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Problem Statement (Background)

Distributed Systems are Useful

§ Partition tolerant (i.e. offline-capable)
§ Scalable

Distributed Systems are Hard

§ Typically requires formal training or study
§ Even then, it’s easy to make mistakes
§ Even simple systems can be time-consuming

to implement properly
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Problem Statement (Goals)

§ Can we come up with a way to specify the semantics

of a distributed system, and then generate the code

for the specified system?

§ Can we also make it fool-proof, and accessible to

users without formal distributed systems training?
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Prior Art (Industry Solutions)

§ Apache Cassandra has: [8]
§ 9 write consistency levels
§ 10 read consistency levels

§ Apache CouchDB lets the developer choose between:
[10]

§ Using a CAS-loop for strict consistency
§ Arbitrarily picking a “winner” on conflict. All conflicting

versions are stored. The developer should manually
resolve the conflict.
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Prior Art (Interactive Theorem Provers)

§ The Coq Proof Assistant [13]

§ SAML (System Analysis Modelling Language) [5]

§ Constable’s EventML [4]

§ ...and many others
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Prior Art (Model Checking Solutions)

§ Leslie Lamport’s TLA+ [12]

§ CISE [6] & Indigo [2]

§ The Leon Verification System [3]

§ ...and many others
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Demo: Mail
§ This is the final project from the Fall 2016

Distributed Systems Course

§ Users can connect to one of five mail servers, and

“login” as a specific user
§ The following operations are supported:

1. List email messages
2. Send an email message
3. Delete an email message
4. Mark an email message as read

§ The entire system must be partition-tolerant and

crash-tolerant
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Demo: Chat
§ This is the final project from the Fall 2014

Distributed Systems Course

§ Users can connect to one of five chat servers, and

“login” as a specific user
§ The following operations are supported:

1. Join a room
2. Send a message to the room
3. Like a message
4. Unlike a message

§ The entire system must be partition-tolerant and

crash-tolerant
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Demo: Simple verification example

§ In order to be able have meaningful verification, we

need a way to express domain-specific invariants

about the system...
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Questions (before the next part)?
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Code Generation: Overview

§ The AST is type-checked

§ We generate C++ code from Twirl templates (a

templating language for Scala)

§ We generate one struct per class in the source to hold

the properties.

§ We generate one struct per exposed method.
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Algorithmic Overview
§ All updates/operations have a (Lamport timestamp,

server, per-server monotonic counter) triple for an ID.
§ Servers maintain and exchange the matrices

consisting of the highest ID update that they’ve

received from another server.
§ Servers maintain lists (by server of origin) of all

updates they’ve ever received. These lists are used for

reconciliation.
§ The current state of objects are stored as a mapping

from ID to object.
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Reconciliation Algorithm
1. On partition change, start queuing any incoming

client requests. (In the even that a partition occurs

during this algorithm, keep adding to the current

queue, but otherwise reset other state associated with

this algorithm.)

2. Buffer (into an array) any server-to-server updates

that come in during this reconciliation period.

3. Once a server has sent out all of its updates for

reconciliation, it sends out a “finished reconciliation

message” to all the other servers

4. Once the server has received a “finished reconciliation

message“ from every server in the partition, then it

sorts the updates that came in by p`, s, cq and then

applies them in that order (which is guaranteed to be

causal).

5. Process any queued incoming client requests, and

stop queuing future client requests. Instead, process

them immediately.
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CRDTs [9]

§ a Commutative (or Convergent) Replicated Data Type

§ In general, they’re data types that have the properties

that you’d want for eventual consistency in a

distributed system.
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Two equivalent formulations [11]

State-based (CvRDT)

Operations are homomorphisms on a join

semilattice.

(Operations respect a partial ordering on the set

of possible states. Any two states in the

semilattice have a least upper bound.)

Operation-based (CmRDT)

Operations are transmitted in causal order. Any

operations that can happen concurrently must

commute.
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Object Model
§ The Universe consists of several mappings (classes)

from identifiers to fields of atomic type (i.e. they’re

not class instances).

§ There are two kinds of IDs:

Unique IDs Totally ordered (in a causal order), but

opaque otherwise. You get a fresh Unique

ID every time you ask for one.

Primary Key Meaningful keys that can be used to tie

an object to some quantity

§ The ID of an object witnesses its existence
20 / 35



Operations Model

§ Each operation has a precondition that must be met

in order for the operation to take effect

§ Non-strict consistency operations must commute with

all other operations
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Proof Rules
Let

1. The invariants are satisfiable (they don’t conflict)

2. @u, o where u is a universe and o is an operation

Prepuq ^ Invpuq ùñ Invpoppuqq
3. The default values for objects with primary keys don’t

violate invariants
4. @u, o, o1 where u is a universe, o is an operation, and
o1 is an operation that doesn’t require strict
consistency. Then:
4.1 Invpuq ^ Prepuq ùñ Pre1

poppuqq
4.2 Invpuq ^ Pre1

puq ùñ Prepop1puqq
4.3 Invpuq^Prepuq^Pre1

puq ùñ oppop1puqq “ op1poppuqq
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The Specification Language: Some
Highlights

§ Is highly inspired by C# (it’s not C#, though)
§ The query syntax is very similar to LINQ in C# [7]
§ No recursion. No higher-order functions. Strongly

normalizing.
§ The query and iteration syntax is rigged such that

there’s no way to access the i-th element of a list,

which means that we can reason about lists as sets.
§ The type of a Unique ID is tagged with the class that

it is identifying (since otherwise it wouldn’t act as a

witness)
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How Verification Works (an overview)
§ We encode a given proof rule into SMTLIB2 format

for the Z3 SMT solver [14]
§ This amounts to converting the program, as viewed

by the proof rule into a logical expression
§ Objects are represented by sets (i.e. arrays from the

object to booleans)
§ Lists are represented as triples of (class to quantify

over, map, filter). Lists get encoded to

@x P C such that φpxq, fpxq.
§ for(x in l) {assert f(x);} get encoded in the

same way
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Conclusion

We’ve created a basic prototype to meet the ease-of-use

goals that we set out to solve.

We think that this prototype should help to demonstrate

the viability and the utility of having an easy-to-use tool to

generate distributed systems. The key idea that makes

such tooling viable is that specifying the system all at once

makes these sorts of analyses possible.
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Ideas for Future Work
§ Finishing this prototype

§ Determine the optimal (especially state-based) CRDT

to use in a given situation based on the specification.

§ Add support for other CRDTs like a numeric escrow

CRDT [1]

§ Can we automatically determine when we can relax

the constraints of causal consistency in reconciliation

to weak consistency, so that we can improve

performance?

§ And much much more...
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Questions?
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