare its performance to that of two existing solutions:
two-phase commit (2PC) and COReL by Keidar [16]. 2PC
is the algorithm adopted by most replicated systems that re-
quire strict consistency. 2PC requires two forced disk writes
and 2n unicast messages per action. COReL exploits group
communication properties to improve on that. COReL re-
quires one forced disk write and n multicast messages per
action. In contrast, our engine only requires 1/n forced disk
write and one multicast message per action on average (only
the initiating server needs to force the action to disk).

We implemented all three algorithms and compared their
performance in normal operation, without view changes.
Our 2PC implementation does not perform the locking re-
quired to guarantee the unique order of transaction execu-
tion, as this is usually the task of the database. Therefore

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

0

200

400

600

800

1000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

up
da

te
s/

se
co

nd
)

Number of clients updating 14 replicas

Throughput comparison

Replication Engine
COReL

2PC upper-bound

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

T
hr

ou
gh

pu
t (

up
da

te
s/

se
co

nd
)

Number of clients updating 14 replicas

Impact of forced disk writes

Engine no sync
Engine with sync

2PC upper-bound no sync
CoREL no sync

Figure 5. Throughput Comparison

a complete 2PC will perform strictly worse than our upper-
bound implementation.

Since we are interested in the intrinsic performance of
the replication metods, clients receive responses to their ac-
tions as soon as the actions are globally ordered, without
any interaction with a database. A follow-up work [3] eval-
uates a complete solution that replicates a Postgres database
over local and wide area networks using our engine.

All the tests were conducted with 14 replicas, each run-
ning on a dual processor Pentium III-667 with Linux con-
nected by a 100Mbits/second local area switch. Each action
is 200 bytes long (e.g. an SQL statement).

Figure 5(a) compares the maximal throughput that a sys-
tem of 14 replicas can sustain under each of the three meth-
ods. We vary the number of clients that simultaneously
submit requests into the system between 1 and 28, evenly
spread between the replicas as much as possible. The clients
are constantly injecting actions into the system, the next ac-
tion from a client being introduced immediately after the
previous action from that client is completed and its result
reported to the client.

Our engine achieves a maximum throughput of 1050 up-
dates/second once there are sufficient clients to saturate the
system, outperforming the other methods by at least a fac-
tor of 10. COReL outperforms the uppper-bound 2PC as
expected, mainly due to the saving in disk writes reaching
a maximum of 110 updates/second as opposed to 63 up-
dates/second for the upper-bound 2PC.

High-performance database environments commonly
use superior storage technology (e.g flash disks). In order
to estimate the performance that the three methods would
exhibit in such environment, we used asynchronous disk
writes instead of forced disk writes. Figure 5(b) shows that
our engine tops at processing 3000 updates/second. Un-
der the same conditions, the upper-bound 2PC algorithm
achieves 400 updates/second. COReL reaches a through-

0

50

100

150

200

250

300

0 200 400 600 800 1000 1200

La
te

nc
y

(m
s)

Load (updates/second)

Engine
2PC

CoREL

Figure 6. Latency variation with load

put of approximately 100 updates/second with 28 clients,
but more clients are needed in order to saturate the COReL
system due to its higher latency. With 50 clients, CORel
saturates the system with about 200 updates/second. 2PC
outperforms COReL in this experiment because of two rea-
sons: the fact that we use an upper-bound 2PC as men-
tioned above, and the particular switch that serves our local
area network that is capable of transmitting multiple unicast
messages between different pairs in parallel.

We also measured the response time a client experiences
under different loads (Figure 6). Our Engine maintains an
average latency of 15ms with load increasing up to 800 up-
dates/second and breaks at the maximum supported load of
1050 updates/second. COReL and 2PC experience latencies
of 35ms up to 80ms under loads up to 100 updates/second
with COReL being able to sustain more throughput.

8 Conclusions

We presented a complete algorithm for database repli-
cation over partitionable networks sophistically utilizing

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

group communication and proved its correctness. Our
avoidance of the need for end-to-end acknowledgment per
action contributed to superior performance. We showed
how to incorporate online instantiation of new replicas and
permanent removal of existing replicas. We also demon-
strated how to efficiently support various types of applica-
tions that require different semantics.

Acknowledgements

We thank Jonathan Stanton for his numerous technical ideas and support

that helped us optimize the overall performance of the system. We also

thank Michal Miskin-Amir and Jonathan Stanton for their insightful sug-

gestions that considerably improved the presentation of this paper. This

work was partially funded by grant F30602-00-2-0550 from the Defense

Advanced Research Projects Agency (DARPA). The views expressed in

this paper are not necessarily endorsed by DARPA.

References

[1] O. Amir, Y. Amir, and D. Dolev. A highly available applica-
tion in the Transis environment. Lecture Notes in Computer
Science, 774:125–139, 1993.

[2] Y. Amir. Replication Using Group Communication
over a Partitioned Network. PhD thesis, Hebrew
University of Jerusalem, Jerusalem, Israel, 1995.
http://www.cnds.jhu.edu/publications/yair-phd.ps.

[3] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and
C. Tutu. Practical wide-area database replication. Technical
Report CNDS 2002-1, Johns Hopkins University, Center for
Networking and Distributed Systems, 2002.

[4] Y. Amir and J. Stanton. The spread wide area group com-
munication system. Technical Report CNDS 98-4, Johns
Hopkins University, Center for Networking and Distributed
Systems, 1998.

[5] Y. Amir and C. Tutu. From total order to database repli-
cation. Technical Report CNDS 2002-3, Johns Hopkins
University, Center for Networking and Distributed Systems,
2002.

[6] P. Bernstein, D. Shipman, and J. Rothnie. Concurrency
control in a system for distributed databases (sdd-1). ACM
Transactions on Database Systems, 5(1):18–51, Mar. 1980.

[7] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony
in distributed systems. In Proceedings of the ACM Sympo-
sium on OS Principles, pages 123–138, Austin, TX, 1987.

[8] A. Demers et al. Epidemic algorithms for replicated
database maintenance. In Proceedings of the 6

th Annual
ACM Symposium on Principles of Distributed Computing,
pages 1–12, Vancouver, BC, Canada, Aug. 1987.

[9] A. Fekete, N. Lynch, and A. Shvartsman. Specifying and
using a partitionable group communication service. ACM
Transactions on Computer Systems, 19(2):171–216, May
2001.

[10] M. H. Fischer, N. A. Lynch, and M. S. Paterson. Impossi-
bility of consensus with one faulty process. Journal of the
ACM, 32(2):374–382, Apr. 1985.

[11] R. Golding. Weak-Consistency Group Communication and
Membership. PhD thesis, UC Santa Cruz, 1992.

[12] J. N. Gray and A. Reuter. Transaction Processing: concepts
and techniques. Data Management Systems. Morgan Kauf-
mann Publishers, Inc., San Mateo (CA), USA, 1993.

[13] V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and
related problems. In S. Mullender, editor, Distributed Sys-
tems, chapter 5. Addison-Wesley, second edition, 1993.

[14] J. Holliday, D. Agrawal, and A. E. Abbadi. Database replica-
tion using epidemic update. Technical Report TRCS00-01,
University of California Santa-Barbara, 19, 2000.

[15] S. Jajodia and D. Mutchler. Dynamic voting algorithms for
maintaining the consistency of a replicated database. ACM
Transactions on Database Systems, 15(2):230–280, 1990.

[16] I. Keidar. A highly available paradigm for consistent object
replication. Master’s thesis, Institute of Computer Science,
The Hebrew University of Jerusalem, Israel, 1994.

[17] I. Keidar and D. Dolev. Increasing the resilience of atomic
commit at no additional cost. In Symposium on Principles
of Database Systems, pages 245–254, 1995.

[18] B. Kemme and G. Alonso. A new approach to develop-
ing and implementing eager database replication protocols.
ACM Transactions on Database Systems, 25(3):333 – 379,
2000.

[19] B. Kemme, A. Bartoli, and O. Babaoğlu. Online recon-
figuration in replicated databases based on group commu-
nication. In Proceedings of the Internationnal Conference
on Dependable Systems and Networks, Göteborg, Sweden,
2001.

[20] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-
wal. Extended virtual synchrony. In International Confer-
ence on Distributed Computing Systems, pages 56–65, 1994.

[21] M. Patino-Martinez, R. Jimenez-Peris, B. Kemme, and
G. Alonso. Scalable replication in database clusters. In Pro-
ceedings of 14th International Symposium on DIStributed
Computing (DISC’2000), 2000.

[22] F. Pedone. The Database State Machine and Group Commu-
nication Issues. PhD thesis, École Polytechnique Fédérale
de Lausanne, Switzerland, 1999.

[23] F. Pedone, R. Guerraoui, and A. Schiper. Exploiting atomic
broadcast in replicated databases. In Proceedings of Eu-
roPar (EuroPar’98), Sept. 1998.

[24] C. Pu and A. Leff. Replica control in distributed systems: an
asynchronous approach. ACM SIGMOD Record, 20(2):377–
386, 1991.

[25] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299–319, Dec. 1990.

[26] D. Skeen. A quorum-based commit protocol. Berkley Work-
shop on Distributed Data Management and Computer Net-
works, February 1982.

[27] I. Stanoi, D. Agrawal, and A. E. Abbadi. Using broadcast
primitives in replicated databases. In Proceedings of the
18

th IEEE International Conference on Distributed Com-
puting Systems ’98, pages 148–155, Amsterdam, May 1998.

[28] M. Stonebraker. Concurrency control and consistency of
multiple copies of data in distributed INGRES. IEEE Trans-
actions on Software Engineering, SE-5:188–194, May 1979.

Proceedings of the 22 nd International Conference on Distributed Computing Systems (ICDCS’02)
1063-6927/02 $17.00 © 2002 IEEE

Technical Report CNDS-2002-1 Johns Hopkins University, http://www.cnds.jhu.edu/publications

Practical Wide-Area Database Replication1
 Yair Amir*, Claudiu Danilov*, Michal Miskin-Amir†, Jonathan Stanton*, Ciprian Tutu*

 * Johns Hopkins University † Spread Concepts LLC
 Department of Computer Science 5305 Acacia Ave
 Baltimore MD 21218 Bethesda MD 20814
 {yairamir, claudiu, jonathan, ciprian}@cnds.jhu.edu michal@spreadconcepts.com

Abstract
This paper explores the architecture, implementation and performance of a wide and

local area database replication system. The architecture provides peer replication,
supporting diverse application semantics, based on a group communication paradigm.
Network partitions and merges, computer crashes and recoveries, and message omissions
are all handled. Using a generic replication engine and the Spread group communication
toolkit, we provide replication services for the PostgreSQL database system. We define
three different environments to be used as test-beds: a local area cluster, a wide area
network that spans the U.S.A, and an emulated wide area test bed. We conduct an
extensive set of experiments on these environments, varying the number of replicas and
clients, the mix of updates and queries, and the network latency. Our results show that
sophisticated algorithms and careful distributed systems design can make symmetric,
synchronous, peer database replication a reality for both local and wide area networks.

1. Introduction
Database management systems are among the most important software systems

driving the information age. In many Internet applications, a large number of users that
are geographically dispersed may routinely query and update the same database. In this
environment, the location of the data can have a significant impact on application
response time and availability. A centralized approach manages only one copy of the
database. This approach is simple since contradicting views between replicas are not
possible. The centralized approach suffers from two major drawbacks:

• Performance problems due to high server load or high communication latency for
remote clients.

• Availability problems caused by server downtime or lack of connectivity. Clients
in portions of the network that are temporarily disconnected from the server
cannot be serviced.

The server load and server downtime problems can be addressed by replicating the
database servers to form a cluster of peer servers that coordinate updates. However,

1 This work was partially funded by grant F30602-00-2-0550 from the Defense Advanced Research
Projects Agency (DARPA). The views expressed in this paper are not necessarily endorsed by DARPA.

 2

communication latency and server connectivity remain a problem when clients are
scattered on a wide area network and the cluster is limited to a single location. Wide area
database replication coupled with a mechanism to direct the clients to the best available
server (network-wise and load-wise) [APS98] can greatly enhance both the response time
and availability.

A fundamental challenge in database replication is maintaining a low cost of updates
while assuring global system consistency. The problem is magnified for wide area
replication due to the high latency and the increased likelihood of network partitions in
wide area settings.

In this paper, we explore a novel replication architecture and system for local and
wide area networks. We investigate the impact of latency, disk operation cost, and query
versus update mix, and how they affect the overall performance of database replication.
We conclude that for many applications and network settings, symmetric, synchronous,
peer database replication is practical today.

The paper focuses on the architecture, implementation and performance of the
system. The architecture provides peer replication, where all the replicas serve as master
databases that can accept both updates and queries. The failure model includes network
partitions and merges, computer crashes and recoveries, and message omissions, all of
which are handled by our system. We rely on the lower level network mechanisms to
handle message corruptions, and do not consider Byzantine faults.

Our replication architecture includes two components: a wide area group
communication toolkit, and a replication server. The group communication toolkit
supports the Extended Virtual Synchrony model [MAMA94]. The replication servers use
the group communication toolkit to efficiently disseminate and order actions, and to learn
about changes in the membership of the connected servers in a consistent manner.

Based on a sophisticated algorithm that utilizes the group communication semantics
[AT01, A95], the replication servers avoid the need for end-to-end acknowledgements on
a per-action basis without compromising consistency. End-to-end acknowledgments are
only required when the membership of the connected servers changes due to network
partitions, merges, server crashes and recoveries. This leads to high system performance.
When the membership of connected servers is stable, the throughput of the system and
the latency of actions are determined mainly by the performance of the group
communication and the single node database performance, rather than by other factors
such as the number of replicas. When the group communication toolkit scales to wide
area networks, our architecture automatically scales to wide area replication.

We implemented the replication system using the Spread Group Communication
Toolkit [AS98, ADS00, Spread] and the PostgreSQL database system [Postgres]. We
then define three different environments to be used as test-beds: a local area cluster with
fourteen replicas, the CAIRN wide area network [CAIRN] that spans the U.S.A with
seven sites, and the Emulab emulated wide area test bed [Emulab].

We conducted an extensive set of experiments on the three environments, varying the
number of replicas and clients, and varying the mix of updates and queries. Our results
show that sophisticated algorithms and careful distributed systems design can make

 3

symmetric, synchronous, peer database replication a reality over both local and wide area
networks.

The remainder of this paper is organized as follows. The following subsection
discusses related work. Section 2 presents our architecture for transparent database
replication. Section 3 presents the Spread group communication toolkit and the
optimization we implemented to support efficient wide area replication. Section 4 details
our replication server. Section 5 presents the experiments we constructed to evaluate the
performance of our system, and Section 6 concludes the paper.

Related Work
Despite their inefficiency and lack of scalability, two-phase commit protocols [GR93]

remain the principal technique used by most commercial database systems that try to
provide synchronous peer replication. Other approaches investigated methods to
implement efficient lazy replication algorithms using epidemic propagation [Demers87,
HAE00].

Most of the state-of-the-art commercial database systems provide some level of
database replication. However, in all cases, their solutions are highly tuned to specific
environment settings and require a lot of effort in their setup and maintenance. Oracle
[Oracle], supports both asynchronous and synchronous replication. However, the former
requires some level of application decision in conflict resolution, while the latter requires
that all the replicas in the system are available to be able to function, making it
impractical. Informix [Informix], Sybase [Sybase] and DB2 [DB2] support only
asynchronous replication, which again ultimately rely on the application for conflict
resolution.

In the open-source database community, two database systems emerge as clear
leaders: MySQL [Mysql] and PostgreSQL [Postgres]. By default both systems only
provide limited master-slave replication capabilities. Other projects exist that provide
more advanced replication methods for Postgres such as Postgres Replicator, which uses
a trigger-based store and forward asynchronous replication method [Pgrep].

The more evolved of these approaches is Postgres-R [Postgres-R], a project that
combines open-source expertise with academic research. This work implements
algorithms designed by Kemme and Alonso [KA00] into the PostgreSQL database
manager in order to provide synchronous replication. The current work focuses on
integrating the method with the upcoming 7.2 release of the PostgreSQL system.

Kemme and Alonso introduce the Postgres-R approach in [KA00] and study its
performance on Local Area settings. They use an eager-replication method that exploits
group communication ordering guarantees to serialize write conflicts at all sites. The
initial work was done on version 6.4.2 of PostgreSQL. In similar approaches, Jimenez-
Peris and Patino-Martinez, together with Kemme and Alonso analyze various other
methods and their performance in local area settings [JPKA00, PJKA00].

Research on protocols to support group communication across wide area networks
such as the Internet has begun to expand. Recently, new group communication protocols
designed for such wide area networks have been proposed [KSMD00, KK00, AMMB98,
ADS00] which continue to provide the traditional strong semantic properties such as

 4

reliability, ordering, and membership. The only group communication systems we are
aware of that currently exist, are available for use, and can provide the Extended Virtual
Synchrony semantics are Horus[RBM96], Ensemble[H98], and Spread[AS98]. The
JGroups[Mon00] system provides an object-oriented group communication system, but
its semantics differ in substantial detail from Extended Virtual Synchrony.

2. An Architecture for Transparent Database Replication
Our architecture provides peer replication, supporting diverse application semantics,

based on a group communication paradigm. Peer replication is a symmetric approach
where each of the replicas is guaranteed to invoke the same set of actions in the same
order. In contrast with the common Master/Slave replication model, in peer replication
each replica acts as a master. This approach requires the next state of the database to be
determined by the current state and the next action, and it guarantees that all of the
replicas reach the same database state.

The architecture is structured into two layers: a replication server and a group
communication toolkit (Figure 1).

Each of the replication servers maintains a private copy of the database. The client
application requests an action from one of the replication servers. The replication servers
agree on the order of actions to be performed on the replicated database. As soon as a
replication server knows the final order of an action, it applies this action to the database.
The replication server that initiated the action returns the database reply to the client
application. The replication servers use the group communication toolkit to disseminate
the actions among the servers group and to help reach an agreement about the final global
order of the set of actions.

Group
Communication

Replication
Server

Application

Send Receive

Multicast Deliver

Request
Apply

Reply

Network

DB

Group
Communication

Replication
Server

Application

Safe Order
Of Messages

Within Membership

Persistent
Order of Actions

DB

Unreliable
Packets

Group
Communication

Replication
Server

Application

Send Receive

Multicast Deliver

Request
Apply

Reply

Network

DB

Group
Communication

Replication
Server

Application

Safe Order
Of Messages

Within Membership

Persistent
Order of Actions

DB

Unreliable
Packets

Figure 1: A Database Replication Architecture

 5

In a typical operation, when an application submits a request to a replication server,
this server logically multicasts a message containing the action through the group
communication. The local group communication toolkit sends the message over the
network. Each of the currently connected group communication daemons eventually
receives the message and then delivers the message in the same order to their replication
servers.

The group communication toolkit provides multicast and membership services
according to the Extended Virtual Synchrony model [MAMA94]. For this work, we are
particularly interested in the Safe Delivery property of this model. Delivering a message
according to Safe Delivery requires the group communication toolkit both to determine
the total order of the message and to know that every other daemon in the membership
already has the message.

The group communication toolkit overcomes message omission faults and notifies the
replication server of changes in the membership of the currently connected servers. These
notifications correspond to server crashes and recoveries or to network partitions and re-
merges. On notification of a membership change by the group communication layer, the
replication servers exchange information about actions sent before the membership
change. This exchange of information ensures that every action known to any member of
the currently connected servers becomes known to all of them. Moreover, knowledge of
final order of actions is also shared among the currently connected servers. As a
consequence, after this exchange is completed, the state of the database at each of the
connected servers is identical. The cost of such synchronization amounts to one message
exchange among all connected servers plus the retransmission of all updates that at least
one connected server has and at least one connected server does not have. Of course, if a
site was disconnected for an extended period of time, it might be more efficient to
transfer a current snapshot [KBB01].

The careful use of Safe Delivery and Extended Virtual Synchrony allows us to
eliminate end-to-end acknowledgments on a per-action basis. As long as no membership
change takes place, the system eventually reaches consistency. End to end
acknowledgements and state synchronization are only needed once a membership change
takes place. A detailed description of the replication algorithm we are using is given in
[AT01, A95].

Advanced replication systems that support a peer-to-peer environment must address
the possibility of conflicts between the different replicas. Our architecture eliminates the
problem of conflicts because updates are always invoked in the same order at all the
replicas.

 The latency and throughput of the system for updates is obviously highly dependent
on the performance of the group communication Safe Delivery service. Read-only
queries will not be sent over the network.

An important property our architecture achieves is transparency - it allows replicating
a database without modifying the existing database manager or the applications accessing
the database. The architecture does not require extending the database API and can be
implemented directly above the database or as a part of a standard database access layer
(e.g. ODBC or JDBC).

 6

Spread

Replication
Engine

Semantics
Optimizer

Postgres
Interceptor

Postgres

Postgres

Replication Server

A B

Spread

Replication
Engine

Semantics
Optimizer

Postgres
Interceptor

Replication
Engine

Semantics
Optimizer

Postgres
Interceptor

Postgres

Postgres

Replication Server

A B

Figure 2: Modular Software Architecture

Figure 2.A presents a non-replicated database system that is based on the Postgres
database manager. Figure 2.B. presents the building blocks of our implementation,
replicating the Postgres database system. The building blocks include a replication server
and the Spread group communication toolkit. The Postgres clients see the system as in
figure 2.A., and are not aware of the replication although they access the database
through our replication server. Similarly, any instance of the Postgres database manager
sees the local replication server as a client.

The replication server consists of several independent modules that together provide
the database integration and consistency services (Figure 2.B). They include:

• A provably correct generic Replication Engine that includes all of the replication
logic, and can be applied to any database or application. The engine maintains a
consistent state and can recover from a wide range of network and server failures.
The replication engine is based on the algorithm presented in [AT01, A95].

• A Semantics Optimizer that decides whether to replicate transactions and when to
apply them based on the required semantics, the actual content of the transaction,
and whether the replica is in a primary component or not.

• A database specific interceptor that interfaces the replication engine with the
DBMS client-server protocol. To replicate Postgres, we created a Postgres
specific interceptor. Existing applications can transparently use our interceptor
layer to provide them with an interface identical to the Postgres interface, while
the Postgres database server sees our interceptor as a regular client. The database
itself does not need to be modified nor do the applications. A similar interceptor
could be created for other databases.

To optimize performance, the replication server could be integrated with the database
manager, allowing more accurate determination of which actions could be parallelized
internally.

 7

The flexibility of this architecture enables the replication system to support
heterogeneous replication where different database managers from different vendors
replicate the same logical database.

3. The Spread Toolkit
Spread is a client-server group messaging toolkit that provides reliable multicast,

ordering of messages and group membership notifications under the Extended Virtual
Synchrony semantics [MAMA94] over local and wide-area networks to clients that
connect to daemons.

To provide efficient dissemination of multicast messages on wide-area networks, all
Spread daemons located in one local area network are aggregated into a group called a
site, and a dissemination tree is rooted at each site, with other sites forming the nodes of
the tree. Messages that originate at a Spread daemon in a site will first be multicast to all
the daemons of the site. Then, one of those daemons will forward the message onto the
dissemination tree where it will be forwarded down the tree until all of the sites have
received the message. Therefore, the expected latency to deliver a message is the latency
of the local area network plus the sum of the latencies of the links on the longest path
down the tree.

The total order of messages is provided by assigning a sequence number and a
Lamport time stamp to each message when it is created by a daemon. The Lamport time
stamps provide a global partial causal order on messages and can be augmented to
provide a total causal order by breaking ties based on the site identifier of the message
[L78]. To know the total order of a message that has been received, a server must receive
a message from every site that contains a Lamport time stamp at least equal to the
Lamport time stamp of the message that is to be delivered. Thus, each site must receive a
message from every other site prior to delivering a totally ordered message.

The architecture and reliability algorithms of the Spread toolkit [AS98, ADS00], and
its global flow control [AADS01] provide basic services for reliable, FIFO, total order
and Safe delivery. However, our architecture requires a high-performance
implementation of the Safe Delivery service for wide-area networks, something not
developed in previous work.

Delivering a message according to Safe Delivery requires the group communication
toolkit to determine the total order of the message and to know that every other daemon
in the membership already has the message. The latter property (sometimes called
message stability) was traditionally implemented by group communication systems for
garbage collection purposes, and therefore was not optimized. For this work, we designed
and implemented scalable, high performance wide-area Safe Delivery for Spread.

Scalable Safe Delivery for Wide Area Networks
A naive algorithm will have all the daemons immediately acknowledge each Safe

message. These acknowledgements are sent to all of the daemons, thus reaching all the
possible destinations of the original Safe message within one network diameter. Overall,
this leads to a latency of twice the network diameter. However, this algorithm is

 8

obviously not scalable. For a system with N sites, each message requires N broadcast
acknowledgements, leading to N times more control messages than the data messages.

Our approach avoids this ack explosion problem by aggregating information into
cumulative acknowledgements. However, minimizing the bandwidth at all costs will
cause extremely high latency for Safe messages, which is also undesirable. Therefore our
approach permits tuning the tradeoff between bandwidth and latency.

The structure of our acknowledgements, referred to as ARU_updates (all received up-
to), is as follows for an ARU_update originating at site A:

• Site_Sequence is the sequence number of the last message originated by any
daemon at site A and forwarded in order to other sites (Spread may forward
messages even out of order to other sites to optimize performance). This number
guarantees that no messages will be originated in the future from site A with a
lower sequence number.

• Site_Lts is the Lamport timestamp that guarantees that site A will never send a
message with a lower Lamport timestamp and a sequence number higher then
Site_Sequence.

• Site_Aru is the highest Lamport timestamp such that all the messages with a
lower Lamport timestamp that originated from any site are already received at
site A.

Each daemon keeps track of these three values received from each of the currently
connected sites. In addition, each daemon updates another variable, Global_Aru, which is
the minimum of the Site_Aru values received from all of the sites. This represents the
Lamport timestamp of the last message received in order by all the daemons in the
system. A Safe message can be delivered to the application (the replication server, in our
case) when its Lamport timestamp is smaller or equal to the Global_Aru.

In order to achieve minimum latency, an ARU_update message should be sent
immediately upon a site receiving a Safe message at any of the daemons in the site.
However, if one ARU_update is sent for every message by every site, the traffic on the
network will increase linearly with the number of sites. Spread optimizes this by trading
bandwidth for improved latency when the load of messages is low, and by sending the
ARU_update after a number of messages have been received when the message load is
high. The delay between two consecutive ARU_updates it is bounded by a certain timeout
delta. For example, if five Safe messages are received within one delta time, only one
ARU_update will be sent for an overhead of 20%, however, if a message is received and
no ARU_update has been sent in the last delta interval, then an ARU_update is sent
immediately. Note that this is a simplification of the actual implementation which
piggybacks control information on data messages.

In practical settings, delta will be selected higher than the network diameter Dn.
Therefore, the Safe Delivery latency is between Dn*3 and Dndelta *2*2 + .

This could be optimized by including in the ARU_update the complete table with
information about all of the currently connected sites, instead of just the three local
values described above. This would reduce the Safe Delivery latency to be between

 9

Dn*2 and Dndelta *2+ . However, this scheme is not scalable, since the size of the
ARU_update will grow linearly with the number of sites. For a small number of sites (e.g.
10), this technique could be useful, but we elected not to report results based on it in
order to preserve the scalability of the system (e.g. 100 sites).

A detailed example of how Safe Delivery is performed, is provided in Appendix 1.

4. The Replication Server
A good group communication system is unfortunately not sufficient to support

consistent synchronous peer database replication. The replication server bridges the gap.
The replication server is constructed with three main modules, as depicted in Figure 2.B
in Section 2. Each of the modules is responsible for the following tasks: the Replication
Engine consistently and efficiently orders actions; the database interceptor manages the
user connections and the replication server connections to the database; the Semantics
Optimizer optimizes the handling of actions based on the required application semantics
and the current connectivity. Below we discuss these modules as they are used to
replicate the Postgres database.

The Replication Engine
The specifics of the Replication Engine and its algorithm are discussed elsewhere

[AT01, A95] and are not part of this paper. However, it is important to summarize the
properties of the engine in order to understand how the replication server uses it.

The Replication Engine implements a complete and provably correct algorithm that
provides global persistent consistent order of actions in a partitionable environment
without the need for end-to-end acknowledgements on a per action basis. End-to-end
acknowledgements are only used once for every network connectivity change event such
as network partition or merge, or server crash or recovery. The engine uses Spread as the
group communication toolkit.

The Replication Engine minimizes synchronous disk writes: it requires only a single
synchronous disk write per action at the originating replica, just before the action is
multicast (see Figure 1) via the group communication. Any peer replication scheme will
have to include at least this operation in order to cope with a failure model that includes
crashes and recoveries as well as network partitions and merges, and to allow a recovered
database to work without connecting to the primary component first.

The above properties lead to high performance of the replication server: the
throughput and latency of actions while in the primary component are mainly determined
by the Safe Delivery performance of the group communication and are less influenced by
other factors such as the number of replicas and the performance of the synchronous disk
writes. Of course, the performance of actually applying updates to the database depends
on the quality of the database and the nature of the updates.

In the presence of network partitions, the replication servers identify at most a single
component of the servers group as the primary component. The other components of the
partitioned server group are non-primary components. While in the primary component,
actions are immediately applied to the database upon their delivery by the group
communication according to the Safe Delivery service. While in a non-primary

 10

component, they will be applied according to the decision made by the Semantic
Optimizer, described below. Updates that are generated in non-primary components will
propagate to other components as the network connectivity changes. These updates will
be ordered in the final persistent consistent order upon the formation of the first primary
component that includes them.

Every architecture that separates the replication functionality from the database
manager needs to guarantee the exactly once semantics for updates. The difficulty occurs
when the database manager crashes and the replication server does not know if the update
was committed. One solution to this problem is to use the ordinal of the update assigned
by the consistent persistent order. This ordinal will be stored in the database and updated
as part of each update transaction. Upon recovery, the replication server can query the
database for the highest ordinal transaction committed and re-apply actions with higher
ordinal values. Since the database guarantees all-or-none semantics, this solution
guarantees exactly once semantics.

The Replication Engine uses the Dynamic Linear Voting [JM90] quorum system to
select the primary component. Dynamic Linear Voting allows the component that
contains a weighted majority of the last primary component to form the next primary
component. This quorum system performs well in practice [PL88], establishing an active
primary component with high probability (better than weighted majority, for example).

The Replication Engine employs the propagation by eventual path technique, where
replication servers that merge into a network component exchange their knowledge
immediately upon the delivery of a membership notification. If the servers stay connected
long enough to complete a re-conciliation phase, they share the same knowledge and will
appear identical to clients. This technique is optimal in the sense that if no eventual path
exists between two servers, no algorithm can share information between these servers. If
such an eventual path exists between two servers, the Replication Engine will be able to
propagate the information between them.

Employing the Dynamic Linear Voting quorum system and the propagation by
eventual path techniques contributes to the high availability of our system.

The Postgres Interceptor
The interceptor module provides the link between the replication server and a specific

database. Therefore, it is the only non-generic module of the architecture. The interceptor
facilitates handling client connections, sends client messages to the database, gets back
results from the database, and forwards the results back to the relevant clients.

Our interceptor was implemented for the Postgres version 7.1.3 database system. We
intercept the clients that use the TCP interface to connect to the database. Once a client
message is received, it is passed to the Semantics Optimizer that decides the next
processing step, as described in the following subsection. The Postgres Interceptor reuses,
with minor modifications, parts of the Postgres libpq library implementation in order to
communicate with the database and the database clients.

In order to capture the client-database communication, the interceptor listens for
client connections on the standard Postgres database port, while Postgres itself listens on
a different private port, known only to the interceptor. The clients that attempt to connect

 11

to Postgres will transparently connect to the interceptor, which will take care of
redirecting their queries to the database and passing back the response. The interceptor
can handle multiple clients simultaneously, managing their connections and identifying
transactions initiated by a local client from transactions initiated by a client connected to
a different replica. This method can be applied to any database manager with a
documented client-server communication protocol.

When the interceptor receives an action from the Replication Engine, it submits the
action to the database. Under normal execution, Postgres creates one process for each
client connected to the database, taking advantage of the parallelism of transaction
execution when there are no conflicts between the transactions issued by different clients.

Our architecture however, has to make sure that the order assigned to the transactions
by the replication engine is not modified by this parallelization. Since we do not control
the Postgres scheduler, as our implementation resides entirely outside of the database, in
order to maintain the established ordering we need to know which actions can be
parallelized. Our current implementation, benchmarked in the next section, ensures a
correct execution by maintaining a single connection to the database on each replica,
serializing the execution of transactions.

The performance could be improved by implementing a partial SQL parser that can
allow us to parallelize the execution of local queries. Any such action, that does not
depend on an update transaction issued by the same client and that was not yet executed,
can be sent to the database independently of other transactions submitted by other clients
(local or remote). For this purpose, the interceptor can maintain a pool of connections to
the database where one connection is used for all update transactions (and thus maintains
their order) and the others are shared by all local independent queries. This optimization
is not implemented yet in our system.

A lower-level integration of our replication server inside the database manager could
exploit the same parallelization as the database exploits. Of course, that would incur the
price of losing the database transparency.

The Semantics Optimizer
The Semantics Optimizer provides an important contribution to the ability of the

system to support various application requirements as well as to the overall performance.

In the strictest model of consistency, updates can be applied to the database only
while in a primary component, when the global consistent persistent order of the action
has been determined. However, read-only actions (queries) do not need to be replicated.
A query can be answered immediately by the local database if there is no update pending
generated by the same client. A significant performance improvement is achieved
because the system distinguishes between queries and actions that also update the
database. For this purpose the Semantics Optimizer implements a very basic SQL parser
that identifies the queries from the other actions.

 If the replica handling the query is not part of the primary component, it cannot
guarantee that the answer of its local database reflects the current state of the system, as
determined by the primary component. Some applications may require only the most
updated information and will prefer to block until that information is available, while

 12

others may be content with outdated information that is based on a prior consistent state
(weak consistency), preferring to receive an immediate response. Our system allows each
client to specify its required semantics individually, upon connecting to the system. Our
system can even support such specification for each action but that will require the client
to be aware of our replication service.

In addition to the strict consistency semantics and the standard weak consistency, our
implementation supports, but is not limited to, two other types of consistency
requirements: delay updates and cancel actions, where both names refer to the execution
of updates/actions in a non-primary component. In the delay updates semantics,
transactions that update the database are ordered locally, but are not applied to the
database until their global order is determined. The client is not blocked and can continue
submitting updates or even querying the local database, but needs to be aware that the
responses to its queries may not yet incorporate the effect of its previous updates. In the
cancel actions semantics a client instructs the Semantics Optimizer to immediately abort
the actions that are issued in a non-primary component. This specification can also be
used as a method of polling the availability of the primary component from a client
perspective. These decisions are made by the Semantics Optimizer based on the semantic
specifications that the client or the system setup provided.

The following examples demonstrate how the Semantics Optimizer determines the
path of the action as it enters the replication server. After the Interceptor reads the action
from the client, it passes it on to the Semantics Optimizer. The optimizer detects whether
the action is a query and, based on the desired semantics and the current connectivity of
the replica, decides whether to send the action to the Replication Engine, send it directly
to the database for immediate processing, or cancel it altogether.

If the action is sent through the Replication Engine, the Semantics Optimizer is again
involved in the decision process once the action is ordered. Some applications may
request that the action is optimistically applied to the database once the action is locally
ordered. This can happen either when the application knows that its update semantics is
commutative (i.e. order is not important) or when the application is willing to resolve the
possible inconsistencies that may arise as the result of a conflict. Barring these cases, an
action is applied to the database when it is globally ordered.

5. Performance Evaluation
We evaluated the performance of our system in three different environments.

• A local area cluster at our lab at Johns Hopkins University. The cluster
contains 14 Linux computers, each of which has the characteristics described
by the Fog machine in Figure 3.

• The CAIRN wide-area network [CAIRN]. We used seven sites spanning the
U.S.A. as depicted in Figure 4. CAIRN machines generally serve as routers
for networking experiments. As a consequence, many of the CAIRN machines
are weak machines with slow disks and not a lot of memory. The
characteristics of each of the different CAIRN machines used in our
evaluation is described in Figure 3. Especially note the low Postgres
performance achieved by some of these machines without replication.

 13

• The Emulab wide-area test-bed [Emulab]. Emulab2 (the Utah Network Test-
bed) provides a configurable test-bed where the network setup sets the
latency, throughput and link-loss characteristics of each of the links. The
configured network is then emulated in the Emulab local area network, using
actual routers and in-between computers that emulate the required latency,
loss and capacity constraints. We use 7 Emulab Linux computers, each has the
characteristics described by the Emu machine in Figure 3. Most of our
Emulab experiments emulated the CAIRN network depicted in Figure 4.

Our experiments were run using PostgreSQL version 7.1.3 standard installations. We
use a database and experiment setup similar to that introduced by [KA00, JPKA00].

The database consists of 10 tables, each with 1000 tuples. Each table has five
attributes (two integers, one 50 character string, one float and one date). The overall tuple
size is slightly over 100 bytes, which yields a database size of more than 10MB. We use
transactions that contain either only queries or only updates in order to simplify the
analysis of the impact each poses on the system. We control the percentage of update
versus query transactions for each experiment. Each action used in the experiments was
of one of the two types described below, where table-i is a randomly selected table and
the value of t-id is a randomly selected number:

update table-i set attr1="randomtext", int_attr=int_attr+4
 where t-id=random(1000);

select avg(float_attr), sum(float_attr) from table-i;

Before each experiment, the Postgres database was “vacuumed” to avoid side effects
from previous experiments.

Figure 3: System Specification for the Three Test-beds

2 Emulab is available at www.emulab.net and is primarily supported by NSF grant ANI-00-82493 and
Cisco Systems.

Machine Processor Memory
(MB)

HDD (GB) Postgres
Updates/sec

Postgres
Queries/sec

Local Area cluster
Fog [1-14] Dual PIII 667 256 9G SCSI 119.9 181.8

Cairn wide area testbed
TISWPC PII 400 128 4G IDE 37.26 77.49
ISIPC4 Pentium 133 64 6G IDE 25.44 11.97
ISIPC PII 450 64 19G IDE 42.34 90.41
ISIEPC3 PII 450 64 6G IDE 50.10 93.41
ISIEPC PII 450 64 19G IDE 43.52 92.72
MITPC2 Ppro 200 128 6G IDE 48.22 40.40
UDELPC Ppro 200 128 4G SCSI 23.75 39.07

Emulab emulated wide-area testbed
Emu[1-7] PIII 850 512 40 G IDE 118.3 211.4

 14

ISIPC
ISIPC4

TISWPC

ISEPC3

ISEPC

UDELPC

MITPC

38.8 ms
1.86Mbits/sec

1.4 ms
1.47Mbits/sec

4.9 ms
9.81Mbits/sec

3.6 ms
1.42Mbits/sec

100 Mb/s
< 1ms

100 Mb/s
<1ms

Virginia

Delaware

Boston

San Jose

Los Angeles

ISIPC
ISIPC4

TISWPC

ISEPC3

ISEPC

UDELPC

MITPC

38.8 ms
1.86Mbits/sec

1.4 ms
1.47Mbits/sec

4.9 ms
9.81Mbits/sec

3.6 ms
1.42Mbits/sec

100 Mb/s
< 1ms

100 Mb/s
<1ms

Virginia

Delaware

Boston

San Jose

Los Angeles

Figure 4: Layout of The CAIRN Test-bed

One of the difficulties in conducting database experiments is that real production
database servers are very expensive and are not always available for academic research.
We conducted our experiments on standard, inexpensive Intel PCs whose disk and
memory performance is significantly poorer and that lack specialized hardware such as
flash RAM logging disks. To evaluate the potential performance of our system on such
hardware we conducted several tests either with Postgres not syncing its writes to disk
(forced writes that the OS must not cache), or with both Postgres and our Replication
Server not syncing the writes to disk. In all of these tests we also report the full-sync
version. All tests that do not specify no-sync, or replication server sync, were conducted
with full data sync on all required operations.

Each client only submits one action (update or query) at a time. Once that action has
completed, the client can generate a new action.

Note that any database replication scheme has to guarantee that any query can be
answered only after the effects of all of the updates preceding the query are reflected in
the database. If the replication scheme is transparent, all the above updates have to be
applied to the database before answering the query. Therefore, any such scheme is
limited by the native speed of the database to execute updates. In our experiments, the
local Fog and Emulab machines are limited to about 120 updates/sec as can be seen in
Figure 3. Therefore any transparent replication method is limited to less than 120
updates/sec in a similar setting. Using our scheme to replicate a database with better
performance could achieve better results as is indicated by the replication server sync
tests, since our replication scheme is not the bottleneck.

First, we evaluate our system over the local area cluster defined in Figure 3. The first
experiment tested the scalability of the system as the number of replicas of the database
increased. Each replica executes on a separate Fog machine with one local client. Figure
5 shows five separate experiments. Each experiment used a different proportion of
updates to queries.

 15

0
100
200
300
400
500
600
700
800
900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of replicas

ac
tio

ns
 /

se
co

nd

0% upd 10% upd 25% upd 50% upd 100% upd

Figure 5: Max Throughput under a Varying Number of Replicas (LAN)

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of replicas

m
illi

se
co

nd
s

full sync, 75 upd/sec full sync, no load
rep. server sync, 75 upd/sec rep. server sync, no load

Figure 6: Latency of Updates (LAN)

The 100% update line shows the disk bound performance of the system. As replicas
are added, the throughput of the system increases until the maximum updates per second
the disks can support is reached – about 107 updates per second with replication (which
adds one additional disk sync for each N updates, N being the number of replicas). Once
the maximum is reached, the system maintains a stable throughput. The achieved updates
per second, when the overhead of the Replication Server disk syncs are taken into
account, matches the potential number of updates the machine is capable of as specified
in Figure 3. The significant improvement in the number of sustained actions per second
when the proportion of queries to updates increases is attributed to the Semantics
Optimizer which executes each query locally, without any replication overhead. The
maximum throughput of the entire system actually improves because each replica can
handle an additional load of queries. The throughput with 100% queries increases
linearly, reaching 2473 queries per second with 14 replicas.

 16

In addition to system throughput, we evaluated the impact of replication on the
latency of each update transaction both under no load and medium load of 75 updates per
second. Figure 6 shows that the latency of update transactions does not increase as the
number of replicas increases. When the system becomes more loaded, the latency per
transaction caused by Postgres increases from around 23ms to an average of 77ms. It is
interesting to note that the latency does not increase under higher load when Postgres
sync is disabled, but the Replication Server does sync.

0
100
200
300
400
500
600
700
800
900

1000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

number of clients (14 replicas)

ac
tio

ns
 /

se
co

nd

0% upd 10% upd 25% upd 50% upd 100% upd

Figure 7: Throughput under Varied Client Set and Action Mix (LAN)

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of clients (14 replicas)

up
da

te
s

/ s
ec

on
d

no sync replication server sync full sync

Figure 8: Throughput under Varied Client Set and Disk Sync Options (LAN)

The next two experiments fixed the number of replicas at 14, one replica on each Fog
machine. The number of clients connected to the system was increased from 1 to 28,
evenly spread among the replicas. In Figure 7 one sees that a small number of clients
cannot produce maximum throughput for updates. The two reasons for this are: first, each
client can only have one transaction active at a time, so the latency of each update limits
the number of updates each client can produce per second. Second, because the
Replication Server only has to sync updates generated by locally connected clients, the

 17

work of syncing those updates is more distributed when there are more clients. Again, the
throughput for queries increases linearly up to 14 clients (reaching 2450 in the 100%
queries case), and is flat after that as each database replica is already saturated.

To test the capacity of our system for updates, we reran the same experiment as
Figure 7, but only with 100% updates, under the three sync variations mentioned at the
beginning of this section. This is depicted in Figure 8. Under full-sync the maximum
throughput of 107 updates per second is reached, while with sync disabled for both
Postgres and the Replication Server, we reach a maximum throughput of 336 updates per
second. The interesting point is that when the Replication Server does updates with full-
sync, the system still achieves 326 updates per second. This shows that as the number of
replicas and clients increase, the Replication Server overhead decreases considerably.
The cost of disk syncs when only a few clients are used is still noticeable.

We next evaluated our system on the CAIRN wide-area network depicted in Figure 4.
The diameter of the network as measured by ping, is approximately 45ms involving
seven sites and a tree of six links. These experiments validated that the system works as
expected on a real operational network. The system was able to achieve the potential
performance the hardware allowed, as presented in Figure 3.

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

number of clients (7 replicas)

ac
tio

ns
 /

se
co

nd

0% upd 10% upd 25% upd 50% upd 100% upd

Figure 9: Throughput under Varied Client Set and Action Mix (CAIRN)

We ran the same basic experiment as done for Figure 7. In this experiment, however,
the number of replicas is seven, because only seven sites were available. Figure 9 shows
the throughput of the system as the number of clients connected to the system increases.
Clients are evenly spread among the replicas. Because of the high network latency, more
clients are required to achieve the potential maximum throughput when updates are
involved. Also, the lines are not as smooth because the machines are very heterogeneous
in their capabilities (ranging from an old Pentium 133 up to a Pentium II 450).

The latency each update experiences in the CAIRN network is 267ms under no load
(measured at TISWPC in San Jose) and reaches 359ms at the point the system reaches
maximum throughput of 20 updates per second. Once the throughput limit of the system
is reached, the latency experienced by each client increases because more clients are
sharing the same throughput.

 18

As explained in the beginning of this section, the CAIRN machines were not adequate
for our database performance tests because of their hardware limitations. We extended
our wide-area tests by utilizing the Emulab facility. As accurately as possible, we
emulated the CAIRN network on Emulab.

0

50

100

150

200

250

300

350

0 35 70 105 140 175 210 245 280

Safe messages / second

m
ill

is
ec

on
ds

CAIRN network Emulab network

Figure 10: Latency of Safe Delivery on CAIRN and Emulab

Figure 10 shows the validation of Emulab against CAIRN by presenting the latency
of Safe Delivery in the system under different Safe message load that resembles updates
and queries in size. Under all loads both networks provided very similar message latency.
Therefore, we believe that Emulab results are comparable to equivalent real-world
networks running on the same machines.

0

100

200

300

400

500

600

700

0 10 20 30 40

number of clients (7 replicas)

ac
tio

ns
 /

se
co

nd

0% upd 10% upd 25% upd 50% upd 100% upd

Figure 11: Throughput under Varying Client Set and Action Mix (Emulab)

The first experiment conducted on Emulab duplicated the experiment of Figure 9. In
this case, the system was able to achieve a throughput close to that achieved on a local
area network with similar number of replicas (seven), but with more clients as depicted in
Figure 11. For updates, the maximum throughput achieved on Emulab is 85 updates per
second (with about 28 clients in the system), compared with 98 updates per second on

 19

LAN for the same number of replicas (with about 10 clients in the system) as can be seen
in Figure 5. Although these results show very useful performance on a wide area
network, we are not entirely happy with them since the algorithm predicts that the
Emulab system should be able to reach similar maximum throughput for updates (as long
as enough clients inject updates). We attribute the 14% difference to the fact that the Fog
machines used in the LAN test are dual processor machines with SCSI disks, while the
Emulab machines are single (though somewhat stronger) processor machines with IDE
disks.

The latency each update experiences in this Emulab experiment is 268ms when no
other load is present (almost identical to the corresponding CAIRN experiment above)
and reaches 331ms at the point the system reaches maximum throughput of 85 updates
per second. Again, once the throughput limit of the system is reached, the latency
experienced by each client increases because more clients are sharing the same
throughput.

For queries, similarly to the LAN tests in Figure 7, the performance increases linearly
with the number of clients until the seven servers are saturated with seven clients at 1422
queries per second. The results for in-between mixes are as expected.

0

50

100

150

200

250

300

0 20 40 60 80 100 120 140

number of clients (7 replicas)

up
da

te
s

/ s
ec

on
d

no sync replication server sync full sync

Figure 12: Throughput under Varied Client Set and Disk Sync Options (Emulab)

To test the capacity of our system for updates, we reran the same experiment as
Figure 11, but just with 100% updates, under the three sync variations mentioned at the
beginning of this section. Figure 12 shows that under full-sync the maximum throughput
of 85 updates per second is reached, while with sync disabled for both Postgres and the
Replication Server a maximum throughput of 272 updates per second is reached (with
105 clients in the system). When only the Replication Server syncs to disk, the system
achieves 183 updates per second (with 70 clients in the system). The system performance
does not degrade as clients are added.

To test the impact of network latency, we used Emulab to construct two additional
networks, identical in topology to the CAIRN network, but with either one half or double
the latency on each link. In effect, this explores the performance of the system as the

 20

diameter of the network changes, as the original CAIRN network has a diameter of about
45ms, and the additional networks have about 22ms and 90ms diameters respectively.
Figure 13 illustrates that under any of these diameters the system can achieve the same
maximum throughput of 85 updates per second. However, as the diameter increases,
more clients are required to achieve the same throughput.

0

20

40

60

80

100

0 20 40 60 80 100 120

number of clients (7 replicas)

up
da

te
s

/ s
ec

on
d

half latency net base net double latency net

Figure 13: Throughput under Varied Network Latency (Emulab)

We conclude that the above results demonstrate that for many applications, peer
synchronous database replication is becoming an attractive option not only for local area
networks, but also for wide area networks.

6. Conclusions
One of the difficulties in providing efficient and correct wide area database

replication is that it requires integrating different techniques from several research fields
including distributed systems, databases, network protocols and operating systems. Not
only does each of these techniques have to be efficient by itself, they all have to be
efficient in concert with each other.

Some highlights of our results, replicating the Postgres database (that can perform
about 120 updates per second without replication): For a local-area cluster with 14
replicas, the latency each update experiences is 27ms under zero throughput and 50ms
under a throughput of 80 updates per second. The highest throughput in this setting is 106
updates per second.

For a wide-area network with a 45ms diameter and 7 replicas, the latency each update
experiences is 268ms under zero throughput and 281ms under a throughput of 73 updates
per second. The highest throughput in this setting is 85 updates per second, which is
achieved with 28 clients and a latency of 331ms per update. When the diameter of the
network is doubled to 90ms, the 85 updates per second throughput is maintained
(although more clients are needed).

In all cases, the throughput for read-only actions approaches the combined power of
all the replicas.

 21

These results demonstrate the practicality of local and wide area peer (synchronous)
database replication. Using our scheme to replicate a database with better performance
could achieve better results since our replication architecture was not the bottleneck.

To achieve these results optimizations had to take place at various levels: First, at the
network level, we had to optimize the latency of Safe Delivery on wide area networks.
Second, we had to avoid end-to-end acknowledgments for each transaction while not
compromising correctness of the system even in partitionable and crash-prone
environments, and not delaying transaction execution. Third, we had to minimize the
synchronous disk writes the replication server requires in addition to those performed by
the database manager. Fourth, we had to obtain some semantic knowledge to correctly
avoid replicating transactions that do not require it (e.g. read-only queries).

We show the feasibility of a database replication architecture that is transparent to
both client and database manager, correctly handles arbitrary failures, and supports a
number of different semantic guarantees for transactions such as one-copy serializability,
weak consistency and delayed updates.

References
[A95] Y. Amir. Replication Using Group Communication Over a Partitioned Network. Ph.D.

thesis, The Hebrew University of Jerusalem, Israel 1995. www.cs.jhu.edu/~yairamir.
[AADS01] Yair Amir, Baruch Awerbuch, Claudiu Danilov, and Jonathan Stanton. Flow control for

many-to-many multicast: A cost-benefit approach. Technical Report CNDS--2001--1,
Johns Hopkins University, Center for Networking and Distributed Systems, 2001.

[ADS00] Yair Amir, Claudiu Danilov, and Jonathan Stanton. A low latency, loss tolerant
architecture and protocol for wide area group communication. Proceedings of the
International Conference on Dependable Systems and Networks, pages 327--336. IEEE
Computer Society Press, Los Alamitos, CA, June 2000. FTCS 30.

[AMMB98] D.A. Agarwal, L.~E. Moser, P.~M. Melliar-Smith, and R.~K. Budhia. The totem
multiple-ring ordering and topology maintenance protocol. ACM Transactions on
Computer Systems, 16(2):93--132, May 1998.

[APS98] Yair Amir, Alec Peterson, and David Shaw. Seamlessly Selecting the Best Copy from
Internet-Wide Replicated Web Servers. Proceedings of the International Symposium on
Distributed Computing (Disc98), LNCS 1499, pages 22-33 Andros, Greece, September
1998.

[AS98] Yair Amir and Jonathan Stanton. The Spread wide area group communication system.
Technical Report 98-4, Johns Hopkins University, CNDS, 1998.

[AT01] Yair Amir and Ciprian Tutu. From total order to database replication. Proceedings of the
International Conference on Distributed Computing Systems, July 2002, to appear. Also,
Technical Report CNDS-2001-6, Johns Hopkins University, November 2001,
www.cnds.jhu.edu./publications.

[AW96] Y.Amir and A.Wool. Evaluating quorum systems over the internet. Symposium on Fault-
Tolerant Computing, pages 26--35, 1996.

[CAIRN] http://www.cairn.net
[Demers87] A. Demers et al. Epidemic algorithms for replicated database maintenance. Fred B.

Schneider, editor, Proceedings of the 6th Annual {ACM} Symposium on Principles of
Distributed Computing, pages 1--12, Vancouver, BC, Canada, August 1987. ACM Press.

[DB2] http://www.ibm.com/software/data/db2/
[EMULAB] http://www.emulab.net

 22

[GR93] J. N. Gray and A. Reuter. Transaction Processing: concepts and techniques. Data
Management Systems. Morgan Kaufmann Publishers, Inc., 1993.

[H98] Mark Hayden. The Ensemble System. PhD thesis, Cornell University, 1998.
[HAE00] J. Holliday, D. Agrawal, and A. El Abbadi. Database replication using epidemic

update.Technical Report TRCS00-01, University of California Santa-Barbara, 19, 2000.
[Informix] www.informix.com
[JM90] S. Jajodia and D. Mutchler. Dynamic Voting Algorithms for Maintaining the Consistency

of Replicated Database. ACM Trans. on Database Systems, 15(2):230-280, June 1990.
[JPKA00] R. Jimenez-Peris, M. Patino-Martinez, B. Kemme and G. Alonso. Improving the

Scalability of Fault-Tolerant Database Clusters, Technical Report 2000
[KA00] B. Kemme and G. Alonso. Don't be lazy, be consistent: Postgres-R, a new way to

implement Database Replication. Proceedings of the 26th International Conference on
Very Large Databases (VLDB), Cairo, Egypt, September 2000.

[KBB01] B. Kemme, A. Bartoli and O. Babaoglu. Online Reconfiguration in Replicated Databases
Based on Group Communication. In Proceedings of the International Conference on
Dependable Systems and Networks (IC-DSN), pages 117-126, Sweden, July 2001.

[KK00] Idit Keidar and Roger Khazan. A client-server approach to virtually synchronous group
multicast: Specifications and algorithms. In Proceedings of the 20th IEEE International
Conference on Distributed Computing Systems, p. 344--355, Taipei, Taiwan, April 2000.

[KSMD00] Idit Keidar, Jeremy Sussman, Keith Marzullo, and Danny Dolev. A client-server oriented
algorithm for virtually synchronous group membership in {WAN}s. In Proceedings of
the 20th IEEE International Conference on Distributed Computing Systems, pages 356--
365, Taipei, Taiwan, April 2000

[L78] L. Lamport. Time, Clocks, and The Ordering of Events in a Distributed System. Comm.
ACM, 21(7), pages 558-565. 1978.

[MAMA94] L. E. Moser, Y. Amir, P. M. Melliar-Smith and D. A. Agarwal. Extended Virtual
Synchrony. In Proceedings of the 14th International Conference on Distributed
Computing Systems, pages 56-65, June 1994.

[Mon00] Alberto Montresor. System Support for Programming Object-Oriented Dependable
Applications in Partitionable Systems.PhD thesis, Dept. of Computer Science, University
of Bologna, Februrary 2000.

[MySQL] http://www.mysql.com/doc/R/e/Replication.html
[Oracle] http://www.oracle.com.
[PJKA00] M. Patino-Martinez and R. Jimenez-Peris and B. Kemme and G. Alonso. Scalable

replication in database clusters. Proceedings of 14th International Symposium on
DIStributed Computing (DISC2000), 2000

[PL88] J. F. Paris and D. D. E. Long. Efficient Dynamic Voting Algorithms. In Proceedings of
the 4th International Conference on Data Engineering, pages 268-275, February 1988.

[Pgrep] pgreplicator.sourceforge.net
[Postgres] www.postgresql.com.
[Postgres-R] http://gborg.postgresql.org/project/pgreplication/projdisplay.php
[RBM96] Robbert~Van Renesse, Kenneth Birman, and S.~Maffeis. Horus: A flexible group

communication system. Communications of the ACM, 39(4):76--83, April 1996
[Spread] www.spread.org.
[Sybase] www.sybase.com.

 23

Appendix 1. Example of Safe Delivery in Action
Let’s consider a network of five daemons N1 – N5 where each of the daemons

represents a site. Figure A1 shows how the Safe Delivery mechanism works at daemon
N4, when a Safe message is sent by N1, considering the worst case scenario when the
latency from N1 to N4 is the diameter of the network. Initially all the daemons have all
their variables initialized with zero (Figure A1.a).

Upon receiving the Safe message from N1, the daemon N4 updates its Site_lts (Figure
A1.b). Assuming there are no losses and no other messages in the system, all the
daemons will behave similarly, updating their Site_lts value. It takes one network
diameter Dn for the message to get from N1 to all the other daemons.

Figure A1: Scalable Safe Delivery for Wide Area Networks

After at most a delta interval, every daemon sends an ARU_update containing the row
representing themselves in their matrix. Depending on the time each daemon waits until
sending its Aru update, the daemons will receive information from all the other daemons
in between Dn and delta + Dn time. Upon receiving these updates, daemon N4 knows that
all of the daemons increased their Site_lts to 1, and since it did not detect any loss, it can
update its Site_Aru to 1 (Figure A1.c). Similarly, all the other daemons will update their
Site_Aru values to 1, assuming there are no losses. At this point, N4 knows that no
daemon will create a message with a Lamport timestamp lower than 1 in the future, so
according to total order delivery, it could deliver this message to the upper layer.
However, this is not enough for Safe Delivery; N4 does not know yet whether all of the
daemons received all of the ARU_updates.

Already, at least Dn time has elapsed at N1 (the farthest daemon from N4) between the
time it sent its last Aru_update and the time N4 got it. Therefore, after waiting at most
delta – Dn time, N1 (as well as the other daemons) can send another ARU_update
containing their Site_Aru value advanced to 1. Finally, after one more Dn time, when N4
receives all these Aru_updates, it can advance its Global_Aru to 1 (Figure A1.d), and
deliver the Safe message. The total latency in the worst case is Dn + (delta + Dn) +
((delta - Dn) + Dn), which is equal to 2 * delta + 2 * Dn.

Note that ARU_updates are periodic and cumulative, and as more Safe messages are
sent in a delta interval, this delay will be amortized between different messages.
However, the expected latency for a Safe message is at least 3 * Dn, as the delivery
mechanism includes three rounds in this scalable approach.

seq lts aru
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
Global_Aru: 0

(a)

seq lts aru
0 0 0
0 0 0
0 0 0
0 1 0
0 0 0
Global_Aru: 0

(b)

seq lts aru
0 1 0
0 1 0
0 1 0
0 1 1
0 1 0
Global_Aru: 0

(c)

seq lts aru
0 1 1
0 1 1
0 1 1
0 1 1
0 1 1
Global_Aru: 1

(d)

