Generalizing Assured AI for Traffic Light Control

Daniel Stambler and Evan Leung

Assuring AI Systems

- Al systems becoming ubiquitous
- Cannot be used in critical systems
 - Need to guarantee the worst case
 - Al fails on edge cases
- Assuring AI
 - Switch to safe algorithm to handle situations when AI fails

AI Traffic Light Controllers

- Potential for more efficient travel through intersections
- Certain errors considered unacceptable
 - Unreasonably long wait times
- Blackbox Monitor
- Whitebox Monitor

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Definitions

- Model:
 - Differentiable mathematical formula for fitting input data

• Reinforcement Learning:

 Process of training an agent to act in an environment, where it receives rewards for its actions. With enough time, the agent should learn to pick the best action

• Evaluation:

• Process of using a trained model. Pass in inputs, get results

• Monolithic Model:

Inflexible model. To evaluate an m x n grid, the model needs to be trained on an m x n grid

• General Model:

• Flexible model that can be evaluated on any m x n grid

Definitions: Defining our Environment

- Four way intersection, bidirectional roads
- Four incoming edges
- Four outgoing edges
- Straight + right turn on green
- Separate green light for left turns
- All lights (straight + left) must switch to yellow lights

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Previous Work

- Monolithic 2x2 model using SUMO/FLOW
 - Can't scale up
- Generalized model in Gym CityFlow
 - Solves scaling problem
 - Couldn't replicate results

Early Challenges

- Onboarded to Gym CityFlow
 - Didn't see any learning
- Switched back to SUMO/FLOW
 - Replicated previous monolithic model success
 - Spent a while learning very large codebase
 - Understood Jerry's approach and its possible flaws, brainstormed new approaches

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Problem Definition

- Monolithic model takes too long to train for any topology larger than 2x2
- Goal generalized model that:
 - outperforms Safe Controller, similar to Monolithic
 - can be applied to any *n* x *m* topology

• Performance measured by average speed of all cars in system

Previous Attempts at Generalized Model

- 2x2 grid where each intersection employs the same model
 - Al learns at each intersection
 - Keeps feature vector small
- Training was unsuccessful
 - Every intersection is a corner case

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Key Terms

- *NxM* training environment: AI controller placed in the center of *NxM* grid of intersections, all other intersections safe or random
- *NxM* evaluation environment: trained AI controller placed at every intersection of *NxM* grid
- Pertinent avg speed: average speed over cars that enter edges connected to AI-controlled intersections
- **Grid padding:** add an extra layer of safe-controlled intersections around an *NxM* grid

Creating our own Tools

- Scripts to evenly distribute and limit training jobs across machines
- Scripts to manage jobs across machines
- Scripts for logging and plotting training metrics, finding best models

Approach 1

- 3x3 training environment
- Fixed controllers on outer 8 intersections
- Al controller in the center

Inputs to the Model

- Modifying feature vector
- Changes to the system
 - Change number of traffic lights for AI to update
 - Update RL actions function to manually update traffic lights that aren't at center node

Variable/Size	3 x 3 Monolithic Vals	Our Implementation Vals
Speeds	216	24
Distance to Intersection	216	24
Edge Number	216	24
Density	24	8
Velocity Average	24	8
Last Change	9	1
Direction	9	1
Currently Yellow	9	1
Total	723	91

Experiments

- Three runs with 3x3 grid all safe controllers to establish a baseline
- Three runs with 3x3 grid **all safe controllers except for center node**
- Three runs with 3x3 grid all random controllers except for center node

Safe Controller Baselines

- Need to compare our 3x3 results with 3x3 safe controller
- Three Safe Controller runs under different seeds
 - Seed A: **5.59** m/s
 - Seed B: 5.57 m/s
 - Seed C: **5.55** m/s
- Average across runs: **5.57 m/s**
- Note: **5.39 m/s** on 5x5 with all safe controllers

Safe Controller Baselines

Monolithic 2x2 Baseline Results

Best Average Speed: 6.429 m/s (49,700,000 steps)

21

Safe Controller w/ One Al 3x3 Results

Best Pertinent Average Speed: 6.484 m/s (47,050,000 steps) from seed B

Training Environment Results

Random Controller 3x3 Results

Best Pertinent Average Speed: **1.837** m/s (45,500,000 steps) from seed C

Evaluation Results

- Applied models to 3x3 and 5x5 evaluation environments
- Discovered models did not learn to generalize
- Als trained on different environments and with different reported training speeds all yield ~4.3 m/s for 3x3

and 4.22 m/s for 5x5

Generalized Environment Results

Generalized Environment Results

Approach 2

- Increase Al's observation space to "look ahead" 1 intersection
 - Work in tandem with other
 Als on evaluation
 environment
- 5x5 training environment to avoid edge cases

Look Ahead Controller Results

Best Pertinent Average Speed: 5.51 m/s (44,350,000 steps) from seed B

Training Environment Results

Look Ahead Evaluation Results

- Same results, failing to generalize/work with other AI controllers
- Average speed on 3x3 eval environment is 4.3 m/s

Evaluation Environment Results

Outline

- Motivation
- Background
- Previous Work
- Problem Definition
- Approaches and Results
- Future Work

Future Work

- Training on multiple environments in parallel
 - Allows AI to learn more scenarios
- Replace SUMO with more efficient environment
 - Connect our environments with Gym CityFlow
 - Build a new environment that can take advantage of GPU resources

Image Source: <u>https://github.com/wu6u3/async_ppo</u>

Questions

Thank You