

Advanced Distributed Systems

Inter-Domain Handoff Between Wi-Fi and 3G

Steve Ajemian
Bhuwan Agarwal

Project Overview
The goals of this project were to examine the performance of inter-domain handoff
between Wi-Fi and 3G networks on smartphones. An increasing number of mobile
devices are providing internet access from over both Wi-Fi and 3G. This trend has led to
interest in looking at optimum ways to use these networks for a variety of needs. In this
project, we wanted to examine the feasibility of using handoff for a VOIP application.
We considered the case of two users having internet access on both of these interfaces,
with the need to conduct VOIP phone calls. An additional requirement is to provide this
capability while preferring Wi-Fi for the session if it is available. The desire to move
data services to the Wi-Fi domain from 3G is due to the user wanting to minimize the use
of data services over 3G.

Platforms
For our implementation, we used two HTC Tilt smartphones that are Wi-Fi enabled.
These phones also provide data services over AT & T’s 3G network using High-Speed
Downlink Packet Access (HSDPA). This service provides data rates of 1.8, 3.6, 7.2 and
14.4 Mbit/s. The smartphones use Windows Mobile 6.1 for the operating system.

Communication between these devices is mediated by a server in the middle. For the
server application, a linux machine was used running Ubuntu. This server also has a
known public IP address that can receive TCP and UDP packets from the participating
clients. A block diagram of the configuration is shown below:

Connection
Manager

3G Wi-Fi

Mobility
Server

Connection
Manager

3G Wi-Fi

Protocol
In order for two users to conduct a VOIP session using the server in the middle, three
major stages are required. These stages are Start Up, Handoff, and Termination. The
client and server applications provide the following capability:

1. Each party will continually send packets every 20 ms to simulate a VOIP packet
to the Mobility Server, which relays packets to each party.

2. If one party detects a Wi-Fi access point, it will join AP and begin
sending/receiving packets over the Wi-Fi interface.

3. The Mobility Server will terminate the 3G data link.

Note: The above capability is also provided when transitioning from Wi-Fi to 3G in the
event of a loss of Wi-Fi access.

• Start Up
The first stage, Start Up, requires each client to conduct a handshake with the
server. The handshake with the server involves setting up a TCP connection for
control messaging and a UDP port assignment. The server provides each client
with the port to use for sending UDP packets for the VOIP traffic. Furthermore,
each client provides the server with its port for receiving the VOIP traffic. The
server obtains each client’s IP address from the TCP connection. Once two
clients have connected to the client, the control channel remains open until the
data session begins. In order for a “call” to start, one client must make a call
request which must be accepted by the client receiver. The server will provide the
UDP port for receiving traffic once the call is accepted. The port assignment
message from the server implicit provides a “clear to send” to both clients. A
sequence diagram of this Start Up protocol is illustrated below.

In the above sequence diagram, the following exchange occurs:

1. Client A opens a control connection over TCP and sends start message over TCP
Control Connection, sent to the well-known port on Server. Client B also opens a
control connection. In this message both client A and B also sends their port
numbers on which they will be listening for the UDP traffic.

2. Client A sends Call request to a client B, which must be online.
3. Depending upon the response of client B (Accept/Reject) server will either send a

CTS message to both clients A and B, or a reject message to client A.
4. The CTS message will contain the server port number to send UDP packets to.

The server will begin listening for data packets prior to sending the CTS message.
After receiving the CTS message both clients will begin sending/receiving data.

5. Each client must send a “dummy” packet to the server to enable it to receive UDP
datagrams on its port. This is because the NAT policy of the router forwarding
packets may drop UDP packets destined for the client, unless it has previously
sent traffic to the server.

6. Once the data session begins, each client will terminate the TCP control
connection.

• Handoff
Handoff from 3G to Wi-Fi is implemented in the same manner as a handoff from
Wi-Fi to 3G. In each case, the client will open a new control connection over
TCP on the interface to which it is switching. This enables the server to obtain
the IP address of the new interface. A switch message is sent to the server,
followed by an acknowledgement from the server. At this point, the client may
begin sending over the new interface. However, the server must continue to listen
for packets that may have been in transit prior to the handoff for a short period of
time. These packets will also be forwarded until the timeout is met. The
sequence diagram is shown below:

1. Client B enters Wi-Fi.
2. Opens TCP Control Connection over existing interface.
3. Client B sends switch message to server containing new IP.
4. The server receives the Switch message with the new IP address. The server

continues sending data over 3G. The server will continue receiving data over 3G
socket until the first UDP packet is received over the new interface. At this point
it will start sending over Wi-Fi connection.

Server Client B Send Data
(3G)

TCP Control Connection (3G)

Switch(new IP)

Ok to Switch

Send Data(Wi-Fi)

Send Data(3G)

Send Data(Wi-Fi)

5. The client will receive packets over the new IP address after the server receives
the first UDP packet. The client will maintain the 3G socket for some time t for
delayed packets (timeout), then closes connection.

Note: The handoff protocol is the same from Wi-Fi to 3G.

• Termination
The termination sequence requires each user to initiate a new control connection
over the current interface in use. The control connection is used to simulate a
client being “online” so that it may accept a call or make a call request. This
sequence simply requires each client to send a terminate message to the server to
indicate the end of the session. The sequence diagram is shown below:

1. Client will open a TCP connection to initiate tear-down by sending a Terminate

message to the server.
2. The Server will send a terminate message to the other client over UDP (sent 4

times). The Server will set a timer while waiting for a TCP connection to be
opened.

Data Data

Terminate

Terminate

TCP Control Connection

TCP Control Connection

Server Client B Client A

3. After each Client opens the TCP Control Connection, packets received on the
UDP ports at each Client will be dropped, and the session will end.

Implementation

• Client
The clients were implemented on Windows Dot Net framework in C#. The
following is the architecture of client program:

 Form Class: Implements the form interface and has buttons related to
Start, Switch and End events which basically interact with the Handoff
class.

 Handoff Class: This class is the main entry point of the application and
has two methods in it namely start() and show(). The start() method has all
the logic in it and the show() method just writes output to the textbox on
the phone. The user can interact with the application by pressing the above
mentioned buttons:

 Start: This button starts a thread on the start method of Handoff
class, which is the main entry point of the program. It does the
following:
1. It opens a TCP Control Connection on the currently

selected interface (3G/Wi-Fi) and sends a connect message
to the server which has the client’s ID and local port on
which the client will listen for the data packets.

2. It then waits for an incoming call message, which is sent to
it by the mobility server and has the remote client’s ID in it.

3. The client can accept or reject the call and sends its
response to the server

4. If it accepted the call then it will receive a server port
message which has the port on which the client can send
his packets to the server which will be forwarded to the
other client

5. After getting the server port it starts a new Data Connection
thread, which basically opens a UDP socket on the
currently selected interface and starts sending on it. The
Data Connection thread itself starts a new receive thread on
this socket so that it can send and receive in parallel.

6. It then terminates the TCP Control Connection
7. After that it just waits for some event (Switch/End) to occur

 Switch: This button sets the switch flag of the Handoff class,

which is basically the notification to do a switch from the current
interface (3G/Wi-Fi) to the other interface. It does the following:
1. It detects what interface we are currently on (say 3G).

2. It then opens a new TCP connection on the new interface
on which we want to switch (say Wi-Fi).

3. It sends a Switch message to the server with its client ID
and the new port on which it will listen for the UDP
packets.

4. The server on getting this message changes the current IP
Address of this client to the new IP Address from which it
got this message and also changes the current port to the
new port that it got in the Switch message. After this the
server send an OK message back to the client.

5. After receiving an OK from the server the client starts a
new Data Connection thread on the new interface (Wi-Fi),
which opens a new UDP socket and starts sending on that.
It also starts a new receive thread also.

6. It then signals the previous Data Connection thread (3G
thread) to stop sending.

7. When the server starts receiving packets from the new IP
Address of the client, it stops sending over the old IP
Address and the port and it starts forwarding the packets on
the new IP Address and the Port (the one it got in Switch
message).

8. Because the receive thread over the old socket which was
opened on the previous interface (3G) won’t receive
anything, we eventually timeout and close the socket and
return from the receive thread and the corresponding Data
Connection thread and allocated resources are freed.

9. Then the TCP connection is closed
So each time we press Switch the above sequence of actions occur.

 End: Clicking on this button will set the terminate flag and it will
wait for any pending Data Connection threads to return. After all
the threads return the client application is terminated. (We can also
terminate the whole application on press of this button instead of
waiting for pending threads)

 Data Connection Class: This class takes care of the data session and
handles sending and receiving of UDP packets. It has one method
openDataConnection() which is the entry point of the Data Connection
thread that is created in the start() method of Handoff class as described
above. It does the following:

1. It opens the UDP socket on the currently selected interface and
starts sending over that.

2. It also binds the above created UDP socket to the local port (sent to
the server in the Connect/Switch messages), starts a receive thread
and starts receiving the packets on the local port forwarded to it by
the server

3. It will break of the sending loop if, either in the middle of sending
it is signaled by the Handoff thread to stop sending as described
above, or it has finished sending its packets.

4. After breaking of the sending loop it just waits for the receive
thread to return which it created in step 2.

 Control Connection Class: This class is basically a wrapper for the TCP
control connection. It just opens the TCP connection over the specified
interface and has methods for sending and receiving messages over the
opened TCP connection.

 Receiver Class: This class is just for receiving the UDP packets over the
specified UDP socket. It has just one method named receive() which is the
entry point of the Receiver thread which is created by the
openDataConnection() method of the Data Connection class as described
above.

 MyTimeout Class: This class implements the timeout mechanism. It has

one method named timerCallBack(). This class does the following:

1. Each time before a receive call in the receive() method of Receiver
class we start a timer by making an instance of Thread.Timer class.

2. If we receive something then the call to receive is successful and
we dispose the timer created above.

3. However if we don’t receive anything, then timer expires
eventually and the timerCallBack() function gets called. This
function is passed the receiving socket as an argument. This
function then closes the socket

4. Because we close an active socket it throws SocketClosed
Exception. We catch that exception in the Receive thread, dispose
off the timer and return from the Receive thread.

• Server
The Server application was run on the Commedia server within the Department of
Computer Science. This server has a static IP address, which is known by all
clients running the client application. The server is responsible for forwarding
data packets to the proper client, depending on the session. Messages between
server and client can occur over both TCP (for the control messages) and UDP
(data messages). Therefore, the server must listen for connection offers over
TCP. For UDP datagrams, the server will assign a port number for it to listen on,
and will send this to the clients after a call is accepted. The implementation has a
main loop consisting of a select statement that can accept new TCP connections,
while also listening for TCP and UDP traffic. The server is also responsible for
creating and maintaining the session between new clients, bridging the
connections the two (if the receiver accepts the call). For each session, two
relevant data structures were needed to maintain all the information necessary for

data exchange between each client. This essentially requires knowing the current
IP address and the previous IP address (prior to the handoff). This stucture was
called the client table:

 struct client_table {
 int current_addr;
 int client_id;
 int tcp_socket;
 struct ip_entry ip1;
 struct ip_entry ip2;
 } client_table;

 struct ip_entry {
 int port;
 struct sockaddr_in addr;
 int socket;
 } ip_entry;

A client_table entry is instantiated for every client connecting to the server.
When a client connects, the tcp socket for the control connection is saved, as well
as the current IP address. The "current_addr" field simply indicates which IP
entry is currently active. The previous IP address will always be the other IP (not
being currently used). However, the server may still receive packets from this
address. This is because messages can be in transit during the handoff, and must
be forwarded for a certain period of time. The ip_entry struct is simply a port, IP,
and a UDP socket file descriptor.

The flow table, shown below, is used for a session between two clients. This
contains the socket file descriptors for sending/receiving UDP packets that are
forwarded from the server. Currently, the server receives data from each client on
the same port, however, the structure provides for each client to have a unique
port assignment.

 struct flow_table {
 int flow_id;
 int client_0_id;
 int client_0_sock;
 int client_1_id;
 int client_1_sock;
 }

Message Set
Included is a list of the message existing on both the server and client applications.

/*Message Type 0*/
struct client_start_message {
 int message_type;
 int client_id; /*ID of client sender*/
 int client_port; /*UDP port for client to receive packets on*/
} client_start_message;

/*Message Type 1*/
struct client_start_reply {
 int message_type;
 int server_port;
 int status; /*0 = wait to for receiver to join, 1 = ok to send*/
} client_start_reply;

/*Message Type 2*/
struct data_packet {
 int message_type; /*Type indicates what type of packet is being
sent/received*/
 int seq; /*Sequence number of message being sent*/
 int payload_size;
} data_packet;

/*Message Type 3*/
struct switch_request {
 int message_type;
 int sender_id;
 int port;
} switch_request;

/*Message Type 4*/
struct switch_request_reply {
 int message_type;
 int status; /*0 = wait to send on new interface, 1 = ok to send
on new interface*/
} switch_request_reply;

/*Message Type 5*/
struct client_call {
 int message_type;
 int dest_id;
} client_call;

/*Message Type 6*/
struct client_call_reply {
 int message_type;
 int dest_id;
 int status; /*0 = Client not online, 1 = Clear to send*/
} client_call_reply;

/*Message Type 7*/
struct server_port {
 int message_type;
 int port;

} server_port;

Discussion
The following points summarize some design decisions and the issues and problems
encountered during the project:

• Mobility Server: We used the mobility server as the man in the middle instead of
having the clients directly talk with each other because almost all of the times the
clients would be behind a NAT, whether they are on 3G or Wi-Fi, which implies
that they won’t have a public IP which the clients can use to communicate.
Therefore we decided to do it with man-in-middle approach which will have a
public IP and both of the clients can talk to each other via mobility server.

• NAT issues: Each client has to initiate at-least one UDP packet from the port that
it sent to the server in Connect/Switch message, on which it intend to receive the
UDP traffic, otherwise the NAT router might just drop the packet due to some
policies which might have been set to drop packets to a port if no traffic is
initialized from inside on that port.

• Connection Manager: Since we have multiple interfaces available over which

we can open Sockets and connect to Internet, Windows operating system has a
mechanism of calculating the best interface available, in terms of cost, speed etc.,
to use for connecting to Internet and gives Socket over that interface only.
However for our application we needed a way to bypass this mechanism and
specify a particular interface viz. 3G or Wi-Fi. Therefore we used Connection
Manager API which lets you bypass the operating systems calculations and
specify the interface on which we want to open the Sockets and hence
communicate over that interface only.

• UDPClient Class: Initially we were using this class, which is a wrapper around

UDP Socket, instead of using UDP Sockets directly. However we noticed that if
we use the class in following way then we get really bad performance of 5-6
packets/sec:

UDPClient client = new UDPClient(localPort);

client.send(message, message.length, “aa.bb.cc.dd”, remotePort);

or
client.send(message, message.length, remoteEndPoint);

However if we use it in a following way then we get the expected performance of
47-48 packets/sec:

UDPClient client = new UDPClient(“aa.bb.cc.dd”, remotePort);

client.send(message, message.length,);

One probable reason behind this behavior might be that it might be doing DNS
query for every packet when we try to use it in the first way, while in the second
form it might have already stored that DNS response.

However after this inconsistent behavior we decide to work with Sockets directly.

• Receive Timeout Option: There is no option on receive() method call on the

Sockets, on windows mobile, for setting the timeout value after which the receive
should timeout in case it doesn’t receive anything. So we decided to use our own
timer whose functionality is described above.

Results and Performance

The following table summarizes the tests scenarios, initial conditions of the clients and
the results:

In each of the test we sent 160 byte packets at the rate of 50 packets/sec, which is the rate
required for VOIP. In examining the loss rates and throughputs, there is no significant
difference between the handoff setting and non-handoff setting. The data we obtained
supports the notion that our protocol can support VOIP data rates in a handoff
environment. Graphs for inter-arrival times for the different test scenarios are shown
below:

Transfer
Time
(sec)

Throughput
(Kbps)

 S.No. Test
Name Test Description

Min Max Min Max

Average
Loss Rate

%

1. 3G-No-
Handoff

Both clients on 3G and
no handoff 68.27 89.38 42.51 54.48 1.23

2.
Wi-Fi-
No-
Handoff

Both Client on Wi-Fi
(Client 0 on jhuacm and
Client1 on DSN-N) and
no handoff

71.24 89.25 43.01 53.6 0.15

3. Handoff-
3G-Wi-Fi

Client A on 3G, Client
B starts from 3G,
switches to Wi-Fi
(DSN-N) after receiving
1500 packets

69.04 99.03 38.76 53.25 2.08

4. Handoff-
Wi-Fi-3G

Client 0 on 3g, Client1
starts from Wi-Fi (DSN-
N) switches to 3g after
sending 1500 packets

69.98 94.52 40.13 54.87 1.26

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

In
te

r-A
rri

va
l T

im
e

(m
s)

Sequence Number

data-files/client-files/3g-no-handoff/3G1-No-Handoff-Client0-1.txt

Figure 1 3G-No-Handoff

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

In
te

r-A
rri

va
l T

im
e

(m
s)

Sequence Number

data-files/client-files/wifi-no-handoff/WiFi1-No-Handoff-Client0-1.txt

Figure 2 Wi-Fi-No-Handoff

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

In
te

r-A
rri

va
l T

im
e

(m
s)

Sequence Number

data-files/client-files/handoff-3g-wifi/Handoff2.1-3G-WiFi-Client0-1.txt

Figure 3 Handoff-3G-Wi-Fi

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

In
te

r-A
rri

va
l T

im
e

(m
s)

Sequence Number

data-files/client-files/handoff-wifi-3g/Handoff1.1-WIFI-3G-Client0-1.txt

Figure 4 Handoff-Wi-Fi-3G

It can be seen that in case of 3G the inter-arrival times are range from 20 ms – 100 ms
clustering at 20 ms intervals. However in the case of Wi-Fi the packets are clustered at 20
ms with relatively smaller variance in their inter-arrival times.

It can be observed that in Figure 3 and 4 there is a gap at around 2000 and 2200
respectively. This is the point where the handoff is occurring from one interface to the
other. While there is a delay in packets during the handoff is taking place, however the
delay remains within the threshold of 100 ms.

Conclusion

In this project we examined the possibility of conducting handoff of data sessions
between 3G and Wi-Fi on smart-phones, while primarily focusing on a possible VOIP
application. From the data rates that we obtained we observed, it is feasible to perform a
handoff in a VOIP application in a manner imperceptible to the user.

