Global Flow Control for Wide Area Overlay
Networks: A Cost-Benefit Approach

Yair Amir, Baruch Awerbuch, Claudiu Danilov, Jonathan Stanton

Abstract—This paper presents a flow control protocol for
multi-sender multi-group multicast and unicast in wide area
overlay networks. The protocol is analytically grounded and
achieves real world goals, such as simplicity, fairness and
minimal resource usage. Flows are regulated based on the
“opportunity” costs of network resources used and the ben-
efit provided by the flow. In contrast to existing window-
based flow control schemes, we avoid end-to-end per sender
or per group feedback by looking only at the state of the
virtual links between participating nodes. This produces
control traffic proportional only to the number of overlay
network links and independent of the number of groups,
senders or receivers. We show the effectiveness of the re-
sulting protocol through simulations and validate the simu-
lations with live Internet experiments.

|. INTRODUCTION

HIS paper presents the Cost-Benefit framework, a

new global flow control strategy for wide area over-
lay network multicast, based on competitive analysis. Our
framework assigns costs to network resources, and bene-
fits to achieving user goals such as multicasting a message
to a group or receiving a message from a group.

We define an overlay network as a virtual network con-
structed such that each link connects two edge nodes in an
underlying physical network, such as the Internet. Each
virtual link in the overlay network can translate into sev-
eral hops on the underlying network. The characteristics
of a virtual link, such as latency, bandwidth, and losses are
the aggregate of the underlying network links over which
it travels.

Overlay networks, just like programmable networks, are
particularly useful for both network research and task spe-
cific applications. They provide a very flexible network en-
vironment, allowing fast implementation of different pro-
tocols without any changes in the hardware infrastructure.

When many parties share network resources on an over-
lay network, mechanisms must exist to allocate the re-
sources and protect the network from overload. Compared
to large physical networks, like the Internet, the dimen-

Authors are with the Department of Computer Science at the Johns
Hopkins University, Baltimore, MD 21218 USA. Email:{yairamir,
baruch, claudiu, jonathan}@cs.jhu.edu Web: http://www.cnds.jhu.edu

This work was partially supported by DARPA and NSA under grants
F30602-00-2-0626 and F30602-00-2-0550

sions of the task are different, so new and possibly more
effective techniques can be used. In this work we take a
fresh look at the problem of flow control in multiple sender
overlay networks and explore a cost-benefit approach that
works in conjunction with Internet standard protocols such
as TCP.

Intuitively, the cost of network resources, such as
buffers in routers, should go up as the resource is depleted.
When the resource is not utilized at all, its cost should be
zero. When the resource is fully utilized, its cost should
be prohibitively expensive. Finding the best cost function
is an open question. However, it has been shown theoreti-
cally that using a cost function that increases exponentially
with the resource’s utilization is competitive with the op-
timal offline algorithm[1]. Our algorithm decides to allow
use of resources if the benefit attached to that use is greater
than the total cost of allowing the use. The choice of ben-
efit function allows us to optimize for various goals. By
adjusting the benefit function, performance issues such as
throughput, as well as policy issues such as fairness, can
be taken into account when making flow control decisions.

To distinguish congestion control from flow control we
define congestion control as avoiding buffer overflow in
the intermediate routers in the network, and flow control
as controlling the end to end buffers.

Each overlay link uses a standard congestion control
protocol which adapts the available bandwidth to the net-
work congestion. This results in a dynamic capacity being
available to our flow control framework on every overlay
network link. All of the traffic generated by our system on
a link will be seen as one TCP flow on that link, regardless
of the number of senders or receivers. This provides a very
conservative level of fairness between our multicast traffic
and competing TCP flows.

The global flow control problem deals with managing
the bandwidth of the overlay links and buffers in the over-
lay routers. One could also view this problem as conges-
tion control for the overlay network. The reason we do not
see it this way is that at the physical network level, conges-
tion control is achieved by TCP that runs between overlay
nodes, while managing the buffers in the overlay routers
are seen as an application level flow control task.

Our Cost-Benefit framework is evaluated through both

simulations and live tests on the Internet. The simula-
tions use the ns2 simulator[3] and examine the behavior
of several overlay network configurations. To conduct ac-
tual network tests we extended the available Spread group
communication system[4] to implement our flow control
protocols, and conducted experiments using this software
on the CAIRN network[5].

The rest of this paper is organized as follows. After
presenting the related work in Section 11 we describe the
network model we use and the overall architecture of our
protocol in Section I1l. We present our framework, the
theoretical model supporting it, and its adaptation to prac-
tical settings in Section 1V. Section V briefly discusses
the issues of network and inter-flow fairness and scalabil-
ity. Simulation results and live Internet-based experiments
are presented in Section VI and Section VII. Section VIII
concludes the paper.

Il. RELATED WORK

Many different approaches exist in the flow control lit-
erature, including TCP-like window based protocols [6],
[7], one or two bit feedback schemes [8], [9], [10], and op-
timization based flow control [11], [12], [13], [14], [15],
[16]. The economic framework for flow and congestion
control used in many optimization based protocols[12],
[14] has some similarity with the cost-benefit model used
in our work. In both, the links have some cost and packets
that are sent must have sufficient benefit to pay the cost
of the network resources they require. A significant dif-
ference is that our cost-benefit model takes an algorithmic
approach using a simple formula to decide when a packet
can be sent, and is not based on economic theory. Unlike
many economic models our cost-benefit model does not try
to reach an equilibrium state or influence non-cooperative
processes to behave, but rather optimizes the throughput
under the assumption of minimally cooperative senders.

Research on protocols to support group communication
across wide area networks such as the Internet has begun
to expand. Recently, new group communication protocols
designed for such wide area networks have been proposed
[17], [18], [19], [20] which continue to provide the tradi-
tional strong semantic properties such as reliability, order-
ing, and membership. These systems predominantly ex-
tend a flow control model previously used in local area
networks, such as the Totem Ring protocol[19], or adapt
a window-based algorithm to a multi-sender group[21],
[20]. Our work presents a flow control algorithm designed
explicitly for wide-area overlay networks which is mo-
tivated more by networking protocols and resource opti-
mization research, than by existing group communication
systems.

The research in flow control specifically for group com-
munication systems is sparse. A 1998 work by Mishra
and Wu[22] surveyed the flow control used in existing sys-
tems and compared archetypal optimistic and conservative
flow control algorithms. The flow control discussed in
that work was used to globally limit the number of out-
standing update messages that have not become stable yet.
One other paper[21] discusses some general approaches to
flow control for group communication and studies extend-
ing window-based protocols to groups using both local and
global information.

Work on flow control for multicast sessions has oc-
curred mainly in the context of the IP-Multicast model.
Much of this work has focused on the congestion control
problem, avoiding extra packet loss and providing fair-
ness, and has left flow control up to higher level proto-
cols (such as reliability, ordering, or application level ser-
vices). Research has explored the difficult problems asso-
ciated with multicast traffic such as defining fairness[23],
[24] and determining appropriate metrics for evaluation
of multicast traffic[25]. A number of congestion control
protocols have been developed with the goal of provid-
ing some level of fairness with TCP traffic, while tak-
ing advantage of the unique characteristics of multicast
traffic. These include window based protocols[26], rate
based protocols[27], [28], multi-layer based protocols[23],
and protocols that use local recovery to optimize conges-
tion control[29]. While IP-Multicast focuses on a single
sender, single group approach that scales to many receivers
and many intermediate routers, our approach addresses
a multi-group multi-sender problem that scales with the
number of groups, senders and receivers, but is defined in
an overlay network setting rather than on every router in
the Internet.

The Distributed Core Multicast (DCM)[30] routing pro-
tocol uses a network architecture similar to ours with tun-
nels through the backbone network, and focuses on similar
scalability goals of supporting many small groups. DCM
is complimentary to our work as it focuses on efficient
routing for such groups, while we provide flow control al-
gorithms.

I1l. ARCHITECTURE

The overlay network model used is a graph with nodes
and overlay links. Each node on the graph represents a
host running a daemon program. Each overlay link is a
unicast link between two nodes, which may be a long path
traversing multiple routers and physical links in the Inter-
net as is seen in Figure 1. Based on the network topology,
each daemon chooses a tree from this graph, in which it
will multicast messages. This tree is rooted at the daemon

© Actual node in the physical network Physical network link

m Actual overlay network daemon e Physical link used by the overlay network

(O Overlay network node Virtual overlay network link

Fig. 1. Overlay Network Architecture

node and will not necessarily be the same as any other
daemon’s tree. The daemon provides multicast services
to clients. As the daemon also acts as a overlay network
router, we will refer to daemon and router interchangeably.
In this work we chose to use TCP as a point-to-point proto-
col running on each overlay link. Any other point-to-point
protocol could be used instead of TCP. Each daemon can
have many clients connected to it.

Each client may join an arbitrary number of groups, and
may send multicast messages to any number of groups,
including ones it has not joined.

Clients connect to whichever daemon they like, usually
the closest one, and that daemon handles the forwarding of
their traffic and provides all the required semantics. The
connection from a client to a daemon is either a TCP/IP
connection or a local IPC mechanism such as Unix Do-
main Sockets. Each client can multicast and receive mes-
sages at any time. In this approach each daemon may
support many distinct clients who are actually running on
many different hosts.

The performance of the entire system is improved if
each client connects to the closest daemon, network-wise,
however clients may connect from anywhere. In practice,
the clients connected to a specific daemon may actually
use a local group, or local area reliable multicast protocol
instead of unicast TCP connections to connect the clients
to the daemons. This modification would improve the per-
formance for the group of clients, but would not change the
basic model as long as the protocol used allows individual
control of each sender’s sending rate. The Spread system
that we utilize in our experiments uses such a protocol.

Each message carries some information about its source
and destination nodes. When an intermediate node re-

ceives a message, it forwards it through its links that have
downstream destinations.

In a multiple sender system, each sender may have a dif-
ferent rate at which it can reach the entire receiver group,
and different senders may reach the group over different
multicast trees. So, the bottleneck link for one sender may
not be the bottleneck for other senders. The obvious goal
is to allow each sender to achieve their highest sending
rate to the group, rather than limiting them by what other
senders can send to that group. To achieve this, rate reg-
ulation must occur on a per-sender basis rather than as a
single flow control limit for the entire group. The result
is a flow control that provides fine granularity of control
(per-sender, per-group).

The Spread group communication toolkit: We im-
plemented our global flow control algorithm in the Spread
wide area group communication system[4], [31]. The
Spread system provides a similar architecture to our model
with daemons running on end-hosts acting as routers in
an overlay network. Spread provides strong semantics for
messages including reliable multicast, message ordering
guarantees (unordered, fifo, agreed), and a membership
service supporting Extended Virtual Synchrony (EVS)[32]
and Virtual Synchrony (VS)[33] models. It is designed to
support a small to medium number of members of a group
(1-1000°s), with a large number of active groups and many
senders. As such, it has different design goals than most
IP-Multicast systems, which support larger groups but fo-
cus on the single-sender model and require state in every
network router for every group.

Routing in Spread is based on shortest-path multicast
trees rooted at each daemon. The routing is recalculated
whenever the set of connected daemons changes (and not
when clients join or leave groups, or connect or disconnect
from the system).

The Spread system provides end-to-end reliability by
using a reliable point-to-point protocol for each link on
the overlay network and requiring that the daemons do not
drop any messages between links[20].

IV. GLOBAL FLOW CONTROL FOR WIDE AREA
OVERLAY NETWORKS

The algorithmic foundation for our work can be sum-
marized as follows: We price links based on their “oppor-
tunity cost”, which increases exponentially with link uti-
lization. We compare different connections based on the
total opportunity cost of the links they use, and slow down
connections with large costs, by delaying their packets at
the entry point.

A. Algorithmic foundation

Whether a message is accepted or not into the system
by a daemon is an online decision problem. At the time
of acceptance we don’t know how much data the sending
client (or the other clients) will be sending in the future,
nor at what specific times in the future.

Evaluation of algorithms — Competitive analysis:
The general problem with online allocation of resources
is that it is impossible to optimally make irreversible deci-
sions without knowing the future nor the correlations be-
tween past and future. Thus, the goal is to design a “com-
petitive” algorithm whose total accrued benefit is compa-
rable to that achieved by the optimal offline algorithm, on
all input instances. The maximum possible performance
degradation of an online algorithm (as compared with the
offline) is called the “competitive ratio”. Specifically,

C(z)

C*(z)

where z is the input sequence, C(z) is the cost of the on-
line algorithm, and C*(z) is the cost of optimal offline
algorithm on sequence .

Our goal is to design an algorithm with a small compet-
itive ratio p; such an algorithm is very robust in the sense
that its performance is not based on unjustified assump-
tions about probability distributions or specific correlation
between past and future.

Theoretical background — Cost-benefit framework:
Our framework is based on the theoretical result in[1]. The
following components are present in this framework.

« user benefit function is defined, defining how much ben-
efit a given user extracts out of ability to gain resources,
e.g., ability to communicate at a certain rate.

« resource opportunity cost is defined, based on utilization
of the resource. The cost of unused resource is the lowest
possible connection benefit, and the cost of fully used re-
source is the maximum connection benefit.

« a connection is admitted into the network if the oppor-
tunity cost of resources it wishes to consume is lower than
its benefit.

« flow control is accomplished, conceptually, by dividing
the traffic stream into smaller sub-streams and applying the
above admission control framework for each sub-stream.

Model of the resource — Cost function: The basic
framework revolves around defining, for each resource, the
current opportunity cost, which is, intuitively, the benefit
that may be lost by high-benefit connections as a result of
consuming the above resource by a lower-benefit connec-
tion.

Since the goal is to maximize the total benefit, it is
“wasteful” to commit resources to applications (connec-

= max
P T

tions) that are not “desperate” for that resource, i.e., not
enjoying the maximal possible benefit from obtaining this
resource. On the other hand, it is equally dangerous to
gamble that each resource can be used with maximal bene-
fit gained without knowing the sequence of requests ahead
of time.

For the purpose of developing the intuition, it is use-
ful to consider a somewhat restrictive setting where the
resources are either assigned forever, or rented out for spe-
cific time. For a given resource [, (e.g., bandwidth of a
given link [), denote by v; the normalized utilization of the
resource, i.e., w; = 1 means the resource is fully utilized
and u; = 0 means that the resource is not utilized at all.
Also, let « be the minimum benefit value of a unit of a re-
source used by a connection and 3 be the maximum value.
Let v = /. The opportunity cost is now defined as:

Clu) =a-y")

As shown in[1], the problem of designing a competi-
tive online algorithm for allocating link bandwidth has a
lower bound of ©2(log y) on the competitive ratio, where ~y
is the ratio y = 3/« between maximal and minimal ben-
efit, achievable if 1/log, y of the fraction of the utilized
resource necessitates doubling the price of the resource.
This lower bound is only achievable if the cost function is
an exponential of the utilization, and in practice this cost
function works well[2]. That is why we chose the expo-
nential function in Equation 1.

Since 1/log, v of the fraction of the utilized resource
necessitates doubling the price, then at least 1/ log, -y frac-
tion of the utilized capacity has been sold at at least 1/2 of
the final price P, i.e. online gains at least

ALG > P/(2 - logy7y)

The total "lost” benefit, i.e. benefit of all the connection
accepted by prescient and rejected by online, is at most P,
i.e.

OFF — ALG < P

It follows that
OFF/ALG < 1+2-logyvy

Notice that the opportunity cost of an unused resource
starts at « per unit, i.e. any connection can “afford” it, and
the cost of fully utilized resource is 3, i.e., no connection
can afford it.

Model of the user — Benefit function: This is part of
the users specifications, and is not part of our algorithms.
Each user (connection) associates a certain “benefit func-
tion” f(r) with its rate r. The simplest function f(r) = r

means that we are maximizing network throughput; a lin-
ear function means we are maximizing weighted through-
put.

More interestingly, a concave function (second deriva-
tive negative, e.g. /) means that there is curve of dimin-
ishing return associated with rate allocation for this user.
For example, imagine that a traffic stream is encoded in
a layered manner, and it consists of a number of streams,
e.g., first 2KB is voice, next 10KB is black and white video
with voice, and last 50KB is color video and voice. In this
case, a concave benefit function may allocate $10 for voice
part, $5 for video and $2 for color.

Notice that concave functions enable one to implement
some level of fairness: given 50KB of bandwidth, it is
most “beneficial” to provide voice component for 25 con-
nections, rather than voice + black and white video + color
for a single connection since $10 x 25 = $250 is the total
benefit in the former case, and $10 + $5 + $2 = $17 is the
total benefit in the latter case.

Admission control in a circuit-switched environ-
ment: Admission control on a single link is exactly auc-
tioning of bandwidth on that link. Consider, as a toy ex-
ample of the cost-benefit framework, the problem of ad-
mission control in the case of a permanent virtual circuits
environment where an online request for a point-to-point
virtual circuit is either accepted (with the permanent band-
width allocation) or rejected. The goal is to maximize the
bandwidth of all accepted connections.

In this case, the opportunity cost of the path is the sum of
opportunity costs of all the links which make up the path.

Cp = Z C(w)

=

Also, the minimal benefit of a connection per link needs to
be adjusted to

o =a/d

where d is the number of hops on a path. Thus, the base of
exponent becomes

p

T 4

B. Adapting the model to practice

The above theory section shows how bandwidth can be
rationed with a Cost-Benefit framework leading to a near-
optimal (competitive) throughput in the case of managing
permanent connections in circuit-switched environments.

The core theory has several assumptions which do not
exactly match the reality in distributed systems and com-
munication networks. We will examine these assumptions

and how we adapted the ideas of the Cost-Benefit frame-
work to work in real networks.

« The framework applies to permanent connections in
circuit-switched environment, rather than to handling in-
dividual packets in packet-switched networks.

« The theoretical model assumes that the senders have in-
stantaneous knowledge of the current costs of all the links
at the instant they need to make a decision. It is also
assumed that fine-grained clocks are available and essen-
tially zero-delay responses to events are possible.

« The natural application of the framework, as in the case
of managing permanent virtual circuits, is to use band-
width as the basic resource being rationed. However, band-
width is not under our control because competing flows
may occupy at any point an arbitrary and time-varying
fraction of the link bandwidth. Therefore, while band-
width is an essential component for performance, our pro-
tocols cannot meaningfully ration (save or waste) it, as its
availability is primarily at the mercy of other applications.
(Recall that our application has to share the link bandwidth
“fairly” with other TCP flows.)

In fact, the underlying model does not specify which
resources are to be managed by it. The most important
issue is understanding what is the resource that is being
controlled (rationed) since not all of the resources used are
controllable. Figuratively speaking, available bandwidth
to flow control is like wind to sailing: it is controlled by
adversarial forces rather than by us. We must try to adapt
as much as possible to changing circumstances, rationing
the controllable resources.

Although the model assumed admission control of con-
nections in a circuit switched environment, it can be ap-
plied to packet switching in a straight-forward way. The
path of each packet can be viewed as a short time circuit
that is assigned by the source of the packet. For each
packet, we can make a decision to accept or delay that
packet individually.

B.1 Practical cost function

We chose buffer space in each overlay network router as
the scarce resource we want to control. Conceptually, we
model our software overlay network router as a router with
fixed size output link buffers where packets are placed into
the appropriate output link queues as soon as the packet
is received by the router. Note that the number of queues
is equal to the number of outgoing links, and does not de-
pend on the number of senders, receivers or groups in the
system. If a link is not congested its corresponding queue
will be empty. In this case, once a message arrives in the
buffer it is immediately sent, maybe with only a short de-
lay due to send scheduling. If the incoming traffic is more

than the capacity of an outgoing link, some packets will
accumulate in the corresponding outgoing link buffer.

Each router establishes the cost for each of its outgoing
links and advertises this cost to all the other daemons us-
ing the overlay network. The price for a link is zero if its
corresponding buffer is empty. This means that the cost
is zero as long as the link is not congested, i.e. the link
can accommodate all the incoming traffic. As the link gets
congested and messages accumulate in the buffer, the cost
of the link increases. The price can theoretically go as high
as infinite when the buffer is full. In practice, the cost of
the link will increase until a given value S when nobody
will be able to buy it.

Equation 1 from Section IV-A gives the basic form of
our cost function. The utilization of a link is given by /M
where z is the average number of messages in the buffer,
M is the desired capacity of the buffer. The minimum
benefit « is set to 1 because we normalized the minimum
cost of a packet to 1.

So the cost is:

C(z) = a-y"M = =M

This function ranges from 1 to 8. We want to scale it to
range from 0 to S (the prohibitive cost). So the cost be-
comes:

Bw/M -1
T

The theory claims that the maximum benefit given to a
client should be sufficient to fully utilize the network. If
this maximum benefit is Mazpg, and the minimum bene-
fit is 1, then the base of the exponent in the cost function
should be 242z

If we use Mazp (say 20) as the base of the exponent,
then the cost function stays near zero until the buffer uti-
lization is almost 1. Then, the cost goes up very quickly.
Since we don’t have instantaneous feedback, this allows
actual congestion to occur (used buffers > 0) without in-
creasing the cost almost at all. Therefore a practical mech-
anism will provide incremental feedback on costs before
the utilization becomes high. This calls for a small base of
the exponent.

Using a small base for the exponent has real-world ad-
vantages and still fits the model. First, it provides an in-
crease in costs almost immediately as the link first be-
comes congested. Second, it is still exponential, which is
required by the theoretical model. We chose e as the base
of the exponent.

So finally we get:

C(zx)=S

er/M _ 1

Ciz) =8 ———

Each router will periodically advertise the cost of its
links by multicasting a cost update message to all the other
daemons through the overlay network. We will discuss
later in Section V how we minimize the control traffic
while we maximize the information it contains.

From the cost of the multicast tree links a sending dae-
mon can compute the cost for a packet. That cost is the
sum of the costs on all the links that the packet will tra-
verse plus a constant p that will be discussed later.

MT = {l|l € Multicast tree of p}

leMT

()

B.2 Benefit assignment

The choice of benefit is tightly intertwined with the goal
we want to achieve. If our goal is to maximize the send-
ing throughput of the network, then the benefit function
should reward each packet sent onto the network with a
fixed benefit. If our goal is to maximize sending through-
put while still allowing every sender to send at least some
traffic (i.e. no one starves), then the benefit function could
be a concave function (like 1/z) of the number of packets
already sent by this connection. The benefit function could
also be based on the number of received packets, instead of
sent packets. That would advantage senders who send to
larger groups. In this paper we chose to maximize sending
throughput so our benefit is one unit per packet sent.

Our approach will support any arbitrary benefit function
without any changes. The choice of the benefit function is
only dependent on the goal one wants to achieve.

Although one would like to handle the benefit as a pure
rate, in practice giving several units of benefit to a client
at a time is more efficient. We define a “salary” as the
amount of dollars a client is given from time to time. A
client is allowed to save up to S dollars of its salary. This
mechanism actually works like a token bucket of dollars
and works for any benefit function or combination of them,
by just assigning different salaries.

The sending rate of the clients is regulated by the dae-
mon a client is connected to. The daemon acts as the
client’s “agent”, purchasing packets whenever possible for
the sending client.

If the client wants to send a message that costs more dol-
lars than it currently has in his budget, the daemon blocks
the client by not reading from its socket anymore, and
keeps the expensive message until the client affords to buy
it. This happens when the client receives more dollars, or
when the cost for the sending tree goes down.

B.3 Other considerations

A link that is not congested has a cost of zero, and a
client that sends through it will see it this way until the
next cost update arrives. Therefore, any client would be
allowed to send an infinite number of messages on a non
congested link between two cost updates, obviously lead-
ing to high burstiness and congestion on these links. A
solution for this problem is to have a minimum cost per
link greater then zero, however this will not scale with the
size of the network (long paths could have a very large
cost even if idle). Our solution is to keep the minimum
cost at zero, but add a constant cost per message (like a
processing fee). This cost is the constant p referred to in
Equation 2, and in our implementation we define it to be
$1. Therefore we put a cap on the number of messages
each client can send between two cost updates, even when
the network cost is zero, because of the limited salary.

Since we do not know the network capacity (assumed
known by the theory), we approximate such knowledge
by adaptively probing for the current network bandwidth.
We chose to do this in a way very similar to TCP. When
a client receives a salary, the daemon checks whether the
client was blocked during the last salary period (due to an
intention to buy a message more expensive that it could af-
ford). If the client was not blocked, it means that he was
able to buy, and therefore send, all the messages he initi-
ated, so the next salary period will be exactly the same as
the previous one. However, if the client was blocked, the
daemon compares the cost of the most expensive message
that the client bought during the last salary period with a
certain threshold H. If the maximum cost is less than the
threshold, the time between two salaries is decreased, as
the client might have been blocked due to processing fees
on a relatively idle network. This threshold H can be any
arbitrary value larger than the processing fee. However,
the larger the threshold is, the more likely each client will
get a salary over a period of time, even in a congested net-
work. In our implementation we chose H to be 2.

The new salary period is:

Told : Tupdate
Told + Tupdate

where Ty,q is the previous salary period and 7;,,4qt. IS the
minimum time between two cost updates. 1f the maximum
cost is larger then the threshold, it means that the client
tries to buy expensive messages, therefore contributing to
congestion in the network. The new salary period will be:

(4)

This algorithm resembles the TCP congestion control [7]
where T, and Ty,;q Would be the average time between

Thew = (3)

Tnew =2- Told

200

[A e
|

160 {

140

120

100

80 i

60

Max. buffer utilization (packets)

[Buffer utilization |
40 ¢ No Randomization
With Randomization ----—--

20

0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Fig. 2. Randomization effect on buffer utilization

two packets sent, and T;,,4q¢ Would be the round trip time.
Equation 3 is algebraically equivalent to adding 1 to the
congestion window in TCP, while equation 4 is equivalent
to reducing the congestion window by half.

Finally, the coarse granularity of cost updates causes a
high degree of synchronization between clients at the time
an update is received. This synchronization phenomenon
could cause oscillations in the router buffers as every client
buys at the same time, then the cost goes up, then every-
body waits for the price to go down, etc. To prevent the
synchronization, each client may not send a message even
though it has sufficient funds to do so. It will choose to
send only with a probability 1/C,, where C, is the total
cost of the message. This bad behavior and the benefit
of randomization are shown in Figure 2, which represents
the maximum buffer utilization for a 2Mb link when 100
clients compete on sending through it.

V. FAIRNESS AND SCALABILITY

What definition of fairness is best in a multicast environ-
ment is an area of active research. For this work we chose
a conservative approach of considering each link on our
overlay network as one TCP flow. So, we will fairly share
each link with all the external competing traffic. Some
might argue that this is too conservative, as many people
may be using our multicast service at once, and each one
would receive their own TCP flow if they were using a
separate unicast service, but here they will share only one
TCP flow. This is true. However, the purpose of this paper
is not to argue for a particular model of fairness, but rather
to provide an overlay network flow control that works in
any environment.

The difference between looking at the receiving
throughput and looking at the sending throughput when
comparing a multicast protocol with TCP is big, as there
can be more than one receiver for one sender. However, we
try to be very conservative by taking into account the worst
case scenario and analyze only the sending throughput.

Giving a “fair” amount of traffic to all the senders, re-
gardless of their intended use of network resources, is
at odds with maximizing throughput of the network as a
whole. We choose, by default, to provide a fair share of
our overlay network resources to all senders who have the
same cost per message. That could be because their mes-
sages travel over the same multicast tree, or just by random
coincidence. However, senders who have higher costs, say
because they cross more congested links, will be allowed
to send at a lower rate. This is depicted in Section VI Sce-
nario 3, where sender A-F who uses all the network links
receives much less then its “fair” share of the resources.

We provide a per-group, per-sender, per-message flow
control in a multi-group multi-sender multicast environ-
ment, without keeping any per-flow state in the intermedi-
ate routers. Moreover, the amount of control traffic does
not depend of the number of groups, senders, or receivers
in the system, neither it carries any information about
them. The cost updates carry information only about the
state (buffer sizes) of the links - edges in the overlay net-
work graph.

We consider the edges of the overlay network to be
wide-area, high latency virtual links, in the order of mil-
liseconds to hundreds of milliseconds delay. Therefore,
the diameter of the overlay network can not be more than
some tens of hops - it is limited by the distances achiev-
able on our planet - so a maximum number of daemons in
the order of hundreds is realistic. The number of clients
or groups, however, can be much higher, in the order of
thousands, or tens of thousands.

Each daemon in the overlay network multicasts a cost
update at every T;,4, interval as long as its outgoing links
are not congested, or their costs did not change signifi-
cantly. However, if at least one of its links becomes con-
gested - the link cost increases - the daemon will send cost
updates faster, at 7,,;,, intervals. This mechanism is based
on the observation that, in general, in one multicast tree
there are only a few bottleneck links that will impose the
speed of the entire tree. Moreover, it is likely that the bot-
tleneck links for different senders or groups will be the
same. Therefore, only the daemons that control bottleneck
links will send frequent cost updates, while the others will
not contribute much to the control traffic. Since the cost
updates are very small (64 bytes), they are piggy-backed
with the data packets whenever possible. In our imple-
mentation we chose T;,,,, to be 2.5 seconds, and 7,;, 50
milliseconds. For an overlay network with the average link
bandwidth of 2Mbps this leads to a control traffic of about
0.5 percent per congested link, and 0.01 percent per non-
congested link.

C-DG

Congested link
Flow of multicast senders

Fig. 3. Scenario 1: Network Configuration

160

140

N}
o

Ll L

b i A

! ' v

a0 {1

60

Max. buffer utilization (packets)

40

20

0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Fig. 4. Scenario 1: Buffers

VI. SIMULATION RESULTS

We used the ns2 network simulator[3] to evaluate the
performance and behavior of our flow control protocol.
The main issues we focused on are:

« optimal network resource utilization;

« automatic adjustment for dynamic link capacities;

« optimal sharing of network resources to achieve maxi-
mum throughput;

« fairness between flows using the same congested links;
« scalability with number of clients, groups and diameter
of the network;

Scenario 1 —one bottleneck link per flow: We used the
multicast tree shown in Figure 3, with the link capacities
and latencies as shown in the figure. All the intermediate
buffers in the network have a soft limit of 100 packets.
Clients receive a $10 salary, and they can save up to $20 in
their budget. The processing fee is $1/packet.

Two classes of 20 separate clients each initiate multicast
messages, Sacrq and S.qq. Receiver clients are connected
to nodes C, D, F and G. For simplicity we do not show the
receiving clients, but only the daemons they are connected
to. The Sucrq Clients multicast to receivers connected to
nodes C, F and G, and and the S.4, clients multicast to
receivers connected to nodes D and G, sharing the links
B-C, B-E and E-G. S, clients are limited by the 2Mb

25

A

i

05

Al

[N TV AAN AN A
VVUV \/v V\/W\/

VY

N

Throughput (Mbits/sec)

Sending flows

0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Fig. 5. Scenario 1: Throughput

. C-DG

Congested link
Flow of multicast senders

Fig. 6. Scenario 2: Network Configuration

bottleneck link E — F', and S,q4, clients are limited by the
1Mb link B — D. There are no other bottleneck links in
the system.

Rather than looking at the instantaneous buffer occu-
pancy which is very dynamic and depends on the sampling
frequency, we chose to analyze the evolution of the max-
imum buffer utilization over the last sampling period in
Figure 4.

The reason for a higher buffer utilization on link £ — F
is that there is a higher network response delay for the
A — CF(Q clients. Link E — F' also experiences higher
variability in buffer utilization and throughput. This in-
creased variability is a consequence of the delayed feed-
back caused by higher network latency. In general, higher
latency paths will experience higher variability in through-
put and latency.

The aggregate sending throughput is optimally divided
between senders for maximal network usage, S.z4 clients
getting on average 1.977 Mbps and S.4, getting 0.992
Mbps.

Scenario 2 — one shared bottleneck link: To examine
the effect of a congested link, the network shown in Fig-
ure 6 is used. Here, link E — G forms the bottleneck for
both flows. Each flow represents 20 sending clients.

45

35

25 —

15

Percentage Difference from Average

0.5 1

0 5 10 15 20
Sender Number

Fig. 7. Scenario 2: Fairness

180

@ 140 |

2 ool Mt e g

A AW LA AT | N
I A T o RV
N ,

Time (sec)

Fig. 8. Scenario 2: Delayed senders, buffers

The two flows share the bottleneck link fairly equal.
Flow S,.r, gets an average of 997.3 Kbps and flow 54,
gets an average of 997.6 Kbps, while the buffer of the link
G — F stays below 150 packets. The various clients who
make up each flow also share the bandwidth fairly. In Fig-
ure 7, we show the percentage difference of each of the
20 Sgcpq clients throughput from the average throughput
achieved by the group as a whole. This shows that the
variance of the clients throughput is less then 4.6%.

A second experiment used the same tree configuration
as Figure 6 but started the second group of senders S,.s,
after 200 seconds, and also changed the bandwidth of the
link E-G to 1Mbps after 400 seconds. Figure 8 shows the
maximum buffer utilization on the links E-G, B-D and E-F.
After 200 seconds, as well as after 400 seconds we do not
see any major change in the buffer utilization on the bottle-
neck link. Specifically, there is no large spike in maximum
utilization when the second group of clients begins sending
all at once, or when the bottleneck link reduces its capacity
by half. This is because the link has an existing non-zero
cost and so the clients must pay that cost before sending.
Figure 9 shows how the throughput of the two groups of
clients responds very quickly to the new load, or change in
the available bandwidth.

Scenario 3 — chain network: Our flow control tries to
maximize throughput by allowing low cost messages to
pass, and reducing high cost traffic. The very simple way

25

v vW\
15

0 ‘ f
0 100 200

Throughput (Mbits/sec)
- b
A
<~

300 400 500
Time (sec)

600
Fig. 9. Scenario 2: Delayed senders, throughput

B [DE 123

s. | s. | s, s. |

S . o 0. | o
0.1ms| | 0.lms| | 0.1ms| | 0.Ims| |
100Mbps 100Mbps 100Mbps| | 100Mbps

7Tms B Tms C 7ms D Tms E

2Mbps 2Mbps 2Mbps 2Mbps

Tms
2Mbps

®

e Unicast flow

Fig. 10. Scenario 3: Network Configuration

to show this is to set up a chain network in which some
clients try to send their messages across the entire net-
work, while other clients use only one link in the chain.
Figure 10 shows such a network with 5 links connected in
series. One client sends from node A to node F, and 5 other
clients send only over one link, i.e. from B to C or from E
to k.

Figure 11 shows the throughput on the chain network as
short connections start up every 150 seconds. The client
A-F starts trying to use the entire capacity of the network.
When the client A-B starts, they share the congested link,
AB, about equally. When the third client, B-C, starts at
time 300, the long flow A-F slows down letting short flows
use the available bandwidth. As we add more congested
links by starting more short connections, the throughput of
the flow A-F goes almost to zero, thus almost maximizing
the global throughput of the system. If the flow control
had been fair, the aggregate throughput would be 6 Mbps,
1 Mbps for each client. We achieved an aggregate through-
put after all clients have started of 9.677 Mbps, while the
theoretical maximum is 10 Mbps.

The results of the previous simulation show a definite
bias toward short flows and show how such a bias can in-
crease network throughput. Actually, this is the same be-
havior as end to end connections using TCP would show
given the same situation. Figure 12 shows the throughput
on the same chain network, only instead of hop-by-hop
connections regulated by our flow control, we run end-to-

Throughput (Mbits/sec)

| A

0 L H L i il
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

Fig. 11. Scenario 3: Throughput

" [

Throughput (Mbits/sec)

0 P i A . VSV .
0 100 200 300 400 500 600 700 800 900 1000
Time (sec)

Fig. 12. Scenario 3: TCP throughput

end TCP connections. With end-to-end TCPs, the long A-
F connection is biased against in the same way as our flow
control. Moreover, when competing with only one other
TCP flow A-B, the longer flow A-F receives less band-
width. We believe this is because TCP is biased against
both long RTT connections as well as having to cross mul-
tiple congested links. So even when only one link is con-
gested, the longer RTT of the A-F flow causes it to receive
lower average bandwidth then the short RTT A-B flow.

Scenario 4 — scalability with number of nodes and
groups: In order to see how a large number of clients mul-
ticasting to many different groups share a network resource
we set up the network shown in Figure 13. The overlay
network consists of 1602 nodes, and there are 1600 clients,
each of them connected to a separate daemon, joining 800
different groups. We could not run a bigger scenario due to
memory limitation using the ns simulator on our machines.

Each of the clients S; to Sggp multicasts to three differ-
ent receivers. S; sends to Ry, Ry and R3, Sy sends to Ry,
R3 and Ry, and so on, until Sgqq that sends to Rggo, Ry
and Ry. All the senders share the same bottleneck link,
A-B.

We ran the simulation with different number of senders,
from 5 to 800. As shown in Figure 14 the maximum buffer
utilization on the bottleneck link A-B stays about the same
until the number of senders reaches to the buffer soft limit
(in our case, 100), and then it starts increasing. However,

800 senders
SERER I

O T00Mbps

Fig. 13. Scenario 4: Network Configuration

180

160

140

120

100

80

60

Max. buffer utilization (packets)

40

20

0

.
300 400 500 600 700 800
Number of senders

. .
0 100 200

Fig. 14. Scenario 4: Buffers

the Cost-Benefit framework kept the buffer size under con-
trollable limits (under 170 packets for 800 senders). The
aggregate throughput was not affected by the number of
senders, getting an average of 1.979Mbps for the aggre-
gate sending rate of 800 senders.

VII. SIMULATION VALIDATION WITH REAL-LIFE
EXPERIMENTS

We ran our experiments over a portion of the CAIRN
network[5]. This is a wide-area network that crosses the
entire United States, and consists of links that range from
1.5Mbps to 100 Mbps. The routers are Intel machines
that run FreeBSD 3.4. Figure 15 shows the portion of the
CAIRN network that we used for our experiments. We
measured individual link latencies using ping under zero
traffic, and the available bandwidth with simple point to
point TCP connections between each two ends of a link.
Note that our flow control uses the available bandwidth
given by the underlying TCP link protocol, and not the
physical bandwidth of the network.

We extended the Spread toolkit[4] to use our Cost-
Benefit framework for global flow control. Spread has its
own overhead of about 15% of data sent due to headers re-
quired for routing, ordering, and safety guarantees as well
as to provide user-friendly group names. What we mea-
sured in our results is actual user data sent and received
by clients connected to Spread. For these experiments we
gave each client a $10 salary, and allowed up to $20 of sav-
ings. The processing fee was $1. All the overlay network
links had a soft buffer limit of 100 packets.

kupc.cairn.net

tisepc.cairn.net

S,

0.07ms
71.23Mbps F

isiepc2.cairn.net

mitpe2.cairn.net

12.0Mbps

isipc2.cairn.net isipec.cairn.net

Fig. 15. CAIRN: Network Configuration

2

) PSSOV O WY Y IV
WA A

12

08 i

Throughput (Mbits/sec)

0.6

04 i i Sending flows
H i ST ——
0.2 i 82 reeeeee
=

0
0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Fig. 16. CAIRN: Real-life results

Sender S; multicasts messages to a group A joined by
the receivers R4, while senders Sy and S35 multicast to a
group B joined by the receivers Rg. All the clients run di-
rectly on the overlay network machines, connected to the
daemons through Unix Domain Sockets. Obviously, S;
was limited by the bottleneck link C-D, while S; and Ss3
had to share the bottleneck link D-E. Taking into account
the data overhead in Spread, we can see in Figure 16 that
the sender clients use the network resources optimally and
share them fairly between senders S, and Ss, S7 getting
1.417 Mbps, while Sy and S3 got 0.618 and 0.640 Mbps.
We then created a simulation of the CAIRN network, in-
cluding the same bandwidth, latency and network charac-
teristics. We ran the same experiment described above on
the simulated network. After adjusting the average sending
throughput with the Spread overhead, the simulation got
1.495Mbps for Sy, 0.626Mbps for Sy and 0.630Mbps for
S3 in the simulation, which differs from the actual CAIRN
results by less than 5.5% for Sy, and less than 1.6% for S;
and So.

VIII. CONCLUSIONS

This paper presented a new global flow control approach
for wide-area overlay networks based on sound theoretical
foundations. Our Cost-Benefit framework provides a sim-
ple and flexible way to optimize flow control to achieve
several desirable properties such as near optimal network

throughput and automatic adjustment to dynamic link ca-

pacities.

The resulting algorithm provides fairness be-

tween equal cost internal flows and is fair with outside
traffic, such as TCP. We implemented the framework in
the ns2 simulator and showed results similar to those pre-
dicted by theory. We then implemented the framework in
the Spread group communication system and conducted
live experiments on the CAIRN network to validate the
simulations and show the real-world performance of the
framework.

[1]

(2]

3]

[4]
5]
[6]

[7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

Baruch Awerbuch, Yossi Azar, and S. Plotkin, “Throughput-
competitive on-line routing,” in Proceedings of 34th IEEE Sym-
posium on Foundations of Computer Science, 1993.

Yair Amir, Baruch Awerbuch, Amnon Barak, Ryan Borgstrom,
and Arie Keren, “An opportunity cost approach for job assign-
ment and reassignment,” |EEE Transactions on Parallel and Dis-
tributed Systems, vol. 11, no. 7, pp. 760-768, July 2000.

“ns2 network simulator,” Available at
http://www.isi.edu/nsnam/ns/.

“Spread group communication system,” http://www.spread.org/.
“Cairn network,” Information available at http://www.cairn.net/,
2001.

Sally Floyd and Van Jacobson, “Random early detection gateways
for congestion avoidance,” |EEE/ACM Transactions on Network-
ing, vol. 1, pp. 397-413, August 1993.

Van Jacobson, “Congestion avoidance and control,” in Proceed-
ings of ACM SGCOMM, 1988.

K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks with a connectionless
network layer,” in Proceedings of ACM SGCOMM, 1988.

Sally Floyd, “TCP and explicit congestion notification,” ACM
Computer Communication Review, vol. 24, no. 5, October 1994.
K. K. Ramakrishnan and Sally Floyd, “A proposal to add explicit
congestion notification (ECN) to IP,” RFC 2481, January 1999.
R. G. Gallager and S.Jamaloddin. Golestani, “Flow control and
routing algorithms for data networks,” in Proceedings of 5th In-
ternational Conference on Computers and Communication, 1980,
pp. 779-784.

R. J. Gibbens and Frank P. Kelly, “Resource pricing and the evo-
lution of congestion control,” Automatica, vol. 35, December
1999.

S. Jamaloddin Golestani and S. Bhatacharyya, “End-to-end con-
gestion control for the Internet: A global optimization frame-
work,” in Proceedings of International Conference on Network
Protocols, October 1998, pp. 137-150.

Frank P. Kelly, A. K. Maulloo, and David. K. H. Tan, “Rate
control for communication networks: shadow prices, proportional
fairness and stability,” Journal of the Operational Research Soci-
ety, vol. 49, no. 3, pp. 237-252, March 1998.

David Lapsley and Steven Low, “An IP implemention of opti-
mization flow control,” in Proceedings of | EEE Globecom, 1998,
pp. 3023-3028.

David E. Lapsley and Steven Low, “Random early marking for
Internet congestion control,” in Proceedings of IEEE Globecom,
1999, vol. 3, pp. 1747-1752.

Idit Keidar, Jeremy Sussman, Keith Marzullo, and Danny Dolev,
“A client-server oriented algorithm for virtually synchronous
group membership in wans,” in Proceedings of the 20th |IEEE

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

International Conference on Distributed Computing Systems,
Taipei, Taiwan, April 2000, pp. 356-365, IEEE Computer Society
Press, Los Alamitos, CA.

Idit Keidar and Roger Khazan, “A client-server approach to virtu-
ally synchronous group multicast: Specifications and algorithms,”
in Proceedings of the 20th |EEE International Conference on
Distributed Computing Systems, Taipei, Taiwan, April 2000, pp.
344-355, IEEE Computer Society Press, Los Alamitos, CA.
D.A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Bud-
hia, “The totem multiple-ring ordering and topology maintenance
protocol,” ACM Transactions on Computer Systems, vol. 16, no.
2, pp. 93-132, May 1998.

Yair Amir, Claudiu Danilov, and Jonathan Stanton, “A low la-
tency, loss tolerant architecture and protocol for wide area group
communication,” in Proceeding of International Conference on
Dependable Systems and Networks. June 2000, pp. 327-336,
IEEE Computer Society Press, Los Alamitos, CA, FTCS 30.
Takako M. Hickey and Robbert van Renesse, “Incorporating
system resource information into flow control,” Tech. Rep. TR
95-1489, Department of Computer Science, Cornell University,
Ithaca, NY, 1995.

Shivakant Mishra and Lei Wu, “An evaluation of flow control in
group communication,” IEEE/ACM Transactions on Networking,
vol. 6, no. 5, pp. 571-587, October 1998.

Dan Rubenstein, Jim Kurose, and Don Towsley, “The impact of
multicast layering on network fairness,” in Proceedings of ACM
SIGCOMM, October 1999, vol. 29 of Computer Communication
Review, pp. 27-38.

Thomas Bonald and Laurent Massoulie, “Impact of fairness on
Internet performance,” Submitted, December 2000.

Robert C. Chalmers and Kevin C. Almeroth, “Developing a mul-
ticast metric,” in Proceedings of GLOBECOM 2000, 2000, vol. 1,
pp. 382-386.

Huayan Amy Wang and Mischa Schwartz, “Achieving bounded
fairness for multicast and TCP traffic in the Internet,” in Proceed-
ings of ACM SGCOMM, 1998.

Todd Montgomery, “A loss tolerant rate controller for reliable
multicast,” Tech. Rep. NASA-IVV-97-011, West Virginia Uni-
versity, August 1997.

Tetsuo Sano, Nagatsugu Yamanouchi, Teruji Shiroshita, and Os-
amu Takahashi, “Flow and congestion control for bulk reliable
multicast protocols — toward coexistance with TCP,” in Proceed-
ings of INFOCOM, March 1998.

Shuming Chang, H. Jonathan Chao, and Xiaolei Guo, “Tcp-
friendly window congestion control with dynamic grouping for
reliable multicast,” in Proceedings of GLOBECOM 2000, 2000,
vol. 1, pp. 538-547.

Ljubica Blazevic and Jean-Yves Le Boudec, “Distributed core
multicast (DCM): a multicast routing protocol for many groups
with few receivers,” Computer Communications Review, vol. 29,
no. 5, pp. 6-21, October 1999.

Yair Amir and Jonathan Stanton, “The spread wide area group
communication system,” Tech. Rep. 98-4, Johns Hopkins Uni-
versity Department of Computer Science, 1998.

L. E. Moser, Yair Amir, P. M. Melliar-Smith, and D. A. Agar-
wal, “Extended virtual synchrony,” in Proceedings of the IEEE
14th International Conference on Distributed Computing Sys-
tems. June 1994, pp. 56-65, IEEE Computer Society Press, Los
Alamitos, CA.

R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev, “Group
communication specifications: A comprehensive study,” Tech.
Rep. CS99-31, Institute of Computer Science, The Hebrew Uni-
versity of Jerusalem, 1999.

