
Ballot Curing Project

Nicholas Bowen, Isaac Frumkin, Brice Halder, Andrew Zhang



Background on Voting By Mail



Ballot Curing Efforts

Ballot curing is the process of correcting a ballot that was rejected due to certain 
issues that prevent it from being counted in its current form.

Common Issues That Can Be Cured

● Missing Signature
● Invalid Signature
● Additional ID Needed
● Submitted provisional ballot



Stakeholders



Motivating Case Examples - Recent Georgia Elections

● In the November 2020 Presidential Election, the pivotal swing state of Georgia 
was decided by 11,779 votes

○ Estimated ~20,000 cured ballots



Motivating Case Examples - Recent Georgia Elections

● Spent several weeks cure canvassing 
around Atlanta and parts of northern Georgia 
for January 2021 Senate elections

● Relevant takeaways for this project:
○ Clear disparities in the communities in need of 

curing efforts
○ Structural inefficiencies
○ Potential for scalable impact



Interviews

Karin Ascenio - Colorado Democratic Party (Volunteer Coordinator)

Seth Morris - NC Democratic Party (Voter Protection Director)

Bruce Norikane - CO Democratic Party (Tech Director)

Colorado Secretary of State Office

Izzy Bronstein - Common Cause (National Campaigns Manager)

Nikki Charlson - MD State Board of Elections (Deputy Admin)

John Schultz - LTN Global (VP of Software Development)



Major Pain Points Identified

1. Widespread mistrust of vote-by-mail/ballot curing

a. Lack of transparency and accurate information from certain state and local election 
offices

b. Falsehoods spread by leaders have sowed unfounded fears in large swaths of voters

2. Inefficient data collection/handling processes 

a. VoteBuilder (VAN) has monopoly, lack of functioning alternatives

i. Costly, glitchy, and not automated

b. Varying processes across states



Our Project

Design and implement a software system that will improve the 
efficiency and transparency of the ballot curing process across 

multiple states



Flow of Data Into System

Downloader Program
Scripts run to download the files from 

the website.

State Election Website
The data is first found on the 
state’s website in a csv file.

Ingest To Database
The files are converted into an 

appropriate form and stored inside of a 
MySQL Database on the server.

Processing of Data
After storing the ballot information, 
programs are run to find any new 

ballots that have been cured as well as 
recompile stats for the dashboard 

page.

Cache Information In 
Database

The information gathered in the 
previous step is then stored in 

additional tables in the database to 
allow for easy future access.



Ingest Demo

This short videos shows a 
demonstration on how the 
downloading process 
works. 

In actual usage, run 
without UI (headless)

https://docs.google.com/file/d/1qKxgGy6S5UDsKAHE8LlTJQf3RycfFPKo/preview


User

The user goes to the 
website using their 
preferred browser.

Website

On the website, the user 
either goes to the 

dashboard page to look at 
stats or the ballot 
download page.

Frontend

API

Based on the user’s 
actions, the frontend 

issues a call to an API 
endpoint, which then gets 

the requested 
information. 

Backend

Query Database

The API then queries the 
information that was 

stored in the database in 
order to generate a 

response. 

How User Interacts With The System

BackendFrontend



Dashboard Demo
http://rain16.cnds.jhu.edu/ballot-curing/dashboard/index.html

http://rain16.cnds.jhu.edu/ballot-curing/dashboard/index.html


GA Rejection %

- Nearly half of rejected ballots 
can still be cured



Disparities in Mail-Ballot Rejections (NC - 11/03/20)

(Race) White Black Asian Native 
American

Undesignated Other Two+ Races

% of All Ballots 65.93% 19.52% 1.47% 0.56% 9.87% 2.13% 0.52%

% of All Rejected 
Ballots

50.42% 29.45% 3.41% 0.91% 11.05% 3.95% 0.82%

(Age) 18-29 30-44 45-64 65+

% of All Ballots 15.28% 21.07% 36.10% 27.56%

% of All 
Rejected Ballots

23.71% 15.06% 28.43% 32.81%



Disparities in Cure Rates (NC - 11/03/20)

(Race) White Black Asian Native 
American

Undesignated Other Two+ Races

% Rejected 0.18% 0.36% 0.55% 0.39% 0.26% 0.44% 0.38%

% Cured 47.59% 33.52% 25.96% 25.36% 34.91% 30.85% 35.86%

(Age) 18-29 30-44 45-64 65+

% Rejected 0.37% 0.17% 0.19% 0.28%

% Cured 31.03% 34.29% 38.82% 50.70%



Download Demo
http://rain16.cnds.jhu.edu/ballot-curing/ballotFiles/index.html

http://rain16.cnds.jhu.edu/ballot-curing/ballotFiles/index.html


Implementation Details



User

The user goes to the 
website using their 
preferred browser.

Website

On the website, the user 
either goes to the 

dashboard page to look at 
stats or the ballot 
download page.

Frontend

API

Based on the user’s 
actions, the frontend 

issues a call to an API 
endpoint, which then gets 

the requested 
information. 

Backend

Query Database

The API then queries the 
information that was 

stored in the database in 
order to generate a 

response. 

How User Interacts With The System

BackendFrontend



Tech Stack

Frontend:

Backend:

Database:

Services:



Data Ingestion

● Download absentee ballot file from state election 
site

○ Varying process for each state

● Insert into state database

○ Target database & table set in config

○ Process to fit schema

○ Update processed date

● Creates schema tables if not made yet
○ Easy to add elections and states

Website
GA SOS Website or NC BOE

CSV File
Containing Absentee Voter 

Data

Insert Into
MySQL

Database



Database Design

● Database for each state

● Static state-wide tables: elections, counties

● For each election: 

○ Tables created: all ballots, rejected ballots, cured ballots

○ Add entry to these tables: statewide stats, county-wide stats, statewide 
time-series info, county-wide time-series info are updated

elections counties

all_DDMMYYYY rejected_DDMMYYYY cured_DDMMYYYY

state_stats county_stats state_time_series county_time_series



Ballot Status Tables (Processed, Rejected, Cured)

status_MMDDYYYY
Basics...
Demographics...
Political Info...
Ballot Info...

Basics
id
proc_date
county
voter_reg_id
first_name
middle_name
last_name

Demographics
race
ethnicity
gender
age
street_address
city
state
zip

Political Info
election_dt
party_code
precinct
cong_dist
st_house
st_senate

Ballot Info
ballot_style
ballot_req_dt
ballot_send_dt
ballot_ret_dt
ballot_issue
ballot_rtn_status

For each ballot…



Standardization Across States



Handling Different States

GA NC

2 Separate ballot issue 
and ballot status

4 Distinguishes between 
cured and regular 
accepted

1 Race, ethnicity, age, 
political party data

3 Daily data dump 
contains cumulative 
ballot info



Georgia Ballot Roadblock

- Georgia daily data dump did not actually contain cumulative data
- Would have meant only needed last day’s data to find out information about what ballots were 

cured
- Turned out not to be the case so had to rework our methodologies for Georgia
- Needed to reformat how cured ballots were discovered



Implementation Differences

NC specifies cured vs. accepted, meaning our general algorithm was overkill.



Finding Cured and Rejected Ballots

- find_cured script runs on new day’s 
downloaded election data

- Script looks for newly accepted ballots in 
rejected table, adding them to cured table

Adds any newly rejected ballots from today 
to the rejected table

Cured 
table

Rejected 
table

Today’s data

Today 
accepted

Today 
rejected

2 3

1

1

2

3



Statistic Compilation - Overview

for each “active” election
compute today’s processed, cured, rejected 
ballots

compute today’s demographic data

store in database

● Stored once per day → time series data

● State- and election-agnostic

Compute statistics for 
state- and county-level data

Insert into database for 
quick retrieval



Statistic Compilation - Details

● Election Class representation:
○ SQL Cursor
○ State
○ County (default = None)

● Querying methods for:
○ Aggregate data
○ Demographic data
○ Daily unique data

● Prevent SQL Injection, cleaner design

● Creates statistic tables if not already present
○ Extensibility

compile_stats.py

Election object

SQL Templates



API

How it Works?

● The API is written using Flask (a Python microframework). Each 
endpoint exists as a separate file that is then compiled together. 
Whenever a user (either by directly sending a request to the API or 
through interacting with our frontend) sends a request to a specific 
endpoint, the API then takes the request parameters and then 
queries the database based off those. It then sends the response in 
the form of an HTTP response. 

Endpoints:

● Ballots, Stats (as well as county stats and time series), Last 
Processed 

User hits enter on the 
Download Ballots Page

GET request sent to the API 
with any specified 

parameters

The API then does some 
processing of the query 

result before sending back 
an HTTP response.

Example of flow for 
Ballots endpoint:



Purpose of Each Endpoint

Ballots

● This endpoint is used to query the general table in 
order to get a list of ballots based off specified 
parameters.

Download

● This endpoint has the same purpose as the ballots 
endpoint except it returns the information in the form 
of a CSV file.

Last Processed

● Returns information on the last time that the 
information for a certain state and election 
combination was updated.

Stats

● The function of this endpoint is to provide 
aggregate stats about the entire state. 
Examples of stats included are total 
rejected/cured, breakdown of cured/rejected 
by race, and more. 

County Stats

● Provides similar stats/information as the main 
stats endpoint but instead provides it at the 
county level instead of state level.

Time Series

● Returns information on certain statistics on a 
day by day level instead of an aggregate level.



In-Depth Dive into the Download Endpoint

Download 
Endpoint

Ballots 
FunctionDownload page

GET Request

HTTP Response

The user presses the 
download button on 
the website which 
causes the frontend to 
send a request to the 
API

The endpoint then writes the result of the 
query to a csv file and sends it as an 
attachment to a HTTP response.

Through the use of an after request tag, the 
endpoint then deletes the temporary csv file 
after it sends it as an attachment.

The download endpoint 
places a call to a 
function that gets the 
result from a database 
query based on the 
specified parameters



In-Depth Dive into the Stats Endpoint

Frontend

The user visits the dashboard page 
which then issues a call to the stats 
endpoint

GET REQUEST

Stats Endpoint

The API receives the request and then 
sends a query to the database to get 
the saved information.

Database

The database has stored information about 
certain important statistics. A query gets 
that information and returns it back to the 
endpoint.

Stats Endpoint

The endpoint then takes the information 
returned from the database and does some 
additional processing to get it in the 
appropriate form before returning it to the 
frontend.

 R
ES

P
O

N
S

E



● jQuery AJAX calls 

○ GET Request: state data

○ GET Request: county data 

○ GET Request: time series data

○ GET Request: last updated date

● Highcharts and ChartJS API

Dashboard Page Architecture



● jQuery AJAX calls:

○ GET Request: Ballots endpoint

○ GET Request: Download endpoint

● Pull data for dropdowns from JSON file

○ Based on user’s selected state & election

Download Page Architecture



Looking Ahead



Process of Onboarding New States

● Write a downloader and insertion script for that state in order to download the 
data. This is also where any needed standardization would occur (similarly to 
North Carolina).

● Run the other scripts in order to generate the stats, as well as the cured and 
rejected table for that state.

● Finally, update the website in order to support the state on the downloader 
page and on the dashboard page.



Configuration

● Configurations unique to 
each state

● Referenced in download 
scripts

● Keys, passwords, 
machine-specific paths

Example



Schema Changes

- (ADD STUFF HERE)



● Ability for organizations to manage their ballot curing efforts 

○ Queried lists divided into clusters based on location

Organizational Features for Volunteering Efforts



Authentication

● Different states have different levels of access for ballot data

○ GA, NC: publicly available on website

○ CO, MD: pay money to access

● Develop method to stagger access for organizations via API keys



Handoff



Documentation

API Documentation: 
https://docs.google.c
om/document/d/1Rn
Hn42gtodQffIiAMX1
5rEl24evBRC8LPwe
PILjp6Ok/edit

https://docs.google.com/document/d/1RnHn42gtodQffIiAMX15rEl24evBRC8LPwePILjp6Ok/edit
https://docs.google.com/document/d/1RnHn42gtodQffIiAMX15rEl24evBRC8LPwePILjp6Ok/edit
https://docs.google.com/document/d/1RnHn42gtodQffIiAMX15rEl24evBRC8LPwePILjp6Ok/edit
https://docs.google.com/document/d/1RnHn42gtodQffIiAMX15rEl24evBRC8LPwePILjp6Ok/edit
https://docs.google.com/document/d/1RnHn42gtodQffIiAMX15rEl24evBRC8LPwePILjp6Ok/edit


Installation

GitHub repos and code on website:

● Backend: https://github.com/Ballot-Curing/ballot-curing-backend
● Frontend: https://github.com/Ballot-Curing/ballot-curing-dashboard
● Website: http://www.cnds.jhu.edu/courses/cs310/ballot-curing/

Instructions to run are in READMEs

https://github.com/Ballot-Curing/ballot-curing-backend
https://github.com/Ballot-Curing/ballot-curing-dashboard
http://www.cnds.jhu.edu/courses/cs310/ballot-curing/


Acknowledgments

Special thanks to all those we interviewed, Sahiti Bommareddy, Daniel 
Qian, Jerry Chen, and especially Professor Yair Amir for running the class 
and continually pushing us and challenging us to do better. 



Questions?



Intro

 (intro vote by mail, what is ballot curing, and our value proposition)

● Problem motivation
○ Slim margins in recent elections, rejected ballots, etc

● Isaac talks about his experience curing in Georgia
● The people we interviewed and what we learned from each



Downloader/Ingest Program

How it works?

- The program downloads the file 
from the election site. This file 
contains the information of the 
voters who voted via absentee 
ballots. An additional script then 
takes the file and inserts into to our 
MySQL Database. The program is 
written in Python and takes 
advantage of Selenium and the 
MySQL connector module among 
others. 

Stage 1
Website

GA SOS Website or NC BOE

Stage 2
CSV File

Containing Absentee Voter 
Data

Stage 3
Inserted Into

MySQL
Database



High level demo

Go thru a basic demo

● Video of Selenium
○ Download from SOS

● Ingest process
○ Finding cures, rejected
○ Stat compilation

● Interactions with the dashboard
● Interactions with download page



Frontend Demo

http://rain16.cnds.jhu.edu/ballot-curing/dashboard/index.html

Original wireframe:

http://rain16.cnds.jhu.edu/ballot-curing/dashboard/index.html


Implementation Details

● Components and how they interact at a lower level
● What data do we have
● Schema
● API
● Frontend



● Current data
○ GA
○ NC

● Unified schema formation
○ Differences

● Standardization

Database id
proc_date
county
voter_reg_id
first_name
middle_name
last_name

race
ethnicity
gender
age
street_address
city
state
zip

election_dt
party_code
precinct
cong_dist
st_house
st_senate

ballot_style
ballot_req_dt
ballot_send_dt
ballot_ret_dt
ballot_issue
ballot_rtn_status

DemographicsBasics
Political Region

Ballot Info



Improvements for the future

- Changing the schema for performance reasons
- Ability to group queried voters (i.e. 5 groups of 40 people in Cobb county) for 

organization purposes
- Authentication



Outline for 11/29 (20 min)

High level demo: (5-10 min)

- Frontend side: 
- Playing around with dashboard (looking at different states)
- Going to downloads page and selecting different possibilities

Low level explanation of the software architecture → how it’s running, it’s components, etc

- How components interact with each other
- Data -> how much data, what states we have
- Go in depth about architecture and schema → how the unified schema came to be, differences
- How our API works - explain many endpoints
- PIPELINE VISUALIZATION FOR DATABASE

Demo lower level things in the system → most of the details in the backend

Low level frontend (AJAX, API calls, downloader)



Outline for Final (50 min)

Intro: 10 min (intro vote by mail, what is ballot curing, and our value proposition)

● Motivate the problem
● Isaac can talk about his experience curing in Georgia
● The people we interviewed and what we learned from each

High level demo: (5-10 min)

- Frontend side: 
- Playing around with dashboard (looking at different states)
- Going to downloads page and selecting different possibilities



Outline for Final (50 min)

Low level explanation of the software architecture → how it’s running, it’s components, etc

- How components interact with each other
- Data -> how much data, what states we have
- Go in depth about architecture and schema → how the unified schema came to be, differences
- How our API works - explain many endpoints

Demo lower level things in the system → most of the details in the backend

Low level frontend

Improvements for the future

- Talk about schema improvements (Sahiti recommended a different schema to begin with)
- Authentication
- Onboarding more states 

Handoff

- How to continue this project (things to install, steps to go over, etc)
- How it would work in real life, during an election


