
Genie
Distributed Systems Synthesis and Verification

Marc Rosen

EN.600.667: Advanced Distributed Systems and

Networks

May 1, 2017

1 / 35



Outline
Introduction

Problem Statement

Prior Art

Demo

How does it work? Code Generation

How does it work? Distributed Systems

How does it work? Programming Languages

Conclusion

2 / 35



Problem Statement (Background)

Distributed Systems are Useful

§ Partition tolerant (i.e. offline-capable)
§ Scalable

Distributed Systems are Hard

§ Typically requires formal training or study
§ Even then, it’s easy to make mistakes
§ Even simple systems can be time-consuming

to implement properly

3 / 35



Problem Statement (Goals)

§ Can we come up with a way to specify the semantics

of a distributed system, and then generate the code

for the specified system?

§ Can we also make it fool-proof, and accessible to

users without formal distributed systems training?

4 / 35



Prior Art (Industry Solutions)

§ Apache Cassandra has: [8]
§ 9 write consistency levels
§ 10 read consistency levels

§ Apache CouchDB lets the developer choose between:
[10]

§ Using a CAS-loop for strict consistency
§ Arbitrarily picking a “winner” on conflict. All conflicting

versions are stored. The developer should manually
resolve the conflict.

5 / 35



Prior Art (Interactive Theorem Provers)

§ The Coq Proof Assistant [13]

§ SAML (System Analysis Modelling Language) [5]

§ Constable’s EventML [4]

§ ...and many others

6 / 35



Prior Art (Model Checking Solutions)

§ Leslie Lamport’s TLA+ [12]

§ CISE [6] & Indigo [2]

§ The Leon Verification System [3]

§ ...and many others

7 / 35



Outline
Introduction

Problem Statement

Prior Art

Demo

How does it work? Code Generation

How does it work? Distributed Systems

How does it work? Programming Languages

Conclusion

8 / 35



Demo: Mail
§ This is the final project from the Fall 2016

Distributed Systems Course

§ Users can connect to one of five mail servers, and

“login” as a specific user
§ The following operations are supported:

1. List email messages
2. Send an email message
3. Delete an email message
4. Mark an email message as read

§ The entire system must be partition-tolerant and

crash-tolerant
9 / 35



Demo: Chat
§ This is the final project from the Fall 2014

Distributed Systems Course

§ Users can connect to one of five chat servers, and

“login” as a specific user
§ The following operations are supported:

1. Join a room
2. Send a message to the room
3. Like a message
4. Unlike a message

§ The entire system must be partition-tolerant and

crash-tolerant
10 / 35



Demo: Simple verification example

§ In order to be able have meaningful verification, we

need a way to express domain-specific invariants

about the system...

11 / 35



Questions (before the next part)?

12 / 35



Outline
Introduction

Problem Statement

Prior Art

Demo

How does it work? Code Generation

How does it work? Distributed Systems

How does it work? Programming Languages

Conclusion

13 / 35



Code Generation: Overview

§ The AST is type-checked

§ We generate C++ code from Twirl templates (a

templating language for Scala)

§ We generate one struct per class in the source to hold

the properties.

§ We generate one struct per exposed method.

14 / 35



Outline
Introduction

Problem Statement

Prior Art

Demo

How does it work? Code Generation

How does it work? Distributed Systems

How does it work? Programming Languages

Conclusion

15 / 35



Algorithmic Overview
§ All updates/operations have a (Lamport timestamp,

server, per-server monotonic counter) triple for an ID.
§ Servers maintain and exchange the matrices

consisting of the highest ID update that they’ve

received from another server.
§ Servers maintain lists (by server of origin) of all

updates they’ve ever received. These lists are used for

reconciliation.
§ The current state of objects are stored as a mapping

from ID to object.
16 / 35



Reconciliation Algorithm
1. On partition change, start queuing any incoming

client requests. (In the even that a partition occurs

during this algorithm, keep adding to the current

queue, but otherwise reset other state associated with

this algorithm.)

2. Buffer (into an array) any server-to-server updates

that come in during this reconciliation period.

3. Once a server has sent out all of its updates for

reconciliation, it sends out a “finished reconciliation

message” to all the other servers

4. Once the server has received a “finished reconciliation

message“ from every server in the partition, then it

sorts the updates that came in by p`, s, cq and then

applies them in that order (which is guaranteed to be

causal).

5. Process any queued incoming client requests, and

stop queuing future client requests. Instead, process

them immediately.

17 / 35



CRDTs [9]

§ a Commutative (or Convergent) Replicated Data Type

§ In general, they’re data types that have the properties

that you’d want for eventual consistency in a

distributed system.

18 / 35



Two equivalent formulations [11]

State-based (CvRDT)

Operations are homomorphisms on a join

semilattice.

(Operations respect a partial ordering on the set

of possible states. Any two states in the

semilattice have a least upper bound.)

Operation-based (CmRDT)

Operations are transmitted in causal order. Any

operations that can happen concurrently must

commute.
19 / 35



Object Model
§ The Universe consists of several mappings (classes)

from identifiers to fields of atomic type (i.e. they’re

not class instances).

§ There are two kinds of IDs:

Unique IDs Totally ordered (in a causal order), but

opaque otherwise. You get a fresh Unique

ID every time you ask for one.

Primary Key Meaningful keys that can be used to tie

an object to some quantity

§ The ID of an object witnesses its existence
20 / 35



Operations Model

§ Each operation has a precondition that must be met

in order for the operation to take effect

§ Non-strict consistency operations must commute with

all other operations

21 / 35



Proof Rules
Let

1. The invariants are satisfiable (they don’t conflict)

2. @u, o where u is a universe and o is an operation

Prepuq ^ Invpuq ùñ Invpoppuqq
3. The default values for objects with primary keys don’t

violate invariants
4. @u, o, o1 where u is a universe, o is an operation, and
o1 is an operation that doesn’t require strict
consistency. Then:
4.1 Invpuq ^ Prepuq ùñ Pre1

poppuqq
4.2 Invpuq ^ Pre1

puq ùñ Prepop1puqq
4.3 Invpuq^Prepuq^Pre1

puq ùñ oppop1puqq “ op1poppuqq
22 / 35



Outline
Introduction

Problem Statement

Prior Art

Demo

How does it work? Code Generation

How does it work? Distributed Systems

How does it work? Programming Languages

Conclusion

23 / 35



The Specification Language: Some
Highlights

§ Is highly inspired by C# (it’s not C#, though)
§ The query syntax is very similar to LINQ in C# [7]
§ No recursion. No higher-order functions. Strongly

normalizing.
§ The query and iteration syntax is rigged such that

there’s no way to access the i-th element of a list,

which means that we can reason about lists as sets.
§ The type of a Unique ID is tagged with the class that

it is identifying (since otherwise it wouldn’t act as a

witness)

24 / 35



How Verification Works (an overview)
§ We encode a given proof rule into SMTLIB2 format

for the Z3 SMT solver [14]
§ This amounts to converting the program, as viewed

by the proof rule into a logical expression
§ Objects are represented by sets (i.e. arrays from the

object to booleans)
§ Lists are represented as triples of (class to quantify

over, map, filter). Lists get encoded to

@x P C such that φpxq, fpxq.
§ for(x in l) {assert f(x);} get encoded in the

same way

25 / 35



Outline
Introduction

Problem Statement

Prior Art

Demo

How does it work? Code Generation

How does it work? Distributed Systems

How does it work? Programming Languages

Conclusion

26 / 35



Conclusion

We’ve created a basic prototype to meet the ease-of-use

goals that we set out to solve.

We think that this prototype should help to demonstrate

the viability and the utility of having an easy-to-use tool to

generate distributed systems. The key idea that makes

such tooling viable is that specifying the system all at once

makes these sorts of analyses possible.

27 / 35



Ideas for Future Work
§ Finishing this prototype

§ Determine the optimal (especially state-based) CRDT

to use in a given situation based on the specification.

§ Add support for other CRDTs like a numeric escrow

CRDT [1]

§ Can we automatically determine when we can relax

the constraints of causal consistency in reconciliation

to weak consistency, so that we can improve

performance?

§ And much much more...
28 / 35



Questions?

29 / 35



References I

[1] Valter Balegas et al. “Extending eventually

consistent cloud databases for enforcing numeric

invariants”. In: Reliable Distributed Systems

(SRDS), 2015 IEEE 34th Symposium on. IEEE.

2015, pp. 31–36.

[2] Valter Balegas et al. “Putting consistency back into

eventual consistency”. In: Proceedings of the Tenth

European Conference on Computer Systems. ACM.

2015, p. 6.

30 / 35



References II
[3] Régis Blanc et al. “An overview of the Leon

verification system: Verification by translation to

recursive functions”. In: Proceedings of the 4th

Workshop on Scala. ACM. 2013, p. 1.

[4] EventML. http://www.nuprl.org/software/.

Accessed: 2017-05-01.

[5] Getting started with SAML. http:

//rise4fun.com/SAML/tutorial/tutorial.

Accessed: 2017-05-01.

31 / 35

http://www.nuprl.org/software/
http://rise4fun.com/SAML/tutorial/tutorial
http://rise4fun.com/SAML/tutorial/tutorial


References III

[6] Alexey Gotsman et al. “’Cause I’m strong enough:

Reasoning about consistency choices in distributed

systems”. In: ACM SIGPLAN Notices 51.1 (2016),

pp. 371–384.

[7] Anders Hejlsberg et al. C# Programming Language.

Addison-Wesley Professional, 2010.

32 / 35



References IV

[8] How is the consistency level configured?.

http://docs.datastax.com/en/dse/5.1/dse-

arch/datastax_enterprise/dbInternals/

dbIntConfigConsistency.html. Accessed:

2017-05-01.

[9] Marc Shapiro—Nuno Preguiça. “Designing a

commutative replicated data type”. In: arXiv

preprint arXiv:0710.1784 (2007).

33 / 35

http://docs.datastax.com/en/dse/5.1/dse-arch/datastax_enterprise/dbInternals/dbIntConfigConsistency.html
http://docs.datastax.com/en/dse/5.1/dse-arch/datastax_enterprise/dbInternals/dbIntConfigConsistency.html
http://docs.datastax.com/en/dse/5.1/dse-arch/datastax_enterprise/dbInternals/dbIntConfigConsistency.html


References V

[10] Replication and conflict model.

http://docs.couchdb.org/en/2.0.0/

replication/conflicts.html. Accessed:

2017-05-01.

[11] Marc Shapiro, Carlos Baquero, and Marek Zawirski.

“A comprehensive study of Convergent and

Commutative Replicated Data Types”. In: (2011).

34 / 35

http://docs.couchdb.org/en/2.0.0/replication/conflicts.html
http://docs.couchdb.org/en/2.0.0/replication/conflicts.html


References VI

[12] The TLA Home Page. http://lamport.

azurewebsites.net/tla/tla.html. Accessed:

2017-05-01.

[13] Welcome! — The Coq Proof Assistant.

https://coq.inria.fr/. Accessed: 2017-05-01.

[14] Z3 SMT Solver.

https://github.com/Z3Prover/z3. Accessed:

2017-05-01.

35 / 35

http://lamport.azurewebsites.net/tla/tla.html
http://lamport.azurewebsites.net/tla/tla.html
https://coq.inria.fr/
https://github.com/Z3Prover/z3

	Introduction
	Problem Statement
	Prior Art

	Demo
	How does it work? Code Generation
	How does it work? Distributed Systems
	How does it work? Programming Languages
	Conclusion

