
Yair Amir 1Fall 21/ Lecture 7

Distributed Systems
600.417

Replication

Department of Computer Science
The Johns Hopkins University

Yair Amir 2Fall 21/ Lecture 7

Lecture 7

Replication

Further readings:
• Distributed Systems (second edition) Sape Mullender, chapters 7,8

(Addison-Wesley) 1994.
• Concurrency Control and Recovery in Distributed Database Systems

Bernstein, Hadzilacos and Goodman (Addison Wesley) 1987.
• From Total Order to Database Replication ICDCS 2002 (www.dsn.jhu.edu)
• Paxos Made Simple, Leslie Lamport ACM Sigact News 2001
• Paxos for System Builders: An Overview LADIS 2008 (www.dsn.jhu.edu)
• Raft: In Search of an Understandable Consensus Algorithm USENIX 2014

https://raft.github.io/

Yair Amir 3Fall 21/ Lecture 7

Replication

• Benefits of replication:
– High Availability.
– High Performance.

• Costs of replication:
– Synchronization.

• Requirements from a generic solution:
– Strict consistency – one copy serializability.
– Sometimes too expensive so requirements are

tailored to applications.

Yair Amir 4Fall 21/ Lecture 7

Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)

• Quorum (primary component) methods with state
machine replication
– Congruity: Virtual Synchrony based replication
– Paxos: Leader based replication

– Raft: Leader based replication with better understandability

• Analysis and summary

Yair Amir 5Fall 21/ Lecture 7

Two Phase Commit
Server TCP/IP TCP/IP Server

Forced disk write

Lazy disk write

Send decision

Yair Amir 6Fall 21/ Lecture 7

Two Phase Commit

• Built for updating distributed databases
• Can be used for the special case of

replication
• Consistent with a generic update model
• In contrast to the distributed transaction case,

we do not need all replicas to agree (and
hence to participate) in committing each
update (each participant has the same state)
– a quorum is sufficient, making this method
not as good of a fit

Yair Amir 7Fall 21/ Lecture 7

Primary and Backups

• Backups are maintained for availability only
• Backups can improve performance for reads,

updates are sent to the primary by the user
– What is the query semantics? How can one

copy serializability be achieved?
• The user interacts with one copy, and if it is a

backup, the updates are sent to the primary
– What is the query semantics with regards to

our own updates?

Possible options:

Yair Amir 8Fall 21/ Lecture 7

Primary and Backups (1)

P B B

Yair Amir 9Fall 21/ Lecture 7

Primary and Backups (2)

P B B

Yair Amir 10Fall 21/ Lecture 7

Primary and Backups (3)

P B B

Yair Amir 11Fall 21/ Lecture 7

Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)

• Quorum (primary component) methods with state
machine replication
– Congruity: Virtual Synchrony based replication.
– Paxos: Leader based replication

– Raft: Leader based replication with better understandability

• Analysis and summary

Yair Amir 12Fall 21/ Lecture 7

Weak Consistency
(weaker update semantics)

• State kept by the replication servers can be weakly consistent

i.e. copies are allowed to diverge temporarily. They will

eventually come to agreement assuming commutative update

semantics (for applications where updates can be executed in

any order to reach the same state)

• From time to time, a server picks another server and these two

servers exchange updates and converge to the same state

• The same method can be used to support strong semantics if

total order is obtained by getting one message from every server

(e.g. by using Lamport time stamps to order messages) but that

would not be live if the network partitions

The Anti-Entropy method

Yair Amir 13Fall 21/ Lecture 7

The Anti-Entropy method

1 3 5 12

2

2 3 4

A

B

C

Knowledge at Server A

1 3

5 62

2

9 11

A

B

C

Knowledge at Server B

12

2

4

3

11

2

Summary A Summary B

Numbers refer to Lamport time stamps.

Yair Amir 14Fall 21/ Lecture 7

The Anti-Entropy Method (cont.)

1 3 5 12

2

2 3 4

A

B

C

Knowledge at Server A

1 3

5 62

2

9 11

A

B

C

Knowledge at Server B

12

2

4

3

11

2

Summary A Summary B

12

11

4
Summary
After merge

Yair Amir 15Fall 21/ Lecture 7

The Anti-Entropy Method (cont.)

A

B

C

Knowledge at Server A

1 3

5 62

2

9 11

A

B

C

Knowledge at Server B

Summary A Summary B 12

11

4

5 12

3 4

1 3

5 62

2

9 11

5 12

3 4

12

11

4

Yair Amir 16Fall 21/ Lecture 7

Eventual Path Propagation

mx

mx

mx

my

my

my

Partitioned system

Yair Amir 17Fall 21/ Lecture 7

Eventual Path Propagation
(cont.)

mx

mx

mx

my

my

my

Further partitioning

Yair Amir 18Fall 21/ Lecture 7

Eventual Path Propagation
(cont.)

mx

mx

my

Merging

mx my mx my

mx my

Yair Amir 19Fall 21/ Lecture 7

Eventual Path Propagation
(cont.)

mx

mx

Further merging

mx my

mx my

mx my

mx my

Yair Amir 20Fall 21/ Lecture 7

Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)
• Quorum (primary component) methods with state

machine replication
– Congruity: Virtual Synchrony based replication.
– Paxos: Leader based replication
– Raft: Leader based replication with better understandability

• Analysis and summary

Yair Amir 21Fall 21/ Lecture 7

State Machine Replication

• Servers start in the same state
• Servers change their state only when they

execute an update
• State changes are deterministic. Two

servers in the same state will move to
identical states, if they execute the same
update

• If servers execute updates in the same
order, they will progress through exactly the
same states. State Machine Replication!

Yair Amir 22Fall 21/ Lecture 7

State Machine Replication Example
• Our State: one variable
• Operations (cause state changes)

Op 1) + n : Add n to our variable
Op 2) ?v:n : If variable = v, then set it to n

• Start: All servers have variable = 0
• If we apply the above operations in the same order,

then the servers will remain consistent

+2 +2
v=0 v=0

v=2v=2
+1 +1

v=3v=3
?3:9?3:9
v=9v=9

+2 +2
v=0 v=0

v=2v=2
+1

+1
v=2v=3

?3:9

?3:9
v=3v=9

Yair Amir 23Fall 21/ Lecture 7

State Machine Replication

A,1

A,2 C,2

B,1

B,2

B,3

C,1

A,1

B,1

B,2

A,1

B,1

B,2

A,1

B,1

B,2

C,1C,1C,1

ESTABLISH ORDER

D,1

Apply
Updates

Clients Generate
Updates

Yair Amir 24Fall 21/ Lecture 7

Quorum

• A quorum can proceed with updates.
– Remember that for distributed transactions, every DM

had to agree
– But in the more specific problem of replication, a

quorum can continue (not all DM have to agree)
• When the network connectivity changes, if there is a

quorum, the members can continue with updates
• Dynamic methods will allow the next quorum to be

formed based on the current quorum
– Dynamic Linear Voting: the next quorum is a majority of

the current quorum
– Useful to put a minimum cap on the size of a viable

quorum to avoid relying on too few specific remaining
replicas, which can lead to potential vulnerability

Yair Amir 25Fall 21/ Lecture 7

Group Communication “Tools”

• Efficient message delivery
– Group multicast

• Message delivery and ordering guarantees
– Reliable delivery
– FIFO and Causal orders
– Agreed order
– Safe delivery

• Partitionable Group Membership
• Strong semantics (what is actually needed?)

Yair Amir 26Fall 21/ Lecture 7

Congruity: Virtual-Synchrony based
replication

Group
Communication

Replication
Server

Application

Send Receive

Generate Deliver

Request

Apply

Reply

Medium

DB

Group
Communication

Replication
Server

Application

Messages

Actions

DB

Yair Amir 27Fall 21/ Lecture 7

Congruity: The Basic Idea
• Reduce database replication to Global
Consistent Persistent Order
– Use group communication ordering to establish

the Global Consistent Persistent Order on the
updates.

– deterministic + serialized = consistent

• Group Communication membership +
quorum = primary component.
– Only replicas in the primary component can

commit updates.
– Updates ordered in a primary component are

marked green and applied. Updates ordered in a
non-primary component are marked red and will
be delayed.

Yair Amir 28Fall 21/ Lecture 7

Action Ordering

Order is unknown

Order is known

(I know that)
Order is known to all

(Red)

(Green)

(White)

Yair Amir 29Fall 21/ Lecture 7

Congruity:
Conceptual State Machine

Construct

Prim Exchange Non
Prim

Update (Green) Update (Red)

No Primary

Membership
Change

Membership
Chage

Memebrship
Change

Possible
Primary

Last Create
Primary Message

Recover

Yair Amir 30Fall 21/ Lecture 7

Not so simple…

• Virtual Synchrony: If s1 and s2 move directly
from membership M1 to M2, then they deliver the
same ordered set of messages in M1.
– What about s3 that was part of M1but is not part of

M2?

• Total (Agreed) Order with no holes is not
guaranteed across partitions or server
crashes/recoveries!

u1

u1

S1:
M1

M1

M1

M2

M2

M3

u1

u2

u2

?
S2:

S3:

Yair Amir 31Fall 21/ Lecture 7

Delicate Points
• s3 receives update u in Prim and commits it right before

a partition occurs, but s1 and s2 do not receive u. If s1
and s2 will form the next primary component, they will
commit new updates, without knowledge of u!!

• s1 receives all CPC messages in Construct, and moves
to Prim, but one of the servers that were with s1 in
Construct does not receive the last CPC message. A
new primary is created possibly without having the
desired majority!!

u

S1:
M1

M1

M1

M2

M2

M3

S2:

S3:

M4

M4

M4

u’

u’ ?

?

?

Yair Amir 32Fall 21/ Lecture 7

Virtual Synchrony

• Regular and Transitional membership notifications

• Safe message = Agreed plus every server in the current

membership will deliver the message unless it crashes.

• Safe delivery breaks the two-way uncertainty into 3

possible scenarios, the extremes being mutually

exclusive!

S1:

S2:

S3:

u

u

1

?

0

M1

M1

M1

M2

M3

M4

Yair Amir 33Fall 21/ Lecture 7

Action Ordering

Order is unknown

Order is known

(I know that)
Order is known to all

Transitional membership

(Red)

(Green)

(White)

(Yellow)

Yair Amir 34Fall 21/ Lecture 7

Congruity State Diagram

Reg
Prim

Trans
Prim

Exchange
States

Non
Prim

Construct

Trans Memb

Exchange
MessagesUn No

Last
CPCLast

CPC

Last
State

Possible
Prim

No Prim
or

Trans Memb

Recover

Trans Memb

Reg MembReg Memb
Trans Memb

Reg Memb

Reg MembUpdate

update (Red)Update (Yellow)Update (Green)

1a 1b ? 0

[ICDCS02]

Yair Amir 35Fall 21/ Lecture 7

Latency Comparison

Server GC GC Server

Forced disk write

Lazy disk write

Yair Amir 36Fall 21/ Lecture 7

Latency Comparison

Forced disk write

Lazy disk write

Server GC GC Server

Yair Amir 37Fall 21/ Lecture 7

Congruity Recap

• Knowledge propagation
– Eventual Path Propagation

• Amortizing end-to-end acknowledgments
– Low level Ack derived from Safe Delivery of group

communication
– End-to-end Ack upon membership changes

• Primary component selection
– Dynamic Linear Voting

Yair Amir 38Fall 21/ Lecture 7

Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)
• Quorum (primary component) methods with state

machine replication
– Congruity: Virtual Synchrony based replication
– Paxos: Leader based replication
– Raft: Leader based replication with better understandability

• Analysis and summary

Yair Amir 39Fall 21/ Lecture 7

What about Dynamic Networks?
• Group communication requires stable

membership to work well
– If membership is not stable, group communication

based scheme will spend a lot of time
synchronizing

• A more robust replication algorithm is needed
for such environments – Paxos
– Requires a stable-enough network to elect a

leader that will stay stable for a while
– Requires a (potentially changing) majority of

members to support the leader (in order to make
progress)

Yair Amir 40Fall 21/ Lecture 7

Simple Replication

• Server sends update, u, to Leader
• Leader assigns a sequence number, s, to u, and sends the

update to the non-leader servers.
• Servers order update u with sequence number s.

u

u

u,s

u,s

u,s

u,s

u,s

Is this resilient?
If leader fails,
then the system is
not live!

Can we use a Leader to
establish an order?

Yair Amir 41Fall 21/ Lecture 7

How can we improve resiliency?
Elect another leader.

Use more messages.

Assign a sequence number to each leader. (Views)

First… We need to describe our system model
and service properties.

Use the fact that two sets, each having at least a
majority of servers, must intersect!

Yair Amir 42Fall 21/ Lecture 7

Paxos System Model

• N servers
– Uniquely identified in {1…N}

• Asynchronous communication
– Message loss, duplication, and delay
– Network partitions
– No message corruption

• Benign faults
– Crash/recovery with stable storage
– No Byzantine behavior

Yair Amir 43Fall 21/ Lecture 7

What is Safety?

•

Yair Amir 44Fall 21/ Lecture 7

Achieving Safety

• A new leader must not violate previously established
ordering!

• The new leader must know about all updates that may
have been ordered.

u,s

u’,s

u’,s

u’,s

u,s
Is this safe?

A new leader can
violate safety!
Can we fix this?

Yair Amir 45Fall 21/ Lecture 7

Achieving Safety

• Leader sends Proposal(u,s) to all servers
• All servers send Accept(u,s) to all servers.
• Servers order (u,s) when they receive a majority of

Proposal/Accept(u,s) messages

u

u

u,s

u,s

u,s

u,s

u,s

What does this give us?
If a new leader gets
information from any
majority of servers, it
can determine what
may have been
ordered!

u,s

u,s

u,s

u,s

u,s

Yair Amir 46Fall 21/ Lecture 7

Changing Leaders
• Changing Leaders is commonly called a View

Change.
• Servers use timeouts to detect failures.
• If the current leader fails, the servers elect a new

leader.
• The new leader cannot propose updates until it

collects information from a majority of servers!
– Each server reports any Proposals that it knows about.
– If any server ordered a Proposal(u,s), then at least one

server in any majority will report a Proposal for that
sequence number!

– The new server will never violate prior ordering!!
– Now we have a safe protocol!!

Yair Amir 47Fall 21/ Lecture 7

Changing Leaders Example

• If any server orders (u,s), then at least majority of servers must
have received Proposal(u,s).

• If a new server is elected leader, it will gather Proposals from a
majority of servers.

• The new leader will learn about the ordered update!!

u,s

u,s
u,s

Leader 2 can
send a Proposal(u,s).
We say it replays (u,s)

Yair Amir 48Fall 21/ Lecture 7

Is Our Protocol Live?

• Liveness: If there is a set, Q , consisting of
majority of connected servers (quorum), then
if any server in set Q has a new update, then
this update will eventually be executed.

• Is there a problem with our protocol? It is
safe, but is it live?

Yair Amir 49Fall 21/ Lecture 7

Liveness Example

• Leader 3 gets conflicting Proposal messages!
• Which one should it choose?
• What should we add??

u,s

u’,s

u,s
u’,s

Yair Amir 50Fall 21/ Lecture 7

Adding View Numbers

• We add view numbers to the Proposal(v,u,s)!
• Leader 3 gets conflicting Proposal messages!
• Which one should it choose?
• It chooses the one with the greatest view number!!

1,u,s

2,u’,s

1,u,s 2,u’,s

Yair Amir 51Fall 21/ Lecture 7

Normal Case
Assign-Sequence()
A1. u := NextUpdate()
A2. next_seq++
A3. SEND: Proposal(view, u,next_seq)

Upon receiving Proposal(v, u,s):
B1. if not leader and v == my_view
B2. SEND: Accept(v,u,s)

Upon receiving Proposal(v,u,s) and
majority - 1 Accept(v,u,s):

C1. ORDER (u,s)

We use view
numbers to determine
which Proposal may
have been ordered
previously.

A server sends an
Accept(v,u,s) message
only for a view that it
is currently in, and never for
a lower view!

Yair Amir 52Fall 21/ Lecture 7

Leader Election
Elect Leader()

Upon Timer T Expire:

A1. my_view++

A2. SEND: New-Leader(my_view)

Upon receiving New-Leader(v):

B1. if Timer T expired

B2. if v > my_view, then my_view = v

B3. SEND: New-Leader(my_view)

Upon receiving majority New-Leader(v)

where v == my_view:

C1. timeout *= 2; Timer T = timeout

C2. Start Timer T

Let V_max be the highest

view that any server has.

Then, at least a majority of

servers are in view V_max

or V_max - 1.

Servers will stay in the

maximum view for at least

one full timeout period.

A server that becomes

disconnected/connected

repeatedly cannot disrupt

the other servers.

Yair Amir 53Fall 21/ Lecture 7

We Have: Paxos

• The Part-Time Parliament [Lamport, 98]
• A very resilient protocol. Only a majority of

participants are required to make progress.
• Works well on unstable networks.
• Note: Paxos is complex to understand, so I explained

a variant based on Paxos for System Builders –
Paxos-SB [KA 2008]

C

0

1

2

request proposal accept reply

Yair Amir 54Fall 21/ Lecture 7

Performance Results (Paxos-SB)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 200 400 600

U
p

d
at

e
Th

ro
u

g
h

p
u

t
(u

p
d

at
es

/
se

c)

Number of Clients

Update Throughput vs. Clients
Synchronous Disk Writes, Aggregation for Paxos

Paxos Comp, 4 servers

Paxos Comp, 12 servers

Paxos Comp, 20 servers

Congruity, 4 servers

Congruity, 12 servers

Congruity, 20 servers

Local area network cluster.
Congruity: group communication-based replication.

Yair Amir 55Fall 21/ Lecture 7

Performance Results (Paxos-SB)

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500

U
p

d
at

e
La

te
n

cy
 (

m
s)

Number of Clients

Update Latency vs. Clients
Synchronous Disk Writes, Aggregation for Paxos

Paxos Comp, 4 servers

Paxos Comp, 12 servers

Paxos Comp, 20 servers

Congruity, 4 servers

Congruity, 12 servers

Congruity, 20 servers

Yair Amir 56Fall 21/ Lecture 7

Performance Results (Paxos-SB)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 100 200 300 400 500

U
pd

at
e

Th
ro

ug
hp

ut
 (

up
da

te
s/

se
c)

Number of Clients

Update Throughput vs. Clients
No Disk Writes, Aggregation/Packing

Paxos Comp, 4 servers
Paxos Comp, 12 servers
Paxos Comp, 20 servers
Congruity, 4 servers
Congruity, 12 servers
Congruity, 20 servers

Yair Amir 57Fall 21/ Lecture 7

Performance Results (Paxos-SB)

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500

U
p

d
at

e
La

te
n

cy
 (

m
s)

Number of Clients

Update Latency vs. Clients
No Disk Writes, Aggregation/Packing

Paxos Comp, 4 servers
Paxos Comp, 12 servers
Paxos Comp, 20 servers
Congruity, 4 servers
Congruity, 12 servers
Congruity, 20 servers

Yair Amir 58Fall 21/ Lecture 7

Replication Methods
• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)
• Quorum (primary component) methods with state

machine replication
– Congruity: Virtual Synchrony based replication.
– Paxos: Leader based replication
– Raft: Leader based replication with better understandability

• A look at Raft based on Raft presentation

• Analysis and summary
– From algorithms to deployment

• Wide area latency analysis for Congruity and Paxos/Paxos-SB/Raft
• Optimal global deployment considerations

