
Small Form
Computing
A bump in the wire

 The questions
●  What can we do with an inexpensive small computer?

●  Can we make it a part of a seamless wireless mesh

network by installing SMesh?

●  Can we make it a robot controller by performing

computations on it?

●  Can it encrypt/decrypt? At what rate?

 The answers
●  Let’s try and run something on it
●  Learn about its target platform

o  MIPS 32 architecture
o  Single Core
o  Little Endian
o  Memory – 61 MB

●  What about its capability?
o  Need of standard benchmarks

Linux to the rescue -

OpenWRT

●  A Linux distribution for embedded devices

●  Flash the router!

●  Bleeding edge version - Chaos Calmer

Now the benchmarking ..
●  File Transfer over TCP

o  Wired: 89 Mpbs Wireless: 44 Mpbs With I/O: 7Mbps
●  OpenSSL benchmarks

●  Definitely not for Asymmetric Encryption!

Test (for 3 seconds) block size: 16 Cloud2 Bps NEXX Bps
SHA1 31787.25K 2805.40K
AES 256 CBC 54005.82K 6222.59K
2048 bit private RSA for 10s 1384 signs/s

49705 verify/s
8.1 signs/s
257.9 verify/s

Let’s write some code…
●  Cross compilation – Sourcery codebench Lite, OpenWRT

SDK

●  mipslinux-gnu-gcc -msoft-float -EL -static <helloworld.c> -o

<helloworld>

●  Get USB support - opkg package manager

●  Building a simple package using the SDK

What do we do with it?
●  What about a Bump-In-The-Wire?

●  Set it up as two intermediary hops between two hosts

trying to communicate

●  Encryption/Decryption on the fly

Topology

(LAN: 192.168.3.1)
NEXX 2

 (WAN: 192.168.4.1)

Host 1

192.168.3.222

Host 2

192.168.1.128

(LAN: 192.168.1.1)
NEXX 2

 (WAN: 192.168.4.3)

Sends a
ping

request

XXXX

Sends a
ping reply

Encrypts/
Decrypts

Decrypts/
Encrypts

Step 1

●  Understanding Journey of an IP packet through the

network

All that jargon

Checksums

Sniffing
Netfilter

Raw
sockets

IPTables

Packet Capture

Raw Sockets
•  A user level application can open a raw socket to get

packets exactly as they would arrive on the network

•  Not suitable for this application - creates a ‘clone’ of

each incoming packet for every application that has
opened a raw socket, to listen to that type of packet. It
didn’t really ‘bypass’ the kernel processing

Divert Sockets
•  They fit the bill, their very use case was to filter specific

packets and get them to user space, giving the process total
control of the packet. It could pass the packet as is, or choose
to mangle it

•  IPPROTO_DIVERT – instruct the firewall to send packets to a

certain port, to which this socket is bound

•  Different kernel needed

Netfilter/Iptables
●  A framework for packet filtering, a kernel subsystem

in all modern linux kernels, all incoming packets
traverse the netfilter subsystem

●  Iptables - a user level application to interact with

netfilter modules

Digging into Netfilter
●  Each protocol (IPV4/IPV6/DECnet)defines ‘hooks’. These

are well defined points in a packet’s traversal of that protocol
stack

●  Kernel modules can register to listen on different hooks of that
stack with priority. Packets are passed to them in order of
priority on arrival

●  These modules, can decide the ‘fate’ of the packet
o  NF_DROP/NF_ACCEPT/NF_STOLEN/NF_QUEUE

●  Packets that are queued, are handled in user space

Packet Traversing Netfilter system

 NF_IP_PRE_ROUTING ROUTE NF_IP_FORWARD NF_IP_POST

NF_IP_LOCAL
ROUTE

NF_IP_LOCAL_OUT

Iptables
•  A packet selection system that is built over Netfilter

•  The ‘tables’ are modules that are registered at various

‘hooks’ in this framework, these ‘hooks’ are referred to as
‘chains’ when handling incoming packets

•  Iptables –t mangle –I FORWARD –p tcp –j ACCEPT

•  Iptables –t mangle –I FORWARD –p tcp –j NF_QUEUE

Libnetfilter queue
•  Userspace library providing an API to packets that have

been queued by the kernel packet filter

•  Three step process:
1.  Library setup – nfq_open(), nfq_unbind_pf(),

nfq_bind_pf()
2.  Message receiving – callback function for each received

packet
3.  Exit phase – nfq_close()

Our system
•  Packet received – call back function – check type –

encrypt/decrypt – re-calculate checksums – issue verdict

Queue 0

Queue 1

nfqnl_program

From LAN

From WAN

Processed
packet

Encryption / Decryption
•  Using simple XOR

•  AES Encryption

•  OpenSSL library

Performance (all wired)
Tool /

Method
XOR AES No queue

PING packets 2 ms 2.2 ms 1 ms

Iperf
(TCP)

15.7 Mbps 11 Mbps 94 Mbps

File Transfer
(TCP)

 (20 MB)

13.54 Mbps 8.8 Mbps 90 Mbps

Conclusions
•  For performance improvement, write a netfilter hook (loadable

kernel module) instead of mangling packets in user space – will
need to see how encryption can be done here

•  How does this perform encryption with respect to other tools

•  Is this value for money?

References
•  http://sock-raw.org/papers/sock_raw
•  https://home.regit.org/netfilter-en/using-nfqueue-and-

libnetfilter_queue/
•  http://www.netfilter.org/projects/iptables/index.html

Questions ?
•  Thank you!

