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Lecture 8

Intrusion Tolerant 
Replication

Further readings: 
• Practical Byzantine Fault Tolerance, Miguel Castro and Barbara 
Liskov, OSDI 99.
• Prime: Byzantine Replication Under Attack IEEE TDSC 2011.
•Towards a Practical Survivable Intrusion Tolerant Replication System 
IEEE SRDS 2014.
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State Machine Replication

• Servers start in the same state.
• Servers change their state only when they 

execute an update.
• State changes are deterministic. Two 

servers in the same state will move to 
identical states, if they execute the same 
update.

• If servers execute updates in the same 
order, they will progress through exactly the 
same states. State Machine Replication!
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State Machine Replication
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Outline
• State Machine Replication
• Byzantine Fault Tolerant Replication (BFT)

– Servers can lie
– Safety and Liveness properties
– Byzantine performance failure

• Performance Guarantees while Under Attack (Prime)
– Bounded delay
– Pre-Ordering and Ordering protocols
– Suspect-Leader protocol

• Survivable Intrusion Tolerant Replication
– BFT with performance guarantees under attack
– Defense across Space and Time
– Support for large-state application
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System Model
• N servers

– Uniquely identified in {1…N}

• Asynchronous communication
– Message loss, duplication, and delay
– Network partitions

– No message corruption

• Benign faults
– Crash/recovery with stable storage

• Byzantine faults
– Byzantine behavior – up to f servers may 

lie

– N >= 3f + 1
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Benign Faults: Paxos

• The Part-Time Parliament [Lamport, 98]
• A very resilient protocol. Only a majority of 

participants are required to make progress.
• Works well on unstable networks.
• Only handles benign failures (not Byzantine).
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What Happens If Servers Lie?
• Servers must be able to verify who sent each 

message.
• Crypto! Digital Signatures or HMACS

• The leader might be bad!
• What might happen?
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What Happens If Servers Lie?
• Servers must be able to verify who sent each 

message.

• Crypto! Digital Signatures or HMACS
• The leader might be bad!
• What might happen?

• The leader can send Proposal(u,s) to 2 out of 5 

servers and Proposal(u’,s) to 2 out of 5 servers --

can we have a safety violation?

• Correct servers must make sure the malicious 
servers do not cause safety errors.

• The bad servers might send messages or they might 

not.
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Byzantine Leader Example

• Bad Leader Sends Proposal(u,s) to servers 4 and 5.
• Bad Leader Sends Proposal(u’,s) to servers 2 and 3.
• Server 4 could order (u,s) and server 3 could order 

(u’,s).
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How Do We Solve this Problem?

• Assume that there are at most f malicious 
servers, which can fail or become malicious. 
All of the other servers are correct.

• Let N denote the number of servers in our 
system.

• Any correct server can wait for at most N - f 
messages from servers, because f may fail or 
be malicious (and not send their messages).

• Can we add more servers?
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How many servers do we need?
• Malicious servers can lie.
• Good servers tell the truth.
• We need to guarantee that a malicious server cannot generate two 

groups of Accept / Proposal messages that conflict. (i.e., (u,s) and 
(u’,s)) within the same view.

• We need at least N=3f+1 servers to do this!!
• We wait for 2f+1 messages that say the same thing!
• The f bad servers can say Accept(u,s) and Accept(u’,s).
• The good servers say only one thing, but a bad leader can lie to 

them.
• Let’s try to generate the two sets of messages -- Can we do it?
• Liar tells f+1 of the good servers (u,s), and f of the good servers (u’,s).

(u,s)
f(bad) + f+1(good)

(u’,s)
f(bad) + f(good)

total: 2f+1 total: 2f
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Let’s use N=3f+1!

• f = 1, N = 4
• Bad Leader sends Proposal(u,s) to Server 3 and 4.
• Bad Leader sends Proposal(u’,s) to Server 2.
• Can the Bad Leader violate safety?

*,s

u’,s

u,s

u,su,s
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Is the Protocol Live?

• f = 2, N = 3*2+1 = 7
• Bad Leader is Server 7, and Server 4 is bad, too!
• Bad Leader sends Proposal(v,u,s) to Servers 1, 2, and 3
• Bad Leader sends Proposal(v,u’,s) to Servers 4, 5, and 6
• There is a partition, Servers 2,3,4,5,6 are together.
• They can’t determine which update server 1 ordered.

1, (u,s) 2, (u,s) 3, (u,s)

4, (*,s) 5, (u’,s) 6, (u’,s)
7, (*,s)
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How Can We Guarantee Liveness?
• We can add another round to the fault tolerant 

protocol. The Normal Case Protocol becomes:
• The Leader broadcasts a Pre-Prepare(v,u,s)
• If not Leader, Upon receiving a Pre-Prepare(v,u,s) that does 

not conflict with what I know about, broadcast a 
Prepare(v,u,s)

• Upon receiving 2f Prepare(v,u,s) and 1 Pre-Prepare(v,u,s), 
broadcast Commit(v,u,s)

• Upon receiving 2f+1 Commit Messages, Order the message
• Rounds 1 and 2 allow the correct servers to preserve 

safety within the same view.
• Round 3 preserves safety across view changes.

• Note that if N > 3f+1, then every process must receive at least n-f {Prepare and Pre-prepare 
messages} as well as n-f {Commit messages}.
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What About Changing Leaders?

• If any server orders (v,u,s), then 2f+1 servers must have collected a set 
of 2f Prepare(v,u,s) messages and 1 Pre-Prepare(v,u,s)

• We call such a set a Prepare-Certificate(v,u,s).
• If Prepare-Certificate(v,u,s) exists, then Prepare-Certificate(v,u’,s)

cannot exist.

• How do we change Leaders (View Changes)?
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What About Changing Leaders?

• If any server orders (v,u,s), then 2f+1 servers must have collected a set 
of 2f Prepare(v,u,s) messages and 1 Pre-Prepare(v,u,s)

• We call such a set a Prepare-Certificate(v,u,s).
• If Prepare-Certificate(v,u,s) exists, then Prepare-Certificate(v,u’,s)

cannot exist.
• How do we change Leaders (View Changes)?

– The new leader collects information from 2f+1 servers. The servers 
supply Prepare-Certificates. If something was ordered, the new 
leader will find out.

– The new leader needs to send this information to all of the correct 
servers, otherwise the correct servers will not participate in the 
protocol.

• A Prepare-Certificate can be viewed as a trusted message (agreed 
upon by all of the servers). We use it like we use a Proposal message 
in Paxos.
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We have: BFT

• Byzantine Fault Tolerance [Castro and Liskov, 99]
• Excellent LAN performance. Over 1000 updates/sec. 

(without stable storage costs)
• 2/3 total servers +1 are required to make progress
• Three rounds of message exchanges
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The Downside of Asynchrony

• Common correctness criteria: safety and liveness
– Safety: servers remain consistent.
– Liveness: each update is eventually executed.

• Protocols are designed to be safe in all executions.
– Do not rely on synchrony for safety!
– Guarantee liveness only when the network is sufficiently stable.

• Real systems are not completely asynchronous.
– Systems can satisfy much stronger performance guarantees 

than liveness during stable periods.
• Consequence: Performance attacks!

– An attacker can exploit the gap between what is promised 
during stable periods (liveness) and what is possible.
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Byzantine Performance Failures

• If the adversary cannot violate safety and liveness, the next best 
thing is to slow down the system beyond usefulness.

• Performance failures: send correct messages slowly but 
without triggering timeouts.

Failure Type Failure 
Behavior Mitigated by

Value Domain
Sending incorrect, 

conflicting, or 
invalid messages

Cryptography, 

agreement 
protocols

Time Domain
Messages arrive 
after timeouts or 

not at all

Timeouts, 
view change

Commonly Considered Byzantine Failures
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A Problem: 
Performance Under Attack

• BFT systems are vulnerable to performance attacks.
– A small number of faulty servers can cause the system to make 

progress at an extremely slow rate -- indefinitely!

• Leader-based protocols are vulnerable to performance 
attacks by a malicious leader
– Problem is magnified in wide-area networks, where it is difficult 

to predict the performance that should be expected of the leader.

• Main challenges:
– Developing meaningful performance metrics for evaluating 

Byzantine replication protocols
– Designing protocols that perform well according to these 

metrics, even when the system is under attack
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Case Study: BFT Under Attack
[Castro and Liskov 99]

Client
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• Attack 1: Pre-Prepare Delay

– Malicious leader can add delay into the ordering path by 
withholding its Pre-Prepare.

– Non-leaders maintain a FIFO queue of pending updates.

• Use timeouts to monitor the leader.

• Timeout placed on execution of first update in queue.

– Malicious leader can stay in power by ordering one update 

per queue per timeout period! 
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Case Study: BFT Under Attack

• Attack 2: Timeout Manipulation
– Timeout doubles every time the leader is replaced
– Use a denial of service attack to increase the timeout, 

then stop on a malicious leader

• Each update is eventually executed, but performance 
is much worse than if there were only correct servers

[Castro and Liskov 99]
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Outline
• State Machine Replication
• Byzantine Fault Tolerant Replication (BFT)

– Servers can lie
– Safety and Liveness properties
– Byzantine performance failure

• Performance Guarantees while Under Attack (Prime)
– Bounded delay
– Pre-Ordering and Ordering protocols
– Suspect-Leader protocol

• Survivable Intrusion Tolerant Replication
– BFT with performance guarantees under attack
– Defense across Space and Time
– Support for large-state application
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• Performance-Oriented Replication in Malicious Environments
– Leader-based protocol providing Bounded-Delay, a stronger 

guarantee than liveness, when the network is stable
• System components:

– Prime Ordering Protocol (Preordering phase, Global ordering phase)
– Suspect-Leader Protocol for detecting malicious leaders

• Main Ideas:
– Resources needed by the leader to do its job are bounded and 

independent of system throughput
• Leader has “no excuse” for not sending timely messages

– Non-leader servers compute a threshold level of acceptable 
performance that the leader should meet

• Upper-bounded by a function of the latency between correct servers 
after the network stabilizes

The Prime Replication System
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Prime: Ordering Protocol

• Preordering (PO) Phase:
– Each originating server o, disseminates its updates to the other 

servers (PO-Request).
– Agreement protocol binds update u to preorder identifier (o, i), where 

u is the ith update originated by server o (PO-ACK).
– Each server cumulatively acknowledges the updates it preorders 

(PO-ARU).
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Prime: Ordering Protocol
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Prime: Ordering Protocol

• Global Ordering Phase:
– Similar to BFT (Pre-Prepare, Prepare, Commit)
– Leader periodically sends a Pre-Prepare containing a proof matrix

(vector of PO-ARU messages). 
– Each globally ordered Pre-Prepare maps to a batch of preordered 

updates based on contents of proof matrix.
– Final total order is obtained by deterministically ordering the 

updates in each batch based on preorder identifier.
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Prime: Ordering Protocol
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Attack Analysis

• Two key observations:
– Preordering of operations introduced by correct servers cannot be 

slowed down by faulty servers (including faulty leader)

– Once all correct servers receive a Pre-Prepare, global ordering 

cannot be slowed down by faulty servers (including faulty leader)

• Possible Attacks:
– 1. Leader sends its Pre-Prepare to only some correct servers

– 2. Leader sends a Pre-Prepare with out-of-date PO-Summaries

– 3. Leader delays its Pre-Prepare

L

S

L = Leader

S = Server 

introducing 

operation

= Aggregation 
Delay

PO

REQUEST

PO

ACK
PO

SUMMARY

PRE

PREPARE PREPARE COMMIT



Yair Amir 31Fall 21 / Lecture 8

Addition 1: Pre-Prepare Flooding

S

• Intuition:
1. The leader must withhold the Pre-Prepare from all correct servers to 

significantly impact latency
2. If we can force the leader to send timely, up-to-date Pre-

Prepares to at least one correct server, we can ensure timely 
ordering!
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• Each server periodically sends a Summary-Matrix message, 
containing the latest PO-Summary messages it has received, 
to the leader
– A correct server expects a leader to include, in its next Pre-

Prepare, PO-Summary messages that are at least as up-to-
date as those in the Summary-Matrix message

• Why is this expectation justified?
– A correct leader can simply adopt any PO-Summary messages 

that are more up to date than what it currently has

SUMMARY
MATRIX

Addition 2: 
Summary Matrix Messages
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Key Idea: Turn-Around Time

• Turn-around time
– Time between sending a Summary-Matrix message, SM, and receiving a Pre-

Prepare “covering” all of the PO-Summary messages in SM

• Key Observation:
– The resources required by the leader to send a Pre-Prepare (bandwidth, CPU) 

are bounded and independent of the offered load.
– We can use turn-around time as a measure by which to judge the leader!

• Intuition: Force the leader to be timely by ensuring that it provides a 
fast enough turn-around time to at least one correct server
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Suspect-Leader Protocol

• Protocol Strategy:
– Dynamically determine an acceptable turn-around time (TAT) 

based on roundtrip measurements (TAT_acceptable)

– Use turn-around times measured in the current view to compute a 
measure of the current leader’s performance (TAT_leader)

– Suspect the leader if TAT_leader > TAT_acceptable
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Experimental Results
• 7 servers (f = 2)
• Symmetric network

– 50ms diameter, 10 Mbps links
• Leader performs just well 

enough to stay in power.
• BFT: aggressive timeout 

(300ms)

• BFT: Pre-Prepare delay
• Prime:

– Leader adds as much delay as 
possible.

– Non-leader servers force as 
much reconciliation as 
possible.

Update Throughput vs. Clients
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Prime - Recap

• BFT replication protocols are vulnerable to 
performance attacks
– Liveness is not a meaningful performance metric for 

evaluating Byzantine replication protocols

• Bounded-Delay: a new performance metric.
– Can we provide stronger guarantees?
– Can we guarantee a minimum throughput?

• Prime: a Byzantine replication protocol with 
performance guarantees while under attack
– Achieves Bounded-Delay when the network is sufficiently 

stable
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Outline
• State Machine Replication
• Byzantine Fault Tolerant Replication (BFT)

– Servers can lie
– Safety and Liveness properties
– Byzantine performance failure

• Performance Guarantees while Under Attack (Prime)
– Bounded delay
– Pre-Ordering and Ordering protocols
– Suspect-Leader protocol

• Survivable Intrusion Tolerant Replication
– BFT with performance guarantees under attack
– Defense across Space and Time
– Support to large-state application
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Survivable Intrusion-Tolerant Replication 
Defense across Space and Time

• BFT with performance guarantees while under attack is a short-term 
solution
– The adversary can exploit a single vulnerability to compromise all 

replicas
• We need to diversify the execution environment

– Static diversity [Rodrigues2001, Castro2002, Sousa2008-2010, Roeder2010, ...]

– Complexity for the adversary: from O(1) to O(n)
– Not survivable over long system lifetime

• Proactive recovery to clean the system from potential intrusions
• Survivability requires defense across space and time: dynamic 

diversity + proactive recovery
– A rejuvenated replica is different from all previous replica 

instances
– Complexity for the adversary: from O(n) over the system lifetime 

to O(n) within a bounded time (i.e. rejuvenation cycle)
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Dynamic Diversity

• MultiCompiler from UC Irvine (https://github.com/securesystemslab)

– NOP insertion

– stack padding

– shuffling the stack frames

– substituting instructions for equivalent instructions

– randomizing the register allocation

– randomizing instruction scheduling

• Generate different versions of the program starting 

from its bitcode (no source code required)
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Proactive Recovery

• A component trusted to periodically initiate proactive 
recovery in a round robin manner by rejuvenating a 
replica from a clean state

• Each correct replica completes recovery before the 
beginning of the rejuvenation of the next replica

• The system may not be available if the f replicas fail 
and a correct replica is rejuvenating. 

• We solve this problem by adding more replicas in the 
system
– 3f+2k+1 replicas as in [Sousa2010], with k replicas that 

rejuvenate at the same time
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Physical and Virtualized Approaches

Proactive recovery logic runs in an
isolated Next Unit of Computing
(NUC). Periodically, the NUC activates
a remote power switch, which cycles
the power to restart the server that
hosts a Prime replica, rebooting a
fresh copy from a read-only device

Proactive recovery runs in a hypervisor
installed in an isolated server. Periodically a
replica is refreshed by instantiating a new
virtual machine.

Yair Amir
42Fall 21 / Lecture 8

Proactive Recovery Operation Sequence

• Replica rejuvenation

– The replica is restarted periodically from a fresh copy of OS and 

application code from read-only memory

– Getting a random number from the Trusted Platform Module (TPM) 

and use of fine-grained diversity

• Session key replacement

– If the replica was malicious, its private key can be used to forge 

messages

– Session key is based on the TPM

• State validation

• State transfer if needed

• Client updates transfer



Yair Amir 43Fall 21 / Lecture 8

State transfer
• The state transfer protocol has to be efficient

– A compromised replica completes recovery quickly
– Replicas can be rejuvenated more often
– The adversary does not have enough time to compromise 

more than f replicas

• Two strategies
– Reducing latency
– Reducing bandwidth usage in the best case

• The state is logically partitioned into data blocks of 
fixed size

• Assumption: the adversary totally compromises the 
state (i.e. all data blocks)
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State transfer – Reducing latency

REQUEST_DBLOCK(bi)

REQUEST_DBLOCK(bi)

REQUEST_DBLOCK(bi)

REQUEST_DIGEST(dbi)
REQUEST_DIGEST(d

bi)

The rejuvenating replica 
requests f+1 copies of a 
data block and f copies 
of its digest
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State transfer – Reducing latency

REPLY_DBLOCK(bi)

REPLY_DBLOCK(bi)

REPLY_DBLOCK(bi)

REPLY_DIGEST(d
bi)

R
EPLY_D

IG
EST(d

bi)

The recovering replica 

collects 2f+1 replies, at 

least f+1 of which are 

correct, and, then, it 

can find a correct copy 

of the data block

Fast state recovery at 

the cost of bandwidth 

overhead (each block is 

sent f+1 times)
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REQUEST_DBLOCK(bi)

REQUEST_DIGEST(dbi)REQUEST_DIGEST(dbi)

The rejuvenating replica 
requests one copy of a 
data block and f copies 
of its digest

State transfer – Reducing bandwidth usage



Yair Amir 47Fall 21 / Lecture 8

REPLY_DBLOCK(bi)

REPLY_DIGEST(dbi)
REPLY_DIGEST(d

bi)

In the best case a data 
block is recovered in a 
single round

As fast as the previous 
strategy, with reduced 
bandwidth consumption 
(each block is sent only 
once)

State transfer – Reducing bandwidth usage

Yair Amir 48Fall 21 / Lecture 8

REPLY_DBLOCK(bi)

REPLY_DIGEST(dbi)
REPLY_DIGEST(dbi)

In the worst case some 
replies may come from 
one or more malicious 
replicas

Some more rounds 
are required to 
retrieve a correct 
data block

State transfer – Reducing bandwidth usage
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• We define two variants to retrieve a correct data block in the 
presence of incorrect replies

• Variant 1
– The recovering replica keeps requesting a copy of the data block 

at a time until a correct copy is found (at most f-1 additional 
requests)

• Variant 2
– The recovering replica requests f additional copies of the data 

block in a single round
– The recovering replica can find a correct copy among  2f+1 replies 

(f+1 copies of the same block and f digests)

• We blacklist the senders of invalid replies
– The impact of malicious replicas is negligible

State transfer – Reducing bandwidth usage
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State transfer - Experimental results

• Time taken to validate and transfer the state (if compromised) 
after rejuvenation

• The state is fragmented in blocks of fixed size (1 Mbyte)

• Data blocks are transferred in parallel (5 at a time)
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Outline
• State Machine Replication
• Byzantine Fault Tolerant Replication (BFT)

– Servers can lie
– Safety and Liveness properties
– Byzantine performance failure

• Performance Guarantees while Under Attack (Prime)
– Bounded delay
– Pre-Ordering and Ordering protocols
– Suspect-Leader protocol

• Survivable Intrusion Tolerant Replication
– BFT with performance guarantees under attack
– Defense across Space and Time

• Dynamic diversity
• Proactive recovery

– Support to large-state application
• State transfer (if needed when rebuilding a compromised node) 
• Optimizing either latency or bandwidth consumption


