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* Reliable Distributed Systems by Ken Birman - Chapter 25. 
* Cassandra - A Decentralized Structured Storage System –     

 Lakshman, Malik 
* HyperDex: A Distributed, Searchable Key-Value Store – 

 Escriva, Wong, Sirer 
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Distributed Indexing 
•  Distributed (and peer to peer) file systems have two 

parts: 
–  A lookup mechanism that tracks down the node holding the 

object. 
–  A superimposed file system application that actually 

retrieves and stores the files.  

•  Distributed indexing refers to the lookup part. 
–  The Internet DNS is the most successful distributed 

indexing mechanism to date, mapping machine names to IP 
addresses. 

–  Peer to peer indexing tries to generalize the concept to       
(key, value) pairs. 

–  Also called Distributed Hash Table (DHT). 
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Distributed Indexing (cont.) 

•  Let us say we want to store a very large number of 
objects and access them based on their key. 

•  How would you implement a (key, value) distributed 
data store that provides good performance for lookup 
and scales to hundreds or thousands of nodes? 

•  … 
•  Now, think about what would you do to ensure 

robustness in the presence of participants coming 
and going. 
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Chord 

•  Developed at MIT (2001). 
•  Main idea: forming a massive virtual ring 

where every node is responsible for a portion 
of the periphery. 

•  Node IDs and data keys are hashed using the 
same function into a non-negative space. 

•  Each node is responsible for all the 
(key,value) pairs for which the hash result is 
less or equal to the node ID hash result, but 
greater then the next smaller hashed node ID.   
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Chord Indexing 
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Chord Indexing (cont.) 
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Chord Indexing (cont.) 

•  Each node maintains a pointer to the node after it and 
another pointer to the node before it. 

•  A new node contacts an existing node (startup issue) 
and traverses the ring until it finds the node before 
and after it. 

•  A state transfer is performed from the next node on 
the ring in order to accommodate the newly joined 
node. 

•  Lookup can be performed by traversing the ring, 
going one node at a time. Can we do better? 
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Chord Lookup 

•  Each node maintains a “finger table” that 
serves as short-cuts to nodes at various 
distances within the hash key space. 

•  Question:  
–  How would you construct the “finger table” to 

allow logarithmic search steps? 
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Chord Lookup (cont.) 
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Chord Lookup (cont.) 
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Chord – Issues to Consider 

•  Overall, log(n) hops for lookup in the worst 
case! – very good. 

•  What is a hop? Where are the nodes? Is 
log(n) really good? 

•  What about churn? 
•  Is it really log(n) worst case over time? 
•  How to maintain robustness? 
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Kelips 
•  Developed at Cornell (2003). 
•  Uses more storage (sqrt(n) instead of log(n) ) 

at each node. 
–  Replicating each item at sqrt(n) nodes. 

•  Aims to achieve O(1) for lookups. 
•  Copes with churn by imposing a constant 

communication overhead. 
–  Although data quality may lag if updates occur too 

rapidly. 
•  How would you do that? 
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Kelips Lookup 

•  N is approximate number for the number of nodes. 
•  Each node id is hashed into one of sqrt(N) affinity 

groups. 
•  Each key from (key,value) pair is hashed into one of 

the sqrt(N) groups. 
•  Approximately sqrt(N) replicas in each affinity group. 
•  Pointers are maintained to a small number of 

members of each affinity group. 
•  Lookup is O(1). 
•  Weak consistency between the replicas is maintained 

using a reliable multicast protocol based on gossip. 
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Kelips Lookup (cont.) 

1 2 3 N
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Probabilistic Broadcast Protocols 

•  A class game demonstrating the probabilistic 
broadcast (pbcast) protocol: 
–  At least n >= 20 logical participants. 
–  Each participant randomly picks 4 numbers 1-n, 

noting the order of their selection. 
–  Playing the game with the first number, then the 

first 2 numbers, then 3 and 4 numbers and looking 
at coverage for a message generated by one 
participant.  
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Cassandra: A Distributed Data Store  
cassandra.apache.org 

•  Key-value data store, supporting get(key) and 
put(key, value) 

•  Designed to scale to hundreds of servers 
•  Initially developed by Facebook, made open 

source in 2008 
•  Heavily influenced by Amazon’s Dynamo 

storage system (which was influenced by 
Chord) 
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Cassandra: Partitioning 

•  Keys are hashed into a bounded space, 
which forms a logical ring (like Chord) 

•  Servers are placed at different locations on 
this ring 

•  Every server maintains information about the 
position of every other server 

•  The nodes responsible for a key are found by 
searching clock-wise from the hashed key 

•  Data is replicated on the first N servers found 
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Cassandra: Partitioning (cont) 

•  Changes in node positions (from membership 
changes or rebalancing) are handled by one 
node designated as the leader 

•  The leader stores these updates in Zookeeper 
(separate system using Paxos) for fault tolerance 

•  In case of a leader failure, a new leader is 
elected using Zookeeper 

•  Changes are disseminated probabilistically 
•  Every second, each node exchanges information 

with two random nodes 

Yair Amir & Jeff DallaTezza 22 Fall 14/ Lecture 11 

Cassandra: Replication  
Read/Write Quorums 

•  If data is stored on N replicas, users can 
configure two values, R and W 

•  R is the minimum number of replicas that 
must participate for a read operation 

•  W is the minimum number of replicas that 
must participate for a read operation 

•  As long as R + W > N, every read quorum will 
contain a node with the latest write 
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Executing Put(key, value) 

•  Send put request to any node, which will act 
as the coordinator for that request 

•  Coordinator forwards the update to the 
relevant N replicas 

•  After W of those replicas have acknowledged 
the update, the coordinator can tell the client 
that the write was successful 
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Executing Get(key) 

•  Send get request to any node, which will act 
as the coordinator 

•  Coordinator requests the object from the 
relevant N nodes 

•  After R of those replicas respond, the 
coordinator returns the most recent version 
held by any of the replicas 
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Executing Get(key) 

How is the most recent version determined? 
 

Coordinators give each write update a 
timestamp, based on its local clock 
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Clock-based Timestamps 

•  Each put is given a timestamp by the 
coordinator responsible for that update 

•  If a replica receives an update with a lower 
timestamp than its current version, it ignores 
the update, but acknowledges that the write 
was successful 

•  If the clocks on different coordinators drift, 
this can cause unexpected behavior 
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Example: Losing an update 

R 
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Put(k,1) 

Put(k,1, T=20) 

(k,1, 20) 

Get(k) 
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Put(k,2) 

Put(k, 2, T=19) 

Let’s say C2 has a 
slower clock 
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Hyperdex: A Distributed Data Store 
hyperdex.org 

•  A large-scale sharded key-value data store 
(2012) 

•  Supports get, put, and atomic operations 
such as conditional puts and atomic addition 

•  All operations on a single key are linearizable 
•  Supports efficient search on secondary 

attributes 
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Search 

•  In addition to partitioning based on the key, each 
object is stored on additional servers based on its 
secondary attributes 

•  Combining the hashes of a set of secondary 
attributes forms a hyperspace which can be 
partitioned 

•  This enables efficient search by limiting the 
number of servers that need to be contacted 

•  This can be done for multiple sets of attributes 
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Hyperspace Hashing 

Attribute values are hashed independently
Any hash function may be used

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40 http://hyperdex.org/slides/

2013-06-28-cloudphysics.pdf 
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Hyperspace Hashing 
Objects reside at the coordinate specified by the hashes

First Name
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H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong

Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf 
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Hyperspace Hashing 

Different objects reside at different coordinates

First Name

Phone Number

Last Name

H(“Neil”)

H(“607-555-1024”)

H(“Armstrong”)

Neil Armstrong
Lance Armstrong
Neil Diamond

Emin Gün Sirer Robert Escriva, Bernard Wong
HyperDex: Next Generation NoSQLhttp://hyperdex.org/ 9
/ 40

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf 
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Hyperspace Hashing 

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf 
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Hyperspace Hashing 

•  By specifying more of the secondary 
attributes, we can reduce the number of 
servers that need to be searched 

•  If all of the subspace attributes are specified, 
the search is equally efficient as searching by 
key 

•  What if the secondary attributes are updated? 
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Value-Dependent Chaining 

•  To perform an update, all of the servers involved are organized 
in a chain 
–  The server responsible for the primary key is at the head of the chain 
–  Any server holding the current version of the object is in the chain 
–  Any server that will hold the updated version of the object is also in the 

chain 
•  The update is ordered at the head and passed through the chain 
•  Once it reaches the end of the chain, the tail server can commit 

the update, and pass an acknowledgment back through the 
chain 

•  Updates are not committed until an acknowledgement is 
received from the next server in the chain 
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Value-Dependent Chaining 

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf 
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Value-Dependent Chaining 

Each put takes a forward pass down the chain and is 
committed during the backward pass 

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf 
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Value-Dependent Chaining 

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf 
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Consistency Guarantees 

•  Any operation that was committed before a 
search will be reflected in its results 

•  In the presence of concurrent updates, either 
version may be returned, but at least one 
version of every object will be seen 

•  Because an update can be reflected in a 
search before it is committed, search results 
may be inconsistent with get calls 

Yair Amir & Jeff DallaTezza 40 Fall 14/ Lecture 11 

Fault Tolerance 

•  Each server in the chain can be replicated 
•  Hyperdex uses chain replication, but any 

consistent replication protocol could be used 
•  If every block of replicas remains available, 

the system remains available 
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Fault Tolerance 

http://hyperdex.org/slides/
2013-06-28-cloudphysics.pdf 


