
Fault Tolerance
in K3
Ben Glickman, Amit Mehta, Josh Wheeler

Outline
● Background
● Motivation
● Detecting Membership Changes with Spread
● Modes of Fault Tolerance in K3
● Demonstration

Outline
● Background
● Motivation
● Detecting Membership Changes with Spread
● Modes of Fault Tolerance in K3
● Demonstration

Big Data Systems
● Several sources of Big Data

○ Sciences, Healthcare, Enterprise, and more.
● Need systems that scale to the volume of the data
● Single machine supercomputers are expensive
● “Scale-out” systems have become popular

○ Cluster of affordable machines
○ Massively parallel with communication over a network
○ e.g., MapReduce (Hadoop), Distributed DBMS

Main-Memory Data Systems
● Disk was the bottleneck of the first generation systems
● Motivated a new class of data systems that compute

entirely in-memory.
○ Cluster provides a large pool of RAM (TB scale)
○ Feasible to store entire datasets (Spill to disk if necessary)
○ Improves throughput by orders of magnitude
○ e.g., Spark, Stratosphere, etc.

K3 Background
● Programming framework for building shared-nothing

main-memory data systems
○ High level language for systems building
○ Compiled into high-performance native code

● Under development at the Data Management Systems
Lab at JHU: http://damsl.cs.jhu.edu

● K3 Github: https://github.com/damsl/k3

http://damsl.cs.jhu.edu
https://github.com/damsl/k3

K3 Programming Model
● Functional-imperative language

○ Currying, Higher-Order functions
○ Mutable variable, loops

● Asynchronous distributed computation
○ Triggers act as event handlers
○ Message passing between triggers defines a dataflow

● Collections library
○ High-level operations (map, filter, fold, etc.)
○ Fine-grained updates (insert, update, etc.)
○ Nested Collections

K3 Execution Model
● Several peers run the same K3 executable program
● Shared-Nothing

○ Each peer can access only its own local data segment
○ Data movement and coordination across peers achieved through

message passing
● Partitioned Execution Model

○ Large datasets are partitioned and distributed evenly among peers
○ Kept in-memory

K3 Execution Model
● Focused on large scale analytics (read-only) workloads

○ Transactions, fine-grained updates in future work
● Single master peer to

○ Coordinate distributed computation
○ Collect results at a single site

● Remaining peers are workers that compute over local
partitions of a dataset and communicate through
messaging

K3 Execution Model

Messages:

Network:

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

K3 Execution Model
● Used to build multi-stage, complex data-flows:

1

Master

2
3
4
5
6

1
2

4
5
6

3

7
8

7
8

1

2

4

3

1

2

4

3

1
2
3
4
5
6
7
8

Data flow for the program that will be demonstrated after the presentation

K3 Performance
● Outperforms two state of the art systems: Spark and

Impala
○ SQL processing and iterative Machine Learning and Graph algorithms

K3 Example
“Find the oldest employee in the dataset”Given an Employees dataset:

Employee:
 name String,
 age Integer

Partitioned among the K3 workers

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers
Walter White, 67
...

Bob Smith, 57
...

Saul Goodman, 37
...

K3 Example
“Find the oldest employee in the dataset”

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

1) Master: Instruct workers to
compute local maximum

K3 Code:
// Send a message to each peer’s

// ‘computeLocalMax’ trigger

trigger start: () = _ -> (

 workers.iterate (\p ->

 (computeLocalMax, p.addr) <- ()

)

)

K3 Example
“Find the oldest employee in the dataset”

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

1) Master: Instruct workers to
compute local maximum

K3 Code:
// Send a message to each peer’s

// ‘computeLocalMax’ trigger

trigger start: () = _ -> (

 workers.iterate (\p ->

 (computeLocalMax, p.addr) <- ()

)

)

computeLocalMax()

K3 Example
“Find the oldest employee in the dataset”

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

computeLocalMax() computeLocalMax() computeLocalMax()

2) Workers: Compute local
maximum, send it to the master
K3 Code:
// Send local max to the ‘collectMax’
// trigger at the master

trigger computeLocalMax: () = _ ->

 let max = local_data.fold

 (\acc -> \elem ->

 if elem.age > acc.age

 then elem

 else acc

) local_data.peek()

 in (collectMax, master) <- max

)

K3 Example
“Find the oldest employee in the dataset”

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

2) Workers: Compute local
maximum, send it to the master
K3 Code:
// Send local max to the ‘collectMax’
// trigger at the master

trigger computeLocalMax: () = _ ->

 let max = local_data.fold

 (\acc -> \elem ->

 if elem.age > acc.age

 then elem

 else acc

) local_data.peek()

 in (collectMax, master) <- max

collectMax
 (“Bob Smith”, 57, …)

collectMax
 (“Walter White”, 67, …)

collectMax
 (“Saul Goodman”, 37, …)

K3 Example
“Find the oldest employee in the dataset”

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

3) Master: Wait to receive all
messages, keep track of max.
K3 Code:
// Wait to receive from each peer.

trigger collectMax: (string, int) =

 \(name, age) -> (

 global_max =

 if age > global_max.age

 then (name, age)

 else global_max;

 responses_recv += 1;

 if responses_recv==workers.size()

 then print "Finished!"

collectMax
 (“Bob Smith”, 57, …)

collectMax
 (“Saul Goodman”, 37, …)

collectMax
 (“Walter White”, 67, …)

K3 Example
“Find the oldest employee in the dataset”

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

3) Master: Wait to receive all
messages, keep track of max.
K3 Code:
// Wait to receive from each peer.

trigger collectMax: (string, int) =

 \(name, age) -> (

 global_max =

 if age > global_max.age

 then (name, age)

 else global_max;

 responses_recv += 1;

 if responses_recv==workers.size()

 then print "Finished!"

Finished!

global_max = (Walter White, 67)

Outline
● Background
● Motivation
● Detecting Membership Changes with Spread
● Modes of Fault Tolerance in K3
● Demonstration

Fault Tolerance Motivation
● Analytical queries are often long-running

○ Large volume of data. Limited CPU throughput
○ Iterative algorithms take time to converge

● Likelihood of failure increases with the number of
machines
○ Hardware Failures. Bad Disks, Power Loss, etc.
○ At Largest Scale:

■ Hours of computation
■ Hundreds/Thousands of machines
■ Periodic faults will occur

Mid Query Fault Tolerance
● Without Fault Tolerance: Restart entire computation

○ Any progress made towards a solution before the crash is lost
○ Start from scratch: Hopefully no failures! or else repeat!

● Existing solutions tolerate crashes via
○ Replicated Input Data
○ Optional checkpointing of intermediate program state (expensive)
○ Replaying work that has been lost.

■ Hadoop and Spark both replay missing work

Fault Tolerance in K3
● Before our project: K3 did not handle faults
● When a process crashed:

○ Others might become stuck waiting for messages
○ Others might attempt to send messages to a missing peer

● Consider the ‘max’ example

K3 Crash Example
“Find the oldest employee in the dataset”

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

K3 Peer
Runtime

Triggers

Data

Master Workers

3) Master: Wait to receive all
messages, keep track of max.
K3 Code:
// Wait to receive from each peer.

trigger collectMax: (string, int) =

 \(name, age) -> (

 global_max =

 if age > global_max.age

 then (name, age)

 else global_max;

 responses_recv += 1;

 if responses_recv==workers.size()

 then print "Finished!"

collectMax
 (“Bob Smith”, 57, …)

collectMax
 (“Saul Goodman”, 37, …)

collectMax
 (“Walter White”, 67, …)

Will never occur!

Fault Tolerance in K3
● Need to offer programmer a way to react to crashes
● Allow them to implement application specific logic for

handling a crash
○ We explored several applications/modes of failure

● Alternatively, a general solution might leverage static
analysis of a K3 program to automatically provide fault
tolerance
○ Place less burden on the programmer
○ Potential area for future work, not covered in this project

Outline
● Background
● Motivation
● Detecting Membership Changes with

Spread
● Modes of Fault Tolerance in K3
● Demonstration

Spread
● Group communication toolkit to assist in building reliable

distributed systems
● Allows process to join groups for communication
● Processes are alerted when others join or leave groups

○ i.e., due to a process crash or network partition
● We incorporated Spread client into the K3 runtime for its

membership functionality

K3 / Spread
● K3 processes act as Spread clients
● K3 command line args specify connection parameters
● Startup protocol:

○ Wait for all processes to join a public group
○ Processes agree on the initial set of peers sent to the K3 program

● Spread event loop runs in a separate thread from the
K3 event loop
○ Spread client code receives a membership change
○ Creates the appropriate K3 message and injects into program’s queue

K3 / Spread
We allow programmers to designate a special trigger for
handling a membership change

○ Indicated with a @:Membership Annotation
○ Trigger receives set of new members as an argument
○ Trigger contains arbitrary application specific logic for reacting to the

change
○ After startup, called after each

membership change K3 Code:
trigger t: [address]@Set = (\members ->

 print “Oh no! A membership change!”;

 ...

) @:Membership

Outline
● Background
● Motivation
● Detecting Membership Changes with Spread
● Modes of Fault Tolerance in K3
● Demonstration

Fault Tolerance in K3
We explored 3 example models of fault tolerance:
● Terminate gracefully after a crash
● Remaining peers continue after a crash (approximate

solution)
● Replay missing work after a crash

Fault Tolerance in K3
We explored 3 example models of fault tolerance:
● Terminate gracefully after a crash
● Remaining peers continue after a crash (approximate

solution)
● Replay missing work after a crash

Graceful Termination
● Simply exit the program when a membership change is

received
● Baby-step towards fault tolerance:

○ All peers are aware of the crash
○ Prevents a peer from becoming ‘stuck’

● General enough for all programs
○ Only prevents ‘stuck’ state
○ Does not help with getting output

TODO: Code Formatting

K3 Code:
trigger t: [address]@Set = (\members ->

 shutdown()

) @:Membership

Fault Tolerance in K3
We explored 3 models of fault tolerance:
● Terminate gracefully after a crash
● Remaining peers continue after a crash

(approximate solution)
● Replay missing work after a crash

Continue After a Crash
For example, make the following changes to prevent the
‘stuck’ state in the ‘max’ program:
● Master keeps track of which peers are expected to

respond at any time
○ Instead of counting responses

● After a membership change:
○ Master: Stop expecting messages from any missing peer
○ Workers: Exit if the master has been lost.

Continue After a Crash
● Able to reach an approximate solution

○ Partitions of data have been lost, may affect the answer
○ In the ‘max’ example: the partition containing the true maximum may

have been lost.
● Appropriate in certain situations only

○ e.g., training a statistical model
○ Up to the developer to decide if this is acceptable.

Fault Tolerance in K3
We explored 3 models of fault tolerance:
● Terminate gracefully after a crash
● Remaining peers continue after a crash (approximate

solution)
● Replay missing work after a crash

Recovery by Replay
● Motivated by Spark’s Resilient Distributed Datasets

(RDD)
● Applications that apply coarse-grained transformations

to partitioned datasets
○ Many algorithms can be encoded in this model

● Input datasets must be replicated
○ e.g., HDFS replicates input data 3 times

Recovery by Replay
In the RDD model:
● Each partition of data has a lineage or set of dependencies

○ Input data comes directly from disk
○ Intermediate data is a result of applying transformations to previously

defined partitions
● When a partition is lost, it can be re-computed by replaying

its lineage
○ Bottoms-out at disk, if there are still replicas available
○ See example in demonstration

Recovery by Replay
In the RDD model:
● When a machine crashes, the partitions that it was

hosting are re-assigned to several other machines.
○ Allows the work to be replayed in parallel

● Does not require expensive checkpointing and
replication of logs or intermediate datasets
○ A big issue when datasets are large.

Outline
● Background
● Motivation
● Detecting Membership Changes with Spread
● Modes of Fault Tolerance in K3
● Demonstration

Proof of Concept
● We Implemented a multi-stage SQL query from the

Amplab Big Data Benchmark
○ https://amplab.cs.berkeley.edu/benchmark/ (Query 2)

● Replays missing work in the event of a crash
○ Can handle as many crashes as there are replicas of input data
○ Picks a new master if the master is lost

■ No single point of failure
● We demonstrate a proof of concept using 6 processes

across 2 physical machines on a sample dataset

https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/

SQL Example
Rankings

Lists websites and their page rank:

Schema:
pageURL VARCHAR(300)

pageRank INT

avgDuration INT

Uservisits

Stores server logs for each web page

Schema:
sourceIP VARCHAR(116)

destURL VARCHAR(100)

adRevenue FLOAT

…(ommitted)

English Query:

For the user that generated the most ad
revenue during 1980:

● Report the sourceIP, total revenue,
and average page rank of pages
visited by this user

SQL Query:
SELECT sourceIP, totalRevenue, avgPageRank

FROM (SELECT sourceIP,

 AVG(pageRank) as avgPageRank,

 SUM(adRevenue) as totalRevenue

 FROM Rankings AS R, UserVisits AS UV

 WHERE R.pageURL = UV.destURL

 AND UV.visitDate BETWEEN Date(`1980-01-01)' AND Date(`1981-01-01')

 GROUP BY UV.sourceIP)

ORDER BY totalRevenue DESC LIMIT 1

Dataset:

SQL Example: Logical Plan

Uservisits

Rankings

FILTER
WHERE visitDate between
‘1980’ and ‘1981’

JOIN
ON pageURL = destURL

GROUP BY
sourceIP
SUM(adRevenue)
AVG(pageRank)

MAX
totalRevenue

SQL Example: Physical Plan
1

R
a
n
k
i
n
g
s

U
s
e
r
v
i
s
i
t
s

Filtered
Uservisits

Join Group By

Max at
Master

(Partition
on pageURL)

(Partition
on destURL)

(Partition
on sourceIP)

(Collect
maximum)

2
3
4
5
6

1
2

4
5
6

3

7
8

7
8

1

2

4

3

1

2

4

3

1
2
3
4
5
6
7
8

SQL Example: Gold Crashed
1

R
a
n
k
i
n
g
s

U
s
e
r
v
i
s
i
t
s

Filtered
Uservisits

Join Group By

Max at
Master

(Partition
on pageURL)

(Partition
on destURL)

(Partition
on sourceIP)

(Collect
maximum)

2
3
4
5
6

1
2

4
5
6

3

7
8

7
8

1

2

4

3

1

2

4

3

1
2
3
4
5
6
7
8

Red: Requires a resend
Yellow: Maybe resend
Green: No resend

SQL Example: Implementation
● Assignment/Location of all partitions are known by all peers

○ Locations for replicas of input data are provided in deployment config
○ Assignments are a pure function of the current membership

● Request/Response Model
○ Request all dependencies required to perform local computation
○ When a request is received:

■ Compute locally and respond if all dependency data is local
● Always possible at the leaves of the plan

■ Otherwise:
● Request dependencies required for local computation
● Respond after all requests are fulfilled

○ In the event of a membership change
■ Reassign all partitions. Reissue requests, as necessary

Demonstration
4 versions of the query:
● No Fault Tolerance (gets stuck)
● Terminate Gracefully
● Continue with missing data
● Replay missing work

