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Lecture 7

Replication

Further readings: 
• Distributed Systems (second edition) Sape Mullender, chapters 7,8 

(Addison-Wesley) 1994.
• Concurrency Control and Recovery in Distributed Database Systems

Bernstein, Hadzilacos and Goodman (Addison Wesley) 1987.
• From Total Order to Database Replication ICDCS 2002 (www.dsn.jhu.edu)
• Paxos Made Simple, Leslie Lamport ACM Sigact News 2001
• Paxos for System Builders: An Overview LADIS 2008    (www.dsn.jhu.edu)
• Raft: In Search of an Understandable Consensus Algorithm USENIX 2014

https://raft.github.io/
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Replication

• Benefits of replication:
– High Availability.
– High Performance.

• Costs of replication:
– Synchronization.

• Requirements from a generic solution:
– Strict consistency – one copy serializability. 
– Sometimes too expensive so requirements are 

tailored to applications.
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Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)

• Quorum (primary component) methods with state 
machine replication
– Congruity: Virtual Synchrony based replication
– Paxos: Leader based replication

– Raft: Leader based replication with better understandability

• Analysis and summary
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Two Phase Commit
Server TCP/IP TCP/IP Server

Forced disk write

Lazy disk write

Send decision
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Two Phase Commit

• Built for updating distributed databases
• Can be used for the special case of 

replication
• Consistent with a generic update model
• In contrast to the distributed transaction case, 

we do not need all replicas to agree (and 
hence to participate) in committing each 
update (each participant has the same state) 
– a quorum is sufficient, making this method 
not as good of a fit
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Primary and Backups

• Backups are maintained for availability only
• Backups can improve performance for reads, 

updates are sent to the primary by the user
– What is the query semantics? How can one 

copy serializability be achieved?
• The user interacts with one copy, and if it is a 

backup, the updates are sent to the primary
– What is the query semantics with regards to 

our own updates?

Possible options:
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Primary and Backups (1)

P B B



Yair Amir 9Fall 21/ Lecture 7

Primary and Backups (2)

P B B
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Primary and Backups (3)

P B B
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Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)

• Quorum (primary component) methods with state 
machine replication
– Congruity: Virtual Synchrony based replication.
– Paxos: Leader based replication

– Raft: Leader based replication with better understandability

• Analysis and summary
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Weak Consistency 
(weaker update semantics)

• State kept by the replication servers can be weakly consistent 

i.e. copies are allowed to diverge temporarily. They will 

eventually come to agreement assuming commutative update 

semantics (for applications where updates can be executed in 

any order to reach the same state)

• From time to time, a server picks another server and these two 

servers exchange updates and converge to the same state

• The same method can be used to support strong semantics if 

total order is obtained by getting one message from every server 

(e.g. by using Lamport time stamps to order messages) but that 

would not be live if the network partitions

The Anti-Entropy method
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The Anti-Entropy method
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The Anti-Entropy Method (cont.)
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The Anti-Entropy Method (cont.)
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Eventual Path Propagation
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Eventual Path Propagation 
(cont.)
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Eventual Path Propagation 
(cont.)
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Eventual Path Propagation 
(cont.)
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Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)
• Quorum (primary component) methods with state 

machine replication
– Congruity: Virtual Synchrony based replication.
– Paxos: Leader based replication
– Raft: Leader based replication with better understandability

• Analysis and summary
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State Machine Replication

• Servers start in the same state
• Servers change their state only when they 

execute an update
• State changes are deterministic. Two 

servers in the same state will move to 
identical states, if they execute the same 
update

• If servers execute updates in the same 
order, they will progress through exactly the 
same states. State Machine Replication!
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State Machine Replication Example
• Our State: one variable
• Operations (cause state changes)

Op 1)  + n : Add n to our variable
Op 2)  ?v:n : If  variable = v, then set it to n

• Start: All servers have variable = 0
• If we apply the above operations in the same order, 

then the servers will remain consistent

+2 +2
v=0 v=0

v=2v=2
+1 +1

v=3v=3
?3:9?3:9
v=9v=9

+2 +2
v=0 v=0

v=2v=2
+1

+1
v=2v=3

?3:9

?3:9
v=3v=9
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State Machine Replication
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Quorum

• A quorum can proceed with updates. 
– Remember that for distributed transactions, every DM 

had to agree
– But in the more specific problem of replication, a 

quorum can continue (not all DM have to agree)
• When the network connectivity changes, if there is a 

quorum, the members can continue with updates
• Dynamic methods will allow the next quorum to be 

formed based on the current quorum
– Dynamic Linear Voting: the next quorum is a majority of 

the current quorum
– Useful to put a minimum cap on the size of a viable 

quorum to avoid relying on too few specific remaining 
replicas, which can lead to potential vulnerability
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Group Communication “Tools”

• Efficient message delivery
– Group multicast

• Message delivery and ordering guarantees
– Reliable delivery
– FIFO and Causal orders
– Agreed order
– Safe delivery

• Partitionable Group Membership
• Strong semantics (what is actually needed?)
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Congruity: Virtual-Synchrony based 
replication
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Congruity: The Basic Idea
• Reduce database replication to Global 
Consistent Persistent Order
– Use group communication ordering to establish 

the Global Consistent Persistent Order on the 
updates.

– deterministic + serialized = consistent

• Group Communication membership + 
quorum = primary component.
– Only replicas in the primary component can 

commit updates.
– Updates ordered in a primary component are 

marked green and applied. Updates ordered in a 
non-primary component are marked red and will 
be delayed.
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Action Ordering

Order  is unknown

Order is known
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Congruity: 
Conceptual State Machine

Construct

Prim Exchange Non
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Last Create
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Not so simple…

• Virtual Synchrony: If s1 and s2 move directly 
from membership M1 to M2, then they deliver the 
same ordered set of messages in M1.
– What about s3 that was part of M1but is not part of 

M2?

• Total (Agreed) Order with no holes is not 
guaranteed across partitions or server 
crashes/recoveries!

u1

u1

S1:
M1

M1

M1

M2

M2

M3

u1

u2

u2

?
S2:

S3:
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Delicate Points
• s3 receives update u in Prim and commits it right before 

a partition occurs, but s1 and s2 do not receive u. If s1
and s2 will form the next primary component, they will 
commit new updates, without knowledge of u!!

• s1 receives all CPC messages in Construct, and moves 
to Prim, but one of the servers that were with s1 in 
Construct does not receive the last CPC message. A 
new primary is created possibly without having the 
desired majority!!

u

S1:
M1

M1

M1

M2

M2

M3

S2:

S3:

M4

M4

M4

u’

u’ ?

?

?
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Virtual Synchrony

• Regular and Transitional membership notifications

• Safe message = Agreed plus every server in the current 

membership will deliver the message unless it crashes.

• Safe delivery breaks the two-way uncertainty into 3 

possible scenarios, the extremes being mutually 

exclusive!

S1:

S2:

S3:

u

u

1

?

0

M1

M1

M1

M2

M3

M4
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Action Ordering
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Congruity State Diagram
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Latency Comparison

Server GC GC Server

Forced disk write

Lazy disk write
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Latency Comparison

Forced disk write

Lazy disk write

Server GC GC Server
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Congruity Recap

• Knowledge propagation 
– Eventual Path Propagation

• Amortizing end-to-end acknowledgments
– Low level Ack derived from Safe Delivery of group 

communication
– End-to-end Ack upon membership changes

• Primary component selection
– Dynamic Linear Voting
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Replication Methods

• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)
• Quorum (primary component) methods with state 

machine replication
– Congruity: Virtual Synchrony based replication
– Paxos: Leader based replication
– Raft: Leader based replication with better understandability

• Analysis and summary
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What about Dynamic Networks?
• Group communication requires stable 

membership to work well
– If membership is not stable, group communication 

based scheme will spend a lot of time 
synchronizing

• A more robust replication algorithm is needed 
for such environments – Paxos
– Requires a stable-enough network to elect a 

leader that will stay stable for a while
– Requires a (potentially changing) majority of 

members to support the leader (in order to make 
progress)
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Simple Replication

• Server sends update, u, to Leader
• Leader assigns a sequence number, s, to u, and sends the 

update to the non-leader servers.
• Servers order update u with sequence number s.

u

u

u,s

u,s

u,s

u,s

u,s

Is this resilient?
If leader fails,
then the system is 
not live!

Can we use a Leader to
establish an order?
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How can we improve resiliency?
Elect another leader.

Use more messages.

Assign a sequence number to each leader. (Views)

First… We need to describe our system model
and service properties. 

Use the fact that two sets, each having at least a
majority of servers, must intersect!
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Paxos System Model

• N servers
– Uniquely identified in {1…N}

• Asynchronous communication
– Message loss, duplication, and delay
– Network partitions
– No message corruption

• Benign faults
– Crash/recovery with stable storage
– No Byzantine behavior
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What is Safety?

•
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Achieving Safety

• A new leader must not violate previously established 
ordering!

• The new leader must know about all updates that may 
have been ordered.

u,s

u’,s

u’,s

u’,s

u,s
Is this safe?

A new leader can 
violate safety!
Can we fix this?
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Achieving Safety

• Leader sends Proposal(u,s) to all servers
• All servers send Accept(u,s) to all servers.
• Servers order (u,s) when they receive a majority of 

Proposal/Accept(u,s) messages

u

u

u,s

u,s

u,s

u,s

u,s

What does this give us?
If a new leader gets 
information from any
majority of servers, it 
can determine what 
may have been 
ordered!

u,s

u,s

u,s

u,s

u,s
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Changing Leaders
• Changing Leaders is commonly called a View 

Change.
• Servers use timeouts to detect failures.
• If the current leader fails, the servers elect a new 

leader.
• The new leader cannot propose updates until it 

collects information from a majority of servers!
– Each server reports any Proposals that it knows about.
– If any server ordered a Proposal(u,s), then at least one 

server in any majority will report a Proposal for that 
sequence number!

– The new server will never violate prior ordering!!
– Now we have a safe protocol!!
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Changing Leaders Example

• If any server orders (u,s), then at least majority of servers must 
have received Proposal(u,s).

• If a new server is elected leader, it will gather Proposals from a 
majority of servers.

• The new leader will learn about the ordered update!!

u,s

u,s
u,s

Leader 2 can
send a Proposal(u,s).
We say it replays (u,s)

Yair Amir 48Fall 21/ Lecture 7

Is Our Protocol Live?

• Liveness: If there is a set, Q , consisting of 
majority of connected servers (quorum), then 
if any server in set Q has a new update, then 
this update will eventually be executed.

• Is there a problem with our protocol? It is 
safe, but is it live? 
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Liveness Example

• Leader 3 gets conflicting Proposal messages!
• Which one should it choose?
• What should we add??

u,s

u’,s

u,s
u’,s
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Adding View Numbers

• We add view numbers to the Proposal(v,u,s)!
• Leader 3 gets conflicting Proposal messages!
• Which one should it choose?
• It chooses the one with the greatest view number!!

1,u,s

2,u’,s

1,u,s 2,u’,s



Yair Amir 51Fall 21/ Lecture 7

Normal Case
Assign-Sequence()
A1.  u := NextUpdate()
A2.  next_seq++
A3.  SEND: Proposal(view, u,next_seq)

Upon receiving Proposal(v, u,s):
B1. if not leader and v == my_view
B2. SEND: Accept(v,u,s) 

Upon receiving Proposal(v,u,s) and 
majority - 1 Accept(v,u,s):

C1. ORDER (u,s)

We use view
numbers to determine
which Proposal may
have been ordered
previously.

A server sends an
Accept(v,u,s) message
only for a view that it
is currently in, and never for
a lower view!
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Leader Election
Elect Leader()

Upon Timer T Expire:

A1.  my_view++

A2.  SEND: New-Leader(my_view)

Upon receiving New-Leader(v):

B1. if Timer T expired

B2.        if v > my_view, then my_view = v

B3.        SEND: New-Leader(my_view)

Upon receiving majority New-Leader(v)

where v == my_view:

C1. timeout *= 2; Timer T = timeout

C2. Start Timer T

Let V_max be the highest

view that any server has.

Then, at least a majority of

servers are in view V_max

or V_max - 1.

Servers will stay in the

maximum view for at least

one full timeout period.

A server that becomes

disconnected/connected

repeatedly cannot disrupt

the other servers.



Yair Amir 53Fall 21/ Lecture 7

We Have: Paxos

• The Part-Time Parliament [Lamport, 98]
• A very resilient protocol. Only a majority of 

participants are required to make progress.
• Works well on unstable networks.
• Note: Paxos is complex to understand, so I explained 

a variant based on Paxos for System Builders –
Paxos-SB [KA 2008]

C

0

1

2

request proposal accept reply
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Performance Results (Paxos-SB)
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Performance Results (Paxos-SB)
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Performance Results (Paxos-SB)
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Performance Results (Paxos-SB)
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Replication Methods
• Two phase commit, three phase commit
• Primary and backups
• Weak consistency (weaker update semantics)
• Quorum (primary component) methods with state 

machine replication
– Congruity: Virtual Synchrony based replication.
– Paxos: Leader based replication
– Raft: Leader based replication with better understandability

• A look at Raft based on Raft presentation

• Analysis and summary
– From algorithms to deployment 

• Wide area latency analysis for Congruity and Paxos/Paxos-SB/Raft
• Optimal global deployment considerations


