
K-Path Overlay Routing
for Resilient Clouds
Bennett Ellis

Overview

¨  Interested in ways to create additional
resiliency to network faults and partitions in
overlay networks

¨  How?
¨  Multipath routing

Agenda

¨  K-Path Routing
¨  My Implementation
¨  Testing My Implementation
¨  Demo
¨  Practicality

K-Path Routing

¨  Looking for a set of k edge or vertex disjoint
paths in a graph such that the sum of the
lengths of each path is the minimum of the
corresponding sums of all possible sets of k
edge or vertex disjoint paths for that graph.

¨  Possible Algorithms: Suurballe’s, Algorithms
from Survivable Networks by Ramesh
Bhandari, Min-cost/Max-flow

Suurballe’s Algorithm

¨  Run Dijkstra’s to get shortest path tree.
¨  Use cost of each edge in tree to modify

weights of every edge in the graph to get a
transformed graph

¨  Rerun Dijkstra’s to get shortest path to
destination.

¨  Repeat 2-3 as necessary (1 repetition per
desired extra path)

¨  Remove overlapping edges in paths to
destination from different iterations of Dijkstra’s

Algorithms from Survivable
Networks
¨  Run Dijkstra’s to get shortest path
¨  Replace each edge in path with a negative

edge in the opposite direction
¨  Rerun modified version of Dijkstra’s
¨  Repeat steps 2-3 as many times needed (1

repetition per desired extra path)
¨  Remove overlapping edges from paths

generated by each Dijkstra’s.

Min Cost/Max-Flow

¨  Recast problem as a flow network. Each edge has
a capacity of 1 unit of flow and a cost has a cost
per unit of flow for using that edge.

¨  Variation of Edmonds and Karp
¤ Only increment flow by 1 in each iteration
¤ Use Dijkstra’s to find shortest augmenting path based

on cost rather than finding shortest augmenting path
based on number of hops

¤ At the end: look at edges with positive flow
¨  K iterations will find a minimum cost path for

sending K units of flow, which is equivalent.

Algorithm Comparison

¨  Each runs K iterations of Dijkstra’s
¨  Surballe’s requires a modification of each edge

in the graph after every iteration
¨  Survivable Networks requires the reversal and

negation of edges of each iteration’s path
¨  Min-Cost/Max-Flow requires modification of

flow of the path found in every iteration
¨  Decided to go with Min-Cost/Max-Flow

Min-Cost/Max Flow Illustration

3 4

1 2

1

1

3 3

Edge to Vertex Disjoint

My Implementation

¨  Decided to do it as a model of an overlay
network written in C.

¨  Entire network known to each server in model
¤ N servers, each numbered 1-N
¤ Bidirectional links (max one per pair of servers)

¨  UDP Communication
¨  Clients on same machines as Servers
¨  Source Based Routing
¨  Small buffer at exit node of model

Source Based Routing

¨  Routing info stamped into packet header for
packets between servers

¨  1 bit per link in the network
¨  Each server calculates same global ordering

of each edge => same unique 1 bit mask
calculated for each edge

Small Buffer

¨  Potentially receiving multiple copies of each
message, out of order.

¨  Add sequence number to each packet based on
source server. End server buffers packets based
on source server.
¤ Upon receiving each message

If in order: deliver and then deliver contiguous
buffered messages

¤  If out of order: buffer
¨  Flush buffer every 10 ms (or if it reaches max # of

packets it will buffer from one source)

Testing

¨  Implemented naiive routing algorithm as well
as a chat client. Used Simple network

¨  Implemented Min-Cost/Max-Flow algorithm
and tested chat client

¨  Implemented funnels to stream larger
quantities of data over the model

Demo

¨  Wrote a funnel client
¤  On entry node in overlay: listens for outside packets on a

port, encapsulates it in in appropriate header, passes to
server along with request to deliver to a particular exit node
using a particular number of paths

¤  On exit node: listens for output from exit node server, strips
headers, sends packets to an IP address set up in
advance.

¨  Added Statistics
¤  Entry node: picks out paths chosen every 1000 packets
¤  Destination node: prints path packet actually took every

100 packets and time spent in overlay in microseconds
¨  Dr. Amir kindly let me test this on his cloud with a

video stream.

Demo Graph

1

2

3
4

5

6
7 8

9

100

100

100

100
10

0

100

10
0

100
100

Dano

Practicality: Positives and
Negatives
Negative Positive

Pay K times per packet Occasionally willing to do so for
increased reliability

Requires knowledge of entire network Common situation in Overlays

Model only recognizes clients on the
same machine as servers

Only because model doesn’t have info
to find appropriate exit node based on
outside destination IP. Fix by porting
to a real overlay.

Model doesn’t do any packet
replaying between servers.

Again, only a limitation of the model.
Port to a real overlay.

Questions?

