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The goal of our project is to find 
errors in Spire’s protocol that can 
be exploited by an attacker to 
cause a fatal slowdown or a total 
system failure.



The Spire System

The goal of Spire is to create 
an intrusion-tolerant, 
reliable system to operate 
the power grid that is 
exposed to the open 
internet.



An Intrusion Tolerant Network
- Overlay network built on top of existing IP infrastructure 

- Multi-homing
Conventional Infrastructure

Spines



An Intrusion Tolerant Network

- Intrusion Tolerance
- Fairness Principle

- Flooding

Spines



How to Create a Reliable System?

- Problems to Solve:
- What happens if our server goes down?

- What happens if our server is compromised by an attacker?

Prime

The Answer: REDUNDANCY



How many replicas do we need?

- Fail Stop Failure
- A replica becomes completely unresponsive 

- Handling Fail Stop Failure: N ≥ 2f + 1

- Byzantine Failure
- A replica responds in any unexpected way
- Harder to account for in a system

- Handling Byzantine Failure: N ≥ 3f + 1

Prime



Consensus Algorithms

- We seek 3 things:

- 1) Termination

- 2) Integrity 

- 3) Agreement

- Prime guarantees that we achieve these properties in a timely manner.

- Older protocols did not enforce a timeliness condition

Prime



Prime: Deep Dive
3 Things:

Integrity

Agreement

Termination



Prime Protocol: Pre-Ordering

● Pre-Order Requests: Servers send their client 

updates to all other servers with a unique sequence 

number.

● Acknowledgement: Servers acknowledge that they 

have received a pre-order requests.

● Summary: Servers send summaries of their 

believed current state of the system.



Prime Protocol: Suspect Leader

● Timeliness of Agreement
● Leader leads the ordering 

process
● Slow leader = slow execution
● Turnaround Time

○ RTT PING
● A leader is replaced if it is 

significantly slower than the 
average replica.



Our Test Bed Environment



Planning Our Attacks

● Attack Types

○ Internal vs. External

○ Failstop vs. Byzantine

● Combine strategies! 

● Measuring Results

○ Latency

○ Resource levels

○ Number of leader changes



RTT Ping DoS Attack



Our Motivation

● Replay packet spam attack showed 

regular latency spikes

● Isolate and spam that message

Time (seconds) vs. Latency (ms) for Prime Replay DoS Attack using Prime Client



The Approach

● The culprit: RTT_PING packet type

● Wait until faulty replica generated a RTT_PING packet

● Save packet, send packet to every server repeatedly



Results

Average Latency: 31.8 ms
10th Lowest (During Attack): 23.9 ms
10th Highest (During Attack):  40.7 ms

Time (sec) vs. Latency (ms)  during RTT_PING Attack using Prime Client

● Regularly raised latency 

above target

● Attack limited by Spines 

network timeliness 

protocol



Follow The Leader Attack



Prime Suspect Leader Protocol 

● The suspect leader sub protocol is incorporated into the prime system 

to mitigate leader attacks. 

● Allows replicas to measure turnaround time of the leader.

○ If leader_tat > accepted_tat, then that leader is suspicious

● Non leaders can reach a consensus to remove a leader.



Our Approach 

● Target each current leader with excessive messages using a 

compromised replica

● Cause a delayed round trip time which will force the leader to be 

changed

● Cause each leader to be changed to the next leader quickly



Causing a Single Leader Change

- Modifications to Signature.c in Faulty Prime
- Image of for loop to 1 million targeting (instead of broadcast) Replica 1 since leader always starts as replica 1

- Modifications to Faulty Prime from a RTT Ping DOS attack to targeting a single 

leader



Choosing the Messages

● Most efficient is sending RTT_Ping

○ Why? Leader replies to  rtt ping 

● We send other messages to non leader replicas

○ we broadcast all messages, other than ping (ie act normally for any 

other message we handle)



Targeting any Leader to Cause Repeated Changes

● Target the current leader using the current view

○ (View - 1)Mod6 + 1

● Ping the leader repeatedly while broadcasting all other messages 

(normal behavior)

● Successful at targeting the current leader while the current view is up 

to date



Too Many Pongs

● Every Ping will result in a Pong

○ Too many pongs to process

○ View is not updated efficiently, can’t keep track of current leader

● Filter out all message types other than New Leader Proof, New Leader, 

and Ping Messages when in normal state

○ Pings are used to spam

○ New Leader messages update the view



SPIRE System Baseline 
Average Latency (ms): 21.78

Latencies above 33 ms: 0.00%
Latencies above 100 ms: 0.00%



Demo Time!



Follow the Leader - 100% current

Average Latency (ms): 31.97 
Latencies above 33 ms: 25.63%

Latencies above 100 ms:   1.50%

- This is the attack we just demonstrated!



Follow the Leader + Scada1 in Proactive Recovery

Average Latency (ms): 37.62 
Latencies above 33 ms: 33.06%

Latencies above 100 ms:    0.90%



Follow the Leader - 50% current, 50% next 

Average Latency (ms): 27.70 
Latencies above 33 ms: 10.37%

Latencies above 100 ms:    0.00%



Follow the Leader - 75% current, 25% next 

Average Latency (ms): 27.49 
Latencies above 33 ms: 16.80%

Latencies above 100 ms:    0.00%



Follow the Leader - 90% current, 10% next 

Average Latency (ms): 29.07 
Latencies above 33 ms: 12.60%

Latencies above 100 ms:    0.07%



Follow the Leader - 90%/10% + Scada1 in Proactive 
Recovery 

Average Latency (ms): 36.44 
Latencies above 33 ms: 54.87%

Latencies above 100 ms:    0.13%



Questions?



Pre-Order Memory Consumption 
Attack



Previous Sequence Number Attacks

Average Latency: 20.24648035190615

Spam 10,000 / message

Average Latency: 20.8574664536

No Sequence Number 
Update

Average Latency: 21.1036558908

Improper Sequence 
Number Update



The BACKGROUND

● The key is INTEGRITY.

● Every replica must save update information until it is executed

● All updates must be executed in order

● A replica can only flush old updates once they have been executed

 VS.



The Attack

● Skip a sequence number, lengthen data structure to eat up RAM

● Generate valid PO_Requests and send to all replicas

● Assure we always have a client update to order

Empty

Seq. Num 0

...
Valid 

PO_Request

Seq. Num 1

Valid 
PO_Request

Seq. Num 2

Valid 
PO_Request

Seq. Num 3

Valid 
PO_Request

Seq. Num 4



Demo Time!



INSERT DEMO VIDEO HERE

https://docs.google.com/file/d/1kmhHye2pE1UjSFaVX4ivx0xtmSpilFQ1/preview


Problems We Faced

● Assure list of updates does not grow infinitely and consume memory

● We store our own PO_Requests, would also eat our memory

● Work around catch up protocol

● Implementation Bugs



Results

● With Spam, 16GB of RAM is consumed in under 15 minutes

● Spam and no-spam variants

○ Spam variant works quickly, can be detected

○ No-spam variant works more slowly, goes undetected by IDS

● Non-spam attack variant goes undetected by NIDS

● Once RAM limit is reached, replicas become increasingly unresponsive

● Implementation bugs



Questions?



Future Steps

● PO Request Attack

○ Increase Reliability

○ Test with Intrusion Detection System

● Follow the Leader Attack

○ Control Leader while in Proactive Recovery



Mitigation

● Memory Attack: Bound the memory that one server can consume on 

another server

○ Bounded queue of updates

● Follow the Leader Attack:

○ Rate Limiting



Thank You!
Yair Amir

Sahiti Bommareddy
Daniel Qian
Jerry Chen

And, the rest of the SFRC 
class



Questions?



(Conclusion) … So were we successful?



TL;DR - The Spire System

- Spines creates an intrusion-tolerant 
reliable network that isn’t vulnerable 
to conventional network attacks 
(DOS, MITM, BGP Hijacking)

- Prime ensures that our distributed 
system maintains correctness while 
executing commands in a timely 
manner.



Follow the Leader - 50% current, 50% next  
(a closer look)


