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First, Some Context…

• You’ve just heard about Intrusion-Tolerant 
State Machine Replication (e.g. BFT or 
Prime)

• So, now we know how to build systems that 
continue to work correctly, even if some of the 
replicas are compromised

• We can use diversity and proactive recovery 
to help the system survive for a long time

• But, those replicas still need to communicate!
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Protecting Network Communication

• The Internet is becoming increasingly important to our society
– Critical infrastructure, global clouds, financial systems, government, …

• People have been trying to prevent attacks for years
– Firewalls, Intrusion Detection and Prevention Systems

• Security standards in different layers
– IPsec, TLS/SSL, and others protect communication 
– BGPsec, DNSsec – These contain some good ideas, but aren’t widely 

adopted (yet)
• But, none of these address the vulnerability to intrusions

– Malicious attacks are becoming more prevalent and sophisticated
– Therefore: constructing networks that are resilient to the point of 

intrusion tolerance is crucial – networks that work even if part of them 
is compromised – under the control of a sophisticated adversary
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IP Networks Are Vulnerable

• IP networks are efficient, but based on trust
– Internet routing is susceptible to routing attacks 

(BGP hijacking) 
– Compromises in the network can completely 

disrupt communication
• IP networks are scalable, but fragile

– Single IP networks are susceptible to failures, 
attacks, and misconfigurations 

– Sophisticated DDoS attacks (Crossfire) can 
severely degrade QoS of targeted Internet flows
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Intrusion-Tolerant Networks Goals
• Support critical infrastructure (power grid, clouds) 

– Requires strong data delivery semantics
• Guaranteed Timeliness vs. Guaranteed Reliability

• Performance guarantees under attack
• Always available 

– No downtime incurred when detecting/finding intrusions
– No hiccups when adversary launches an attack
– No startup costs or high delay

• Optimal intrusion tolerance
• Willing to pay for these properties (for some 

important messages)
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Intrusion-Tolerant Networks
(more details)

• Any node can be a source
• Any node can be compromised
• Compromised nodes may be undetectable

• Cannot prefer one node’s traffic over another’s
• Risk of favoring compromised nodes and starving correct

sources’ traffic

• Different applications need different messaging 
semantics (e.g. timely vs. reliable)

• Requires cryptographic mechanisms for 
authentication and integrity
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Intrusion-Tolerant Network 
Approaches

• On-Demand Secure Byzantine Routing
• Authenticated Adversarial Routing
• Network Layer Protocols with Byzantine 

Robustness (Perlman)
• SCION
• SCION/SIBRA
• Practical Intrusion-Tolerant Networks 

(Spines)
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On-Demand Secure Byzantine Routing
(AHNR2002, ACHN+2008)

• Discovers potential paths by flooding a ping-type 
message across the network

• Uses source-based routing to specify that path on 
the data messages

• Uses layers of encryption to obfuscate messages
• If there is a problem, can probe along the path to 

find the problematic link, remove it, and try again
• Eventually, all bad links are removed and messages 

are sent along the shortest remaining path (optimal)

Y. Amir 10Fall 21 / Lecture 9

On-Demand Secure Byzantine Routing

A B C

Data Data Data Data

Probe

• Probing takes time, during which you may not 
get any messages

• An adversary can choose when you will 
experience this downtime

Probe Probe

Probe

Probe✕

✕The source sends
data, which is
unwrapped at
each hop.

If data doesn’t make
it, the source probes
to node B, gets
a response.

The source probes
to node C, gets
no response.
Problem is between
B and C!
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The Slide Protocol (building block)
(AGR1992)

A B C

D E

• Also called gravitational flow
• Source “pumps” in messages, destination is a “sink”
• Messages flow across the network (like water), moving 

from high-pressure to low-pressure nodes
• On each link, a process sends on a link if the other side of 

that link has fewer messages (lower pressure)
• Once enough messages have been sent, some must 

arrive at the destination

0

0

6

44

43

6

699

99
3 3

5



Y. Amir 13Fall 21 / Lecture 9

Authenticated Adversarial Routing
(ABO2009)

• Uses the Slide protocol as a building block
• Adds cryptography

– For every message sent, need a signed receipt
• If enough messages have been pumped in, but no 

messages arrive at destination, there is a problem
– Stop system temporarily
– Audit to detect bad node, tracking receipts for every 

message in the network
• Eventually optimal (one in, one out)
• Requires n3 messages to start up! Auditing takes n4!
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Network Layer Protocols with 
Byzantine Robustness

• Radia Perlman’s Ph.D. Thesis – MIT 1989

• One of the first works to consider how to route 
packets in the presence of Byzantine faults

• Goal: disseminate link-state routing updates in a 
network with potentially compromised routers
– Addresses Byzantine forwarding nodes

– First to address Byzantine source nodes

• Requires changes to the network infrastructure
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Network Layer Protocols with 
Byzantine Robustness

• All messages are signed and verified 
using public-key cryptography

– Routers cannot impersonate other routers

• Routers maintain space for the most 
recent message from each router 

• Messages are flooded across the 
network in round-robin fashion

– Optimal resiliency for delivery
– Network fairness

• Overtaken-by-event semantics
– Data freshness
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Router C’s Buffers
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Network Layer Protocols with 
Byzantine Robustness

• Meant for routing updates, not data

• No way to provide data delivery 

semantics needed by applications 

– Reliable delivery only works if routers wait 

“long-enough” for messages to reach the 

destination before issuing the next message

– Applications do not always want their most 

recent messages to be preferred

• Pre-allocated memory and bandwidth

– Protects against Byzantine faults, but…

– No router gets more than    of the bandwidth 

on each link

– We want better (optimal) network utilization

• Not practical - requires changes to 

network Infrastructure (IP) 
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Router C’s Buffers
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SCION
(ZHHC+2011)

• Clean-slate Internet architecture aiming to secure and 

protect Internet routing 

– Organize Autonomous Systems (ASes) into Isolation Domains 

(ISDs) based on policies (e.g., geographic boundaries)

– Setup ISDs in hierarchical tree, with few trusted core ASes at the 

root that are common to all path selections (routing)

– Source/destination jointly setup several end-to-end paths through 

the tree that only communicate along secure ISDs 

• Requires coordination and cooperation of ISPs and ASes

at the IP level, creating practical barriers to deployment

– Incremental deployment is possible – can connect SCION-enabled 

ISPs with IP tunnels

• Vulnerable to resource consumption attacks 

– Compromised end hosts and compromised ASes
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SCION/SIBRA
(BRSP+2016)

• Extension to SCION
• Designed to defeat resource consumption attacks

– Contractual resource reservation scheme based on AS policies
– Neighboring ASes establish bandwidth contracts between them, 

reserving bandwidth for long-term and short-term flows
– Flows are continuously monitored, and flows violating their 

contracts are detected, reported, and throttled

• Scalable and efficient - almost no overhead imposed on 
routers for data plane traffic

• Significant practical barriers to deployment
– ISPs require direct connections to setup and enforce contracts
– Unlike SCION, incremental deployment is not feasible - needs a 

contiguous end-to-end path of SIBRA-enabled ISPs
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Overlay Approach: Resilient Network Architecture

• Leverage existing IP network infrastructure
– Sits on multiple IP networks

• Provide necessary resiliency and timeliness for intrusion tolerance
– Programmability in the middle of the network

Client

Client Client

Client

Underlying IP 
Networks

[OTBS+2016]
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Resilient Overlay Construction

• Resiliency at the overlay level via redundancy
• Place overlay nodes in well-provisioned data centers 
• Carefully create overlay edges between overlay 

nodes
– Leverage available ISP backbone maps
– Connect overlay nodes with predictable Internet routing 

between them to ensure high likelihood of disjoint overlay 
topology

✔ ✖
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Diverse Network Providers

• With only one ISP under the overlay, a major 
problem can bring down the entire overlay

• Assigning diverse ISP variants is more resilient
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Multihoming

• Simultaneously get service from multiple ISPs at 
each overlay node
– Overlay link is correct if at least one pair of ISPs can 

pass messages
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Resilient Network Architecture in Practice

• Place overlay nodes in well-provisioned data centers
• Multihoming at each overlay node
• Survive anything short of simultaneous meltdown of multiple 

underlying ISP backbones!

Client

Client Client

Client

Underlying ISP 
Networks
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Attack Resilience: BGP Hijacking
• Malicious advertisements cause BGP to reroute

– BGP Hijacking has occurred in the wild

• Overcome by Resilient Architecture
– Traffic that is “on net” will be unaffected

ISP1 ISP2 

Switching between 
ISPs happens 
inside the overlay 
node; doesn’t even 
use BGP✖

Normal handoff 
is disrupted
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Attack Resilience: Crossfire DDoS Attack

• Advanced, persistent resource-consumption 
attack in the underlying physical network

• Overcome by Resilient Architecture
– Attack must affect many links on many different ISPs 

to succeed

Source DestinationInternet 
Path
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Overlay is Susceptible to Compromises

• Resilient Networking Architecture overcomes 
any attack or compromise in the underlying IP 
network infrastructure

• But, the overlay itself (just like all networks) is 
still susceptible to compromises
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A Live Network Graph

The connectivity graph of a commercial cloud network
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Regular Secure Routing (e.g. IPsec)

Regular secure routing takes the shortest path from source (HKG) to 
destination (WAS).
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I am the shortest 
path to WAS!
I am the shortest 
path to EVERYONE!
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Regular Secure Routing Under Attack

A compromised node can lie and attract traffic, which can then be dropped.
This attack would succeed even if IPsec is used!

✕✕

✕

✕
✕

✕
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Intrusion-Tolerant Overlay Network

• Resilient architecture reduces problem to 
single (albeit hard) issue of tolerating 
compromises at the overlay level

• Overlays enable new practical solutions that 
were previously infeasible
– Programmability 
– Single administrative domain

• Complete solution requires resilient 
networking architecture combined with 
intrusion-tolerant overlay
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I am the shortest 
path to WAS!
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Maximal Topology with Minimal Weights

- The nodes and edges in the topology are known ahead of time
- No node can advertise weights below the minimal weights – attack defeated
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K Node-Disjoint Paths

K node-disjoint paths defends against K-1 compromised nodes.
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K-Paths Reroutes

K-paths is resilient to K-1 intrusions, plus any number of benign faults, as 
long as the network minus the benign faults can still support K paths.

I can’t reach my 
neighbor!
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Constrained Flooding

Flooding across the overlay network provides optimal resiliency.
Costs more, but we’re willing to pay for the most important messages.
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Constrained Flooding

If even a single good path exists, constrained flooding will pass messages 

from source to destination in a timely manner.
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Cutting the Network

If the compromised nodes cut the network, no protocol can succeed.

Y. Amir 40Fall 21 / Lecture 9

What about Compromised Sources?

Misconception that compromises are limited to malicious forwarding.
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Compromises can Exhaust Resources

Compromised sources can inject spurious messages into the network, 
exhausting resources from other sources.
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Enforce Fair Resource Allocation

• Prevent any node from consuming disproportionate share of resources
• Each active source receives what they request, limited by fair allocation 

among contending sources
42
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Cannot assume compromises 
are detectable!
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Fairness Example

• Source A is sending at 10 Mbps, Source B at 50 Mbps, 
Source C at 60 Mbps, and link’s capacity is 100 Mbps

• Source A gets all 10 Mbps
• Source B gets 45 out of the 50 Mbps it wants
• Source C gets 45 out of the 60 Mbps it wants

+ + +=
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High-Value Applications Require Semantics

• So far, the intrusion-tolerant overlay only 
provides best-effort message forwarding

• Critical applications require strong messaging 
semantics
– Cloud monitoring: real-time stream of updates
– Cloud control: reliability and consistency

– SCADA for power grid: 100-200 ms updates

• Challenge: how to provide strong messaging 
semantics in the presence of compromises
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Intrusion-Tolerant Messaging

Priority Reliable

K-Paths
Routing

Constrained
Flooding
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Intrusion-Tolerant Messaging

Priority Reliable

K-Paths
Routing

Constrained
Flooding

Constrained authenticated flooding on a 
specified subset of the network topology

Optimal Resiliency

Source-based routing on 
K node-disjoint paths

Overcomes 
K-1 Compromises
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Intrusion-Tolerant Messaging

Reliable

K-Paths
Routing

Motivated by the real-time
demands of cloud 
monitoring messages

Source fairness

Source-defined priority for 
each message

Select a source in round-
robin order, send its 
oldest highest priority 
message

Low-latency guarantees

Motivated by the reliability
demands of cloud control 
messages

Source-Destination fairness

Back pressure employed all 
the way back to the source

Keep message until all 
neighbors have it or end-to-
end ACK is received

Eventual-path reliability

Priority

Constrained
Flooding

Y. Amir 48Fall 21 / Lecture 9

D

A

C

B

The Problem of Source-Based 
Fairness in Reliable Communication

• If we used source based fairness, a malicious 
destination could block a good source

• A sends to C and D, via B
• D is malicious and refuses to acknowledge 

packets
• A cannot make progress with either C or D 

(because it’s a reliable protocol)
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Flow-based Fairness

• Instead, treat each flow separately.

• The A-D flow becomes blocked
• The A-C flow does not
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Intrusion Tolerant Spines

www.spines.org
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Cryptographic Protocols

• Network-Wide Authentication
– Public/Private key pair for each overlay node 
– Each overlay node knows all public keys
– Source nodes put RSA signature on each message
– RSA verification of messages at each forwarding node
– Alternative: EC crypto for low-bandwidth environments

• Hop-by-Hop Authentication
– Authenticated Diffie-Hellman Key Exchange to establish a 

shared secret key
– HMAC using SHA256 on all subsequent messages

• Implemented in Spines using OpenSSL
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Intrusion-Tolerant Network 
(Spines) Demonstration

• Compromise at DFW
– Maliciously injected loss
– Node goes dark at a point of its choosing
– Malicious increased delay over time

• Left video: conventional shortest-path routing
• Right video: intrusion-tolerant protocols
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Evaluation: LTN Global Cloud

• All experiments run on the real cloud – no emulation
• Measured: communication cost, protocols under attack
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Priority Flooding – Goodput

• Correct flow sending at fair share is unaffected by compromised 
flows that send at maximum capacity
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Priority Flooding – Latency  

• All flows experience latency (jagged) close to propagation delay (flat)
• Correct flow is very close to propagation delay because it sends less 

than its fair share
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Priority Flooding Under Attack

• Timely delivery of highest priority messages within correct flow’s fair 
share is guaranteed
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Summary

• An overlay-based practical solution for 
intrusion-tolerant networking

• Expensive, but complete solution for high-
value applications

• Validated on a global scale
• Open-Source implementation available in 

Spines overlay messaging framework –
www.spines.org
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