
Yair Amir & Ofir Amir 1 Fall 12/ Lecture 11 

Distributed Systems 
600.437 

Peer to Peer Systems &  
Probabilistic Protocols 

Department of Computer Science 
The Johns Hopkins University 

Yair Amir & Ofir Amir 2 Fall 12/ Lecture 11 

Lecture 11 

Peer to Peer Systems  
and 

Probabilistic Protocols 

Good reading: 
Reliable Distributed Systems by Ken Birman - Chapter 25. 
 
CACM article: http://cacm.acm.org/magazines/2010/10/99498-peer-to-peer-systems/fulltext 



Yair Amir & Ofir Amir 3 Fall 12/ Lecture 11 

Peer to Peer 

•  What’s in a name? 
–  In contrast to “client server” systems. 
–  A catchy name but not very meaningful. A lot of 

what we did in this course is actually peer 
communication between servers. 

•  A better name: client to client. 
–  A different way to construct client-server systems 

where most, or all, of the server functionality 
resides on the clients themselves. 

Yair Amir & Ofir Amir 4 Fall 12/ Lecture 11 

Peer to Peer (cont.) 
•  The promise: 

–  Systems can be made much more scalable and 
reliable when the large number of clients are each 
contributing to the service. 



Yair Amir & Ofir Amir 5 Fall 12/ Lecture 11 

Peer to Peer (cont.) 
•  The promise: 

–  Systems can be made much more scalable and 
reliable when the large number of clients are each 
contributing to the service. 

•  Advantages: 
–  Scalable to very large numbers (millions). 
–  Stable under very high stress. 
–  Self-repairing when disruptive failures occur. 

•  Issues to consider: 
–  Churn: risk of melting down in case of rapid 

membership changes. 
–  Tragedy of the common. 

Yair Amir & Ofir Amir 6 Fall 12/ Lecture 11 

Peer to Peer File Sharing 

•  Peer to peer first application. 
•  A revolutionary way to distribute multimedia. 

–  Extremely popular. 
•  a million downloads of the Napster software per month in 

2000. 
•  Half a million simultaneous Napster users in 2000. 
•  100 Million BitTorrent users in 2011. 

–  Also other kinds of files. 
•  Allows clients to: 

–   Share their own files. 
–   Search files in other clients’ files. 
–   Download other clients’ files.  



Yair Amir & Ofir Amir 7 Fall 12/ Lecture 11 

Napster 

•  Main idea – separation of lookup and service. 
•  Lookup is traditional. 

–  Basically centralized lookup with some 
adaptations. 

–  Clients register with centralized lookup service 
(Napster’s site) and provide their available index. 

–  Search is performed centrally. 
–  Output of search includes the potential locations of 

requested file. 
•  File download is completely peer 2 peer. 

Yair Amir & Ofir Amir 8 Fall 12/ Lecture 11 

Napster (cont.) 



Yair Amir & Ofir Amir 9 Fall 12/ Lecture 11 

Napster Lessons 
•  It is amazing what can be done with one powerful 

centralized server (the lookup service) !!! 
•  Eventually, one centralized server could not keep up. 

They had to move to a centralized and regional 
servers structure. 

•  No control over the clients. 
•  Tragedy of the common: 

–  Clients have incentive to utilize the system. 
–  Clients have no incentive to contribute. 
–  Clients that contribute have incentive to stop contributing. 
–  As clients stop contributing the load on contributing clients 

goes up and their incentive to stop contributing goes up. 
•  It is ironic that Napster could be closed (legally) 

exactly because of the part that actually worked well 
– the centralized lookup.  

Yair Amir & Ofir Amir 10 Fall 12/ Lecture 11 

Genutella 
•  Eliminating the centralized lookup server: 

–  To make it technically harder to close. 
•  Each client (a Gnutella node) is connected to a few 

other nodes. 
•  Each node updates its connection list as nodes come 

and go. 
•  Both lookup and service are distributed. 
•  Lookups are done in phases: 

–  Each lookup phase is conducted as a controlled flood, 
limited by distance. 

–  Flood distance is increased until desired file is located at 
least once. 

•  Pros / Cons ? 



Yair Amir & Ofir Amir 11 Fall 12/ Lecture 11 

eD2K (eDonkey2000) 
•  First released in 2000 (eDonkey original client) 
•  The first major P2P network to support swarming 

–  A file is logically divided into blocks. 
–  Each block can be downloaded from a different source. 
–  Multiple connections speed overall downloads for large 

files. 
•  MetaMachine, the company that developed the 

original eD2K network server and client software 
was shut down around 2005. 

•  The (current) servers are close-source freeware 
•  The eD2K network is still alive and kicking 

(mostly used in Europe) 

Copyright © 

Yair Amir & Ofir Amir 12 Fall 12/ Lecture 11 

Ed2K Search and Connect 

DSLAM CMTS DSLAM CMTS CMTS DSLAM DSLAM CMTS 

IN
TE

R
N

E
T 

C
O

R
E

 
A

C
C

E
S

S
 

John Miki 

  
3b. No result found 

2a. Search “contact” 

1.   Log in 1
3a. Search results 

Karen 

3A 

2A 

ISP Core 

Copyright © 



Yair Amir & Ofir Amir 13 Fall 12/ Lecture 11 

File Chunks Exchange 

DSLAM CMTS DSLAM CMTS CMTS DSLAM DSLAM CMTS 

IN
TE

R
N

E
T 

C
O

R
E

 
A

C
C

E
S

S
 

  

4. Hello, I want this hash, I 
have “list of chunks” 

5. I have “list of chunks” 

6. Request chunk X 

7. Chunk X 

4

5

Miki 

4 5

John 

4
Karen 5

Alan 

6

7

ISP Core 

Copyright © 

Yair Amir & Ofir Amir 14 Fall 12/ Lecture 11 

File Download in Action 

Copyright © 



Yair Amir & Ofir Amir 15 Fall 12/ Lecture 11 

BitTorrent 
•  Protocol does not include content discovery. 

–  Search for content is done outside of the protocol by other 
web-based means. 

•  Each file is an entity by itself. 
–  Each file has a torrent file containing metadata about the file. 

Metadata includes: 
•  Global hash for the file (SHA1). 
•  Size, chunk size and hash for each chunk (SHA1). 
•  List of trackers responsible for this file. 

•  Publisher of the file has to arrange for the trackers 
and the initial “seeder” – a server that has the file. 
–  Computers that complete the download of the file serve as 

seeders. 
–  Computers that are in the process of download are peers 

and can help others peers by providing blocks they already 
got 

Copyright © 

Yair Amir & Ofir Amir 16 Fall 12/ Lecture 11 

BitTorrent (cont) 
•  Swarm based download 

–  Contact tracker to obtain list of peers (and seeders) 
–  Contact peers and exchange information about which blocks 

each has 
–  Request blocks you are missing from peers – each with its 

own TCP connection 
–  While in the process, provide blocks you get requests for 

•  Block download 
–  Request blocks according to Rarest First scheme 
–  Verify each block based on hash in Torrent file 

•  Block uploads 
–  Share blocks you have with other peers 
–  When you have the complete file you become a seed 

Copyright © 



Yair Amir & Ofir Amir 17 Fall 12/ Lecture 11 

DSLAM CMTS DSLAM CMTS CMTS DSLAM DSLAM CMTS 

IN
TE

R
N

E
T 

C
O

R
E

 
A

C
C

E
S

S
 

John Miki 

  
2. Download Torrent 

1. Search Torrent by title 
1

Karen 

2 

BitTorrent Search and Connect 

Copyright © 

Yair Amir & Ofir Amir 18 Fall 12/ Lecture 11 

BitTorrent Search and Connect 

DSLAM CMTS DSLAM CMTS CMTS DSLAM DSLAM CMTS 

IN
TE

R
N

E
T 

C
O

R
E

 
A

C
C

E
S

S
 

John Miki 

  
2. Download Torrent 

1. Search Torrent by title 
1

4. Start Download/Upload with 
Peers 

Karen 

3. Get peer list from tracker 

3 

2 

Miki John 

4 

Copyright © 



Yair Amir & Ofir Amir 19 Fall 12/ Lecture 11 

Trackers and Peer List  
(u torrent client screen) 

Copyright © 

Yair Amir & Ofir Amir 20 Fall 12/ Lecture 11 

File Download in Action 

Copyright © 



Yair Amir & Ofir Amir 21 Fall 12/ Lecture 11 

BitTorrent (cont) 

•  Other interesting points 
–  Tit-for-tat sharing (with some capacity to go beyond that) 
–  Super Seeding – give each peer a different block to better 

handle flash crowds and distribute the file (in addition to 
rarest-first requests) 

–  Web Seeding – allow download from a web site using the 
HTTP protocol (to avoid the need for initial seeder) 

–  Relatively low overhead (about 10%) compared with ED2K 
(with about 40%) 

–  Incorporating Distributed Hash Table (DHT) methods to 
distribute the tracker and avoid this dependency in the 
protocol 

Copyright © 

Yair Amir & Ofir Amir 22 Fall 12/ Lecture 11 

Peer to Peer Distributed Indexing 
•  Distributed (and peer to peer) file systems have two 

parts: 
–  A lookup mechanism that tracks down the node holding the 

object. 
–  A superimposed file system application that actually 

retrieves and stores the files.  

•  Distributed indexing refers to the lookup part. 
–  The Internet DNS is the most successful distributed 

indexing mechanism to date, mapping machine names to IP 
addresses. 

–  Peer to peer indexing tries to generalize the concept to       
(key, value) pairs. 

–  Also called Distributed Hash Table (DHT). 



Yair Amir & Ofir Amir 23 Fall 12/ Lecture 11 

P2P Distributed Indexing (cont.) 

•  So, lets say we want to store a very large number of 
objects and access them based on their key. 

•  How would you implement a (key, value) distributed 
data structure that provides good performance for 
lookup and scales to a million nodes? 

•  … 
•  Now, think about what would you do to ensure 

robustness in the presence of participants coming 
and going. 

Yair Amir & Ofir Amir 24 Fall 12/ Lecture 11 

Chord 

•  Developed at MIT. 
•  Main idea: forming a massive virtual ring 

where every node is responsible for a portion 
of the periphery. 

•  Node IDs and data keys are hashed using the 
same function into a non-negative space. 

•  Each node is responsible for all the 
(key,value) pairs for which the hash result is 
less or equal to the node ID hash result, but 
greater then the next smaller hashed node ID.   



Yair Amir & Ofir Amir 25 Fall 12/ Lecture 11 

Chord Indexing 

Circular 
ID Space 

Node 93 

Node 78 

Node 60, key 60 

Node 32 

Node 10 
Key 5 

Key 11 

Key 30 

Key 33 

Key 50 

Key 95 

Key 72 

Key 88 

Key 81 

Node ID with    
a hash result    
of 93 

(Key, value) pair 
with a hash 
result of 50 

Yair Amir & Ofir Amir 26 Fall 12/ Lecture 11 

Chord Indexing (cont.) 

Circular 
ID Space 

Node 93 

Node 78 

Node 60, key 60 

Node 32 

Node 10 
Key 5 

Key 11 

Key 30 

Key 33 

Key 50 

Key 95 

Key 72 

Key 88 

Key 81 

Node that with 
an ID hash 
result of 93 

(Key, value) pair 
with a hash 
result of 50 



Yair Amir & Ofir Amir 27 Fall 12/ Lecture 11 

Chord Indexing (cont.) 

•  Each node maintains a pointer to the node after it and 
another pointer to the node before it. 

•  A new node contacts an existing node (startup issue) 
and traverses the ring until it finds the node before 
and after it. 

•  A state transfer is performed from the next node on 
the ring in order to accommodate the newly joined 
node. 

•  Lookup can be performed by traversing the ring, 
going one node at a time. Can we do better? 

Yair Amir & Ofir Amir 28 Fall 12/ Lecture 11 

Chord Lookup 

•  Each node maintains a “finger table” that 
serves as short-cuts to nodes at various 
distances within the hash key space. 

•  Question:  
–  How would you construct the “finger table” to 

allow logarithmic search steps? 



Yair Amir & Ofir Amir 29 Fall 12/ Lecture 11 

Chord Lookup (cont.) 

Node 78 

1/2 

1/4 

1/8 

1/16 

1/32 

Finger table 
of node 78 

Yair Amir & Ofir Amir 30 Fall 12/ Lecture 11 

Chord Lookup (cont.) 

Node 93 

Node 78 

Node 60 

Node 32 

Node 10 
Node 98 

Node 43 

Node 50 

Node 25 

Node 20 
Node 87 

Node 81 

Node 65 

Node 5 

Lookup (k19) 

k19 



Yair Amir & Ofir Amir 31 Fall 12/ Lecture 11 

Chord – Issues to Consider 

•  Overall, log(n) hops for lookup in the worst 
case! – very good. 

•  What is a hop? Where are the nodes? Is 
log(n) really good? 

•  What about churn? 
•  Is it really log(n) worst case over time? 
•  How to maintain robustness? 

Yair Amir & Ofir Amir 32 Fall 12/ Lecture 11 

Kelips 
•  Developed at Cornell. 
•  Uses more storage (sqrt(n) instead of log(n) ) 

at each node. 
–  Replicating each item at sqrt(n) nodes. 

•  Aims to achieve O(1) for lookups. 
•  Copes with churn by imposing a constant 

communication overhead. 
–  Although data quality may lag if updates occur too 

rapidly. 
•  How would you do that? 



Yair Amir & Ofir Amir 33 Fall 12/ Lecture 11 

Kelips Lookup 

•  N is approximate number for the number of nodes. 
•  Each node id is hashed into one of sqrt(N) affinity 

groups. 
•  Each key from (key,value) pair is hashed into one of 

the sqrt(N) groups. 
•  Approximately sqrt(N) replicas in each affinity group. 
•  Pointers are maintained to a small number of 

members of each affinity group. 
•  Lookup is O(1). 
•  Weak consistency between the replicas is maintained 

using a reliable multicast protocol based on gossip. 

Yair Amir & Ofir Amir 34 Fall 12/ Lecture 11 

Kelips Lookup (cont.) 

1 2 3 N



Yair Amir & Ofir Amir 35 Fall 12/ Lecture 11 

Probabilistic Broadcast Protocols 

•  A class game demonstrating the probabilistic 
broadcast (pbcast) protocol: 
–  At least n >= 20 logical participants. 
–  Each participant randomly picks 3 numbers 1-n, 

noting the order of their selection. 
–  Playing the game with the first number, then the 

first 2 numbers, then the 3 numbers and looking at 
coverage for a message generated by one 
participant.  

Yair Amir & Ofir Amir 36 Fall 12/ Lecture 11 

P2P Impact 
•  Certainly very refreshing algorithms and interesting 

ways of thinking. 
•  Delivering on the promise. 

–  Will P2P be able to scale beyond more traditional distributed 
servers approaches. 

–  How will management and control issues be handled. 
–  Will there be compelling applications. 

•  Or will it be another set of interesting techniques 
looking for a problem? My personal opinion:  
–  Certainly has an impact (hence the need of ISPs to optimize) 
–  What works on a large scale is managed services (think 

clouds). These will eat most of the P2P lunch for legal 
services. 

–  Still some useful use in certain niches. 


