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Outline 

¨  Big Data 
¤ What is it? 
¤ How is it used? What problems need to be solved? 

¨  Replication 
¤ What are the options?  
¤ Can we use this to solve Big Data’s problems? 

¨  Putting them together 
¤ What works? 
¤ What are existing tools doing? 



Big Data: Numbers 

¨  Facebook: 100 petabytes of photos and videos 
¤  http://newsroom.fb.com/Infrastructure  

¨  Large Hadron Collider: produces 15 petabytes of data annually 
¤  http://home.web.cern.ch/about/computing  

¨  Cassandra at Netflix (as of July 2012):  
¤  472 total machine; 65 TB of data (total across 30 clusters) 
¤  72 machines; 28 TB of data (largest cluster) 
¤  http://www.slideshare.net/greggulrich/cassandra-operations-at-netflix 

¨  Ebay’s Cassandra “taste graph” (as of March 2013): 
¤  32 nodes; 5 TB (replicated twice = 10 TB), expected to quadruple in 1 

year 
¤  http://www.slideshare.net/planetcassandra/e-bay-nyc 

¨  Twitter metrics in Cassandra (Cuckoo): 492 GB/day 
¤  http://www.scribd.com/doc/59830692/Cassandra-at-Twitter 

 



Using Big Data – Different Use Cases 

¨  Write once 
¨  Simple key-value updates 
¨  Compound key-value updates 
¨  Database transactions 



Accessing Big Data: 
Write Once/Read Many 

¨  Data never changes once it is written; new data can 
be added 

¨  Requirements: 
¤ Partition data 
¤ Locate/retrieve data 

¨  Cassandra Solutions: 
¤ Consistent hashing 
¤ Gossip to propagate data locations 



Partitioning Data: Consistent Hashing 

http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2 



Locating Data: Gossip 

¨  New nodes start with the addresses of a small set 
of “seed” nodes, which they contact to get 
information about the cluster 

¨  Once per second, exchange state with up to 3 other 
nodes 

¨  Information about which ranges belong to which 
nodes is propagated by eventual path 



Accessing Big Data:  
Simple Key-value Updates 

¨  Each update only affects one key-value pair 
¨  Requirements: 

¤ Get the update to all replicas 
¤ Potentially enforce guarantees on the visibility of the 

update 

¨  Cassandra Solutions: 
¤ Hinted handoff, read repair, anti-entropy sessions 
¤ “Tunable consistency” 



Accessing Big Data: 
Compound Updates and Transactions 

¨  Updates can affect multiple key-value pairs 
¨  Updates may be conditional 
¨  Requirements: 

¤ Coordinate across replicas for different key-value pairs 

¨  Cassandra Solutions: 
¤ Adding support for atomic batches – not quite there yet 

¨  What else can we do? 



Replication Protocols 

¨  Ensure that all replicas apply updates in the same 
order 

¨  A replication engine can impose a total order on all 
updates in the system 



Two-phase Commit: Example 1 
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Two-phase Commit: Example 2 
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Two-phase Commit: Example 2 
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Two-phase Commit: Example 2 
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Two-phase Commit: Properties 

¨  Can be used for general transactions; not only the 
special case of replication 

¨  Vulnerable to coordinator failure 



Paxos: Normal Case 
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When the leader receives update u from some replica: 



Paxos: Normal Case 
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If no replica has assigned an update u’ != u to sequence i: 



Paxos: Normal Case 

Leader 

Non-
leader 

Non-
leader 

Non-
leader 

Non-
leader 

Decide(u, i) Decide(u, i) 
Decide(u, i) 

Decide(u, i) 

Once the leader receives “accept” from a majority: 



Paxos: Properties 

¨  Extremely resilient: leader + any quorum can make 
progress 

¨  Provides strong consistency (only) 
¨  Processing many “accept” messages may limit 

performance 



Ring Paxos: Normal Case 
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Ring Paxos: Properties 

¨  Improves the performance of Paxos (eliminates 
“accept” bottleneck) 

¨  Reduces the resiliency of Paxos (what if a member 
of the ring fails?) 

¨  Same semantics as Paxos—strong consistency 



Congruity: Normal Case 

¨  Replicas send updates via a group communication 
service using safe delivery 

¨  While in a primary component, replicas can apply 
updates as soon as they are delivered (by group 
communication service) 

¨  While not in a primary component, updates are still 
exchanged but not applied (if strong consistency is 
needed) 



Congruity: Properties 

¨  Flexible semantics: weak consistency queries, dirty 
queries, commutative updates/timestamp semantics 
¤ Allows replicas not in a primary component to respond 

to queries 

¨  Exchange updates while not in primary component 
+ exchange state on membership change à 
Propagation by eventual path 

¨  Avoids acknowledging every update 
¨  Requires membership (reduces resiliency) 



Revisiting Big Data 

¨  Write once 
¨  Simple key-value updates 
¨  Compound key-value updates 
¨  Database transactions 



Replication Engines 

¨  Provide total order on updates in the system 
¨  Need to be able to handle throughput of the system 
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Improving Throughput for Group-
Communication-based Replication 
¨  Standard ring protocol: 

¤ Token circulates logical ring 
¤ Upon receiving the token, a participant sends all the 

messages it has/is allowed for that round, then passes 
the token to the next participant 

¨  Accelerated ring protocol: 
¤ Token circulates logical ring 
¤ Upon receiving the token, a participant sends some 

fraction of the messages it has/is allowed for that 
round, passes the token, and then sends the remaining 
messages it has/is allowed 



Throughput Comparison 
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Throughput Comparison 

Rains 1-5: 10 Gb/s Arista switch: 
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Throughput Comparison 

Rains 9-16: 10 Gb/s Arista switch: 
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Solving the Big Data Problems 

¨  Compound key-value updates: replication engines 
enforce total ordering of updates across servers 

¨  Distributed transactions: is total order sufficient? 
¤ Consider updatei: “Read A. If A =1, write B=2” 
¤ All servers will assign the same order to the update, but 

if A is on server1 and B is on server2, what should 
server2 do when it orders updatei? 



Solving the Big Data Problems 

¨  Need something more general than replication to 
handle distributed transactions 
¤ Two-phase commit 
¤ Three-phase commit? Enhanced three-phase commit? 

¨  Number of replicas per item is small (3-4) 
¤ More efficient to coordinate per item, rather than using 

a replication service for the entire system 
¤ Regular Paxos – performance optimizations aren’t 

relevant for this number of replicas 



Toward Solving the Big Data Problems 

¨  Spanner: Google’s proprietary approach 
http://research.google.com/archive/spanner.html  

¨  Paxos between replicas; 2PC for transactions 
involving multiple Paxos groups 



Big Data: Conclusions 

¨  Requirements for large-scale data stores depend on 
use patterns 

¨  Eventually consistent key-value store approaches 
work well for read only data and single-row 
operations 

¨  A more general and complex approach is necessary 
to provide transactional guarantees across rows 

¨  An open source implementation / realization may 
be useful 


