
Real-Time Byzantine Resilience for Power Grid
Substations

Sahiti Bommareddy
Department of Computer Science

Johns Hopkins University
sahiti@cs.jhu.edu

Daniel Qian
Department of Computer Science

Johns Hopkins University
dqian3@jhu.edu

Christopher Bonebrake
Pacific Northwest National Labs
christopher.bonebrake@pnnl.gov

Paul Skare
Pacific Northwest National Labs

paul.skare@pnnl.gov

Yair Amir
Department of Computer Science

Johns Hopkins University
yairamir@cs.jhu.edu

Abstract—In the world of increasing cyber threats, a com-
promised protective relay can put power grid resilience at risk
by irreparably damaging costly power assets or by causing
significant disruptions. We present the first architecture and
protocols for the substation that ensure correct protective relay
operation in the face of successful relay intrusions and network
attacks while meeting the required latency constraint of a quarter
power cycle (4.167ms).

Our architecture supports other rigid requirements, including
continuous availability over a long system lifetime and seamless
substation integration. We evaluate our implementation in a
range of fault-free and faulty operation conditions, and provide
deployment tradeoffs.

I. INTRODUCTION

The power grid is a complex critical infrastructure that
generally connects thousands of power plants to millions of
electricity customers. Electricity is generated at power genera-
tion plants and flows in the grid through several substations (at
different voltage levels) before reaching the consumers. Some
of the most critical protection functions are carried out by
protective relays in the substations. For example, they protect
the grid in case of incidents like short-circuits or overload
currents. With the blurring lines between the grid Operational
Technology (OT) and Information Technology (IT) networks,
protective relays are attractive targets for malicious actors due
to their critical role in grid resilience [1]. With hundreds
to thousands of substations across a country to support the
transmission and distribution of power, the attack surface is
vast [2]. Hence, the growing landscape of cyber threats to
protective relays in substations is a severe threat to overall
grid resilience. This paper aims to strengthen grid resilience
by addressing sophisticated cyber threats to protective relays
and protection schemes in substations. Specifically, we develop
Byzantine resilience for the substation that ensures correct
protective relay operation even in the face of successful
intrusions that compromise protective relays.

The role of the protective relay is to monitor its part of the
grid continuously, and upon detecting that the substation state
is not as desired (for example, due to a risky event), trip a
breaker to disconnect the power circuit in order to protect

power assets. A high voltage (345kV and up) transformer
is an example of an asset protected by protective relays in
transmission substations. Since such a transformer serves vast
spans of the grid, costs millions of dollars, and takes over
a year to procure, damaging it threatens grid stability. All
protection schemes are time-critical, i.e., the reaction time
needed is very exact to effectively protect the asset [3]. Due
to the critical role of the protective relays and the very tight
reaction time requirements, operators may deploy multiple
relays for the same protection function, each with unilateral
power to trip a breaker.

However, existing state-of-the-art protective relay technol-
ogy is susceptible to intrusions. A protective relay with uni-
lateral power under the control of an attacker presents two
problems: First, a relay that does not trip when it should,
can cause irreparable damage to the grid and its connected
customers. Second, a relay that does unnecessarily trip causes
a significant disruption to many customers. Either case is
costly and highly undesirable.

Constructing a Byzantine resilient protective relay for the
substation is challenging due to several rigid factors:

• The standard [3] requires relay reaction time to be
within a quarter of a power cycle. Specifically, in a
60Hz system (e.g., in North America), a power cycle
amounts to 16.67 milliseconds (ms), and a quarter cycle
amounts to 4.167ms. This exact real-time constraint on
the responsiveness of the relay is extremely demanding
in the face of a successful attack.

• A Byzantine resilient protective relay function has to be
continuously available in the field over a long lifetime
(years). Therefore, proactive recovery is necessary to
periodically, automatically and seamlessly regain control
of compromised relays. This prevents the attacker from
gaining long term access to relays and limits the attacker’s
ability to compromise a critical number of relays [4], [5].

• The protective relay is a relatively expensive device, and
there are many of them across grid substations. Hence, to
reduce cost there is a high incentive to limit the additional
relays needed in a Byzantine resilient scheme.

• Any practical Byzantine resilient scheme has to seam-
lessly integrate into existing substations without signifi-
cant changes to other substation components or overall
substation architecture, in order to facilitate actual de-
ployment.

The first intuition to address Byzantine faults at the substa-
tion level would be to tune and adapt classic state machine
replication-based protocols (BFT SMR). However, in our
view, it is incredibly challenging to meet all the substation
requirements with state machine replication-based protocols
as the environment is fundamentally different and operates at
much finer time scales. For example, achieving the quarter-
power cycle requirement in all operating conditions, including
during successful intrusions and simultaneous network attacks,
is highly challenging.

Our key insight is that the circuit breaker state in a relay-
based protection function only depends on the most recent
relay action (trip or close). This means that the total ordering
provided by BFT SMR protocols is not strictly necessary to
construct a Byzantine resilient system. Moreover, with BFT
SMR, the minimum number of relays needed to tolerate f
Byzantine relays with k relays undergoing proactive recovery
simultaneously would be 3f + 2k+ 1 [4]. This means a BFT
SMR-based solution needs at least six relays to practically
tolerate a single intrusion. Since a protective relay is a fairly
expensive device (tens of thousands of dollars), BFT SMR-
based schemes will be costly in practice, reducing the feasi-
bility of broad adoption.

We look at the environment in the grid substation and
the specific need of a Byzantine resilient protective relay.
We design an architecture and protocols to ensure protection
functions work correctly even in the presence of successful
intrusions and network attacks.

The primary contributions of this paper are:

• We propose the first real-time Byzantine resilient archi-
tecture and protocols for the substation that simultane-
ously address system compromises and network attacks
while meeting the strict reaction time requirement.

• Our architecture can tolerate f Byzantine relays and k
relays undergoing proactive recovery simultaneously with
just 2f + k + 1 total relays. This is in contrast to a
traditional BFT SMR-based solution that would need
3f + 2k + 1 total relays. This reduced cost can directly
translate into deployment feasibility.

• Our architecture seamlessly integrates into existing sub-
stations without the need to modify existing components.

• We implement our architecture and two real-time proto-
cols in Spire for the Substation, a system that extends the
open-source Spire, the network-attack resilient intrusion-
tolerant SCADA for the power grid [6].

• We deploy and evaluate our architecture and protocols
in a substation testbed and show that the system meets
the stringent quarter of a power cycle (4.167ms) latency
requirement.

The rest of the paper is organized as follows: Section II

presents our threat model and assumptions. Section III presents
the Byzantine Resilient architecture for the substation. Sec-
tion IV presents the Arbiter Protocol, a Byzantine protocol that
operates within the architecture optimizing latency. Section V
presents an alternative protocol, the Peer Protocol that reduces
the attack surface and facilitates ease of integration while
paying some latency costs. Section VI presents performance
evaluation of both the Arbiter Protocol and the Peer Protocol
in different operating conditions. Section VII describes related
work and Section VIII concludes the paper.

II. THREAT MODEL AND GOALS OF A SOLUTION

Our threat model is broad, requiring weak assumptions and
covering both system-level compromises and network-level
attacks on the substation network.

At the system level, we consider compromised (Byzantine)
relays entirely under the attacker’s control and that may exhibit
arbitrary behavior. Byzantine relays can coordinate but are
computationally bounded, and as such, cannot subvert the
cryptographic mechanisms detailed in sections IV and V.

At the network level, we consider malicious network at-
tacks, including low-level attacks such as arp-spoofing and
other man-in-the-middle attacks, black hole attacks, and denial
of service attacks on the substation local area network. The
intrusion-tolerant networking foundation in Spire [6] addresses
this broad network threat model. In conjunction with its
network intrusion detection subsystem [7], it precludes long-
running denial of service resource consumption attacks.

The requirement for real-time coordinated action within
one-quarter of a power cycle necessitates some assumptions
on clock synchronization between the substation protocol
participants, which goes beyond the traditional asynchronous
settings with eventual progress during stable times. Ideally,
we would like to make the weakest assumption about clock
synchronization that will still allow us to meet the required
demanding timeliness. Since the requirement calls for the
whole coordination process end-to-end, from sampled values
to trip at the breaker, to take no more than 4.167ms, our
protocols assume that the substation protocol participants will
be synchronized to within one millisecond of each other.

In fact, substation standards demand precise time syn-
chronization between all substation components. In practice,
this is achieved by using the IEEE 1588 Precision Time
Protocol (PTP) or IRIG-B, which provides accuracy in the sub-
microsecond range [8]. Therefore, assuming a one-millisecond
synchronization accuracy is at least three orders of magnitude
coarser than necessary for substation functions to work, and
hence is a very weak assumption.

We assume that all correct relays will issue a trip if the
grid state requires a relay to trip. Of course, there can be still
some differences between correct relays (e.g., from different
manufacturers, and even different versions of the product from
the same manufacturer) regarding how close to the boundary of
necessity they trigger a trip but by that boundary (i.e., when it
is necessary to protect grid assets) all correct relays will issue
a trip.

We assume that at any time, at most f relays are compro-
mised and k relays undergo proactive recovery simultaneously.
As we support proactive recovery, to compromise the system,
an attacker needs to compromise more than f relays in a
single rejuvenation interval (i.e., time it takes until a relay
node undergoes proactive recovery and completes the recovery
process) [4]. Our protocols make the following guarantees:

1) A trip (or close) command is issued to the breaker only
if there is at least one correct relay that decides to trip
(or close) the breaker at that time.

2) If the grid needs to trip to protect power assets, a trip
will be issued at that time.

Finally, we assume that the attacker has no physical access
to system components and cannot manipulate Sampled Values
(IEC61850-9-2, measurements of the power grid that act as
inputs to the relay, [9]). Our threat model also does not cover
a faulty circuit breaker. However, our architecture protects
all system endpoints, including circuit breakers, making them
considerably more difficult to compromise.

III. BYZANTINE RESILIENT ARCHITECTURE

The protective relays continuously monitor the grid through
electric current and voltage measurements. The measurements
are multicasted by Merging Units over the process bus in Sam-
pled Value messages. Protective relays process the measure-
ments to detect situations that put the grid and its customers
at risk (e.g., deviation in expected frequency). Relays, upon
detecting such a situation, issue GOOSE messages (Generic
Object Oriented Substation Event) to trip the circuit breaker,
cut the power flow, and protect the grid assets and connected
devices. Once the issue that caused the trip is resolved, an
operator usually instructs the relay to issue a GOOSE message
to close the circuit breaker.

Protective
Relay1

Relay
Proxy1

Trip
Master1

Protective
Relay2

Relay
Proxy2

Trip
Master2

Protective
Relay3

Relay
Proxy3

Trip
Master3

Protective
Relay4

Relay
Proxy4

Trip
Master4

Breaker
Proxy

Circuit Breaker
IED

Merging
Unit

process
bus

intrusion-tolerant
overlay

netw
ork

single relay node

relay directly connected
harness

breaker node

Network Intrusion
Detection System

SPAN

Fig. 1. An architecture that tolerates one Byzantine relay node (f = 1) and
one relay node undergoing proactive recovery (k = 1) simultaneously with a
total of four relay nodes in an IEC61850 Substation

A practical solution must be transparent to both the pro-
tective relays and the circuit breakers. Furthermore, such a

solution must ensure that all other existing substation com-
ponents are entirely ignorant of the new Byzantine resilience
capabilities and continue to function unchanged. Therefore,
we design our solution such that each protective relay works
as if they were directly connected to the breaker and using
the same (unprotected) protocols to issue their trip and close
action commands. Similarly, the circuit breaker operates un-
changed. To facilitate this mode of operation, our harness
running Byzantine resilient protocols is directly attached to
the protective relays on one side and the circuit breaker on
the other side, as shown in Fig. 1. Our architecture in Fig. 1
shows that each relay and its directly connected harness (Relay
Proxy and Trip Master) form a single logical entity called
a relay node. Similarly, the circuit breaker and its directly
attached harness form a single logical entity called a breaker
node. The proxies limits the use of insecure communication
protocols, namely the GOOSE messages in IEC61850, so that
these messages are only used on a direct wire between the
protective relay and its proxy and the circuit breaker and its
proxy (i.e, they never flow on any of the networks).

All network communication in the system, between re-
lay nodes and other relay nodes or the breaker node, is
conducted over an intrusion-tolerant overlay network, imple-
mented using the same networking component used in Spire
[6]. This intrusion-tolerant network design addresses network-
level threats in the substation’s Local Area Network. This
design is complemented by a machine-learning-based Network
Intrusion Detection System to detect suspicious and anomalous
traffic, providing situational awareness [7].

IV. ARBITER PROTOCOL

To prevent f Byzantine relays from controlling the circuit
breaker, we need the circuit breaker to act only if f + 1
relays issue the same action at about the same time. Thus,
the total number of relays required to tolerate f Byzantine
relays will minimally be 2f +1. However, we need to support
the diversity of attack surface and proactive recovery [4] .
Therefore, to support k simultaneous relays going through
proactive recovery, a total of 2f + k + 1 relays are needed
[10].

A simplistic solution could be to just have each relay node
sign an action (i.e., trip or close) and send the action to the
breaker node. Suppose the breaker node receives f+1 distinct
verified relay messages with the same action and acts on it.
In that case, an adversary that recorded these messages could
replay them to change the breaker state in the future. Hence,
we need to verify the freshness of relay messages. One way
to ensure the freshness of the messages is to have the breaker
node issue a nonce that is valid for a short time period. The
relay nodes would then include this nonce along with the
action in their signed message, and the breaker node would
verify the freshness of the nonce when counting the f + 1
messages. In such a solution, the breaker node could issue
nonces periodically or on-demand by relay nodes. Both of
these approaches incur additional costs compared to simply
generating a signed message with no nonce. While the former

needs the breaker node to generate more messages period-
ically, the latter would add latency, requiring an additional
round before generating a signed message. Either case would
render the breaker node logic more complex. Furthermore,
scaling would pose a challenge since these relay nodes can
operate more than one circuit breaker. It would result in
either additional messages or added latency, each of which
is undesirable.

Fortunately, we can eliminate the need for an explicit nonce
generation. In our Arbiter Protocol, we use the current time
as part of the signed message sent by the relay node. The
breaker node will verify freshness by ensuring the message
is within a short period from its current clock time. The
substation standards require time synchronization between
substation components to be in the order of sub-microsecond.
While we do not need such fine-grain synchronization, we
still need to ensure the responsiveness to within the quarter
cycle (4.167ms). Therefore, we chose our freshness period
to be one millisecond, which is three orders of magnitude
coarser than the substation requirements (hence adds a very
weak assumption) but still allows our solution to meet the
quarter cycle guarantee without the overhead associated with
the explicit nonce techniques.

A. Protocol Description

Let the breaker be closed. Upon detection of a risky
situation, a correct relay issues a trip message. The connected
Trip Master (in the relay node) receives this trip action,
generates a signed trip message with its local time, and sends
it to the breaker node. The breaker node verifies signature
and freshness (i.e., the time in the message is within one
millisecond of its current time). Upon receipt of f +1 distinct
fresh relay node trip messages, the breaker node trips the
circuit breaker. After the circuit breaker trips, the breaker node
multicasts the trip acknowledgment to the relay nodes.

Relay nodes continue to generate fresh signed trip messages
(with updated time) every one millisecond as long as their
relay remains in a trip state and they have not received the
trip acknowledgment message.

When the risky situation is resolved, a correct relay issues
a close message. The corresponding relay node generates a
signed close message with its local time and sends it to the
breaker node. Similar to the tripping logic above, upon receiv-
ing f+1 distinct fresh relay node close messages, the breaker
node closes the circuit breaker. After the circuit breaker closes,
the breaker node multicasts the close acknowledgment to the
relay nodes.

Relay nodes continue to generate fresh signed close mes-
sages (with updated time) every one millisecond as long as
their relay remains in a close state and they have not received
the close acknowledgment message.

As described above, the breaker node in the Arbiter Protocol
is complex with sophisticated logic. This increases attack
surface and presents integration challenges as the system
scales. In Section V we present the Peer Protocol addressing
these important concerns.

V. PEER PROTOCOL

In order to facilitate seamless integration while reducing
the attack surface of the breaker node (which is a single point
of failure), the breaker node should not have a role beyond
authenticating the action message and executing the action.
This can be achieved by moving the logic of the breaker node
in the Arbiter Protocol into a distributed Byzantine resilient
protocol in the Trip Master. This protocol coordinates the relay
nodes and uses threshold signatures to ensure the support of
f +1 relay nodes. With this support, relay nodes can generate
a single threshold-signed action message to the breaker node.
We present the details of this Peer Protocol below.

A. Architecture Abstraction through Threshold Cryptography
and Time Discretization

The relay nodes make use of a threshold signature scheme.
At a high level, an (f+1, n) threshold signature scheme creates
a public key and a signing key, just like a typical signature
scheme. However, n parties split the signing key, and f + 1
of these parties need to collaborate to create a signature. Most
threshold signature schemes (including the one used in this
protocol) use a two-step process to create these signatures.
First, each party can create partial signatures on the same
message (generating shares). Second, if any distinct set of at
least f + 1 of these valid shares exists on the same message,
we can form the threshold signature by combining them. The
main challenge with this process is that shares should be
generated on the exact same message. One way to do this
would be to have relay nodes agree on a message. However,
this additional coordination would require at least an extra
round of communication, which is prohibitively expensive
given the stringent latency requirement.

To reduce latency, our solution is to have the relays in-
dependently generate shares on the same message without
coordination. This means that only one round of communica-
tion is needed to collect the shares and generate a threshold-
signed message for the breaker node. However, this message
still needs to carry a nonce (like time in the Arbiter Protocol
above) that can prove freshness. The raw local time can not be
used as a nonce to create the same message on different relay
nodes as the local times of the relay nodes would vary and
messages would not be identical. Instead, we can discretize
time to closest millisecond and use the discretized time as the
nonce, henceforth called the Discretized Time Stamp (DTS).

Given our assumption that the nodes are synchronized
to within 1ms of each other, two messages created at the
same time on different nodes will always have the same or
consecutive DTS. To see why these can be consecutive, we
define a DTS interval as the set of times that discretize to
the same DTS. The difference in time synchronization can
cause one node’s local time to be in one DTS interval, and
the other node’s local time to be in the next DTS interval. In
fact, any arbitrarily small synchronization difference can cause
this, if the local times are close enough to the endpoints of
the intervals.

Now, let us describe how the DTSs are used in the protocol.
If a relay node decides on an action, it will generate a
share with the action and the current DTS. Relay nodes
exchange these shares, and if there are f + 1 distinct valid
shares on the same message (i.e., the same action and same
DTS), relay nodes will generate a threshold signature message
and send it to the circuit breaker node. Upon receiving the
threshold signature message, the circuit breaker then verifies
the signature and checks freshness by comparing the DTS on
the message to its local DTS.

However, when the DTS of two different relay nodes are
different, the nodes would not be able to combine their shares
into a threshold signature. To address this, the relay node
generates two shares: one for the current DTS and one for
the next DTS. The relay node then sends both of these
shares in the same message. Therefore, if two relay nodes
simultaneously decide on the same action, there will be at least
one share with the same DTS. Therefore, only one round of
communication between the relay nodes is needed to threshold
sign the action.

B. State Machine

The above description of the use of Threshold Cryptography
and Discretized Time Stamps covers how relay nodes act when
they need to generate a threshold-signed message (i.e., a trip
or a close action). To completely specify the behavior of the
Peer Protocol, we construct a state machine that handles the
messages from the local relay, the other relay nodes, and the
breaker node. This forms a single logical real-time Byzantine-
resilient relay node out of multiple intrusion-prone real-time
relay nodes.

For the ease of understanding, we describe the state machine
in two steps: a partial state machine in Fig. 2 and a complete
state machine in Fig. 3. The partial state machine presents
the coordination algorithm during fault-free operation while
assuming all correct relays issue an action at the same time.
The complete state machine adds support for non-identical
relays, benign and Byzantine faults, and proactive recovery.

The system state for each relay node is defined based on
the relay state (denoted by r) and the breaker state (denoted
by b). When the breaker node starts, it acquires the circuit
breaker state and notifies the relay nodes of that state. The
relay node updates its local relay state when the local relay
(the one directly connected to that node) issues an action. In
every relay node, the relay state and the breaker state each
carry two essential pieces of information: the state (trip or
close) and the DTS of the event occurrence (denoted by r.t
and b.t). For example, in Fig. 2, the Closed state in the top
left corner has a relay state close (i.e., the local relay issued a
close action), and the breaker state is close. Another example
in Fig. 2, in Attempt Trip state, the local relay issued a trip
and the breaker is closed. Note, when a relay node starts or
recovers after proactive recovery, it acquires b and r, then uses
their state and DTS data to transition into appropriate state in
the state machine and resumes operation. However, to keep

the state machine visualization simple, in Fig. 2 and Fig. 3
we do not show recovery and transitions to appropriate state.

Closed
(close, close)

Attempt Trip
(trip, close)
r.t ≥ b.t

Attempt Close
(close, trip)
r.t ≥ b.t

Tripped
(trip, trip)

Local Relay Trip

Local Relay Close

Local Relay Trip

Local Relay Close

Trip Share
Combine Success

or
Signed Trip Ack

Close Share
Combine Success

or
Signed Close Ack

Local Relay Close
or

Signed Close Ack

Local Relay Trip
or

Trip Share Timeout

Local Relay Close
or

Close Share Timeout

Local Relay Trip
or

Signed Trip Ack

Regular Trip Path

Regular Close Path

Fig. 2. A Partial State Machine

Let us assume that the relay node is in the Closed state
(top left corner in Fig. 2). If a correct local relay detects a
risky event, it will issue a local relay trip message (r.t ≥
b.t). The relay node attempts to trip the breaker by generating
and sending a trip share message to the other relay nodes
with current and next DTS shares. It then transitions to the
Attempt Trip state. While in that state, it receives shares from
other relay nodes and keeps generating trip shares every DTS
interval. Upon successfully combining shares and generating a
valid threshold-signed trip message, the relay node sends that
message to the breaker node and transitions to the Tripped
state.

In the Tripped state, the relay node periodically sends the
threshold-signed trip message to the breaker node until it
receives a valid trip acknowledgment signed by the breaker
node. A relay node will remain in the Attempt Trip state until
either it can generate a valid threshold-signed trip message (by
combining other relays shares) or until it receives a valid trip
acknowledgment message from the circuit breaker node. The
Regular Trip Path in Fig. 2 marks this path where relay nodes
coordinate to trip a closed breaker.

A similar flow occurs when closing the breaker after the
risky situation is resolved. A relay node in the Tripped state
receives a close message (r.t ≥ b.t) from its local relay. The
relay node then attempts to close the breaker by generating
and sending a close share message to the other relay nodes,
with current and next DTS shares. It then transitions to Attempt
Close state. While in that state, it receives shares from other
relay nodes and keeps generating close shares every DTS
interval. Upon successfully combining shares, generating a
valid threshold-signed close message, the relay node sends

Closed
(close, close)

Attempt Trip
(trip, close)
r.t ≥ b.t

Attempt Close
(close, trip)
r.t ≥ b.t

Tripped
(trip, trip)

Wait Trip
(close, trip)
r.t < b.t

Wait Close
(trip, trip)
r.t < b.t

Local Relay Trip

Local Relay Close

Local Relay Trip

Local Relay Close

Trip Share
Combine
Success

or
Signed

Trip Ack

Close Share
Combine
Success

or
Signed

Close Ack

Local Relay Close
or

Signed Close Ack

Local Relay Trip
or

Trip Share Timeout

Local Relay Close
or

Close Share Timeout

Local Relay Trip
or

Signed Trip Ack

Local Relay
Trip

Signed
Close Ack

Signed
Trip Ack

Signed
Close Ack

Local Relay Close

Signed
Close Ack

Local Relay
Close

Signed
Trip Ack

Signed
Trip Ack

Signed
Close Ack

Local Relay Trip

Signed
Trip Ack

Signed
Trip Ack
r.t ≥ b.t

Signed
Close Ack
r.t ≥ b.t

Fig. 3. A Full State Machine

that message to the breaker node and transitions to the Closed
state.

In the Closed state, the relay node periodically sends the
threshold-signed close message to the breaker node until it
receives a valid close acknowledgment signed by the breaker
node. A relay node will remain in the Attempt Close state until
either it can generate a valid threshold-signed close message
(by combining other relays shares) or until it receives a valid
close acknowledgment message from the breaker node. The
Regular Close Path in Fig. 2 marks this path where relay nodes
coordinate to close a tripped breaker.

Unfortunately, relays may not be identical, i.e., correct
relays may not trip or close simultaneously (at the exact
same time) due to relay diversity (different manufacturers or
versions). The partial state machine (Fig. 2) does not support
a correct relay node that might trip or close relatively slower
than other correct relay nodes. For example, let us assume all
correct relay nodes are in Closed State and two relay nodes
are fast and use the Regular Trip Path to transition from the
Closed to the Tripped state. Another correct but slightly slower
relay node remains in the Closed state (has not yet received

a trip message from its local relay) but then receives a valid
signed trip acknowledgement. It cannot follow the Regular
Trip Path. Hence, to support non-identical relays, we add two
wait states (Wait Trip and Wait Close), the shaded states in the
complete state machine (Fig. 3). The relay nodes wait in these
states for their local relay to catch up to their faster peers. In
our example, the relay node can transition from the Closed
state to the Wait Trip state. If the local relay is correct, it
will eventually issue a local relay trip message and the relay
node will transition from the Wait Trip state to the Tripped
state. Similarly, a correct but slower relay node in the Tripped
state can move to the Wait Close state on receiving a valid
close acknowledgment before receiving its local relay close
message. When its local relay issues a close message, the relay
node transitions from the Wait Close state to the Closed state.

Furthermore, as discussed in the threat model above, in
addition to a relay being delayed, it may fail and be un-
responsive. For example, consider the scenario where Relay
Node 1 is in the Closed state, and its local relay stops issuing
any messages. There is a risky situation in which two other
relay nodes (say Relay Node 2 and Relay Node 3) decide to

trip and transition along the Regular Trip Path. Relay Node
1 will receive a valid trip acknowledgment message from the
breaker node and will transition to the Wait Trip state. When
the risky event is resolved, the other tripped relay nodes close
the breaker, transitioning along the Regular Close Path. Upon
receiving a valid close acknowledgment message, Relay Node
1 transitions from the Wait Trip to the Closed state. Until
the local relay node resumes operation, the relay node toggles
between Closed and Wait Trip states or Tripped and Wait Close
states. Thus, the state machine addresses benign local relay
faults.

Finally, a relay node under the control of an intruder can
behave arbitrarily, i.e., exhibit Byzantine faults. For example, it
can trip unnecessarily or not trip when needed. The Byzantine
relay node can generate its own shares but cannot generate the
threshold-signed trip message by itself (f +1 valid shares are
needed to generate the threshold-signed message). Hence, it
cannot unilaterally trip the closed breaker or close the tripped
breaker. The formal guarantees are elaborated in the proof
sketch subsection.

C. Diversity and Proactive Recovery

In addition to the exact real-time latency requirement, a
solution has to support a long system lifetime with continuous
availability. The Byzantine resilient protocol can guarantee
correctness as long as the compromised relay nodes do not
exceed the design threshold of f . To enable the system to
continue to work correctly as long as no more than a certain
fraction of the relay nodes are compromised, we adapt from
existing works the techniques of diversity and proactive recov-
ery [5], [11]. Proactive Recovery entails forcefully restarting
the relay node from a clean state, diversifying its attack
surface, and refreshing cryptographic keys, before resuming
operation.

A diverse attack surface in our setup requires diverse relay
nodes, meaning both the protective relays and the harness need
to be diverse. To accomplish that, we diversify the harness
using standard approaches such as automatic software diversity
at either compilation or run time [12]–[14]. Other useful tech-
niques in that space include operating system diversity [15]
and (the more expensive) N-version programming [16], [17].
A good approach to achieve attack surface diversity for the
protective relays may be to procure them from different man-
ufacturers (e.g. GE, Siemens, Hitachi Energy). Alternatively,
the aforementioned diversity techniques could be employed
for protective relays from the same manufacturer.

To maintain availability in the presence of both f intrusions
and k relay nodes undergoing proactive recovery simulta-
neously, a BFT SMR-based solution requires 3f + 2k + 1
total nodes, out of which 2f + k + 1 nodes are needed to
make progress. In contrast, both Peer Protocol and our Arbiter
Protocol support proactive recovery with only 2f +k+1 total
nodes, out of which only f + 1 nodes are needed to make
progress [4], [10].

D. Proof Sketch

Peer Protocol gives the following guarantees:
Guarantee 1: Assuming no more than f relay nodes are

compromised simultaneously, when a trip is issued to the
circuit breaker, at least one correct protective relay issued a
trip at that time.

Proof: The trip is issued to the circuit breaker through a
threshold-signed message. In our scheme, the threshold is f+
1, i.e., f + 1 valid relay node shares are needed to combine
and generate the threshold-signed message. Since we assume
at most f simultaneous Byzantine relay nodes, there is valid
share from a correct relay node in the f + 1 shares that were
combined to generate the threshold-signed trip message.

Guarantee 2: Assuming no more than f relay nodes are
compromised and no more than k relay nodes are undergoing
proactive recovery simultaneously, if the grid needs to trip to
protect power assets, a trip will be issued at that time.

Proof: We assume that any correct relay node will trip when
the grid requires tripping. In our scheme, the threshold is f+1,
i.e., f + 1 valid relay node shares are needed to generate the
threshold-signed trip message. The total number of relay nodes
in the system is 2f + k+1. Hence, even with simultaneous f
compromises and k nodes going through proactive recovery,
there are always at least f + 1 (i.e. (2f + k + 1) − (f + k))
correct relay nodes that will issue trip shares, enabling the
generation of a valid threshold-signed trip message. According
to the protocol, a correct relay node sends the threshold-signed
trip message to the breaker node upon its generation.

Similar guarantees apply to the close action as well.

VI. EVALUATION

In this section, we present detailed performance benchmarks
for system with the Arbiter Protocol (Section IV) and Peer
Protocol (Section V). These benchmarks are conducted in
a range of fault-free and faulty operating conditions and
demonstrate the advantages and the tradeoffs of the protocols.

A. Performance Benchmarks Setup

We deploy and benchmark the Arbiter Protocol and Peer
Protocol in a testbed with real substation settings, allowing us
to evaluate each protocol’s ability to support the quarter-power
cycle (4.167ms) latency requirement. The testbed machines
are Intel NUCs running CentOS 8, with 1Gbps network con-
nections and PTP-based clock synchronization. We emulate
relays with a process that sends GOOSE (action) messages
according to the IEC61850 standard. This relay emulator runs
on each relay node, alongside the Relay Proxy and Trip Master
processes, and publishes GOOSE messages based on Sampled
Values. To emulate these Sampled Values, another machine
sends a standard IP multicast messages to all the relay nodes,
which then triggers a trip or close GOOSE action on the
respective relay emulators.

The system consists of four relay nodes and therefore can
simultaneously tolerate up to one faulty relay node (fail-stop
or Byzantine) and up to one additional relay node undergo-
ing proactive recovery. The end-to-end latency is measured,

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 4. Arbiter Protocol - Fault-Free

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 5. Peer Protocol - Fault-Free

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 6. Peer Protocol - Fail-Stop Fault

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 7. Peer Protocol - Byzantine Fault

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 8. Arbiter Protocol - Fail-Stop Fault and Proactive Recovery

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 9. Peer Protocol - Fail-Stop Fault and Proactive Recovery

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 10. Arbiter Protocol - Byzantine Fault and Proactive Recovery

Benchmarked Actions (1...1000000)

L
at

en
cy

(m
ic

ro
se

co
nd

s)

Fig. 11. Peer Protocol - Byzantine Fault and Proactive Recovery

TABLE I
PERFORMANCE OF THE ARBITER PROTOCOL AND PEER PROTOCOL UNDER DIFFERENT OPERATING CONDITIONS WITH FOUR RELAY NODES

(f = 1, k = 1)

Arbiter Protocol (microseconds) Peer Protocol (microseconds)
Operating Condition Minimum Average Maximum Minimum Average Maximum
Fault-Free (Normal) 556 794 1665 1604 2048 2789
Fail-Stop Fault or Proactive Recovery 584 844 2104 1604 2132 3135
Fail-Stop Fault and Proactive Recovery 593 858 2887 1595 2167 5025 (4∗)
Byzantine Fault 564 887 2691 1716 2268 3253
Byzantine Fault and Proactive Recovery 577 904 2879 1733 2261 5028 (2∗)

∗ The count of actions that crossed 4.167 milliseconds (out of 1 million total actions)

starting when a Sampled Value is multicast and ending when
the circuit breaker changes its state. The Sampled Values are
multicast from the same machine running the circuit breaker
node so that the clock readings are done using the same
local clock. Each benchmark includes one million end-to-end
measurements of the trip and the close actions, conducted over
a period of about 24 hours.

We evaluate the performance of the system in all five
possible operational conditions, presented below:

Normal or Fault-free: all four relay nodes are working
correctly.

Fail-Stop Fault: one of the relay nodes is unavailable due to
a fail-stop fault. Note that this situation is identical to having
one of the relay nodes undergoing proactive recovery.

Fail-Stop Fault with Proactive Recovery: one of the
relay nodes is unavailable due to a fail-stop fault while
simultaneously, an additional relay node is undergoing proac-
tive recovery. Effectively, only two correct relay nodes are
available.

Byzantine Fault: one of the relay nodes is under the control
of a sophisticated attacker. We programmed such a node to
perform two simultaneous attacks for each action. First, the
Byzantine relay node sends a corrupt share that will result
in an unsuccessful combination, costing the system precious
time and computational resources of the relay nodes. Second,
the Byzantine relay node performs a short intermittent denial
of service attack on the other relay nodes to consume their
network and computational resources further. Note that the
Section III discusses why sustained resource consumption
attacks are excluded.

Byzantine Fault with Proactive Recovery: one of the relay
nodes exhibits the Byzantine Fault condition described above,
and simultaneously, an additional relay node is undergoing
proactive recovery. Effectively, only two correct relay nodes
are available, while another compromised node attacks the
system.

Note that in reality, our relay nodes complete proactive
recovery and resume correct operation in a short period of
time. However, we conduct the benchmarks involving proac-
tive recovery without rejuvenating the relay node. In essence,
these benchmarks are in the worst case scenario, where only
two correct relay nodes are available, over all one million
actions throughout the 24 hours. We refer to this situation as
non-optionality.

Under non-optionality, meeting the latency requirement is
particularly tough. With only two nodes, a random delay on
either (e.g., from network delays, kernel scheduling, or even
effects of a Byzantine node’s actions) would be reflected in
the end-to-end latency. Compare this situation to one in which
three nodes are available. In such a case, delays would have
to occur on two of the three nodes independently and at the
same time in order to be reflected in the final latency. If only
one node is delayed, the other two nodes would still be able
to complete the action in a timely manner.

B. Performance Benchmarks

Table I reports the minimum, maximum and average of the
latency distribution under each possible operating condition for
both the protocols. For several of the notable benchmarks, we
also present detailed scatter plots for the one million actions
(Figs. 4 - 11). By comparing these plots, we can visualize the
differences between the protocols and the effects of Byzantine
faults and proactive recovery.

An immediate observation, as marked in the table, is both
the Arbiter Protocol and the Peer Protocol meet the real time
latency requirement during the Fault-Free operating condition
(Fig. 4 and Fig. 5 respectively). When comparing the average
latencies for the two protocols in the table, the Peer Protocol
takes on average about 1300 microseconds longer. This is the
price we pay for its advantages: the reduced attack surface
for the circuit breaker and seamless integration with the
substation.

In Fail-Stop Fault or Proactive Recovery operation condi-
tions, the table shows that losing a single correct relay node
shifts the distribution of latencies higher, with an average
increase of about 50 microseconds for Arbiter Protocol and
about 80 microseconds for Peer Protocol. However, both the
protocols meet the real time latency requirement.

Another observation comes from comparing the Fail-Stop
condition to the Byzantine Fault condition, as it quantifies the
effect of an active intruder: the average latency increases by 50
microseconds for the Arbiter Protocol and 140 microseconds
in case of the Peer Protocol, in addition to slight increase
in variance. The impact of two factors—the cost of losing
a single correct relay node and the effects of a Byzantine
node—can be viewed as components that sum to the total
difference in latency between the normal case and Byzantine

fault (about 100 microsecond for the Arbiter Protocol and 220
microseconds for the Peer Protocol).

An interesting observation is the effect of non-optionality
on both protocols. This effect is observed by comparing the
Fail-Stop Fault condition to the Fail-Stop Fault with Proactive
Recovery condition, and similarly, the Byzantine Fault condi-
tion to the Byzantine Fault with Proactive Recovery condition.
While non-optionality does not have a significant impact on
the average case as seen in Table I, it has a significant impact
on the worst cases, as seen by the outliers (including those that
do not cross the latency requirement) (Figs. 8, 9, 10, 11).

In the non-optionality conditions, the Arbiter Protocol meets
the real time latency requirements in all cases (Figs. 8, 10),
while the Peer Protocol meets it with a few exceptions: 4
actions out of one million in the Fail-Stop Fault with Proactive
Recovery condition (Fig. 9) and 2 actions out of one million
in the Byzantine Fault with Proactive Recovery condition
(Fig. 11) violate the requirement. That the Fail-Stop Fault
with Proactive Recovery condition has more exceptions is
simply due to random chance, as the non-optionality is the
critical factor for the worst case latencies, while the Byzantine
behavior mainly impacts the average latency.

We emphasize that non-optionality only occurs for a short
period of time in practice, as the node undergoing proactive
recovery rejoins the protocol within a few seconds. The Peer
Protocol, while not perfect, still provides better than five nines
dependability (99.999%) even in these worst case conditions.

C. Protocol Analysis and Deployment Tradeoff

We consider the four design challenges: providing real-time
operation, managing the economic cost, supporting continuous
availability over a long system lifetime, and allowing seamless
substation integration.

Real-time: The Arbiter Protocol requires a single one-
way communication from relay nodes to the breaker node to
achieve a coordinated action, providing Byzantine resilience
with the least latency. The Peer Protocol adds additional la-
tency due to exchanging messages for threshold cryptography.
Therefore, the Arbiter Protocol meets strict latency require-
ments in all operating conditions while the Peer Protocol has
few exceptions only in non-optionality condition.

Any deployable BFT SMR protocol would need at least
one additional one-way exchange of messages during Fault-
Free operation for ordering (if not a full round), compared
with the Peer Protocol. We can estimate that this additional
one-way exchange would make the average latency over 3ms,
considering the one-way exchange in the Arbiter Protocol
takes on average about 1ms. Furthermore, for any leader-based
protocol, a malicious leader could trigger a leader election at a
critical time. The system would then need to detect this failure
and perform the leader change, further increasing the latency.
Therefore, we can conclude that a BFT SMR-based protocol
is unlikely to provide the latency requirement in the face
of Byzantine faults, while using similar hardware, operating
system, and network.

Economic Cost: Both the Arbiter Protocol and Peer Proto-
col need 2f +k+1 relay nodes to tolerate f Byzantine faults
and k relays undergoing proactive recovery simultaneously.
Compared to the 3f +2k+1 relay nodes needed by any BFT
SMR protocol for the same guarantee, this is a significant
reduction that translates directly into cost savings. Given that
relays are relatively expensive, this also makes our architecture
much more viable for deployment.

Long System Lifetime: All approaches support diversity
and proactive recovery. Proactive recovery ensures that we
can reclaim relay nodes from an intruder after a successful
intrusion.

Seamless Substation Integration: The Arbiter Protocol,
while optimal in terms of latency, has a complex breaker
node: any involved circuit breaker in the substation needs to
know the architecture of the relay nodes, their identities, and
threshold for action (f + 1 out of 2f + k + 1). Additionally,
this sophisticated logic in breaker nodes increases the attack
surface across the substation, making such nodes more sus-
ceptible to intrusions and harder to harden. Any configuration
changes in the Byzantine resilient solution, such as the level
of resilience associated with f and k, or even a replacement of
a relay node associated with a new id and keys, would affect
the configuration of any involved breaker node. This makes a
seamless deployment and scaling of the Arbiter Protocol much
less feasible when compared to the Peer Protocol.

Deployment Tradeoff: The Arbiter and Peer Protocols
provide a deployment tradeoff: While the Arbiter Protocol
always meets the real-time requirement in all situations, it
presents a larger attack surface as well as added integra-
tion complexity. The Peer Protocol significantly reduces the
attack surface while providing seamless integration into the
substation, for the cost of a slight risk of not meeting the
latency requirement in the non-optionality edge cases. As
both protocols are implemented within the intrusion-tolerant
architecture, the choice of which protocol to use can be made
at deployment.

VII. RELATED WORK

Most of the literature related to intrusion-tolerant power grid
infrastructure focuses on the control center SCADA (Supervi-
sory Control and Data Acquisition) system and its connection
to field devices (Remote Terminal Units). Kirsch et al. [18]
made the first attempt to add intrusion-tolerance to SCADA.
Eclipse SCADA [19] is an open-source SCADA that achieves
intrusion tolerance using BFT-SMART [20] to replicate the
SCADA Master. Another open-source SCADA system is Spire
[6], which uses Prime [21] to replicate the SCADA Master.
Spire also provides intrusion-tolerance at the network level by
using an intrusion-tolerant overlay network [22]. The latency
requirement at the control center level is on the order of 100-
200 milliseconds. These works are complementary to ours as
they protect the higher levels of the grid.

There is a wide range of BFT SMR protocols built to
support different requirements. For example, protocols like

MinBFT [23] and Cheap BFT [24] reduce the number of repli-
cas needed by making stronger assumptions. Protocols like
RAM [25], EBAWA [26], Zyzzyva [27], and Aliph [28] focus
on improving performance in the fault-free case. Protocols like
Prime [21], Aardvark [29], and RBFT [30] are robust, i.e.,
achieve steady performance even under attacks. Protocols like
HoneyBadger [31], SBFT [32], and Hotstuff [33] are built to
scale. Nevertheless, they all report latency numbers that are at
least between one and two orders of magnitude higher than
our quarter of a cycle requirement in the worst case (including
leader election).

More recent fault-tolerant SMR protocols such as Hover-
cRaft [34], DARE [35], and Hermes [36] can achieve very low
latencies (in tens of microseconds) in the fault-free case but
can incur latencies in the tens of milliseconds during leader
election. In addition, to achieve the excellent latency in the
fault-free case, they require a special NIC (Network Interface
Card), a lossless network, and Remote Direct Memory Access
(RDMA) support [37]. These protocols are designed for ap-
plications deployed in Datacenter or HPC (High-Performance
Computing Clusters), relying on high-speed networks (e.g.,
100Gig/sec), making them unsuitable for the more conserva-
tive substation environment with its need for rugged hardware
and traditional networks (e.g., 1 Gig/sec).

The works [4], [10] introduced the concept of tolerating f
intrusions using 2f + k + 1 replicas with proactive recovery,
which we use in our work. However, there are fundamental dif-
ferences between these works and ours: First, the Arbiter and
Peer protocols are very different from the protocol in [4] and
[10]. Specifically, [4] and [10] use symmetric cryptography
with a trusted component in each replica, and use a leader. In
contrast, our leaderless protocols use public key cryptography
(the Arbiter Protocol) and threshold cryptography (the Peer
Protocol) without a trusted component in each of the replicas.
Second, the use of public key cryptography and threshold cryp-
tography in our protocols, while advantageous from security
perspective, presents a challenge to meet the real-time latency
requirement that was never addressed in either [4] or [10]:
they focus on average latency and throughput while our work
focuses on worst-case latency, which, as shown in Table I, is
very different.

Many cyber-attack incidents and red team experiments [7]
have shown that approaches such as protecting the system
with domain-specific firewalls [10], [38], Intrusion Detection
Systems (IDS) [39], [40], and other industry best practices
[41] are not sufficient. Therefore, we consider such techniques
supplementary to intrusion-tolerant solutions, including our
system.

VIII. CONCLUSION

We presented the first real-time Byzantine resilient architec-
ture and protocols for the substation that simultaneously ad-
dress system compromises and network attacks while meeting
the strict timeliness requirement (4.167ms). Our architecture
can tolerate f Byzantine relays and k relays undergoing proac-
tive recovery simultaneously with just 2f + k+1 total relays.

This is in contrast to a traditional BFT SMR-based solution
that would need 3f + 2k + 1 total relays. Our architecture
seamlessly integrates into existing substations without the need
to modify existing components.

Spire for the Substation is part of the open-source Spire,
the network-attack resilient intrusion-tolerant SCADA for the
power grid [6]. The system underwent a red team experiment
that included protective relays from Siemens, GE, and Hitachi
Energy in 2022.

ACKNOWLEDGEMENT

This work was supported in part by the Department of
Energy (DOE) Offices of Cybersecurity, Energy Security, and
Emergency Response (CESER); Electricity (OE); and Nuclear
Energy (NE) under the Grid Modernization Laboratory Con-
sortium (GMLC) Topic 5.1.4 — Cyber-Physical Security. Its
contents are solely the responsibility of the authors and do not
represent the official view of DOE.

Yair Amir is a co-founder and member of and holds
equity in Spread Concepts LLC. The results discussed in this
paper could affect the value of Spread Concepts LLC. This
arrangement has been reviewed and approved by the Johns
Hopkins University in accordance with its conflict of interest
policies.

REFERENCES

[1] D. Weinberg, “The u.s. relies on transformers –
and that’s a little scary,” Mar 2014. [Online]. Avail-
able: https://www.marketplace.org/2014/03/13/us-relies-transformers-
and-thats-little-scary/

[2] “Electricity.” [Online]. Available:
https://atlas.eia.gov/app/895faaf79d744f2ab3b72f8bd5778e68

[3] IEEE, “Ieee standard communication delivery time performance require-
ments for electric power substation automation,” IEEE Std 1646-2004,
pp. 1–24, 2005.

[4] P. Sousa, A. N. Bessani, M. Correia, N. F. Neves, and P. Verissimo,
“Highly available intrusion-tolerant services with proactive-reactive re-
covery,” IEEE Transactions on Parallel and Distributed Systems, vol. 21,
no. 4, pp. 452–465, 2009.

[5] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems (TOCS),
vol. 20, no. 4, pp. 398–461, 2002.

[6] A. Babay, T. Tantillo, T. Aron, M. Platania, and Y. Amir, “Network-
attack-resilient intrusion-tolerant scada for the power grid,” in 2018 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 2018, pp. 255–266.

[7] A. Babay, J. Schultz, T. Tantillo, S. Beckley, E. Jordan, K. Ruddell,
K. Jordan, and Y. Amir, “Deploying intrusion-tolerant scada for the
power grid,” in 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2019, pp. 328–
335.

[8] “Ieee 1588-2019 - ieee standard for a precision clock
synchronization protocol for networked measurement and control
systems.” [Online]. Available: https://standards.ieee.org/content/ieee-
standards/en/standard/1588-2019.html

[9] “Iec.” [Online]. Available: https://webstore.iec.ch/publication/6007
[10] A. N. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo,

“The crutial way of critical infrastructure protection,” IEEE Security &
Privacy, vol. 6, no. 6, pp. 44–51, 2008.

[11] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM Transac-
tions on Computer Systems (TOCS), vol. 28, no. 2, pp. 1–54, 2010.

[12] F. B. Cohen, “Operating system protection through program evolution.”
Comput. Secur., vol. 12, no. 6, pp. 565–584, 1993.

[13] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Proceedings. The Sixth Workshop on Hot Topics in Oper-
ating Systems (Cat. No. 97TB100133). IEEE, 1997, pp. 67–72.

[14] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 601–615.

[15] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “Os
diversity for intrusion tolerance: Myth or reality?” in 2011 IEEE/IFIP
41st International Conference on Dependable Systems & Networks
(DSN). IEEE, 2011, pp. 383–394.

[16] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on software engineering, no. 12, pp. 1491–1501, 1985.

[17] J. C. Knight and N. G. Leveson, “An experimental evaluation of
the assumption of independence in multiversion programming,” IEEE
Transactions on software engineering, no. 1, pp. 96–109, 1986.

[18] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare, “Survivable scada
via intrusion-tolerant replication,” IEEE Transactions on Smart Grid,
vol. 1, no. 5, pp. 60–70, 2014.

[19] A. Nogueira, A. Bessani, and N. Neves, “Intrusion-tolerant eclipse
scada,” in Symposium on Innovative Smart Grid Cybersecurity Solutions,
Vienna, Austria, 2017.

[20] A. Bessani, J. Sousa, and E. E. Alchieri, “State machine replication for
the masses with bft-smart,” in 2014 44th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. IEEE, 2014,
pp. 355–362.

[21] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE transactions on dependable and secure computing,
vol. 8, no. 4, pp. 564–577, 2010.

[22] D. Obenshain, T. Tantillo, A. Babay, J. Schultz, A. Newell, M. E. Hoque,
Y. Amir, and C. Nita-Rotaru, “Practical intrusion-tolerant networks,” in
2016 IEEE 36th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2016, pp. 45–56.

[23] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2011.

[24] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “Cheapbft: Resource-efficient
byzantine fault tolerance,” in Proceedings of the 7th ACM european
conference on Computer Systems, 2012, pp. 295–308.

[25] Y. Mao, F. P. Junqueira, and K. Marzullo, “Towards low latency state
machine replication for uncivil wide-area networks,” in Workshop on
Hot Topics in System Dependability. Citeseer, 2009.

[26] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Ebawa:
Efficient byzantine agreement for wide-area networks,” in 2010 IEEE
12th International Symposium on High Assurance Systems Engineering.
IEEE, 2010, pp. 10–19.

[27] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative byzantine fault tolerance,” in Proceedings of twenty-first
ACM SIGOPS symposium on Operating systems principles, 2007, pp.
45–58.

[28] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next
700 bft protocols,” in Proceedings of the 5th European conference on
Computer systems, 2010, pp. 363–376.

[29] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making byzantine fault tolerant systems tolerate byzantine faults.” in
NSDI, vol. 9, 2009, pp. 153–168.

[30] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzan-
tine fault tolerance,” in 2013 IEEE 33rd International Conference on
Distributed Computing Systems. IEEE, 2013, pp. 297–306.

[31] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 31–42.

[32] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D.-A. Seredinschi, O. Tamir, and A. Tomescu, “Sbft: a scalable and
decentralized trust infrastructure,” in 2019 49th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN).
IEEE, 2019, pp. 568–580.

[33] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hot-
stuff: Bft consensus with linearity and responsiveness,” in Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing,
2019, pp. 347–356.

[34] M. Kogias and E. Bugnion, “Hovercraft: achieving scalability and fault-
tolerance for microsecond-scale datacenter services,” in Proceedings of
the Fifteenth European Conference on Computer Systems, 2020, pp. 1–
17.

[35] M. Poke and T. Hoefler, “Dare: High-performance state machine repli-
cation on rdma networks,” in Proceedings of the 24th International
Symposium on High-Performance Parallel and Distributed Computing,
2015, pp. 107–118.

[36] A. Katsarakis, V. Gavrielatos, M. S. Katebzadeh, A. Joshi, A. Drago-
jevic, B. Grot, and V. Nagarajan, “Hermes: A fast, fault-tolerant and
linearizable replication protocol,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 201–217.

[37] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in Proceedings of the 2016
ACM SIGCOMM Conference, 2016, pp. 202–215.

[38] M. Garcia, N. Neves, and A. Bessani, “Sieveq: A layered bft protection
system for critical services,” IEEE Transactions on Dependable and
Secure Computing, vol. 15, no. 3, pp. 511–525, 2016.

[39] A. Bohara, U. Thakore, and W. H. Sanders, “Intrusion detection in
enterprise systems by combining and clustering diverse monitor data,” in
Proceedings of the Symposium and Bootcamp on the Science of Security,
2016, pp. 7–16.

[40] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated plc code analytics,” IEEE Security & Privacy,
vol. 12, no. 6, pp. 40–47, 2014.

[41] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in
scada networks,” computers & security, vol. 25, no. 7, pp. 498–506,
2006.

