
Yair Amir 1Fall 21 / Lecture 5

Distributed Systems
601.417

Asynchronous Models for Consensus

Department of Computer Science
The Johns Hopkins University

Yair Amir 2Fall 21 / Lecture 5

Asynchronous Models
For Consensus

Lecture 5

[FLP85] Fischer, Lynch and Paterson. Impossibility of Distributed
Consensus with One Faulty Process. Journal of the ACM,
32, pages 374-382. April 1985.

Further reading:

Distributed Algorithms
Nancy Lynch,
Morgan Kaufmann Publishers, 1996.

Yair Amir 3Fall 21 / Lecture 5

Distributed Consensus

Problem 1- Consensus, synchronous settings,
unreliable communication : impossible.

Yair Amir 4Fall 21 / Lecture 5

Distributed Consensus

Problem 1- Consensus, synchronous settings,
unreliable communication : impossible.

Problem 2 - Consensus, asynchronous settings,
unreliable communication :
impossible

(Problem 1 is a special case of Problem 2).

Yair Amir 5Fall 21 / Lecture 5

The Asynchronous Model

• Asynchronous setting
• Complete network graph
• Reliable FIFO unicast communication
• Deterministic processes, {0,1} initial values
• Fail-stop failures of processes are possible

(remember that this is solvable in a
synchronous setting)

Yair Amir 6Fall 21 / Lecture 5

Solution Requirements for
Consensus

• Agreement: All correct processes decide on
the same value

• Validity: If a correct process decides on a
value, then there was a process that started
with that value

• Termination: All processes that do not fail
eventually decide

Yair Amir 7Fall 21 / Lecture 5

Impossibility Result (FLP[85])
Definitions:
- x-fair execution: executions in which all
channels execute fairly, and all processes but
at-most x execute fairly

- 0-RCP : (0-resilient consensus protocol) - a
protocol that solves consensus in all 0-fair
executions

- 1-RCP: a protocol that solves consensus in all
0-fair and 1-fair executions

Yair Amir 8Fall 21 / Lecture 5

FLP[85] (Cont.)

FLP: There is no 1-Resilient Consensus
Protocol !

Question1: Can you think of a 0-Resilient
Consensus Protocol?

Question2: what can be problematic if one of
the processes may crash?

Yair Amir 9Fall 21 / Lecture 5

More Definitions...
-A finite execution a is 0-valent if 0 is the only
decision value in all extensions of a
-A finite execution a is 1-valent if 1 is the only
decision value in all extensions of a
- a is bivalent if it is neither 0-valent nor 1-valent.

Lemma 1:

In any 1-Resilient Consensus Protocol
there is a bivalent initial execution

Yair Amir 10Fall 21 / Lecture 5

Proof of Lemma 1
• If (i1, i2, ..., in) = (0, 0, ..., 0) => decision is 0
• If (i1, i2, ..., in) = (1, 1, ..., 1) => decision is 1

• Assume that each vector (i1, i2, ..., in) is
univalent

• Look at: (0, 0, …, 0, 0), (1, 0, …, 0, 0), (1, 1, …
0, 0), … , (1, 1, … ,1, 0), (1, 1, …, 1, 1)

• from all the above, there exists two starting
vectors that are identical except for one entry
of some processor p, where v0 is 0-valent and
v1 is 1-valent

• Kill p at the beginning to reach a contradiction

Yair Amir 11Fall 21 / Lecture 5

A Decider

• Execution a is bivalent.
• There exists 0-valent extension a0 of a such

that the suffix after a consists of steps of p
only.

• There exists 1-valent extension a1 of a such
that the suffix after a consists of steps of p
only.

A Decider for algorithm A consists of execution a
of algorithm A and a process p such that:

Yair Amir 12Fall 21 / Lecture 5

Illustration of a decider

- p may receive a message and then send a
message or send a message and then receive
a message

- Alternatively p may receive 2 messages at
different orders

a

a0 a1 (only p moves)(only p moves)

bivalent

0-valent 1-valent

Yair Amir 13Fall 21 / Lecture 5

Correctness of FLP

Lemma 2:

Let A be a 1-RCP with a bivalent initial execution.
There exists a decider for A.

-- FLP is correct if Lemmas 1 and 2 are correct:

Why?

Lemma 1: In any 1-RCP there is a bivalent initial

execution

Together they mean that :

in any 1-RCP there exists a decider.

Yair Amir 14Fall 21 / Lecture 5

Correctness of FLP (Cont.)

-- FLP is correct if Lemmas 1 and 2 are correct:

a

a0
a1

a2 p fail-stop after a
assume (WLG)

that q decides 0
0-valent 1-valent a’2

q has to decide

0 if we delay p’s messages

and this is a contradiction.

bivalent

Note: only p moves in a0, a1

Yair Amir 15Fall 21 / Lecture 5

Proof of Lemma 2

For 1-RCP, we can delay messages from one
process and still expect termination (!)

Suppose that after a, a bivalent execution, the
delivery of m to p yields a univalent execution.
WLG assume it yields 0-valent.

a
m delivered (to p)

o-valent

1
somewhere there
will be a -->

Yair Amir 16Fall 21 / Lecture 5

Proof of Lemma 2 (cont.)

To reach a 1-valent extension of a there are
two possibilities:

1. m is not delivered before decision is reached
2. m is delivered somewhere before decision is

reached

In the first case, we deliver m after the decision
is reached (i.e. after reaching a 1-valent
execution.)

Yair Amir 17Fall 21 / Lecture 5

Proof of Lemma 2 (cont..)

m delivered

0-valentm delivered

1/0-valent

m delivered

1-valent

0-valent

m delivered (to p)

Case 1 Case 2

a a

bivalent

In case 2, pick another message m’

further down. This going down process

has to be finite because of termination.

m delivered

0/1-valent

Yair Amir 18Fall 21 / Lecture 5

Proof of Lemma 2 (end)

m delivered (to p)
0-valentm delivered

0-valent

1-valent

a

1-valent
1-valent

0-valent

We stick the delivery of m after each step (look at Case 1)

There has to be
a step which before
it we have 0-valent
and after 1-valent.

This step has to be
made by p.

This is a decider!

Yair Amir 19Fall 21 / Lecture 5

So, What can be done???

We need to pay something
in order to gain something else.

What can we pay?
(what can we gain?)

Yair Amir 20Fall 21 / Lecture 5

A Randomize Protocol for
Consensus

A complete network graph (clique)
n - total number of processes.
f - total number of faulty processes.
Assumption: n > 5f.

This algorithm solves a more complex problem
where the failure model is Byzantine, i.e. the
failed processes can send arbitrary messages
to arbitrary processes (may lie),
or may fail.

Yair Amir 21Fall 21 / Lecture 5

The protocol (Ben-Or variation)
Round=0; x = initial value
Do Forever:

Round = Round + 1

Step 1

Step 2

Step 1:

Send Proposal(Round,x) to all processes

wait for n-f messages of type Proposal(Round,*)

if at least n-2f messages have the same value v

then x = v (that value)
else x = undefined

Yair Amir 22Fall 21 / Lecture 5

The Protocol (cont.)

Step 2:
Send Bid(Round,x) to all processes
wait for n-f messages of type Bid(Round,*)
v is the real value (0/1) occurring most often
and m is the number of occurrences of v
if m >= 3f+1

then Decide (x=v)
else if m >= f+1

then x = v
else x = random (0 or 1)

Yair Amir 24Fall 21 / Lecture 5

Other Ways to Bypass The
Impossibility Result

• To allow the protocol not to guarantee
agreement.

• To allow the protocol not to always terminate
at all correct members:
– The Transis membership can exclude live but
“slow” processes from the membership, and will
reach “agreement” among the connected
members.

