
Towards a Resilient US
Power Grid
Valentina Alzate, Ben Cillie, Caroline Reynolds, Megan Rosen, Daniel Weber

The goal of our project is to find
errors in Spire’s protocol that can
be exploited by an attacker to
cause a fatal slowdown or a total
system failure.

The Spire System

The goal of Spire is to create
an intrusion-tolerant,
reliable system to operate
the power grid that is
exposed to the open
internet.

An Intrusion Tolerant Network
- Overlay network built on top of existing IP infrastructure

- Multi-homing
Conventional Infrastructure

Spines

An Intrusion Tolerant Network

- Intrusion Tolerance
- Fairness Principle

- Flooding

Spines

How to Create a Reliable System?

- Problems to Solve:
- What happens if our server goes down?

- What happens if our server is compromised by an attacker?

Prime

The Answer: REDUNDANCY

How many replicas do we need?

- Fail Stop Failure
- A replica becomes completely unresponsive

- Handling Fail Stop Failure: N ≥ 2f + 1

- Byzantine Failure
- A replica responds in any unexpected way
- Harder to account for in a system

- Handling Byzantine Failure: N ≥ 3f + 1

Prime

Consensus Algorithms

- We seek 3 things:

- 1) Termination

- 2) Integrity

- 3) Agreement

- Prime guarantees that we achieve these properties in a timely manner.

- Older protocols did not enforce a timeliness condition

Prime

Prime: Deep Dive
3 Things:

Integrity

Agreement

Termination

Prime Protocol: Pre-Ordering

● Pre-Order Requests: Servers send their client

updates to all other servers with a unique sequence

number.

● Acknowledgement: Servers acknowledge that they

have received a pre-order requests.

● Summary: Servers send summaries of their

believed current state of the system.

Prime Protocol: Suspect Leader

● Timeliness of Agreement
● Leader leads the ordering

process
● Slow leader = slow execution
● Turnaround Time

○ RTT PING
● A leader is replaced if it is

significantly slower than the
average replica.

Our Test Bed Environment

Planning Our Attacks

● Attack Types

○ Internal vs. External

○ Failstop vs. Byzantine

● Combine strategies!

● Measuring Results

○ Latency

○ Resource levels

○ Number of leader changes

RTT Ping DoS Attack

Our Motivation

● Replay packet spam attack showed

regular latency spikes

● Isolate and spam that message

Time (seconds) vs. Latency (ms) for Prime Replay DoS Attack using Prime Client

The Approach

● The culprit: RTT_PING packet type

● Wait until faulty replica generated a RTT_PING packet

● Save packet, send packet to every server repeatedly

Results

Average Latency: 31.8 ms
10th Lowest (During Attack): 23.9 ms
10th Highest (During Attack): 40.7 ms

Time (sec) vs. Latency (ms) during RTT_PING Attack using Prime Client

● Regularly raised latency

above target

● Attack limited by Spines

network timeliness

protocol

Follow The Leader Attack

Prime Suspect Leader Protocol

● The suspect leader sub protocol is incorporated into the prime system

to mitigate leader attacks.

● Allows replicas to measure turnaround time of the leader.

○ If leader_tat > accepted_tat, then that leader is suspicious

● Non leaders can reach a consensus to remove a leader.

Our Approach

● Target each current leader with excessive messages using a

compromised replica

● Cause a delayed round trip time which will force the leader to be

changed

● Cause each leader to be changed to the next leader quickly

Causing a Single Leader Change

- Modifications to Signature.c in Faulty Prime
- Image of for loop to 1 million targeting (instead of broadcast) Replica 1 since leader always starts as replica 1

- Modifications to Faulty Prime from a RTT Ping DOS attack to targeting a single

leader

Choosing the Messages

● Most efficient is sending RTT_Ping

○ Why? Leader replies to rtt ping

● We send other messages to non leader replicas

○ we broadcast all messages, other than ping (ie act normally for any

other message we handle)

Targeting any Leader to Cause Repeated Changes

● Target the current leader using the current view

○ (View - 1)Mod6 + 1

● Ping the leader repeatedly while broadcasting all other messages

(normal behavior)

● Successful at targeting the current leader while the current view is up

to date

Too Many Pongs

● Every Ping will result in a Pong

○ Too many pongs to process

○ View is not updated efficiently, can’t keep track of current leader

● Filter out all message types other than New Leader Proof, New Leader,

and Ping Messages when in normal state

○ Pings are used to spam

○ New Leader messages update the view

SPIRE System Baseline
Average Latency (ms): 21.78

Latencies above 33 ms: 0.00%
Latencies above 100 ms: 0.00%

Demo Time!

Follow the Leader - 100% current

Average Latency (ms): 31.97
Latencies above 33 ms: 25.63%

Latencies above 100 ms: 1.50%

- This is the attack we just demonstrated!

Follow the Leader + Scada1 in Proactive Recovery

Average Latency (ms): 37.62
Latencies above 33 ms: 33.06%

Latencies above 100 ms: 0.90%

Follow the Leader - 50% current, 50% next

Average Latency (ms): 27.70
Latencies above 33 ms: 10.37%

Latencies above 100 ms: 0.00%

Follow the Leader - 75% current, 25% next

Average Latency (ms): 27.49
Latencies above 33 ms: 16.80%

Latencies above 100 ms: 0.00%

Follow the Leader - 90% current, 10% next

Average Latency (ms): 29.07
Latencies above 33 ms: 12.60%

Latencies above 100 ms: 0.07%

Follow the Leader - 90%/10% + Scada1 in Proactive
Recovery

Average Latency (ms): 36.44
Latencies above 33 ms: 54.87%

Latencies above 100 ms: 0.13%

Questions?

Pre-Order Memory Consumption
Attack

Previous Sequence Number Attacks

Average Latency: 20.24648035190615

Spam 10,000 / message

Average Latency: 20.8574664536

No Sequence Number
Update

Average Latency: 21.1036558908

Improper Sequence
Number Update

The BACKGROUND

● The key is INTEGRITY.

● Every replica must save update information until it is executed

● All updates must be executed in order

● A replica can only flush old updates once they have been executed

 VS.

The Attack

● Skip a sequence number, lengthen data structure to eat up RAM

● Generate valid PO_Requests and send to all replicas

● Assure we always have a client update to order

Empty

Seq. Num 0

...
Valid

PO_Request

Seq. Num 1

Valid
PO_Request

Seq. Num 2

Valid
PO_Request

Seq. Num 3

Valid
PO_Request

Seq. Num 4

Demo Time!

INSERT DEMO VIDEO HERE

https://docs.google.com/file/d/1kmhHye2pE1UjSFaVX4ivx0xtmSpilFQ1/preview

Problems We Faced

● Assure list of updates does not grow infinitely and consume memory

● We store our own PO_Requests, would also eat our memory

● Work around catch up protocol

● Implementation Bugs

Results

● With Spam, 16GB of RAM is consumed in under 15 minutes

● Spam and no-spam variants

○ Spam variant works quickly, can be detected

○ No-spam variant works more slowly, goes undetected by IDS

● Non-spam attack variant goes undetected by NIDS

● Once RAM limit is reached, replicas become increasingly unresponsive

● Implementation bugs

Questions?

Future Steps

● PO Request Attack

○ Increase Reliability

○ Test with Intrusion Detection System

● Follow the Leader Attack

○ Control Leader while in Proactive Recovery

Mitigation

● Memory Attack: Bound the memory that one server can consume on

another server

○ Bounded queue of updates

● Follow the Leader Attack:

○ Rate Limiting

Thank You!
Yair Amir

Sahiti Bommareddy
Daniel Qian
Jerry Chen

And, the rest of the SFRC
class

Questions?

(Conclusion) … So were we successful?

TL;DR - The Spire System

- Spines creates an intrusion-tolerant
reliable network that isn’t vulnerable
to conventional network attacks
(DOS, MITM, BGP Hijacking)

- Prime ensures that our distributed
system maintains correctness while
executing commands in a timely
manner.

Follow the Leader - 50% current, 50% next
(a closer look)

