
Yair Amir & Jeff DallaTezza 1 Fall 14/ Lecture 11

Distributed Systems
600.437

Large-Scale Data Stores &
Probabilistic Protocols

Department of Computer Science
The Johns Hopkins University

Yair Amir & Jeff DallaTezza 2 Fall 14/ Lecture 11

Lecture 11

Large-Scale Data Stores
and

Probabilistic Protocols

Further reading:
* Reliable Distributed Systems by Ken Birman - Chapter 25.
* Cassandra - A Decentralized Structured Storage System –

 Lakshman, Malik
* HyperDex: A Distributed, Searchable Key-Value Store –

 Escriva, Wong, Sirer

Yair Amir & Jeff DallaTezza 3 Fall 14/ Lecture 11

Distributed Indexing
•  Distributed (and peer to peer) file systems have two

parts:
–  A lookup mechanism that tracks down the node holding the

object.
–  A superimposed file system application that actually

retrieves and stores the files.

•  Distributed indexing refers to the lookup part.
–  The Internet DNS is the most successful distributed

indexing mechanism to date, mapping machine names to IP
addresses.

–  Peer to peer indexing tries to generalize the concept to
(key, value) pairs.

–  Also called Distributed Hash Table (DHT).

Yair Amir & Jeff DallaTezza 4 Fall 14/ Lecture 11

Distributed Indexing (cont.)

•  Let us say we want to store a very large number of
objects and access them based on their key.

•  How would you implement a (key, value) distributed
data store that provides good performance for lookup
and scales to hundreds or thousands of nodes?

•  …
•  Now, think about what would you do to ensure

robustness in the presence of participants coming
and going.

Yair Amir & Jeff DallaTezza 5 Fall 14/ Lecture 11

Chord

•  Developed at MIT (2001).
•  Main idea: forming a massive virtual ring

where every node is responsible for a portion
of the periphery.

•  Node IDs and data keys are hashed using the
same function into a non-negative space.

•  Each node is responsible for all the
(key,value) pairs for which the hash result is
less or equal to the node ID hash result, but
greater then the next smaller hashed node ID.

Yair Amir & Jeff DallaTezza 6 Fall 14/ Lecture 11

Chord Indexing

Circular
ID Space

Node 93

Node 78

Node 60, key 60

Node 32

Node 10
Key 5

Key 11

Key 30

Key 33

Key 50

Key 95

Key 72

Key 88

Key 81

Node ID with
a hash result
of 93

(Key, value) pair
with a hash
result of 50

Yair Amir & Jeff DallaTezza 7 Fall 14/ Lecture 11

Chord Indexing (cont.)

Circular
ID Space

Node 93

Node 78

Node 60, key 60

Node 32

Node 10
Key 5

Key 11

Key 30

Key 33

Key 50

Key 95

Key 72

Key 88

Key 81

Node that with
an ID hash
result of 93

(Key, value) pair
with a hash
result of 50

Yair Amir & Jeff DallaTezza 8 Fall 14/ Lecture 11

Chord Indexing (cont.)

•  Each node maintains a pointer to the node after it and
another pointer to the node before it.

•  A new node contacts an existing node (startup issue)
and traverses the ring until it finds the node before
and after it.

•  A state transfer is performed from the next node on
the ring in order to accommodate the newly joined
node.

•  Lookup can be performed by traversing the ring,
going one node at a time. Can we do better?

Yair Amir & Jeff DallaTezza 9 Fall 14/ Lecture 11

Chord Lookup

•  Each node maintains a “finger table” that
serves as short-cuts to nodes at various
distances within the hash key space.

•  Question:
–  How would you construct the “finger table” to

allow logarithmic search steps?

Yair Amir & Jeff DallaTezza 10 Fall 14/ Lecture 11

Chord Lookup (cont.)

Node 78

1/2

1/4

1/8

1/16

1/32

Finger table
of node 78

Yair Amir & Jeff DallaTezza 11 Fall 14/ Lecture 11

Chord Lookup (cont.)

Node 93

Node 78

Node 60

Node 32

Node 10
Node 98

Node 43

Node 50

Node 25

Node 20
Node 87

Node 81

Node 65

Node 5

Lookup (k19)

k19

Yair Amir & Jeff DallaTezza 12 Fall 14/ Lecture 11

Chord – Issues to Consider

•  Overall, log(n) hops for lookup in the worst
case! – very good.

•  What is a hop? Where are the nodes? Is
log(n) really good?

•  What about churn?
•  Is it really log(n) worst case over time?
•  How to maintain robustness?

Yair Amir & Jeff DallaTezza 13 Fall 14/ Lecture 11

Kelips
•  Developed at Cornell (2003).
•  Uses more storage (sqrt(n) instead of log(n))

at each node.
–  Replicating each item at sqrt(n) nodes.

•  Aims to achieve O(1) for lookups.
•  Copes with churn by imposing a constant

communication overhead.
–  Although data quality may lag if updates occur too

rapidly.
•  How would you do that?

Yair Amir & Jeff DallaTezza 14 Fall 14/ Lecture 11

Kelips Lookup

•  N is approximate number for the number of nodes.
•  Each node id is hashed into one of sqrt(N) affinity

groups.
•  Each key from (key,value) pair is hashed into one of

the sqrt(N) groups.
•  Approximately sqrt(N) replicas in each affinity group.
•  Pointers are maintained to a small number of

members of each affinity group.
•  Lookup is O(1).
•  Weak consistency between the replicas is maintained

using a reliable multicast protocol based on gossip.

Yair Amir & Jeff DallaTezza 15 Fall 14/ Lecture 11

Kelips Lookup (cont.)

1 2 3 N

Yair Amir & Jeff DallaTezza 16 Fall 14/ Lecture 11

Probabilistic Broadcast Protocols

•  A class game demonstrating the probabilistic
broadcast (pbcast) protocol:
–  At least n >= 20 logical participants.
–  Each participant randomly picks 4 numbers 1-n,

noting the order of their selection.
–  Playing the game with the first number, then the

first 2 numbers, then 3 and 4 numbers and looking
at coverage for a message generated by one
participant.

Yair Amir & Jeff DallaTezza 17 Fall 14/ Lecture 11

Cassandra: A Distributed Data Store
cassandra.apache.org

•  Key-value data store, supporting get(key) and
put(key, value)

•  Designed to scale to hundreds of servers
•  Initially developed by Facebook, made open

source in 2008
•  Heavily influenced by Amazon’s Dynamo

storage system (which was influenced by
Chord)

Yair Amir & Jeff DallaTezza 18 Fall 14/ Lecture 11

Cassandra: Partitioning

•  Keys are hashed into a bounded space,
which forms a logical ring (like Chord)

•  Servers are placed at different locations on
this ring

•  Every server maintains information about the
position of every other server

•  The nodes responsible for a key are found by
searching clock-wise from the hashed key

•  Data is replicated on the first N servers found

Yair Amir & Jeff DallaTezza 19 Fall 14/ Lecture 11

Partitioning, N=3

B

99 0

F

H

G
D

Hash(k) = 25
A

C

E

I

Yair Amir & Jeff DallaTezza 20 Fall 14/ Lecture 11

Partitioning

B

99 0

F

H

G
D

A

C

E

I

Load can be rebalanced
by moving nodes

Yair Amir & Jeff DallaTezza 21 Fall 14/ Lecture 11

Cassandra: Partitioning (cont)

•  Changes in node positions (from membership
changes or rebalancing) are handled by one
node designated as the leader

•  The leader stores these updates in Zookeeper
(separate system using Paxos) for fault tolerance

•  In case of a leader failure, a new leader is
elected using Zookeeper

•  Changes are disseminated probabilistically
•  Every second, each node exchanges information

with two random nodes

Yair Amir & Jeff DallaTezza 22 Fall 14/ Lecture 11

Cassandra: Replication
Read/Write Quorums

•  If data is stored on N replicas, users can
configure two values, R and W

•  R is the minimum number of replicas that
must participate for a read operation

•  W is the minimum number of replicas that
must participate for a read operation

•  As long as R + W > N, every read quorum will
contain a node with the latest write

Yair Amir & Jeff DallaTezza 23 Fall 14/ Lecture 11

Executing Put(key, value)

•  Send put request to any node, which will act
as the coordinator for that request

•  Coordinator forwards the update to the
relevant N replicas

•  After W of those replicas have acknowledged
the update, the coordinator can tell the client
that the write was successful

Yair Amir & Jeff DallaTezza 24 Fall 14/ Lecture 11

Executing Get(key)

•  Send get request to any node, which will act
as the coordinator

•  Coordinator requests the object from the
relevant N nodes

•  After R of those replicas respond, the
coordinator returns the most recent version
held by any of the replicas

Yair Amir & Jeff DallaTezza 25 Fall 14/ Lecture 11

Executing Get(key)

How is the most recent version determined?

Coordinators give each write update a
timestamp, based on its local clock

Yair Amir & Jeff DallaTezza 26 Fall 14/ Lecture 11

Clock-based Timestamps

•  Each put is given a timestamp by the
coordinator responsible for that update

•  If a replica receives an update with a lower
timestamp than its current version, it ignores
the update, but acknowledges that the write
was successful

•  If the clocks on different coordinators drift,
this can cause unexpected behavior

Yair Amir & Jeff DallaTezza 27 Fall 14/ Lecture 11

Example: Losing an update

R

C1 C2

Put(k,1)

Put(k,1, T=20)

(k,1, 20)

Get(k)

Client

Put(k,2)

Put(k, 2, T=19)

Let’s say C2 has a
slower clock

Yair Amir & Jeff DallaTezza 28 Fall 14/ Lecture 11

Hyperdex: A Distributed Data Store
hyperdex.org

•  A large-scale sharded key-value data store
(2012)

•  Supports get, put, and atomic operations
such as conditional puts and atomic addition

•  All operations on a single key are linearizable
•  Supports efficient search on secondary

attributes

Yair Amir & Jeff DallaTezza 29 Fall 14/ Lecture 11

Search

•  In addition to partitioning based on the key, each
object is stored on additional servers based on its
secondary attributes

•  Combining the hashes of a set of secondary
attributes forms a hyperspace which can be
partitioned

•  This enables efficient search by limiting the
number of servers that need to be contacted

•  This can be done for multiple sets of attributes

Yair Amir & Jeff DallaTezza 30 Fall 14/ Lecture 11

Hyperspace Hashing

Attribute values are hashed independently
Any hash function may be used

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40 http://hyperdex.org/slides/

2013-06-28-cloudphysics.pdf

Yair Amir & Jeff DallaTezza 31 Fall 14/ Lecture 11

Hyperspace Hashing
Objects reside at the coordinate specified by the hashes

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong

Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf

Yair Amir & Jeff DallaTezza 32 Fall 14/ Lecture 11

Hyperspace Hashing

Different objects reside at different coordinates

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf

Yair Amir & Jeff DallaTezza 33 Fall 14/ Lecture 11

Hyperspace Hashing

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf

Yair Amir & Jeff DallaTezza 34 Fall 14/ Lecture 11

Hyperspace Hashing

•  By specifying more of the secondary
attributes, we can reduce the number of
servers that need to be searched

•  If all of the subspace attributes are specified,
the search is equally efficient as searching by
key

•  What if the secondary attributes are updated?

Yair Amir & Jeff DallaTezza 35 Fall 14/ Lecture 11

Value-Dependent Chaining

•  To perform an update, all of the servers involved are organized
in a chain
–  The server responsible for the primary key is at the head of the chain
–  Any server holding the current version of the object is in the chain
–  Any server that will hold the updated version of the object is also in the

chain
•  The update is ordered at the head and passed through the chain
•  Once it reaches the end of the chain, the tail server can commit

the update, and pass an acknowledgment back through the
chain

•  Updates are not committed until an acknowledgement is
received from the next server in the chain

Yair Amir & Jeff DallaTezza 36 Fall 14/ Lecture 11

Value-Dependent Chaining

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf

Yair Amir & Jeff DallaTezza 37 Fall 14/ Lecture 11

Value-Dependent Chaining

Each put takes a forward pass down the chain and is
committed during the backward pass

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf

Yair Amir & Jeff DallaTezza 38 Fall 14/ Lecture 11

Value-Dependent Chaining

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf

Yair Amir & Jeff DallaTezza 39 Fall 14/ Lecture 11

Consistency Guarantees

•  Any operation that was committed before a
search will be reflected in its results

•  In the presence of concurrent updates, either
version may be returned, but at least one
version of every object will be seen

•  Because an update can be reflected in a
search before it is committed, search results
may be inconsistent with get calls

Yair Amir & Jeff DallaTezza 40 Fall 14/ Lecture 11

Fault Tolerance

•  Each server in the chain can be replicated
•  Hyperdex uses chain replication, but any

consistent replication protocol could be used
•  If every block of replicas remains available,

the system remains available

Yair Amir & Jeff DallaTezza 41 Fall 14/ Lecture 11

Fault Tolerance

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf

