
From Total Order to Database Replication

Yair Amir and Ciprian Tutu
Johns Hopkins University

Department of Computer Science
3400 N.Charles Street, Baltimore, MD 21218

{yairamir, ciprian}@cnds.jhu.edu

Abstract

This paper presents in detail an efficient and provably
correct algorithm for database replication over partition-
able networks. Our algorithm avoids the need for end-to-
end acknowledgments for each action while supporting net-
work partitions and merges and allowing dynamic instan-
tiation of new replicas. One round of end-to-end acknowl-
edgments is required only upon a membership change event
such as a network partition. New actions may be intro-
duced to the system at any point, not only while in a primary
component. We show how performance can be further im-
proved for applications that allow relaxation of consistency
requirements. We provide experimental results that demon-
strate the efficiency of our approach.

1 Introduction

Database replication is quickly becoming a critical tool
for providing high availability, survivability and high per-
formance for database applications. However, to provide
useful replication one has to solve the non-trivial problem
of maintaining data consistency between all the replicas.

The state machine approach [25] to database replication
ensures that replicated databases that start consistent will re-
main consistent as long as they apply the same deterministic
actions (transactions) in the same order. Thus, the database
replication problem is reduced to the problem of construct-
ing a global persistent consistent order of actions. This is
often mistakenly considered easy to achieve using the Total
Order service (e.g. ABCAST, Agreed order, etc) provided
by group communication systems.

Early models of group communication, such as Virtual
Synchrony, did not support network partitions and merges.
The only failures tolerated by these models were process
crashes, without recovery. Under this model, total order is
sufficient to create global persistent consistent order.

When network partitions are possible, total order service
does not directly translate to a global persistent consistent
order. Existing solutions that provide active replication ei-
ther avoid dealing with network partitions [27, 23, 22] or
require additional end-to-end acknowledgements for every
action after it is delivered by the group communication and
before it is admitted to the global consistent persistent order
(and can be applied to the database) [16, 12, 26].

In this paper we describe a complete and provably cor-
rect algorithm that provides global persistent consistent or-
der in a partitionable environment without the need for end-
to-end acknowledgments on a per action basis. In our ap-
proach, end-to-end acknowledgements are only used once
for every network connectivity change event (such as net-
work partition or merge) and not per action. The basic con-
cept was first introduced as part of a PhD thesis [2]. This
paper presents our newly developed insight into the prob-
lem and goes beyond [2] by supporting online additions of
completely new replicas and complete removals of existing
replicas while the system executes.

Our algorithm builds a generic replication engine which
runs outside the database and can be seamlessly integrated
with existing databases and applications. The replication
engine supports various semantic models, relaxing or en-
forcing the consistency constraints as needed by the appli-
cation. We implemented the replication engine on top of the
Spread toolkit [4] and provide experimental performance
results, comparing the throughput and latency of the global
consistent persistent order using our algorithm, the COReL
algorithm introduced in [16], and a two-phase commit algo-
rithm. These results demonstrate the impact of eliminating
the end-to-end acknowledgments on a per-action basis.

The rest of the paper is organized as follows. The fol-
lowing subsection discusses related work. Section 2 de-
scribes the working model. Section 3 introduces a concep-
tual solution. Section 4 addresses the problems exhibited
by the conceptual solution in a partitionable system and in-
troduces the Extended Virtual Synchrony model as a tool to
provide global persistent order. Section 5 describes the de-
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tailed replication algorithm and extends it to support online
removals and additions to the set of participating replicas.
Section 6 shows how the global persistent order guarantees
of the algorithm can be used to support various relaxed con-
sistency requirements. Section 7 evaluates the performance
of our prototype and Section 8 concludes the paper.

1.1 Related Work

Two-phase commit protocols [12] remain the main tech-
nique used to provide a consistent view in a distributed
replicated database system over an unreliable network.
These protocols impose a substantial communication cost
on each transaction and may require the full connectivity of
all replicas to recover from some fault scenarios. Three-
phase-commit protocols [26, 17] overcome some of the
availability problems of two-phase-commit protocols, pay-
ing the price of an additional communication round.

Some protocols optimize for specific cases: limiting the
transactional model to commutative transactions [24]; giv-
ing special weight to a specific processor or transaction
[28]. Explicit use of timestamps enables other protocols
[6] to avoid the need to claim locks or to enforce a global
total order on actions, while other solutions settle for re-
laxed consistency criteria [11]. Various groups investigated
methods to implement efficient lazy replication algorithms
by using epidemic propagation [8, 14] or by exploiting ap-
plication semantics [21].

Atomic Broadcast [13] in the context of Virtual Syn-
chrony [7] emerged as a promising tool to solve the replica-
tion problem. Several algorithms were introduced [27, 23]
to implement replication solutions based on total ordering.
All these approaches, however, work only in the context of
non-partitionable environments.

Keidar [16] uses the Extended Virtual Synchrony (EVS)
[20] model to propose an algorithm that supports net-
work partitions and merges. The algorithm requires that
each transaction message is end-to-end acknowledged, even
when failures are not present, thus increasing the latency
of the protocol. In section 7 we demonstrate the impact
of these end-to-end acknowledgements on performance by
comparing this algorithm with ours. Fekete, Lynch and
Shvartsman [9] study both [16] and [2] (which is our static
algorithm) to propose an algorithm that translates View
Synchrony, another specification of a partitionable group
service defined in the same work, into a global total order.

Kemme, Bartoli and Babaoglu[19] study the problem of
online reconfiguration of a replicated system in the presence
of network events, which is an important building block for
a replication algorithm. They propose various useful solu-
tions to performing the database transfer to a joining site
and provide a high-level description of an online reconfigu-
ration method based on Enriched Virtual Synchrony allow-

ing new replicas to join the system if they are connected
with the primary component. Our solution can leverage
from these database transfer techniques and adds the abil-
ity to allow new sites to join the running system without the
need to be connected to the primary component.

Kemme and Alonso [18] present and prove the correct-
ness for a family of replication protocols that support dif-
ferent application semantics. The protocols are introduced
in a failure-free environment and then enhanced to support
server crashes and recoveries. The model does not allow
network partitions, always assuming that disconnected sites
have crashed. In their model, the replication protocols rely
on external view-change protocols that provide uniform re-
liable delivery in order to provide consistency across all
sites. Our work shows that the transition from the group
communication uniform delivery notification to the strict
database consistency is not trivial, we provide a detailed al-
gorithm for this purpose and prove its correctness.

2 System Model

The system consists of a set of nodes (servers)
S={S1, S2, ..., Sn}, each holding a copy of the entire
database. Initially we assume that the set S is fixed and
known in advance. Later, in Section 5.1, we will show how
to deal with online changes to the set of potential replicas1.

2.1 Failure and Communication Model

The nodes communicate by exchanging messages. The
messages can be lost, servers may crash and network parti-
tions may occur. We assume no message corruption and no
Byzantine faults.

A server that crashes may subsequently recover retain-
ing its old identifier and stable storage. Each node executes
several processes: a database server, a replication engine
and a group communication layer. The crash of any of the
components running on a node will be detected by the other
components and treated as a global node crash.

The network may partition into a finite number of dis-
connected components. Nodes situated in different com-
ponents cannot exchange messages, while those situated in
the same component can continue communicating. Two or
more components may subsequently merge to form a larger
component.

We employ the services of a group communication layer
which provides reliable multicast messaging with ordering
guarantees (FIFO, causal, total order). The group communi-
cation system also provides a membership notification ser-
vice, informing the replication engine about the nodes that

1Note that these are changes to the system setup, not view changes
caused by temporary network events.
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can be reached in the current component. The notification
occurs each time a connectivity change, a server crash or
recovery, or a voluntary join/leave occurs. The set of par-
ticipants that can be reached by a server at a given moment
in time is called a view. The replication layer handles the
server crashes and network partitions using the notifications
provided by the group communication. The basic property
provided by the group communication system is called Vir-
tual Synchrony [7] and it guarantees that processes mov-
ing together from one view to another deliver the same (or-
dered) set of messages in the former view.

2.2 Service Model

A Database is a collection of organized, related data.
Clients access the data by submitting transactions. consist-
ing of a set of commands that follow the ACID properties.
A replication service maintains a replicated database in a
distributed environment. Each server from the server set
maintains a private copy of the database. The initial state
of the database is identical at all servers. Several models
of consistency can be defined, the strictest of which is one-
copy serializability that requires that the concurrent execu-
tion of transactions on a replicated data set is equivalent to
a serial execution on a non-replicated data set. We focus on
enforcing the strict consistency model, but we also support
weaker models (see Section 6).

An action defines a transition from the current state of
the database to the next state; the next state is completely
determined by the current state and the action. We view ac-
tions as having a query part and an update part, either of
which can be missing. Client transactions translate into ac-
tions that are applied to the database. The basic model best
fits one-operation transactions, but in Section 6 we show
how other transaction types can also be supported.

3 Replication Algorithm

In the presence of network partitions, the replication
layer identifies at most a single component of the server
group as a primary component; the other components of a
partitioned group are non-primary components. A change
in the membership of a component is reflected in the deliv-
ery of a view-change notification by the group communica-
tion layer to each server in that component. The replication
layer implements a symmetric distributed algorithm to de-
termine the order of actions to be applied to the database.
Each server builds its own knowledge about the order of ac-
tions in the system. We use the coloring model defined in
[1] to indicate the knowledge level associated with each ac-
tion. Each server marks the actions delivered to it with one
of the following colors:

Order  is unknown

Order is known

( I know  that)
Order is known to all

(Red)

(Green)

(White)

Figure 1. Action coloring

Red Action An action that has been ordered within the
local component by the group communication layer,
but for which the server cannot, as yet, determine the
global order.

Green Action An action for which the server has deter-
mined the global order.

White Action An action for which the server knows that
all of the servers have already marked it as green.
These actions can be discarded since no other server
will need them subsequently.

At each server, the white actions precede the green actions
which, in turn, precede the red ones. An action can be
marked differently at different servers; however, no action
can be marked white by one server while it is missing or is
marked red at another server.

The actions delivered to the replication layer in a primary
component are marked green. Green actions can be applied
to the database immediately while maintaining the strictest
consistency requirements. In contrast, the actions delivered
in a non-primary component are marked red. The global
order of these actions cannot be determined yet, so, under
the strong consistency requirements, these actions cannot
be applied to the database at this stage.

3.1 Conceptual Algorithm

The algorithm presented in this section should, intu-
itively, provide an adequate solution to the replication prob-
lem. This is not actually the case, as the algorithm is not
able to deal with some of the more subtle issues that can
arise in a partitionable system. We present this simplified
solution to provide a better insight into some of the prob-
lems the complete solution needs to cope with and to intro-
duce the key properties of the algorithm.

Figure 2 presents the state machine associated with the
conceptual algorithm. A replica can be in one of the follow-
ing four states:

• Prim State. The server belongs to the primary com-
ponent. When a client submits a request, it is multicast
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Prim Exchange Non
Prim

Action (Green)

Last CPC

Construct

Action (Red)

No Prim

View-change

View-change

View-change

Possible
Prim

Recover

Figure 2. Conceptual Replication Algorithm

using the group communication to all the servers in the
component. When a message is delivered by the group
communication system to the replication layer, the ac-
tion is immediately marked green and is applied to the
database.

• NonPrim State. The server belongs to a non-primary
component. Client actions are ordered within the
component using the group communication system.
When a message containing an action is delivered by
the group communication system, it is immediately
marked red.

• Exchange State. A server switches to this state upon
delivery of a view change notification from the group
communication system. All the servers in the new
view will exchange information allowing them to de-
fine the set of actions that are known by some of them
but not by all. These actions are subsequently ex-
changed and each server will apply to the database the
green actions that it gained knowledge of. After this
exchange is finished each server can check whether the
current view has a quorum to form the next primary
component. This check can be done locally, without
additional exchange of messages, based on the infor-
mation collected in the initial stage of this state. If the
view can form the next primary component the server
will move to the Construct state, otherwise it will re-
turn to the NonPrim state.

• Construct State. In this state, all the servers in the
component have the same set of actions (they synchro-
nized in the Exchange state) and can attempt to install
the next primary component. For that they will send a
Create Primary Component (CPC) message. When a
server has received CPC messages from all the mem-
bers of the current component it will transform all its
red messages into green, apply them to the database
and then switch to the Prim state. If a view change
occurs before receiving all CPC messages, the server
returns to the Exchange state.

In a system that is subject to partitioning we must en-
sure that two different components do not apply contradic-

tory actions to the database. We use a quorum mechanism
to allow the selection of a unique primary component from
among the disconnected components. Only the servers in
the primary component will be permitted to apply actions
to the database. While several types of quorums could be
used, we opted to use dynamic linear voting [15]. Under
this system, the component that contains a (weighted) ma-
jority of the last primary component becomes the new pri-
mary component.

In many systems, processes exchange information only
as long as they have a direct and continuous connection.
In contrast, our algorithm propagates information by means
of eventual path: when a new component is formed, the
servers exchange knowledge regarding the actions they
have, their order and color. This exchange process is only
invoked immediately after a view change. Furthermore,
all the components exhibit this behavior, whether they will
form a primary or non-primary component. This allows the
information to be disseminated even in non-primary com-
ponents, reducing the amount of data exchange that needs
to be performed once a server joins the primary component.

4 From Total Order to Database Replication

Unfortunately, due to the asynchronous nature of the sys-
tem model, we cannot reach complete common knowledge
about which messages were received by which servers just
before a network partition occurs or a server crashes. In
fact, it has been proven that reaching consensus in asyn-
chronous environments with the possibility of even one fail-
ure is impossible [10]. Group communication primitives
based on Virtual Synchrony do not provide any guarantees
of message delivery that span network partitions and server
crashes. In our algorithm it is important to be able to tell
whether a message that was delivered to one server right
before a view change, was also delivered to all its intended
recipients.

A server p cannot know, for example, whether the last
actions it delivered in the Prim state, before a view-change
event occurred, were delivered to all the members of the
primary component; Virtual Synchrony guarantees this fact
only for the servers that will install the next view together
with p. These messages cannot be immediately marked
green by p, because of the possibility that a subset of the
initial membership, big enough to construct the next pri-
mary component, did not receive the messages. This subset
could install the new primary component and then apply
other actions as green to the database, breaking consistency
with the rest of the servers. This problem will manifest it-
self in any algorithm that tries to operate in the presence of
network partitions and remerges. A solution based on To-
tal Order cannot be correct in this setting without further
enhancement.
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4.1 Extended Virtual Synchrony

In order to circumvent the inability to know who re-
ceived the last messages sent before a network event oc-
curs we use an enhanced group communication paradigm
called Extended Virtual Synchrony (EVS) [20] that reduces
the ambiguity associated with the decision problem. Instead
of having to decide on two possible values, as in the con-
sensus problem, EVS will create three possible cases. To
achieve this, EVS splits the view-change notification into
two notifications: a transitional configuration change mes-
sage and a regular configuration change message. The tran-
sitional configuration message defines a reduced member-
ship containing members of the next regular configuration
coming directly from the same regular configuration. This
allows the introduction of another form of message deliv-
ery, safe delivery, which maintains the total order property
but also guarantees that every message delivered to any pro-
cess that is a member of a configuration is delivered to every
process that is a member of that configuration, unless that
process fails. Messages that do not meet the requirements
for safe delivery, but are received by the group communi-
cation layer, are delivered in the transitional configuration.
No new messages are sent by the group communication in
the transitional configuration.

The safe delivery property provides a valuable tool to
deal with the incomplete knowledge in the presence of net-
work failures or server crashes. We distinguish now three
possible cases:

1. A safe message is delivered in the regular configura-
tion. All guarantees are met and everyone in the con-
figuration will deliver the message (either in the regu-
lar configuration or in the following transitional con-
figuration) unless they crash.

2. A safe message is delivered in the transitional config-
uration. This message was received by the group com-
munication layer just before a partition occurs. The
group communication layer cannot tell whether other
components that split from the previous component re-
ceived and will deliver this message.

3. A safe message was sent just before a partition oc-
curred, but it was not received by the group commu-
nication layer in some detached component. The mes-
sage will, obviously, not be delivered at the detached
component.

The power of this differentiation lies in the fact that, with re-
spect to the same message, it is impossible for one server to
be in case 1, while another is in case 3. To illustrate the use
of this property consider the Construct phase of our algo-
rithm: If a server p receives all CPC messages in the regular
configuration, it knows that every server in that configura-
tion will receive all the messages before the next regular

Order��is�unknown

Order�is�known

(�I�know��that)
Order�is�known�to�all

Transitional�membership

(Red)

(Green)

(White)

(Yellow)

Figure 3. Updated coloring model

configuration is delivered, unless they crash; some servers
may, however, receive some of the CPC messages in a tran-
sitional configuration. Conversely, if a server q receives a
configuration change for a new regular configuration before
receiving all of the CPC messages, then no server could
have received a message that q did not receive as safe in
the previous configuration. In particular, no server received
all of the CPC messages as safe in the previous regular con-
figuration. Thus q will know that it is in case 3 and no other
server is in case 1. Finally, if a server r received all CPC
messages, but some of those were delivered in a transitional
configuration, then r cannot know whether there is a server
p that received all CPC messages in the regular configura-
tion or whether there is a server q that did not receive some
of the CPC messages at all; r does, however, know that there
cannot exist both p and q as described.

5 Replication Algorithm

Based on the above observations the algorithm skeleton
presented in Section 3.1 needs to be refined. We will take
advantage of the Safe delivery properties and of the differ-
entiated view change notification that EVS provides. The
two delicate states are, as mentioned, Prim and Construct.2

In the Prim state, only actions that are delivered as
safe during the regular configuration can be applied to the
database. Actions that were delivered in the transitional
configuration cannot be marked as green and applied to the
database before we know that the next regular configura-
tion will be the one defining the primary component of the
system. If an action a is delivered in the transitional mem-
bership and is marked directly as green and applied to the
database, then it is possible that one of the detached com-
ponents that did not receive this action will install the next
primary component and will continue applying new actions

2While the same problem manifests itself in any state, it is only these
two states where knowledge about the message delivery is critical, as it
determines either the global total order (in Prim) or the creation of the new
primary (Construct).
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Figure 4. Replication State Machine

to the database, without applying a, thus breaking the con-
sistency of the database. To avoid this situation, the Prim
state was split into two states: RegPrim and TransPrim and
a new message color was introduced to the coloring model:

Yellow Action An action that was delivered in a transi-
tional configuration of a primary component.

A yellow action becomes green at a server as soon as this
server learns that another server marked the action green or
when this server becomes part of a primary component. As
discussed in the previous section, if an action is marked as
yellow at some server p, then there cannot exist r and s, in
this component, such that one marked the action as red and
the other marked it green.

In the presence of consecutive network changes, the pro-
cess of installing a new primary component can be inter-
rupted by another configuration change. If a transitional
configuration is received by a server p while in the Con-
struct state, before receiving all the CPC messages, the
server will not be able to install the new primary and will
switch to a new state: No. In this state p expects to re-
ceive the delivery of the new regular configuration which
will trigger the initiation of a new exchange round. How-
ever, if p receives all the rest of the CPC messages in No
(i.e. in the transitional configuration), it means that it is
possible that some server q has received all the CPC mes-
sages in Construct and has moved to RegPrim, completing
the installation of the new primary.

To account for this possibility, p will switch to another
new state: Un (undecided). If an action message is received
in this state then p will know for sure that there was a server
q that switched to RegPrim and even managed to generate
new actions before noticing the network failure that caused
the cascaded membership change. Server p, in this situa-
tion (1b), has to act as if installing the primary component
in order to be consistent, mark its old yellow/red actions
as green, mark the received action as yellow and switch to
TransPrim, “joining” q who will come from RegPrim as it
will also eventually notice the new configuration change. If
the regular configuration message is delivered without any

message being received in the Un state (transition marked ?
in Figure 4), p remains uncertain whether there was a server
that installed the primary component and will not attempt
to participate in the formation of a new primary until this
dilemma is cleared through exchange of information with
one or, in the worst case, all of the members that tried to
install the same primary as p.

Figure 4 shows the updated state machine. Aside from
the changes already mentioned, the Exchange state was also
split into ExchangeStates and ExchangeActions, mainly
for clarity reasons. From a procedural point of view, once a
view change is delivered, the members of each view will try
to establish a maximal common state that can be reached by
combining the information and actions held by each server.
After the common state is determined, the participants pro-
ceed to exchange the relevant actions. Obviously, if the new
membership is a subset of the old one, there is no need for
action exchange, as the states are already synchronized.

5.1 Dynamic Replica Instantiation and Removal

As mentioned in the description of the model, the algo-
rithm that we presented so far works under the limitation of
a fixed set of potential replicas. It is of great value, however,
to allow for the dynamic instantiation of new replicas as
well as for their deactivation. Moreover, if the system does
not support permanent removal of replicas, it is susceptible
to blocking in case of a permanent failure or disconnection
of a majority of nodes in the primary component.

However, dynamically changing the set of servers is not
straightforward: the set change needs to be synchronized
over all the participating servers in order to avoid confusion
and incorrect decisions such as two distinct components de-
ciding they are the primary, one being the rightful one in the
old configuration, the other being entitled to this in the new
configuration. Since this is basically a consensus problem,
it cannot be solved in a traditional fashion. We circumvent
the problem with the help of the persistent global total order
that the algorithm provides.

When a replica r wants to permanently leave the system,
it will broadcast a PERSISTENT LEAVE message that will
be ordered as if it was an action message. When this mes-
sage becomes green at replica s, s can update its local data
structures to exclude r from the list of potential replicas.
The PERSISTENT LEAVE message can also be adminis-
tratively inserted into the system to signal the permanent
removal, due to failure, of one of the replicas. The message
will be issued by a site that is still in the system and will
contain the server id of the dead replica.

A new replica r that wants to join the replicated system
will first need to connect to one of the members (s of the
system, without joining the group. s will act as a represen-
tative for the new site to the existing group by creating a
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PERSISTENT JOIN message to announce r’s intention to
join the group. This message will be ordered as a regu-
lar action, according to the standard algorithm. When the
message becomes green at a server, that replica will up-
date its data structures to include the newcomer’s server id
and set the green line (the last globally ordered message
that the server has) for the joining member as the action
corresponding to the PERSISTENT JOIN message. Basi-
cally, from this point on the servers acknowledge the exis-
tence of the new member, although r is still not connected
to the group. When the PERSISTENT JOIN message be-
comes green at the peer server (the representative), the peer
server will take a snapshot of the database and start trans-
ferring it to the joining member. If the initial peer fails or
a network partition occurs before the transfer is finished,
the new server will try to establish a connection with a dif-
ferent member of the system and continue its update. If
the new peer already ordered the PERSISTENT JOIN mes-
sage sent by the first representative, it will know about r
and the state that it has to reach before joining the system,
therefore will be able to resume the transfer procedure. If
the new peer has not yet ordered the PERSISTENT JOIN
message it will issue another PERSISTENT JOIN message
for the r. PERSISTENT JOIN messages for members that
are already present in the local data structures are ignored
by the existing servers, so only the first ordered PERSIS-
TENT JOIN will define the entry point of the new site into
the system. Since the algorithm guarantees global total or-
dering, this entry point is uniquely defined. Finally, when
the transfer is complete, r will set the action counter to the
last action that was ordered by the system and will join
the group of replicas. This will be seen as a view change
by the existing members and they will go through the EX-
CHANGE states and continue according to the algorithm.

Another method for performing online reconfiguration is
described in [19]. This method requires the joining site to
be permanently connected to the primary component while
being updated. We maintain the flexibility of the engine and
we allow joining replicas to be connected to non-primary
components during their update stage. It can even be the
case that a new site is accepted into the system without
ever being connected to the primary component, due to the
eventual path propagation method. The insertion of a new
replica into the system in a non-primary component, can be
useful to certain applications as is shown in Section 6.

The static algorithm code was presented in [2], while the
complete algorithm code, including the dynamic capabili-
ties can be found in the extended version of this paper [5].

5.2 Proof of Correctness

The algorithm in its static form was proven correct in
[2]. The correctness properties that were guaranteed were

liveness, FIFO order and Total global order. Here, we prove
that the enhanced dynamic version of the algorithm still pre-
serves the same guarantees.
Lemma 1 (Global Total Order (static)) If both servers s
and r performed their ith actions, then these actions are
identical.

Lemma 2 (Global FIFO Order (static)) If server r per-
formed an action a generated by server s, then r already
performed every action that s generated prior to a.

These are the two properties that define the Safety cri-
terion in [2]. These specifications need to be refined to
encompass the removal of servers or the addition of new
servers to the system.

Theorem 1 (Global Total Order (dynamic)) If both
servers s and r performed their ith action, then these
actions are identical.
Proof: Consider the system in its start-up configuration set.
Any server in this configuration will trivially maintain this
property according to Lemma 1. Consider a server s that
joins the system. The safety properties of the static al-
gorithm guarantee that after ordering the same set of ac-
tions, all servers will have the same consistent database.
This is the case when a PERSISTENT JOIN action is or-
dered. According to the algorithm s will set its global action
counter to the one assigned by the system to the PERSIS-
TENT JOIN action. From this point on the behavior of s is
indistinguishable from a server in the original configuration
and the claim is maintained as per Lemma 1. 2

Theorem 2 (Global FIFO Order (dynamic)) If server r
performed an action a generated by server s, then r already
performed every action that s generated prior to a, or it
inherited a database state which incorporated the effect of
these actions.

Proof: According to Lemma 2, the theorem holds true
from the initial starting point until a new member is added
to the system. Consider r, a member who joins the system.
According to the algorithm, the joining member transfers
the state of the database as defined by the action ordered
immediately before the PERSISTENT JOIN message. All
actions generated by s and ordered before the PERSIS-
TENT JOIN will be incorporated in the database that r re-
ceived. From Theorem 1, the PERSISTENT JOIN message
is ordered at the same place at all servers. All actions gen-
erated by s and ordered after the PERSISTENT JOIN mes-
sage will be ordered similarly at every server, including r,
according to Theorem 1. Since Lemma 2 holds for any other
member, this is sufficient to guarantee that r will order all
other actions generated by s prior to a, and ordered after r
joined the system. 2

Lemma 3 (Liveness (static)) If server s orders action a
and there exists a set of servers containing s and r, and a
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time from which on that set does not face any communi-
cation or process failures, then server r eventually orders
action a.
This is the liveness property defined in [2] and proven to
be satisfied by the static replication algorithm. This speci-
fication needs to be refined to include the notion of servers
permanently leaving the system.

Theorem 3 (Liveness (dynamic)) If server s orders action
a in a configuration that contains r and there exists a set of
servers containing s and r, and a time from which on that set
does not face any communication or process failures, then
server r eventually orders action a.
Proof: The theorem is a direct extension of Lemma 3,
which acknowledges the potential existence of different
server-set configurations. An action that is ordered by a
server in one configuration will be ordered by all servers
in the same configuration as a direct consequence of Theo-
rem 1. Servers that leave the system or crash do not meet
the requirements for the liveness property, while servers that
join the system will order the actions generated in any con-
figuration that includes them, unless they crash. 2

6 Supporting Various Application Semantics

The presented algorithm was designed to provide strict
consistency semantics by applying actions to the database
only when they are marked green and their global order is
determined. In the real world, where incomplete knowledge
is unavoidable, many applications would rather have an im-
mediate answer, than incur a long latency to obtain a com-
plete and consistent answer. Therefore, we provide addi-
tional service types for clients in a non-primary component.
The result of a weak query is obtained from a consistent, but
possibly obsolete state of the database, as reflected by the
green actions known to the server at the time of the query,
even while in a non-primary component. Other applications
prefer getting an immediate reply based on the latest infor-
mation available, although possibly inconsistent. In the pri-
mary component the state of the database reflects the most
updated situation and is always consistent. In a non-primary
component, however, red actions must be taken into account
in order to provide the latest, though not consistent, infor-
mation. We call this type of query a dirty query.

Different semantics can be supported also with respect
to updates. In the timestamp semantics case, the application
in interested only in the most recent information/ Location
tracking is a good example of an application that would em-
ploy such semantics. Similarly, commutative semantics are
used in applications where the order of action execution is
irrelevant as long as all actions are eventually applied. In
an inventory management application all operations on the
stock would be commutative. For both semantics, the one-

copy serializability property is not maintained in the pres-
ence of network partitions. However, after the network is re-
paired and the partitioned components merge, the databases
states converge.

The algorithm can be significantly optimized if the en-
gine has the ability to distinguish a query-only action from
an action that contains updates. A query issued at one server
can be answered as soon as all previous actions generated
by this server were applied to the database, without the need
to generate and order an action message.

Modern database applications exploit the ability to exe-
cute a procedure specified by a transaction. These are called
active transactions and they are supported by our algorithm,
provided that the invoked procedure is deterministic and de-
pends solely on the current database state. The procedure
will be invoked at the time the action is ordered, rather than
before the creation of the update.

Finally, we mentioned that our model best fits one-
operation transactions. Actually, any non-interactive trans-
actions that do not invoke triggers are supported in a similar
way. However, some applications need to use interactive
transactions which, within the same transaction, read data
and then perform updates based on a user decision, rather
than a deterministic procedure. Such behavior, cannot be
modeled using one action, but can be mimicked with the
aid of two actions. The first action reads the necessary data,
while the second one is an active action as described above.
This active action encapsulates the update dictated by the
user, but first checks whether the values of the data read
by the first action are still valid. If not, the update is not
applied, as if the transaction was aborted in the traditional
sense. Note that if one server “aborts”, all of the servers
will abort that (trans)action, since they apply an identical
deterministic rule to an identical state of the database.

7 Performance Analysis

In this section we evaluate our replication engine and
compare its performance to that of two existing solutions:
two-phase commit (2PC) and COReL by Keidar [16]. 2PC
is the algorithm adopted by most replicated systems that re-
quire strict consistency. 2PC requires two forced disk writes
and 2n unicast messages per action. COReL exploits group
communication properties to improve on that. COReL re-
quires one forced disk write and n multicast messages per
action. In contrast, our engine only requires 1/n forced disk
write and one multicast message per action on average (only
the initiating server needs to force the action to disk).

We implemented all three algorithms and compared their
performance in normal operation, without view changes.
Our 2PC implementation does not perform the locking re-
quired to guarantee the unique order of transaction execu-
tion, as this is usually the task of the database. Therefore
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Figure 5. Throughput Comparison

a complete 2PC will perform strictly worse than our upper-
bound implementation.

Since we are interested in the intrinsic performance of
the replication metods, clients receive responses to their ac-
tions as soon as the actions are globally ordered, without
any interaction with a database. A follow-up work [3] eval-
uates a complete solution that replicates a Postgres database
over local and wide area networks using our engine.

All the tests were conducted with 14 replicas, each run-
ning on a dual processor Pentium III-667 with Linux con-
nected by a 100Mbits/second local area switch. Each action
is 200 bytes long (e.g. an SQL statement).

Figure 5(a) compares the maximal throughput that a sys-
tem of 14 replicas can sustain under each of the three meth-
ods. We vary the number of clients that simultaneously
submit requests into the system between 1 and 28, evenly
spread between the replicas as much as possible. The clients
are constantly injecting actions into the system, the next ac-
tion from a client being introduced immediately after the
previous action from that client is completed and its result
reported to the client.

Our engine achieves a maximum throughput of 1050 up-
dates/second once there are sufficient clients to saturate the
system, outperforming the other methods by at least a fac-
tor of 10. COReL outperforms the uppper-bound 2PC as
expected, mainly due to the saving in disk writes reaching
a maximum of 110 updates/second as opposed to 63 up-
dates/second for the upper-bound 2PC.

High-performance database environments commonly
use superior storage technology (e.g flash disks). In order
to estimate the performance that the three methods would
exhibit in such environment, we used asynchronous disk
writes instead of forced disk writes. Figure 5(b) shows that
our engine tops at processing 3000 updates/second. Un-
der the same conditions, the upper-bound 2PC algorithm
achieves 400 updates/second. COReL reaches a through-
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put of approximately 100 updates/second with 28 clients,
but more clients are needed in order to saturate the COReL
system due to its higher latency. With 50 clients, CORel
saturates the system with about 200 updates/second. 2PC
outperforms COReL in this experiment because of two rea-
sons: the fact that we use an upper-bound 2PC as men-
tioned above, and the particular switch that serves our local
area network that is capable of transmitting multiple unicast
messages between different pairs in parallel.

We also measured the response time a client experiences
under different loads (Figure 6). Our Engine maintains an
average latency of 15ms with load increasing up to 800 up-
dates/second and breaks at the maximum supported load of
1050 updates/second. COReL and 2PC experience latencies
of 35ms up to 80ms under loads up to 100 updates/second
with COReL being able to sustain more throughput.

8 Conclusions

We presented a complete algorithm for database repli-
cation over partitionable networks sophistically utilizing
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group communication and proved its correctness. Our
avoidance of the need for end-to-end acknowledgment per
action contributed to superior performance. We showed
how to incorporate online instantiation of new replicas and
permanent removal of existing replicas. We also demon-
strated how to efficiently support various types of applica-
tions that require different semantics.
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