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Problem Statement (Background)

Distributed Systems are Useful

» Partition tolerant (i.e. offline-capable)
» Scalable
Distributed Systems are Hard
» Typically requires formal training or study
» Even then, it's easy to make mistakes

» Even simple systems can be time-consuming
to implement properly
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Problem Statement (Goals)

» Can we come up with a way to specify the semantics
of a distributed system, and then generate the code
for the specified system?

» Can we also make it fool-proof, and accessible to
users without formal distributed systems training?
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Prior Art (Industry Solutions)

» Apache Cassandra has: [8]
» 9 write consistency levels
» 10 read consistency levels
» Apache CouchDB lets the developer choose between:
[10]
» Using a CAS-loop for strict consistency
» Arbitrarily picking a “winner” on conflict. All conflicting

versions are stored. The developer should manually
resolve the conflict.
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Prior Art (Interactive Theorem Provers)

» The Coq Proof Assistant [13]
» SAML (System Analysis Modelling Language) [5]
» Constable’s EventML [4]

» ...and many others
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Prior Art (Model Checking Solutions)

+ Leslie Lamport's TLA+ [12]
» CISE [6] & Indigo [2]
» The Leon Verification System [3]

» ...and many others
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Demo: Mail

» This is the final project from the Fall 2016
Distributed Systems Course

» Users can connect to one of five mail servers, and
“login” as a specific user
» The following operations are supported:
1. List email messages
2. Send an email message

3. Delete an email message
4. Mark an email message as read

» The entire system must be partition-tolerant and
crash-tolerant



Demo: Chat

» This is the final project from the Fall 2014
Distributed Systems Course

» Users can connect to one of five chat servers, and
“login” as a specific user
» The following operations are supported:
1. Join a room
2. Send a message to the room

3. Like a message
4. Unlike a message

» The entire system must be partition-tolerant and
crash-tolerant
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Demo: Simple verification example

» In order to be able have meaningful verification, we
need a way to express domain-specific invariants
about the system...
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Questions (before the next part)?
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How does it work? Code Generation
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Code Generation: Overview

» The AST is type-checked

» We generate C++ code from Twirl templates (a
templating language for Scala)

» We generate one struct per class in the source to hold
the properties.

» We generate one struct per exposed method.
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How does it work? Distributed Systems
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Algorithmic Overview

» All updates/operations have a (Lamport timestamp,
server, per-server monotonic counter) triple for an ID.

» Servers maintain and exchange the matrices
consisting of the highest ID update that they've
received from another server.

» Servers maintain lists (by server of origin) of all
updates they've ever received. These lists are used for
reconciliation.

» The current state of objects are stored as a mapping
from ID to object.
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Reconciliation Algorithm

1.

On partition change, start queuing any incoming
client requests. (In the even that a partition occurs
during this algorithm, keep adding to the current
queue, but otherwise reset other state associated with
this algorithm.)

. Buffer (into an array) any server-to-server updates

that come in during this reconciliation period.

. Once a server has sent out all of its updates for

reconciliation, it sends out a “finished reconciliation
message” to all the other servers

. Once the server has received a “finished reconciliation

message " from every server in the partition, then it
sorts the updates that came in by (¢, s, ¢) and then
applies them in that order (which is guaranteed to be
causal).

. Process any queued incoming client requests, and

stop queuing future client requests. Instead, process
them immediately.
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CRDTs [9]

» a Commutative (or Convergent) Replicated Data Type

» In general, they're data types that have the properties
that you'd want for eventual consistency in a
distributed system.
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Two equivalent formulations [11]
State-based (CvRDT)

Operations are homomorphisms on a join

semilattice.

(Operations respect a partial ordering on the set

of possible states. Any two states in the

semilattice have a least upper bound.)
Operation-based (CmRDT)

Operations are transmitted in causal order. Any

operations that can happen concurrently must

commute.
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Object Model

» The Universe consists of several mappings (classes)
from identifiers to fields of atomic type (i.e. they're
not class instances).

» There are two kinds of IDs:

Unique IDs Totally ordered (in a causal order), but
opaque otherwise. You get a fresh Unique
ID every time you ask for one.

Primary Key Meaningful keys that can be used to tie
an object to some quantity

» The ID of an object witnesses its existence
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Operations Model

» Each operation has a precondition that must be met
in order for the operation to take effect

» Non-strict consistency operations must commute with
all other operations
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Proof Rules
Let

1. The invariants are satisfiable (they don't conflict)

2. Yu, 0 where u is a universe and o is an operation
Pre(u) A Inv(u) = Inv(op(u))

3. The default values for objects with primary keys don't
violate invariants

4. Yu,o0,0 where u is a universe, o is an operation, and

o is an operation that doesn’t require strict
consistency. Then:

4.1 Inv(u) A Pre(u) = Pre'(op(u))

4.2 Inv(u) A Pre'(u) = Pre(op/(u))

4.3 Inv(u) A Pre(u) A Pre’(u) = op(op'(u)) = op/(op(u))
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How does it work? Programming Languages
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The Specification Language: Some
Highlights

» Is highly inspired by C# (it's not C#, though)

» The query syntax is very similar to LINQ in C# [7]

» No recursion. No higher-order functions. Strongly
normalizing.

» The query and iteration syntax is rigged such that
there’'s no way to access the i-th element of a list,
which means that we can reason about lists as sets.

» The type of a Unique ID is tagged with the class that
it is identifying (since otherwise it wouldn't act as a
witness)
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How Verification Works (an overview)

» We encode a given proof rule into SMTLIB2 format
for the Z3 SMT solver [14]

» This amounts to converting the program, as viewed
by the proof rule into a logical expression

» Objects are represented by sets (i.e. arrays from the
object to booleans)

» Lists are represented as triples of (class to quantify
over, map, filter). Lists get encoded to
Va € C such that ¢(z), f(x).

» for(x in 1) {assert f(x);} get encoded in the
same way
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Conclusion

We've created a basic prototype to meet the ease-of-use
goals that we set out to solve.

We think that this prototype should help to demonstrate
the viability and the utility of having an easy-to-use tool to
generate distributed systems. The key idea that makes
such tooling viable is that specifying the system all at once
makes these sorts of analyses possible.
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|deas for Future Work

» Finishing this prototype

Determine the optimal (especially state-based) CRDT
to use in a given situation based on the specification.
Add support for other CRDTs like a numeric escrow
CRDT [1]

Can we automatically determine when we can relax
the constraints of causal consistency in reconciliation
to weak consistency, so that we can improve

v

v

v

performance?
And much much more...

v
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Questions?
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