
BIG DATA AND
CONSISTENCY
Amy Babay

Outline

¨  Big Data
¤ What is it?
¤ How is it used? What problems need to be solved?

¨  Replication
¤ What are the options?
¤ Can we use this to solve Big Data’s problems?

¨  Putting them together
¤ What works?
¤ What are existing tools doing?

Big Data: Numbers

¨  Facebook: 100 petabytes of photos and videos
¤  http://newsroom.fb.com/Infrastructure

¨  Large Hadron Collider: produces 15 petabytes of data annually
¤  http://home.web.cern.ch/about/computing

¨  Cassandra at Netflix (as of July 2012):
¤  472 total machine; 65 TB of data (total across 30 clusters)
¤  72 machines; 28 TB of data (largest cluster)
¤  http://www.slideshare.net/greggulrich/cassandra-operations-at-netflix

¨  Ebay’s Cassandra “taste graph” (as of March 2013):
¤  32 nodes; 5 TB (replicated twice = 10 TB), expected to quadruple in 1

year
¤  http://www.slideshare.net/planetcassandra/e-bay-nyc

¨  Twitter metrics in Cassandra (Cuckoo): 492 GB/day
¤  http://www.scribd.com/doc/59830692/Cassandra-at-Twitter

Using Big Data – Different Use Cases

¨  Write once
¨  Simple key-value updates
¨  Compound key-value updates
¨  Database transactions

Accessing Big Data:
Write Once/Read Many

¨  Data never changes once it is written; new data can
be added

¨  Requirements:
¤ Partition data
¤ Locate/retrieve data

¨  Cassandra Solutions:
¤ Consistent hashing
¤ Gossip to propagate data locations

Partitioning Data: Consistent Hashing

http://www.datastax.com/dev/blog/virtual-nodes-in-cassandra-1-2

Locating Data: Gossip

¨  New nodes start with the addresses of a small set
of “seed” nodes, which they contact to get
information about the cluster

¨  Once per second, exchange state with up to 3 other
nodes

¨  Information about which ranges belong to which
nodes is propagated by eventual path

Accessing Big Data:
Simple Key-value Updates

¨  Each update only affects one key-value pair
¨  Requirements:

¤ Get the update to all replicas
¤ Potentially enforce guarantees on the visibility of the

update

¨  Cassandra Solutions:
¤ Hinted handoff, read repair, anti-entropy sessions
¤ “Tunable consistency”

Accessing Big Data:
Compound Updates and Transactions

¨  Updates can affect multiple key-value pairs
¨  Updates may be conditional
¨  Requirements:

¤ Coordinate across replicas for different key-value pairs

¨  Cassandra Solutions:
¤ Adding support for atomic batches – not quite there yet

¨  What else can we do?

Replication Protocols

¨  Ensure that all replicas apply updates in the same
order

¨  A replication engine can impose a total order on all
updates in the system

Two-phase Commit: Example 1

Participant

Coordinator

Participant Participant

Prepare Prepare Prepare

Two-phase Commit: Example 1

Participant

Coordinator

Participant Participant

Ready Ready Ready

Two-phase Commit: Example 1

Participant

Coordinator

Participant Participant

Commit Commit Commit

Transaction Committed

Two-phase Commit: Example 2

Participant

Coordinator

Participant Participant

Prepare Prepare Prepare

Two-phase Commit: Example 2

Participant

Coordinator

Participant Participant

Ready Ready Abort

Two-phase Commit: Example 2

Participant

Coordinator

Participant Participant

Abort Abort Abort

Transaction Aborted

Two-phase Commit: Properties

¨  Can be used for general transactions; not only the
special case of replication

¨  Vulnerable to coordinator failure

Paxos: Normal Case

Leader

Non-
leader

Non-
leader

Non-
leader

Non-
leader

Propose(u, i) Propose(u, i)
Propose(u, i)

Propose(u, i)

When the leader receives update u from some replica:

Paxos: Normal Case

Leader

Non-
leader

Non-
leader

Non-
leader

Non-
leader

Accept(u, i) Accept(u, i)
Accept(u, i)

Accept(u, i)

If no replica has assigned an update u’ != u to sequence i:

Paxos: Normal Case

Leader

Non-
leader

Non-
leader

Non-
leader

Non-
leader

Decide(u, i) Decide(u, i)
Decide(u, i)

Decide(u, i)

Once the leader receives “accept” from a majority:

Paxos: Properties

¨  Extremely resilient: leader + any quorum can make
progress

¨  Provides strong consistency (only)
¨  Processing many “accept” messages may limit

performance

Ring Paxos: Normal Case

Coordinator,
last

Acceptor in
ring

Spare
Acceptor

Acceptor Spare
Acceptor

First
Acceptor
in ring

When the leader receives update u:

Propose(u, i)

Propose(u, i)
Propose(u, i)

Propose(u, i)

Ring Paxos: Normal Case

Coordinator,
last

Acceptor in
ring

Spare
Acceptor

Acceptor Spare
Acceptor

First
Acceptor
in ring

Accept(u, i)

Ring Paxos: Normal Case

Coordinator,
last

Acceptor in
ring

Spare
Acceptor

Acceptor Spare
Acceptor

First
Acceptor
in ring

Accept(u, i)

Ring Paxos: Normal Case

Coordinator,
last

Acceptor in
ring

Spare
Acceptor

Acceptor Spare
Acceptor

First
Acceptor
in ring

Decide(u, i)

Decide(u, i)

Decide(u, i)

Decide(u, i)

Ring Paxos: Properties

¨  Improves the performance of Paxos (eliminates
“accept” bottleneck)

¨  Reduces the resiliency of Paxos (what if a member
of the ring fails?)

¨  Same semantics as Paxos—strong consistency

Congruity: Normal Case

¨  Replicas send updates via a group communication
service using safe delivery

¨  While in a primary component, replicas can apply
updates as soon as they are delivered (by group
communication service)

¨  While not in a primary component, updates are still
exchanged but not applied (if strong consistency is
needed)

Congruity: Properties

¨  Flexible semantics: weak consistency queries, dirty
queries, commutative updates/timestamp semantics
¤ Allows replicas not in a primary component to respond

to queries

¨  Exchange updates while not in primary component
+ exchange state on membership change à
Propagation by eventual path

¨  Avoids acknowledging every update
¨  Requires membership (reduces resiliency)

Revisiting Big Data

¨  Write once
¨  Simple key-value updates
¨  Compound key-value updates
¨  Database transactions

Replication Engines

¨  Provide total order on updates in the system
¨  Need to be able to handle throughput of the system

Replication
server

Replication
server

Replication
server

Replication
server

Data
Store

Data
Store

Data
Store

Data
Store

Data
Store

Data
Store Data

Store

Replication
server

Data
Store

Data
Store

Data
Store

Improving Throughput for Group-
Communication-based Replication
¨  Standard ring protocol:

¤ Token circulates logical ring
¤ Upon receiving the token, a participant sends all the

messages it has/is allowed for that round, then passes
the token to the next participant

¨  Accelerated ring protocol:
¤ Token circulates logical ring
¤ Upon receiving the token, a participant sends some

fraction of the messages it has/is allowed for that
round, passes the token, and then sends the remaining
messages it has/is allowed

Throughput Comparison

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25 30 35

M
bp

s

Post-token burst

Burst 15, Window 90

Burst 20, Window 120

Burst 30, Window 180

Clouds 1-6: 1 Gb/s Cisco switch:

400 Mb/s

700 Mb/s

Throughput Comparison

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

M
bp

s

Post-token burst

Burst 15, Window 90

Burst 20, Window 120

Burst 30, Window 180

Rains 1-5: 1 Gb/s Cisco switch:

550 Mb/s

940 Mb/s

Throughput Comparison

Rains 1-5: 10 Gb/s Arista switch:

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

M
bp

s

Post-token burst

Burst 15, Window 90

Burst 20, Window 120

Burst 30, Window 180

Throughput Comparison

Rains 9-16: 10 Gb/s Arista switch:

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35

M
bp

s

Post-token burst

Burst 15, Window 90

Burst 20, Window 120

Burst 30, Window 180

1.9 Gb/s

2.5 Gb/s

Solving the Big Data Problems

¨  Compound key-value updates: replication engines
enforce total ordering of updates across servers

¨  Distributed transactions: is total order sufficient?
¤ Consider updatei: “Read A. If A =1, write B=2”
¤ All servers will assign the same order to the update, but

if A is on server1 and B is on server2, what should
server2 do when it orders updatei?

Solving the Big Data Problems

¨  Need something more general than replication to
handle distributed transactions
¤ Two-phase commit
¤ Three-phase commit? Enhanced three-phase commit?

¨  Number of replicas per item is small (3-4)
¤ More efficient to coordinate per item, rather than using

a replication service for the entire system
¤ Regular Paxos – performance optimizations aren’t

relevant for this number of replicas

Toward Solving the Big Data Problems

¨  Spanner: Google’s proprietary approach
http://research.google.com/archive/spanner.html

¨  Paxos between replicas; 2PC for transactions
involving multiple Paxos groups

Big Data: Conclusions

¨  Requirements for large-scale data stores depend on
use patterns

¨  Eventually consistent key-value store approaches
work well for read only data and single-row
operations

¨  A more general and complex approach is necessary
to provide transactional guarantees across rows

¨  An open source implementation / realization may
be useful

