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Large Scale Data Stores
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Key Value Stores:

key             Value

Requirements: Scalability and Reliability
• Sharding – distribute keys/indexes 
• Replication- same key/index on multiple machines

Example – DNS
Domain Name Service: maps URLs to IP adresses
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Distributed Indexing

Distributed systems have two engineering aspects:

• A highly efficient sharding mechanism.
• A lookup mechanism that tracks down the node holding the 

object. 

These can be used to implement a higher-level services.
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Simple Sharding Mechanism

Let us consider doing it by simple hashing -

store = hash(key) % stores.count

Issues-
• What if stores.count changes ?
• What if keys are non-uniformly distributed ?
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Consistent hashing

1. Imagine the hash space as a ring.
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Consistent hashing

2. Take server/DB’s IP, hash it and place them on hash ring
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Consistent hashing

3. Distribute keys – hash(key) and map it onto the ring
- The key resides on the first server in 

clockwise direction
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Node 1

Node 3

Node 2Node 4

Hash(key1)

Hash(key2)

Consistent hashing

Q1. What happens if stores.count changes ?

Fall ‘19
8

Sahiti Bommareddy and Yair Amir

Node 1

Node 3

Node 2Node 4

Node 5
Impacted Keyspace
(churn)

Impacted Keyspace
(churn)

O(K/N) keys 
remapped per 
server change 



11/18/19

5

Consistent hashing

Q2. How to achieve uniform distribution ?
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Consistent hashing

Virtual Nodes-
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Lookup 

Fall ‘19
11

Sahiti Bommareddy and Yair Amir

A lookup mechanism that tracks down the node holding the object for the client 
efficiently. 

Let us look at Chord’s node join and startup mechanism

Naive Approach
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Chord’s Approach with 
Finger Tables
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Finger Table : 8
N8+1 14
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N8+8 21
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Finger Table:42
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N42+16 1
N42+32 14

Chord’s Approach with 
Finger Tables
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Efficiency of Chord’s Lookup
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Chord Issues to consider
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Overall, log(n) hops for lookup in the worst case! – very 

good.

• What is a hop? Where are the nodes? Is 

log(n) really good ? 

• What about churn ?

• Is it really log(n) worst case over time?

• How to maintain robustness?
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Replication

How to fit replication into this ?

The key is stored on first N servers in the ring.

Consensus Protocols. 
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Replication
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Kelips

• Developed at Cornell (2003). 
• Uses more storage (sqrt(n) instead of log(n) ) 

at each node. – Replicating each item at 
sqrt(n) nodes. 

• Aims to achieve O(1) for lookups. 
• Copes with churn by imposing a constant 

communication overhead. 
– Although data quality may lag if updates occur too rapidly. 

• How would you do that? . 
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Kelips Lookup

• N is approximate number for the number of nodes.

• Each node id is hashed into one of sqrt(N) affinity 
groups.

• Each key from (key,value) pair is hashed into one of 
the sqrt(N) groups.

• Approximately sqrt(N) replicas in each affinity group.

• Pointers are maintained to a small number of 
members of each affinity group. Lookup is O(1).

• Weak consistency between the replicas is maintained 
using a reliable multicast protocol based on gossip.
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Kelips Lookup (cont.)

1 2 3 N
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Operations in Replicated DHTs
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How is the most recent version determined?

Leader/Coordinators give each write update a timestamp, based on its local 
clock
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Clock-based Timestamps

• Each put is given a timestamp by the coordinator 
responsible for that update

• If a replica receives an update with a lower timestamp 
than its current version, it ignores the update, but 
acknowledges that the write was successful

• If the clocks on different coordinators drift, this can cause 
unexpected behavior
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Example: Losing an update

R

C1 C2

Put(k,1)

Put(k,1, T=20)

(k,1, 20)

Get(k)

Client

Put(k,2)

Put(k, 2, T=19)

Let’s say C2 has a 
slower clock
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Resolution

• Applications need to handle
• How does you application 

want to handle these?

25

Operations in Replicated DHTs
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Setting –
• A key is in N stores.
• When a request reaches one of them, that 

store becomes leader/co-ordinator for that 
operation. 
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Reads / Get(k)
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• Coordinator requests the object from the 
relevant N nodes

• After R of those replicas respond, the 
coordinator returns the most recent version 
held by any of the replicas

Writes / Put(k,v)
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• Coordinator forwards the update to the 
relevant N replicas.

• After W of those replicas have acknowledged 
the update, the coordinator can tell the client 
that the write was successful.
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Quorum Flavors
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Choice 1: R+W > N (Strong Consistency)
Every read quorum will contain a node with the latest 
write.

Further Choices: For N=5,  R(2)+W(4), R(3)+W(3),
R(4)+W(2) 

Choice 1: R+W <N (Weak Consistency)
Staleness

Crashes and recovery

Fall ‘19
30

Sahiti Bommareddy and Yair Amir

To address this, nodes participate in anti-entropy 
with nodes that share a key-range by exchanging 
Merkle hash trees
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Some existing distributed systems  
for mega services
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To state some –

Amazon’s Dynamo
Facebook’s Cassandra
Google’s Slicer is alternative to Consistent hashing used by 
above two

Each with their own design considerations specific to their 
application 

Hyperdex
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Limited API for KV Stores – search based on only key

Want richer service –

High Performance, Scalable, Consistent, Fault-tolerant Data 
Stores

+
Supports efficient search on secondary 

attributes 

Hyperdex
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Hyperspace Hashing

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf
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Hyperdex Search
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• In addition to partitioning based on the key, 
each object is stored on additional servers 
based on its secondary attributes

• Combining the hashes of a set of secondary 
attributes forms a hyperspace which can be 
partitioned

• This enables efficient search by limiting the 
number of servers that need to be contacted

• This can be done for multiple sets of attributes
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Hyperspace Hashing

Attribute values are hashed independently
Any hash function may be used

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40 http://hyperdex.org/slides/2013-06-

28-cloudphysics.pdf
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Hyperspace Hashing

Objects reside at the coordinate specified by the hashes

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong

Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf
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Hyperspace Hashing

Different objects reside at different coordinates

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf
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Hyperspace Hashing

• Every object is placed on a server based on its 
primary key (like Cassandra and Chord)

• For each set of attributes (subspace) we would like 
to search by, we will place each object on an 
additional server

• For each object, its attributes are hashed into a point 
in the hyperspace, and object is placed on the server 
responsible for that point
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Hyperspace Hashing

• By specifying more of the secondary attributes, we can 
reduce the number of servers that need to be searched

• If all of the subspace attributes are specified, the search 
is equally efficient as searching by key

• What if the secondary attributes are updated?

Answer : Value dependent Chaning
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Value-Dependent Chaining

• Initially, let’s assume there are no faults
• To perform an update, all of the servers involved are 

organized in a chain
• The server responsible for the primary key is at the head of the chain
• Any server holding the current version of the object is in the chain
• Any server that will hold the updated version of the object is also in the 

chain
• The update is ordered at the head and passed through the 

chain
• Once it reaches the end of the chain, the tail server can 

commit the update, and pass an acknowledgment back 
through the chain

• Updates are not committed until an acknowledgement is 
received from the next server in the chain

Fall ‘19 Sahiti Bommareddy and Yair Amir 40
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Value-Dependent Chaining

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf
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Value-Dependent Chaining

Each put takes a forward pass down the chain and is 
committed during the backward pass

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdfFall ‘19
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Value-Dependent Chaining

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdfFall ‘19 Sahiti Bommareddy and Yair Amir
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Consistency Guarantees

• Any operation that was committed before a search 
will be reflected in its results

• In the presence of concurrent updates, either version 
may be returned, but at least one version of every 
object will be seen

• Because an update can be reflected in a search 
before it is committed, search results may be 
inconsistent with get calls

Fall ‘19 Sahiti Bommareddy and Yair Amir
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Fault Tolerance

• Each server in the chain can be replicated
• Hyperdex uses chain replication, but any 

consistent replication protocol could be used
• If every block of replicas remains available, the 

system remains available
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Fault Tolerance

http://hyperdex.org/slides/2013-06-
28-cloudphysics.pdf
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Hyperdex: Conclusions

• Search can scale by partitioning on attributes other 
than the primary key

• What is the cost?
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Hyperdex: Conclusions

• What is the cost?
• More servers
• Higher latency
• Lower resiliency
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Geo-replicated Key Value Stores
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Build it for the Globe !

So think of replication across data centers.

Some such systems-
• Google’s Spanner
• Consus, logical successor to HyperDex
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