Resilient System Design with Examples

Sahiti Bommareddy

CS417/ 617 Distributed Systems Fall 2021

Topic 1: Addressing System Level Failure

I want to build a resilient system for my clients such that clients can be masked from failures

CS417/ 617 Distributed Systems Fall 2021

Primary – Backup Approach

To mask the failure of 1 server, another replica will be employed Protocol:

- Client Requests are handled by Primary only
- If primary fails, backup takes over
- Backup is kept up-to-date with periodic checkpointing/ per update

CS417/617 Distributed Systems Fall 2021

.

Issues with Primary – Backup Approach

To mask the failure of 1 server, another replica will be employed Protocol:

- Client Requests are handled by Primary only
- If primary fails, backup takes over
- Backup is kept up-to-date with periodic checkpointing/ per update

What are the potential issue?

CS417/ 617 Distributed Systems Fall 2021

Issues with Primary – Backup Approach

To mask the failure of 1 server, another replica will be employed Protocol:

- Client Requests are handled by Primary only
- If primary fails, backup takes over
- Backup is kept up-to-date with periodic checkpointing/ per update

What are the potential issue?

- Client is exposed to primary failures
- Lost updates

CS417/ 617 Distributed Systems Fall 2021

Outsource

What would you do?

CS417/ 617 Distributed Systems Fall 2021

Scope the Problem

What will be the questions you would ask?

CS417/ 617 Distributed Systems Fall 2021

9

Scope the Problem

What will be the questions you would ask?

- System Requirements
 - Types of fault
 - Number of faults
 - Performance Requirements

CS417/ 617 Distributed Systems Fall 2021

Scope the Problem: Option 1

What will be the questions you would ask?

- System Requirements
 - Types of fault: Fail-Stop Faults
 - Number of faults: f=1
 - Performance Requirements

CS417/ 617 Distributed Systems Fall 2021

11

Scope the Problem: Option 1

What will be the questions you would ask?

- System Requirements
 - Types of fault : Failstop faults
 - Number of faults: f=1
 - Performance Requirements

SMR in which agreement is needed from f+1 servers out of 2f+1 total servers

CS417/ 617 Distributed Systems Fall 2021

Scope the Problem: Option 2

What will be the questions you would ask?

- System Requirements
 - Types of fault : Byzantine faults
 - Number of faults: f=1
 - Performance Requirements

CS417/ 617 Distributed Systems Fall 2021

13

Scope the Problem: Option 2

What will be the questions you would ask?

- System Requirements
 - Types of fault : Byzantine faults
 - Number of faults: f=1
 - Performance Requirements

SMR in which agreement is needed from 2f+1 servers out of 3f+1 total servers

CS417/ 617 Distributed Systems Fall 2021

Scope the Problem: Option 2.1

What will be the questions you would ask?

- System Requirements
 - Types of fault : Byzantine faults
 - Number of faults: f=1
 - Additional Requirement : Long system life with robustness
 - Performance Requirements

SMR with diversity and proactive recovery in which agreement is needed from (2f+k+1) servers out of (3f+2k+1) total servers

CS417/ 617 Distributed Systems Fall 2021

15

Use Cases

- Cloud / IT Services
 - File Systems
 - SDN Controllers
 - Schedulers
- Critical OT Services
 - ICS (Industrial Control Systems)

CS417/ 617 Distributed Systems Fall 2021

Basic Blocks in a SCADA system

HMI : Human Machine Interface

SCADA: Supervisory Control and Data Acquisition Systems

PLC : Programmable Logical Controller

RTU : Remote Terminal Unit

Power System Protocols:

Modbus DNP3 IEC61850

CS417/ 617 Distributed Systems Fall 2021

17

Vulnerabilities in SCADA system

SCADA systems are vulnerable on several fronts:

SCADA system compromises (Fail-Stop and Byzantine)

- SCADA Master: system-wide damage
- RTUs , PLCs : limited local effects
- HMIs

Network level attacks

- Routing attacks that disrupt or delay communication
- Isolating critical components from the rest of the network

Primary SCADA SCADA Master

Ork

PLC

Physical Equipment

Physical Equipment

CS417/ 617 Distributed Systems Fall 2021

Designing Intrusion Tolerant Networks

Requirements of such networks:

- Protection against -
 - Link Level Tampering
 - Single ISP Meltdown
 - DDoS attacks
 - BGP Hijacking
 - Byzantine Node failures (forwarders and sources)
 - Multiple QoS (Reliable and Priority based)

CS417/ 617 Distributed Systems Fall 2021

31

Performance Measurements Po PO SUMMARY PREPARE PREPARE COMMIT S S S Server Introducing Operation of Prime (f = 1).

CS417/ 617 Distributed Systems Fall 2021

Architecture Choices Existing Architectures Natural Extensions New Resilient Configurations All Correct Proactive Recovery (PR) Disconnected/Downed Site + Disconnected/Downed Site + Intrusion Intrusion PR Disconnected/Downed Site + Intrusion PR

Fig. 2. Illustration of specific SCADA system configurations' ability to support the threat model we consider, including all combinations of a replica being unavailable due to proactive recovery, a site disconnection due to network attack or failure, and an intrusion (SCADA master compromise).

CS417/ 617 Distributed Systems Fall 2021

Fig. 8. Update latencies over 30-hour wide-area deployment

	Avg Latency	% < 100ms	% < 200ms	0.1 percentile	1 percentile	50 percentile	99 percentile	99.9 percentile
6+6+6	51.4 ms	100.00	100.00	39.5 ms	40.6 ms	51.3 ms	63.8 ms	68.8 ms
3+3+3+3	54.7 ms	100.00	100.00	43.1 ms	44.2 ms	54.7 ms	65.4 ms	67.1 ms
3+3+2+2+2	56.4 ms	100.00	100.00	44.5 ms	45.8 ms	56.3 ms	67.3 ms	69.5 ms
5+5+5+4	57.4 ms	100.00	100.00	45.4 ms	46.6 ms	57.4 ms	68.8 ms	71.8 ms
6+6+6+6	64.8 ms	99.9111	99.9667	50.4 ms	52.2 ms	64.5 ms	82.7 ms	97.7 ms

TABLE II

SCADA CONFIGURATION PERFORMANCE ON LAN WITH EMULATED LATENCIES BETWEEN SITES FOR 36000 UPDATES OVER 1 HOUR

CS417/ 617 Distributed Systems Fall 2021

35

Current Lab Research Directions

- Real-time Byzantine Resiliency
- Resilient Systems under Cascade Failure

CS417/617 Distributed Systems Fall 2021

Real-time Byzantine Resiliency

We work at the level of Power Grid Substations
We want to build resilient systems that have least latency

Specific Use Case: High Voltage Protection Relays

- Relays are devices that can protect the grid
- When there is fault in grid, relay trips the breaker to protect grid
- The current state-of-the-art systems employ multiple protective relays with unilateral power to each protective relays

CS417/617 Distributed Systems Fall 2021

3

Issue in Current Systems

- A protective relay that does not trip when they should can cause irreparable damage to the grid and its connected customers
- A protective relay that does unnecessarily trip causes a major disruption to a large number of customers.

As a consequence, protective relays become an attractive target for malicious actors, especially at high voltage levels

CS417/ 617 Distributed Systems Fall 2021

Scope the Problem

Several rigid factors as design constraints

- Very exact real time constraint :
 - The relay has to react within a quarter of a power cycle
 - In a 60Hz system (e.g. in North America), a quarter cycle amounts to 4.166ms
- Economic Factors :
 - The protective relay is a reasonably expensive device (tens of thousands of dollars), and there are many of them in the system to support every substation (~1000s).
- Require resiliency with long system life for continuous availability.
- Require seamless substation integration into existing environments

CS417/ 617 Distributed Systems Fall 2021

39

Current Lab Research Directions

- Real-time Byzantine Resiliency
- Resilient Systems under Compound Threats

CS417/ 617 Distributed Systems Fall 2021

Resilient Systems under Compound Threat

Specifically:

Let us say we do build intrusion tolerant system

This system is impacted by natural disaster (e.g. Hurricane)

In real world, this weakened system is lucrative target for cyber attacks.

How to build resilient intrusion tolerant systems under such compound threats?

CS417/ 617 Distributed Systems Fall 2021

41

References

• http://www.dsn.jhu.edu/papers/scada_DSN_2018.pdf

CS417/ 617 Distributed Systems Fall 2021