
11/18/19

1

CS417: Distributed Systems

Large Scale Data Stores

Department of Computer Science The Johns 
Hopkins University

Fall ‘19
1

Sahiti Bommareddy and Yair Amir

Key Value Stores:

key             Value

Requirements: Scalability and Reliability
• Sharding – distribute keys/indexes 
• Replication- same key/index on multiple machines

Example – DNS
Domain Name Service: maps URLs to IP adresses

Fall ‘19
2

Sahiti Bommareddy and Yair Amir



11/18/19

2

Distributed Indexing

Distributed systems have two engineering aspects:

• A highly efficient sharding mechanism.
• A lookup mechanism that tracks down the node holding the 

object. 

These can be used to implement a higher-level services.

Fall ‘19
3

Sahiti Bommareddy and Yair Amir

Simple Sharding Mechanism

Let us consider doing it by simple hashing -

store = hash(key) % stores.count

Issues-
• What if stores.count changes ?
• What if keys are non-uniformly distributed ?

Fall ‘19
4

Sahiti Bommareddy and Yair Amir



11/18/19

3

Consistent hashing

1. Imagine the hash space as a ring.

Fall ‘19
5

Sahiti Bommareddy and Yair Amir

Consistent hashing

2. Take server/DB’s IP, hash it and place them on hash ring

Fall ‘19
6

Sahiti Bommareddy and Yair Amir

Node 1

Node 3

Node 2Node 4



11/18/19

4

Consistent hashing

3. Distribute keys – hash(key) and map it onto the ring
- The key resides on the first server in 

clockwise direction

Fall ‘19
7

Sahiti Bommareddy and Yair Amir

Node 1

Node 3

Node 2Node 4

Hash(key1)

Hash(key2)

Consistent hashing

Q1. What happens if stores.count changes ?

Fall ‘19
8

Sahiti Bommareddy and Yair Amir

Node 1

Node 3

Node 2Node 4

Node 5
Impacted Keyspace
(churn)

Impacted Keyspace
(churn)

O(K/N) keys 
remapped per 
server change 



11/18/19

5

Consistent hashing

Q2. How to achieve uniform distribution ?

Fall ‘19
9

Sahiti Bommareddy and Yair Amir

Node 1

Node 3

Node 2Node 4

k1k2
k3

k4
k5
k6

k7
k8

k9
k10

Consistent hashing

Virtual Nodes-

Fall ‘19
10

Sahiti Bommareddy and Yair Amir

Virtual 
Node 1

VN 5

VN 3VN 7

k1 k2 k3
k4

k5
k6

k7
k8

VN 2

VN 4
VN 6

VN 8



11/18/19

6

Lookup 

Fall ‘19
11

Sahiti Bommareddy and Yair Amir

A lookup mechanism that tracks down the node holding the object for the client 
efficiently. 

Let us look at Chord’s node join and startup mechanism

Naive Approach

Fall ‘19
12

Sahiti Bommareddy and Yair Amir

1
4

8

14

21

48

56

K=54

K=54



11/18/19

7

Chord’s Approach with 
Finger Tables

Fall ‘19
13

Sahiti Bommareddy and Yair Amir

1
4

8

14

21

42

56

Finger Table : 8
N8+1 14
N8+2 14

N8+4 14
N8+8 21
N8+16 38
N8+32 42

!"#$%& '
= # + 2+,- ./0 21

1 ≤ k ≤ m

38

Finger Table:42
N42+1 56
N42+2 56
N42+4 56

N42+8 56
N42+16 1
N42+32 14

Chord’s Approach with 
Finger Tables

Fall ‘19
14

Sahiti Bommareddy and Yair Amir

1
4

8

14

21

42

56

Finger Table : 8
N8+1 14
N8+2 14
N8+4 14

N8+8 21
N8+16 38
N8+32 42

!"#$%& '
= # + 2+,- ./0 21

1 ≤ k ≤ m

38

Finger Table:42
N42+1 56
N42+2 56
N42+4 56

N42+8 56
N42+16 1
N42+32 14



11/18/19

8

Efficiency of Chord’s Lookup

Fall ‘19
15

Sahiti Bommareddy and Yair Amir

Chord Issues to consider

Fall ‘19 16Sahiti Bommareddy and Yair Amir

Overall, log(n) hops for lookup in the worst case! – very 

good.

• What is a hop? Where are the nodes? Is 

log(n) really good ? 

• What about churn ?

• Is it really log(n) worst case over time?

• How to maintain robustness?



11/18/19

9

Replication

How to fit replication into this ?

The key is stored on first N servers in the ring.

Consensus Protocols. 

Fall ‘19
17

Sahiti Bommareddy and Yair Amir

Replication

Fall ‘19
18

Sahiti Bommareddy and Yair Amir

1
4

8

14

21

48

56

K =8

Leader

Replica

Replica



11/18/19

10

Kelips

• Developed at Cornell (2003). 
• Uses more storage (sqrt(n) instead of log(n) ) 

at each node. – Replicating each item at 
sqrt(n) nodes. 

• Aims to achieve O(1) for lookups. 
• Copes with churn by imposing a constant 

communication overhead. 
– Although data quality may lag if updates occur too rapidly. 

• How would you do that? . 

Fall ‘19
19

Sahiti Bommareddy and Yair Amir

Kelips Lookup

• N is approximate number for the number of nodes.

• Each node id is hashed into one of sqrt(N) affinity 
groups.

• Each key from (key,value) pair is hashed into one of 
the sqrt(N) groups.

• Approximately sqrt(N) replicas in each affinity group.

• Pointers are maintained to a small number of 
members of each affinity group. Lookup is O(1).

• Weak consistency between the replicas is maintained 
using a reliable multicast protocol based on gossip.

Fall ‘19 Sahiti Bommareddy and Yair Amir 20



11/18/19

11

Kelips Lookup (cont.)

1 2 3 N

Fall ‘19 Sahiti Bommareddy and Yair Amir 21

Operations in Replicated DHTs

Fall ‘19
22

Sahiti Bommareddy and Yair Amir

How is the most recent version determined?

Leader/Coordinators give each write update a timestamp, based on its local 
clock



11/18/19

12

Clock-based Timestamps

• Each put is given a timestamp by the coordinator 
responsible for that update

• If a replica receives an update with a lower timestamp 
than its current version, it ignores the update, but 
acknowledges that the write was successful

• If the clocks on different coordinators drift, this can cause 
unexpected behavior

Fall ‘19 Sahiti Bommareddy and Yair Amir 23

Example: Losing an update

R

C1 C2

Put(k,1)

Put(k,1, T=20)

(k,1, 20)

Get(k)

Client

Put(k,2)

Put(k, 2, T=19)

Let’s say C2 has a 
slower clock

Fall ‘19 Sahiti Bommareddy and Yair Amir 24



11/18/19

13

Fall ‘19 Sahiti Bommareddy and Yair Amir

Resolution

• Applications need to handle
• How does you application 

want to handle these?

25

Operations in Replicated DHTs

Fall ‘19
26

Sahiti Bommareddy and Yair Amir

Setting –
• A key is in N stores.
• When a request reaches one of them, that 

store becomes leader/co-ordinator for that 
operation. 



11/18/19

14

Reads / Get(k)

Fall ‘19
27

Sahiti Bommareddy and Yair Amir

• Coordinator requests the object from the 
relevant N nodes

• After R of those replicas respond, the 
coordinator returns the most recent version 
held by any of the replicas

Writes / Put(k,v)

Fall ‘19
28

Sahiti Bommareddy and Yair Amir

• Coordinator forwards the update to the 
relevant N replicas.

• After W of those replicas have acknowledged 
the update, the coordinator can tell the client 
that the write was successful.



11/18/19

15

Quorum Flavors

Fall ‘19
29

Sahiti Bommareddy and Yair Amir

Choice 1: R+W > N (Strong Consistency)
Every read quorum will contain a node with the latest 
write.

Further Choices: For N=5,  R(2)+W(4), R(3)+W(3),
R(4)+W(2) 

Choice 1: R+W <N (Weak Consistency)
Staleness

Crashes and recovery

Fall ‘19
30

Sahiti Bommareddy and Yair Amir

To address this, nodes participate in anti-entropy 
with nodes that share a key-range by exchanging 
Merkle hash trees



11/18/19

16

Some existing distributed systems  
for mega services

Fall ‘19
31

Sahiti Bommareddy and Yair Amir

To state some –

Amazon’s Dynamo
Facebook’s Cassandra
Google’s Slicer is alternative to Consistent hashing used by 
above two

Each with their own design considerations specific to their 
application 

Hyperdex

Fall ‘19
32

Sahiti Bommareddy and Yair Amir

Limited API for KV Stores – search based on only key

Want richer service –

High Performance, Scalable, Consistent, Fault-tolerant Data 
Stores

+
Supports efficient search on secondary 

attributes 

Hyperdex



11/18/19

17

Hyperspace Hashing

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf

Fall ‘19 Sahiti Bommareddy and Yair Amir
33

Hyperdex Search

Fall ‘19
34

Sahiti Bommareddy and Yair Amir

• In addition to partitioning based on the key, 
each object is stored on additional servers 
based on its secondary attributes

• Combining the hashes of a set of secondary 
attributes forms a hyperspace which can be 
partitioned

• This enables efficient search by limiting the 
number of servers that need to be contacted

• This can be done for multiple sets of attributes



11/18/19

18

Hyperspace Hashing

Attribute values are hashed independently
Any hash function may be used

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40 http://hyperdex.org/slides/2013-06-

28-cloudphysics.pdf

Fall ‘19
Sahiti Bommareddy and Yair Amir 35

Hyperspace Hashing

Objects reside at the coordinate specified by the hashes

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong

Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf

Fall ‘19
Sahiti Bommareddy and Yair Amir 36



11/18/19

19

Hyperspace Hashing

Different objects reside at different coordinates

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf

Fall ‘19 Sahiti Bommareddy and Yair Amir 37

Hyperspace Hashing

• Every object is placed on a server based on its 
primary key (like Cassandra and Chord)

• For each set of attributes (subspace) we would like 
to search by, we will place each object on an 
additional server

• For each object, its attributes are hashed into a point 
in the hyperspace, and object is placed on the server 
responsible for that point

Fall ‘19 Sahiti Bommareddy and Yair Amir 38



11/18/19

20

Hyperspace Hashing

• By specifying more of the secondary attributes, we can 
reduce the number of servers that need to be searched

• If all of the subspace attributes are specified, the search 
is equally efficient as searching by key

• What if the secondary attributes are updated?

Answer : Value dependent Chaning

Fall ‘19 Sahiti Bommareddy and Yair Amir 39

Value-Dependent Chaining

• Initially, let’s assume there are no faults
• To perform an update, all of the servers involved are 

organized in a chain
• The server responsible for the primary key is at the head of the chain
• Any server holding the current version of the object is in the chain
• Any server that will hold the updated version of the object is also in the 

chain
• The update is ordered at the head and passed through the 

chain
• Once it reaches the end of the chain, the tail server can 

commit the update, and pass an acknowledgment back 
through the chain

• Updates are not committed until an acknowledgement is 
received from the next server in the chain

Fall ‘19 Sahiti Bommareddy and Yair Amir 40



11/18/19

21

Value-Dependent Chaining

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf

Fall ‘19 Sahiti Bommareddy and Yair Amir 41

Value-Dependent Chaining

Each put takes a forward pass down the chain and is 
committed during the backward pass

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdfFall ‘19

Sahiti Bommareddy and Yair Amir
42



11/18/19

22

Value-Dependent Chaining

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdfFall ‘19 Sahiti Bommareddy and Yair Amir

43

Consistency Guarantees

• Any operation that was committed before a search 
will be reflected in its results

• In the presence of concurrent updates, either version 
may be returned, but at least one version of every 
object will be seen

• Because an update can be reflected in a search 
before it is committed, search results may be 
inconsistent with get calls

Fall ‘19 Sahiti Bommareddy and Yair Amir
44



11/18/19

23

Fault Tolerance

• Each server in the chain can be replicated
• Hyperdex uses chain replication, but any 

consistent replication protocol could be used
• If every block of replicas remains available, the 

system remains available

Fall ‘19 Sahiti Bommareddy and Yair Amir 45

Fault Tolerance

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf

Fall ‘19
Sahiti Bommareddy and Yair Amir 46



11/18/19

24

Hyperdex: Conclusions

• Search can scale by partitioning on attributes other 
than the primary key

• What is the cost?

Fall ‘19 Sahiti Bommareddy and Yair Amir
47

Hyperdex: Conclusions

• What is the cost?
• More servers
• Higher latency
• Lower resiliency

Fall ‘19 Sahiti Bommareddy and Yair Amir
48



11/18/19

25

Geo-replicated Key Value Stores

Fall ‘19
49

Sahiti Bommareddy and Yair Amir

Build it for the Globe !

So think of replication across data centers.

Some such systems-
• Google’s Spanner
• Consus, logical successor to HyperDex

References

• https://en.wikipedia.org/wiki/Consistent_hashing
• https://pdos.csail.mit.edu/papers/chord:sigcomm01/ch

ord_sigcomm.pdf
• https://www.cs.cornell.edu/home/rvr/papers/Kelips.pdf
• https://dl.acm.org/citation.cfm?id=1773922
• https://dl.acm.org/citation.cfm?id=1294281
• https://arxiv.org/abs/1612.03457

Fall ‘19
50

Sahiti Bommareddy and Yair Amir

https://en.wikipedia.org/wiki/Consistent_hashing
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
https://www.cs.cornell.edu/home/rvr/papers/Kelips.pdf
https://dl.acm.org/citation.cfm?id=1773922
https://dl.acm.org/citation.cfm?id=1294281
https://arxiv.org/abs/1612.03457

