
60 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014

Survivable SCADA Via
Intrusion-Tolerant Replication

Jonathan Kirsch, Stuart Goose, Yair Amir, Member, IEEE, Dong Wei, Member, IEEE, and
Paul Skare, Member, IEEE

Abstract—Providers of critical infrastructure services strive to
maintain the high availability of their SCADA systems. This paper
reports on our experience designing, architecting, and evaluating
the first survivable SCADA system—one that is able to ensure cor-
rect behavior with minimal performance degradation even during
cyber attacks that compromise part of the system. We describe the
challenges we faced when integrating modern intrusion-tolerant
protocols with a conventional SCADA architecture and present the
techniques we developed to overcome these challenges. The results
illustrate that our survivable SCADA system not only functions
correctly in the face of a cyber attack, but that it also processes
in excess of 20 000 messages per second with a latency of less than
30 ms, making it suitable for even large-scale deployments man-
aging thousands of remote terminal units.

Index Terms—Cyber attack, fault tolerance, reliability, re-
silience, SCADA systems, survivability.

I. INTRODUCTION

S UPERVISORY Control and Data Acquisition (SCADA)
systems form the backbone of many vital services, such as

electricity transmission and distribution, water treatment, and
traffic control. As key components of our critical infrastruc-
ture, SCADA systems must continue operating correctly and
at their expected level of performance at all times. In practice,
ensuring such continuous availability requires the capability to
tolerate and overcome various types of faults that arise in large
distributed systems, including “benign” faults (e.g., hardware
crashes, power failures, and network partitions) and more se-
vere faults, including potentially malicious cyber attacks.
Unfortunately, contemporary SCADA systems exhibit an

availability gap that leaves them vulnerable to downtime.
While today’s systems are able to withstand effectively many
types of benign faults using hardware and software redun-
dancy techniques (e.g., primary/hot standby [1]), their ability

Manuscript received December 05, 2012; revised March 18, 2013, May 10,
2013; accepted June 10, 2013. Date of publication August 07, 2013; date of
current version December 24, 2013. The work of Y. Amir was supported in part
by DARPA Grant N660001-1-2-4014. The content of this paper is solely the
responsibility of the authors and does not represent the official view of DARPA
or the Department of Defense. Paper no. TSG-00841-2012.
J. Kirsch and S. Goose are with Siemens Technology-To-Business

Center, Berkeley, CA 94704 USA (e-mail: jonathan.kirsch@siemens.com;
stuart.goose@siemens.com).
Y. Amir is with Johns Hopkins University, Baltimore, MD 21218 USA

(email: yairamir@cs.jhu.edu).
D. Wei is with Siemens Corporation, Corporate Technology, Princeton, NJ

08540 USA (email: dong.w@siemens.com).
P. Skare is with Pacific Northwest National Laboratory, Richland, WA 99352

USA (email: paul.skare@pnnl.gov).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSG.2013.2269541

to survive in the face of cyber attacks remains limited. Many
SCADA systems were designed to operate on isolated, private
networks, but this assumption of an “air gap” no longer holds
in many modern deployments: interoperability goals and the
need to provide access to more grid stakeholders mean that
the SCADA system is often connected to enterprise IT infra-
structure, inheriting the associated vulnerabilities. SCADA has
also become an increasing target for cyber attacks [2], resulting
in an arms race between attackers and SCADA vendors and
operators. Furthermore, although today’s systems employ a de-
fense-in-depth approach to security that focuses on preventing
attacks, it is impossible to prevent all attacks; insider attacks,
in particular, pose a growing threat to critical infrastructure [3].
This paper reports on our experiences to date designing and

implementing the first survivable SCADA system.1 By surviv-
able, we mean that the SCADA system continues to operate
correctly and with minimal performance degradation even if
malicious attacks compromise part of the system. These twin
properties are essential for maintaining high availability in the
face of cyber attacks.
To achieve survivability, our system employs intrusion-tol-

erant replication [5], [6]. It runs, in parallel, several copies of
the SCADA Master application; the copies collectively behave
as a single logical SCADA Master that provides correct, timely
service as long as less than a threshold fraction of the copies
is compromised. Intuitively, intrusion tolerance allows an ap-
plication to act as its own firewall, providing protection even
if the system’s security perimeter is breached. A distinguishing
feature of intrusion-tolerant systems is that they do not require
prior knowledge of attack signatures and behaviors to provide
their guarantees.
Intrusion-tolerant replication protocols have been well-

studied in the distributed systems community over the last
decade (e.g., [6]–[11]), and in this paper we build on this
previous research. Specifically, we use the Prime replica-
tion protocol [5], [6] as a fundamental building block in our
survivable SCADA system. However, we were confronted
with two significant challenges when attempting to integrate
Prime with a SCADA system. First, existing intrusion-tolerant
replication systems, including Prime, implicitly assume that
the application being replicated is client driven (i.e., the server
application takes action only in response to unsolicited requests
submitted by clients). By contrast, in a SCADA system, the
SCADA Master application also processes solicited requests,
which are pulled from field devices by a server-driven polling

1A preliminary version of this paper appeared in the Proceedings of the An-
nual Cyber Security and Information Intelligence ResearchWorkshop, 2011 [4].

1949-3053 © 2013 IEEE

KIRSCH et al.: SURVIVABLE SCADA VIA INTRUSION-TOLERANT REPLICATION 61

operation. This need to support polling creates an architectural
mismatch between Prime and SCADA. The second challenge
we confronted relates to performance: the replication engine
must be able to provide low enough latency to preserve the
real-time control and monitoring of the SCADA system, while
being able to support a high enough throughput so that the
system can scale to large deployments.
Our efforts to date have resulted in a prototype implementa-

tion of a survivable SCADA system for electricity transmission
and distribution, where our Prime-based intrusion-tolerant repli-
cation engine is integrated with a real Siemens SCADA product.
We developed the prototype system on this product because the
results of a compromise of a critical infrastructure system such
as the power grid would be particularly disruptive and would
have significant adverse effects on today’s society, and SCADA
plays a vital role in the power grid. However, Prime and the
protocols described in this paper are generic and could also be
applied to other mission-critical systems (e.g., distributed con-
trol systems).
The novel contributions of this paper are as follows. i) We

present the design of the first SCADA system in which the
SCADA Master application is able to survive a partial com-
promise. ii) To address the architectural mismatch between
SCADA systems and traditional intrusion-tolerant replication
systems, we present the first scalable and intrusion-tolerant
logical timeout protocol (to support the scheduling of polling
events) and a logical channel protocol (to enable reliable and
intrusion-tolerant SCADA communication in a replicated en-
vironment). iii) We present performance results demonstrating
the suitability of our intrusion-tolerant replication engine for
use even in large-scale SCADA deployments.
The remainder of this paper is organized as follows. Section II

presents background on SCADA and intrusion-tolerant repli-
cation needed to understand the rest of the paper. Section III
presents the design of our survivable SCADA architecture, as
well as our attack model and assumptions. Section IV discusses
the integration challenges we faced and presents the new proto-
cols we invented to overcome them. Section V presents our per-
formance results, and Section VI places our solution in the con-
text of related work. Finally, Section VII concludes the paper.

II. BACKGROUND

A. Conventional SCADA Systems

SCADA systems are large and complex. In this section we
describe the components of a SCADA system most relevant to
the work in this paper. These components include:
• One or more Remote Terminal Units (RTUs), which
communicate with, and aggregate data from, local sensors
in the field (e.g., within an electricity distribution sub-
station). Some larger systems can have several thousand
RTUs.

• A SCADA Master, which periodically polls the RTUs by
sending messages over a wide-area network. The SCADA
Master maintains a real-time database containing the cur-
rent state of each RTU. It can also send supervisory control
commands to the RTUs. For fault tolerance, many SCADA
systems use a Primary/Hot Standby (HSB) configuration,

in which two similar but slightly different copies of the
SCADA Master application run in parallel. Although both
the Primary and the HSB receive incoming events, the Pri-
mary is responsible for controlling the system, and the
output of the HSB is suppressed. The HSB monitors the
Primary and performs a “take-over” operation to assume
control if it believes the Primary has succumbed to a be-
nign fault.

• One or moreHumanMachine Interface (HMI) worksta-
tions, which periodically query the SCADAMaster so that
the state of the system (e.g., the power grid) can be graph-
ically displayed for a human operator.

B. Intrusion-Tolerant State Machine Replication

An intrusion-tolerant protocol [12] assumes that some of
the participants may be Byzantine [13] and act in an arbitrary
manner (e.g., because they are compromised and under the
control of a malicious attacker). The protocol is designed to
operate correctly regardless of how the Byzantine participants
behave,2 as long as no more than a threshold fraction of the
participants (typically out of) is Byzantine [13]. Intru-
sion-tolerant protocols often use proactive recovery techniques
[7], where participants are periodically rejuvenated to a clean
state. This allows the system to survive more than Byzantine
failures over the life of the system, as long as no more than
are Byzantine at the same time.
In this paper we make use of an intrusion-tolerant replica-

tion system, where replication is achieved via the state machine
approach [14], [15]. In this approach, the several application
replicas begin in the same initial state, and they cooperate to
agree on the order in which to execute any event (i.e., message
or timeout) that might change the state of the application. The
state transition caused by executing an event is assumed to be
deterministic. Therefore, by executing events according to the
agreed upon order, the replicas proceed through the same se-
quence of states.
It is important to note that although the replicas in a state ma-

chine replication system must be functionally equivalent, they
are permitted to have different implementations, provided they
all adhere to the same abstract protocol specification [16]. In-
deed, the effectiveness of the state machine approach to replica-
tion depends upon using replicas that are unlikely to suffer cor-
related vulnerabilities, which can be achieved by using replicas
with diverse implementations. Diversity can be introduced at
various levels, including at the operating system (OS) level [17]
and at the application level.
At the operating system level, one may introduce diversity

by running each replica on a different OS (or on as many as are
available). Garcia, et al. [17] studied over 15 years of known OS
vulnerabilities and found that there exist sets of operating sys-
tems that exhibit sufficient diversity to avoid suffering common
vulnerabilities. While this approach may be a viable option in
some deployments, in others it may result in excessive manage-
ment complexity or may simply not be possible (i.e., if an appli-
cation is tied to a specific OS). Within a single OS deployment,
address space layout randomization (ASLR) [18] can be used

2Usually subject to certain cryptographic assumptions.

62 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014

to generate diversity. ASLR is used by many modern operating
systems (e.g., OpenBSD, Linux, Solaris, Microsoft Windows,
Mac OS X). It places the sections of a process’ address space
at random offsets. This mitigates certain types of attacks that
rely on being able to predict addresses, because the addresses
are likely to differ at each replica.
Traditionally, achieving diversity at the application level has

required expensive techniques such as N-version programming
[19]. However, newer approaches can automatically create soft-
ware diversity during compilation [20] or (if source code is un-
available) through binary re-writing [21]. Such approaches re-
quire no additional development effort and have been demon-
strated to haveminimal performance impact. Encouragingly, the
compiler-based approach of [20] has been used to diversify an
entire Linux operating system. Our system also introduces di-
versity by deploying each replica with its own private key. An
attacker that compromises a replica can cause it to send mes-
sages that appear legitimate but have invalid content only if
the attacker can compromise the replica’s private key. For this
reason, in a real deployment it may also be prudent to protect
the cryptographic keys using tamper-proof hardware.
As noted in Section I, we selected the Prime intrusion-tol-

erant replication protocol [5], [6] for our survivable SCADA
system. Prime requires replicas to tolerate Byzantine
faults and was the first protocol to guarantee both correct op-
eration and good performance in executions in which up to
of the replicas actually exhibit Byzantine behavior. Prime uses
an elected leader to coordinate the ordering of events. We se-
lected Prime because its service properties make it a particularly
good fit for real-time applications, such as a SCADA Master.
Specifically, Prime bounds the amount of delay that can be in-
troduced by Byzantine replicas: assuming enough correct (i.e.,
non-Byzantine) replicas can communicate with one another in
a timely manner, Prime ensures that any event submitted to the
system will be ordered by the correct replicas within a bounded
delay , where is a function of the network round-trip times
(and their variance) among the correct replicas. To achieve this
property, Prime runs a distributed monitoring protocol, whereby
the replicas constantly monitor the performance of the current
leader and quickly elect a new leader if they detect that the cur-
rent one is performing too slowly.

III. SURVIVABLE SCADA: SYSTEM ARCHITECTURE

A. Motivation and High-Level Design

We believe the highest value asset in a SCADA system is the
SCADA Master, because its compromise can have serious con-
sequences for the control and monitoring of the entire system.
Therefore, our focus in this paper is on improving the robust-
ness of the SCADA Master by making it survivable.
In our survivable SCADA architecture, instead of running

a Primary and a Hot Standby, we run peer replicas of
the (primary) SCADA Master application, where is the max-
imum number of replicas that may be Byzantine. Fig. 1 depicts a
minimal configuration of the system, which runs four SCADA
Master replicas (i.e.,). Each replica links with a local

Fig. 1. A survivable SCADA system capable of tolerating the compromise of
one SCADA Master replica.

copy of the Prime Server Library, the intrusion-tolerant repli-
cation engine that delivers to each replica the same events in
the same order.
The collection of SCADA Master replicas forms a log-

ical SCADA Master that behaves correctly even if replicas
are Byzantine; that is, upon processing an event, the logical
SCADA Master makes the same state transition as an un-
replicated, uncompromised SCADA Master application would
make given the same event. Moreover, Prime’s service proper-
ties bound the degree to which the Byzantine replicas can slow
down the performance of the logical SCADAMaster compared
to a correct, unreplicated SCADA Master.
In order to interact with the replicated SCADA Master, the

HMI and the RTUs each link with the Prime Client Library.
This library provides functions for i) sending messages to mul-
tiple replicas and ii) voting on the messages that arrive from the
replicas to determine the correct content.3 In some deployments
one may not have access to the RTU source code in order to
link it with the Prime Client Library. We addressed this by im-
plementing an RTU proxy, which communicates with the RTU
using its native protocol and uses the Prime Client Library to
interact with the SCADA Master replicas. This “bump-in-the-
wire” solution may also be suitable for legacy RTUs with lim-
ited computational power or memory.
Although our solution significantly improves the robustness

of the SCADA Master and its communication with RTUs, we
emphasize that achieving system-wide survivability requires
taking a systematic approach to security at all levels and in
all parts of the system. Intrusion-tolerant replication is com-
plementary to more traditional host, network, and perimeter
security technologies and should be deployed alongside them
rather than being seen as a replacement for them.
In previous work we discussed how virtualization can be used

to reduce the hardware cost of replication to that of a conven-
tional SCADA system: four SCADA Master replicas can be
run on only two physical machines (the number required for a
Primary/Hot Standby deployment), while still maintaining the
ability to survive the crash of either machine. We refer the in-
terested reader to [4] for details.

3Since at most replicas may be Byzantine, a client can act on a message
when it receives copies of the message from different replicas, indicating
that at least one correct replica sent a message with the given content.

KIRSCH et al.: SURVIVABLE SCADA VIA INTRUSION-TOLERANT REPLICATION 63

B. Attack Model and Assumptions

As described above, the logical SCADA Master is imple-
mented by a set of replicas, of which may be Byzantine.
Byzantine replicas may send invalid or conflicting messages to
other replicas or clients, drop or delay messages, or otherwise
attempt to disrupt the system. Digital signatures provide mes-
sage integrity, authentication, and non-repudiation for all Prime
messages.
We assume that Byzantine replicas cannot disrupt the com-

munication between correct replicas; this can be achieved
through network isolation techniques [11] or by using
tamper-proof network cards capable of rate-limiting out-
going traffic (e.g., [22]). Such solutions insulate the correct
replicas from denial-of-service attacks launched fromwithin the
control center. Mitigating external denial-of-service attacks is
a difficult problem for which production systems typically rely
on commercial solutions. Note that denial-of-service attacks
may, for their duration, affect the performance and monitoring
capability of the system but do not affect the consistency of
the replicas and, therefore, the correctness of the supervisory
control commands issued by the logical SCADA Master.
As in a conventional SCADA system, the ability of the log-

ical SCADA Master to monitor effectively the physical assets
of the system relies on the RTUs to report legitimate values. In
the current version of our system, a compromised RTU may re-
port incorrect values that will be replicated consistently by the
SCADA Master replicas. This impacts the SCADA Master’s
ability to monitor the substation containing the compromised
RTU but is unlikely to affect the monitoring of other substa-
tions. Note that although our focus is on making the SCADA
Master survivable, intrusion-tolerant replication could also be
used at the substation level to form survivable RTUs. In a real
deployment, a utility would need to evaluate the costs and ben-
efits of such an approach to determine the feasibility of using
replication at this level.

IV. SURVIVABLE SCADA: CHALLENGES AND SOLUTIONS

Conventional SCADA systems are server driven: the
SCADA Master (the server) periodically sends poll requests to
the RTUs (the clients), and the RTUs respond with their current
status.4 The periodic sending of poll requests is triggered by
the expiration of timeout events at the SCADA Master. In con-
trast, existing intrusion-tolerant replication systems implicitly
assume that the state machine of the server application being
replicated is client driven: the application processes a client
request as input, sends a reply to the requesting client as output,
and then processes the next client request.
In this section we describe how this seemingly small differ-

ence has large implications on the functionality required from
the replication engine in our survivable SCADA system. Indeed,
addressing this architectural mismatch required the invention of
several new protocols.

A. Scalable Intrusion-Tolerant Synchronization

1) Motivation: When polling an RTU, a SCADA Master
takes action based on the passage of time: the expiration of

4Some SCADA communication follows the traditional client-server pattern,
such as the request/reply protocol between an HMI and the SCADA Master.

a local timeout triggers the SCADA Master to send a poll
request to the RTU. However, absent perfectly synchronized
clocks, the passage of time will be observed in a non-deter-
ministic way at the different SCADA Master replicas in our
survivable SCADA system. As a result, if the replicas were to
make state transitions based on their local clock values, they
could become inconsistent with one another. Therefore, in
our survivable SCADA system, the SCADA Master replicas
use a logical timeout protocol to agree on the logical time at
which a time-based action (such as generating a poll request)
should be taken. This protocol must be intrusion-tolerant so that
Byzantine replicas cannot disrupt the agreement or trigger the
expiration of spurious timeouts. Moreover, since large SCADA
systems may contain thousands of RTUs, each of which may
be polled individually, the protocol must scale with the number
of different logical timeouts being agreed upon.
Existing techniques for time-based synchronization in a

Byzantine environment [5] are intrusion tolerant but not
scalable, requiring a number of messages proportional to the
number of logical timeouts set by the application. In [5], each
replica sends a “vote” message each time its local clock indi-
cates a logical timeout should expire (i.e., once per timeout),
and the replicas act on a given logical timeout when they agree
that replicas have sent corresponding votes.
To provide a solution that scales to large SCADA deploy-

ments, we developed a new protocol that only requires a con-
stant number of messages to be exchanged, independent of the
number of logical timeouts requested by the application. Our
protocol makes no assumptions about the relative speeds of the
replicas’ local clocks and prevents Byzantine replicas from ar-
bitrarily advancing or delaying the logical time at which a log-
ical timeout expires. As explained below, our protocol achieves
scalability at the cost of a (potentially) slightly lower timer res-
olution compared to [5].
2) Protocol Details: The Prime Server Library provides an

API call enabling an application to set a logical timeout, ,
where is the number of seconds that should pass before ex-
pires. For example, to poll an RTU a SCADA Master replica
might set a logical timeout, , with a duration, , of 1 second.
Approximately 1 second later, the replica will receive from the
Prime Server Library a notification that has expired. Upon re-
ceiving this notification (which is delivered to all replicas at the
same logical time), each replica generates an identical poll re-
quest and sends it to the RTU.
Observe that since the replicas set each logical timeout at

the same logical time, they can consistently map each logical
timeout to a unique sequence number, where the th timeout set
is mapped to sequence number . Although logical timeouts are
set in sequence number order, they may expire out of order, be-
cause they can be set with arbitrary (non-negative) durations.
Each replica periodically broadcasts to the other replicas a

SYNC message of the form SYNC, localClock, lastTimeoutSet,
, where localClock is ’s current local clock value and last-

TimeoutSet is the sequence number of the last logical timeout
that has set. The replicas use Prime to order the SYNC mes-
sages. Thus, each replica executes an (identical) ordered stream,
, of SYNC messages. Prime guarantees that if replica sends

SYNC message before sending SYNC message , then

64 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014

appears before in ; SYNC messages from different replicas
may be interleaved in . Note that SYNC messages are sent peri-
odically and are the only types of messages sent during the pro-
tocol. Thus, the protocol has a constant message complexity.
As explained below, the replicas agree upon the logical time

at which each logical timeout should expire by using a deter-
ministic, online algorithm that examines the ordered stream of
SYNC messages, , one message at a time, as each
new message is ordered by Prime. The examination of the
SYNC message most recently ordered results in the expiration of
a (potentially empty) set of logical timeouts. The algorithm pro-
ceeds in three steps.
Step 1: Identifying candidates for expiration. Let
SYNC be the current SYNC message being examined by
some replica . From this message, learns that was origi-
nated by replica at time (i.e., ’s local clock value) and that
the last timeout set by had sequence number . Since logical
timeouts are set in sequence number order, also implies that
has set all timeouts 1 through .
At replica , we say that a logical timeout with sequence

number becomes a candidate for expiration with respect to
the first time that examines a SYNC message implying that
has set a timeout with sequence number . In general, the ex-
amination of SYNC message by may cause several logical
timeouts to become candidates for expiration with respect to ;
this stems from the fact that generates SYNC messages periodi-
cally rather than each time it sets a logical timeout. As a concrete
example, if is currently examining a message from with

, while the last message that examined
from had , then the logical timeouts with
sequence numbers 4 and 5 would become candidates for expira-
tion when examines . Each replica maintains candidate
lists (being the number of replicas), numbered 1 through ,
where list contains an entry for each logical timeout that has
become a candidate for expiration with respect to .
Step 2: Computing when each candidate should expire.

Each candidate timeout is stored along with its local expiration
time with respect to r. This value is computed as , where
is the local clock value contained in the SYNC message that

caused to become a candidate and is the duration of as
requested by the application. Intuitively, represents the “best
guess” of replica for when set timeout , so believes
should expire when ’s local clock reads (i.e., seconds
later). Note that since only sends SYNC messages periodically,
may be up to one period later than the actual time at which
set . This error is the price paid by our protocol to achieve

constant message complexity.
Step 3: Triggering the expiration of candidate timeouts.

At replica , we say that a candidate timeout is triggered with
respect to replica r when examines a SYNC message from
indicating that ’s local clock has reached the local expiration
time associated with in candidate list . Observe that a log-
ical timeout that became a candidate upon examinination of a
SYNC message from will typically not be triggered until a later
SYNC message from is examined; this is due to the fact that
examining new SYNC messages from is the only way in which
updates its estimate of ’s current local clock value. When a

logical timeout has been triggered with respect to dif-

ferent replicas, the timeout is said to expire and is delivered to
the application.
3) Discussion: We make several observations about our log-

ical timeout protocol. First, because the examination of ordered
SYNC messages is deterministic, each logical timeout ex-
pires at the same logical time at all correct replicas. Second,
Byzantine replicas cannot cause to expire before seconds
have elapsed on the local clock of at least one correct replica;
thus, Byzantine replicas cannot cause to expire “too soon.”
This property holds because does not expire until it is triggered
with respect to replicas, at least one of which is correct.
Third, Byzantine replicas cannot delay the expiration of : be-
comes a candidate for expiration and becomes triggered with
respect to a correct replica based solely on the SYNC messages
ordered from , which cannot be influenced or delayed by the
Byzantine replicas.
The “clock resolution” of our logical timeout protocol is de-

termined by two configurable parameters: i) the rate at which
SYNC messages are generated (since this dictates how quickly
a replica’s local clock value can be observed to advance), and
ii) the rate at which SYNC messages can be ordered by Prime.
The latter is determined by the network delay between replicas
(which, on a LAN, should be small) and the rates at which cer-
tain periodic messages are sent in Prime. The resolution of the
timeout protocol is therefore limited by the slower of rates i)
and ii). As explained in Section V, our current implementation
achieves a resolution of approximately 17 ms, with the limiting
factor being the rate at which Prime orders SYNC messages.

B. Intrusion-Tolerant Reliable Channels

Many SCADA systems make use of a reliable transport
protocol, such as TCP, to pass messages between the SCADA
Master and the RTUs. By contrast, existing intrusion-tolerant
replication systems tend to use UDP and implement their own
reliability.5 In such systems, the replication engine passes
application messages between clients and the server replicas.
Unfortunately, since existing intrusion-tolerant replication
systems implicitly assume that the application is client driven,
they provide only limited support for reliable communication
between a client and the server replicas. Most use a transac-
tion-based protocol, where the client retransmits its request if
it does not receive a response within a timeout period. This
approach makes additional implicit assumptions, namely that
the server application will always generate a response that can
be used by the client as an acknowledgement, and that this
acknowledgement message will be sent to the requesting client.
In our survivable SCADA system, messages may be origi-

nated by both the SCADAMaster replicas and by clients. More-
over, the execution of a client message (e.g., a poll response) by
the replicas may cause them to send a reply to an entirely dif-
ferent entity (e.g., the HMI workstation) or not to send a reply
at all. Therefore, the system needs a more flexible approach to
achieving reliability than the simple client-driven scheme just
described.

5As noted in [7], TCP is poorly suited to systems with potentially Byzan-
tine receivers because, by failing to send acknowledgements, the Byzantine re-
ceivers can require correct replicas to buffer an unbounded number of messages.

KIRSCH et al.: SURVIVABLE SCADA VIA INTRUSION-TOLERANT REPLICATION 65

Fig. 2. Intrusion-tolerant reliable channel abstraction.

To address this issue, we developed two protocols that to-
gether implement the abstraction of an intrusion-tolerant reli-
able channel between clients and the SCADA Master replicas.
Each protocol handles a different communication direction (see
Fig. 2). The two endpoints of a channel are asymmetric: one
is a client (RTU or HMI) and the other is the set of SCADA
Master replicas. Using two unidirectional protocols allows us
to take advantage of this asymmetry to optimize performance
in each direction. The SCADA Master replicas may communi-
cate with many clients, using a separate channel for each client.
Each client is an endpoint of exactly one channel.
Applications interact with a channel using an API similar to

that of a TCP socket. The API provides calls for establishing a
connection, sending and receiving a message into and from the
channel, and closing a connection. Despite the similarity of our
API to the socket API, the fact that one end of our channels
is replicated has several practical implications. First, when a
client application sends a message into a channel, the channel
implementation actually sends to multiple replicas
to ensure its delivery (since some replicas may be Byzantine).
Second, although it is a useful abstraction to imagine that a log-
ical SCADA Master application sends a single message to
a client, the sending of by the logical SCADA Master actu-
ally requires several physical messages to be sent, sincemultiple
replicas) introduce into the channel at the same log-
ical time. Byzantine replicas may also introduce arbitrary mes-
sages into the channel at any time.
We refer to messages introduced into a channel by correct

replicas or correct clients as legitimate; all other messages are
spurious. The correctness requirements of our channel abstrac-
tion, which we now state, define the delivery properties of legit-
imate and spurious messages.
Let be a communication channel established between the

SCADA Master replicas and a correct (non-Byzantine) client.
We say that is an “intrusion-tolerant reliable channel” if, even
when up to of the SCADAMaster replicas are Byzantine, it i)
delivers legitimate messages without modification or unneces-
sary delay; ii) does not deliver spurious messages; and iii) pre-
vents either endpoint from causing the other to consume exces-
sive computational or networking resources. Achieving intru-
sion tolerance is challenging, because Byzantine replicas may
attempt to insert spurious messages into the channel, delay or
prevent the delivery of certain legitimate messages, attempt to
deliver messages out of order, or otherwise attempt to disrupt
the protocol.
Let be a communication channel established between

the SCADA Master replicas and a Byzantine client. makes

no delivery or timing guarantees for messages sent from the
replicas to the client. Messages sent from the client (which,
by definition, are spurious) to the replicas may or may not be
delivered, but if any correct replica delivers a message, then
they all do. The channel also prevents the Byzantine client from
consuming excessive resources at the replicas.
The following sub-sections provide a high-level overview of

the operation of each reliable channel sub-protocol.
Client-to-Replicas Sub-Protocol: To introduce a data mes-

sage into the channel, a client assigns it a sequence number and
sends it to a set of replicas. Since at most replicas are
Byzantine, this ensures that the message is received by at least
one correct replica. Each client message carries a digital signa-
ture, which prevents Byzantine replicas frommodifying its con-
tent. Upon receiving a data message, a replica places it into its
local window. A replica introduces a message for ordering (via
Prime) when all messages with lower sequence numbers have
been placed in its window. Note that the same client message
may be (legitimately) introduced for ordering multiple times
(by different replicas), and that Byzantine replicas may intro-
duce messages for ordering out of sequence number order. The
replica’s channel implementation overcomes these issues and
ensures that the client’s messages are delivered exactly once, in
sequence number order.
Each replica sends cumulative acknowledgements con-

taining the sequence number of the last client data message
it has executed. Since the replicas execute data messages at
the same logical time, all correct replicas construct identical
acknowledgements. The client can slide its window forward
(and thus send more messages) when at least distinct
replicas have acknowledged executing the data message at the
front of the window. This prevents Byzantine replicas from
causing the client to prematurely slide its window. Note that
although the replicas send identical acknowledgements, they
send negative acknowledgements individually (i.e., based on
which data messages they have locally received). This separa-
tion enables faster packet recovery in the face of loss, because a
replica need not wait until an out-of-order message is executed
before requesting a retransmission.
Replicas-to-Client Sub-Protocol: Since the SCADA Master

replicas construct data messages at the same logical time, each
correct replica introduces identical data messages into the
channel, in the same order. Outgoing messages are assigned
a sequence number and sent to the client. A client’s channel
implementation delivers a data message to the client applica-
tion when the client receives copies of the message
(from distinct replicas) and when the channel has delivered all
messages with lower sequence numbers.
Clients send cumulative acknowledgements containing the

sequence number of the last data message they have delivered.
A client also sends negative acknowledgements for those mes-
sages it knows to be missing. For efficiency, the client indicates,
for each missing sequence number, from which replicas it has
already received a copy of the message. Such replicas do not
need to retransmit their copies.
The SCADA Master replicas explicitly avoid introducing for

ordering (via Prime) client acknowledgements that they receive
from the network. This significantly reduces the computational

66 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014

overhead of the protocol, because it avoids the several rounds
of message exchange and the corresponding cryptographic op-
erations associated with ordering. However, an important im-
plication of this design decision is that different replicas may
process client acknowledgements at different logical times. As
a result, replicas may disagree on which messages the client has
received so far, and they may slide their windows asynchro-
nously with respect to one another. To ensure that the replicas
still proceed through the same sequence of application states
despite the asynchrony that may occur within their channel im-
plementations, the replicas do use Prime to order the limited
number of key events that might cause the behavior of the ap-
plication to change. These events include i) connection estab-
lishment messages, ii) connection termination messages, and
iii) messages indicating that a given replica believes a connec-
tion should be closed due to a timeout or because the client is
not reading fast enough. Therefore, the replicas always agree on
whether the logical state of a channel is open or closed, so they
still behave like deterministic state machines at the application
level.

V. PERFORMANCE EVALUATION

We have integrated our Prime-based intrusion-tolerant repli-
cation engine with a real SCADAMaster product for electricity
distribution, and we have developed a proxy to integrate this
survivable SCADA Master with an RTU. Before integrating
our engine with this product, we benchmarked the engine in
both fault-free and under-attack scenarios to verify that its
throughput and latency could meet the performance require-
ments of a SCADA system. We also evaluated the performance
of our logical timeout protocol to determine whether it could
scale to large deployments. Benchmarking the engine in this
way enabled us to assess its performance in isolation from the
effects of any particular SCADA product or deployment. This
section presents the results of our benchmarks.

A. Testbed and Network Setup

We used a cluster of four Dell Precision T3500 servers. The
machines had 64-bit, 6-core, 3.47 GHz Intel Xeon processors,
with 12 GB RAM and hyper-threading enabled. The machines
were connected on a local-area network via a Netgear ProSafe
8-port Gigabit switch. All machines ran 64-bit Fedora 12 Linux.
1024-bit RSA signatures [23] provided authentication and non-
repudiation. Each machine can compute an RSA signature in
0.389 ms (2570/sec) and can verify an RSA signature in 0.02
ms (49,683/sec).
For our benchmarks, we implemented a simplified SCADA

Master and a simplified RTU. The SCADA Master links with
the Prime Server Library and the RTU links with the Prime
Client Library (see Fig. 1). The SCADA Master can be config-
ured to be server driven (i.e., to poll one or more RTUs, driven
by the expiration of logical timeouts) or client driven (i.e., to
receive RTU state updates and send replies). In the experiments
described below, we ran two SCADA Master replicas on each
of two machines (for a total of four replicas), and the remaining
machines ran RTU processes.

Fig. 3. Poll operation latency, cumulative distribution function.

B. Polling Scenario

Since the main operation in a SCADA system is the polling
of RTUs by the SCADA Master, we first evaluated the perfor-
mance of our engine in a polling scenario. We ran four replicas
of the SCADA Master, and we ran 1000 RTU processes. The
replicas polled each of the 1000 RTUs individually, at a rate
of once per second. The time at which each RTU was initially
polled was selected uniformly at random over a 1 second in-
terval. Poll requests were 100 bytes long. Upon delivering a poll
request, an RTU responded by sending a 100-byte poll reply.
When the SCADA Master replicas delivered an ordered poll
reply, they re-scheduled a logical timeout for 1 second in the fu-
ture to poll the associated RTU again. At steady state, replicas
set (approximately) 1000 logical timeouts per second, sent 1000
poll requests per second, and received 1000 poll replies per
second.
Polling Latency: First, we measured the latency of each poll

operation, as measured by SCADA Master replica 1 during an
8-minute run. The latency of a poll operation is computed as the
time between the replica sending the poll request to a given RTU
and executing the ordered poll reply from that RTU. Since the
test was performed on a LAN with sub-millisecond link delay,
the measured latency was dominated by the time required for
the Prime Server Library to order (and subsequently deliver) the
incoming poll reply. This enabled us to measure the amount of
latency added by Prime to a typical polling roundtrip. In a real
deployment, the SCADA Master replicas would be separated
from the RTUs by a wide-area network, so the actual polling la-
tency reported here would be scaled up by the network roundtrip
time.
Fig. 3 shows a cumulative distribution function of the polling

latencies measured during the run. The y-value of a point repre-
sents the percentage of poll operations whose latency was less
than or equal to the x-value of the point. For example, the figure
shows that about 96 percent of poll operations had a latency less
than or equal to approximately 22 ms, and all poll operations
had a latency of less than 43 ms. Our discussions with SCADA
system architects suggest that, given the supervisory nature of
SCADA, this latency is sufficiently low to be suitable for real
deployments (in fact, even a latency added by Prime that was
twice as high would likely be low enough).

KIRSCH et al.: SURVIVABLE SCADA VIA INTRUSION-TOLERANT REPLICATION 67

Fig. 4. Polling operation latency, under-attack scenario. At time 220 s, server
replica 1 (the coordinator of the replication protocol) began delaying its out-
going messages by 100 ms. The other replicas quickly detected the attack so
that subsequent operations were not affected.

Polling Under Attack: To demonstrate that Prime can mit-
igate performance attacks effectively, we re-ran the polling
experiment, but this time we instrumented the coordinator of
Prime so that it would begin delaying its outgoing packets by
100 ms after the system had been running for 220 seconds.
Fig. 4 shows the latency of the poll operations initiated between
time 200 and 300 seconds, as measured at SCADA Master
replica 2. Each point represents the latency of a single poll
operation. Before the attack, all poll operations had a latency
of less than 30 ms, with most falling into two bands at 10 ms
and 20 ms. The bands reflect the batching period of 10 ms used
for certain messages within Prime. At time 220 s, there is a
momentary spike in latency when the attack is triggered; poll
operations initiated at this time were delayed by as much as 130
ms. The spike contains at most one operation for each RTU.
That the spike is so “skinny” implies that the other replicas
quickly detected the attack and reconfigured Prime to mitigate
the attack (by electing a new coordinator) so that subsequent
operations were not affected.

C. Scalability Scenario

To better understand the scalability of our replication engine,
we ran a scalability scenario in which we measured Prime’s
request ordering latency at different throughputs. To generate
load, we configured the SCADA Master to be client driven:
the RTU submitted to the SCADA Master replicas a 100-byte
request to be ordered, and then the replicas responded with a
100-byte reply. Upon receiving a reply, an RTU submitted a new
request. We ran between 1 and 30 RTUs, each of which had up
to 40 outstanding requests at a time.
In our first, baseline scalability test, each RTU submitted each

of its requests to SCADAMaster replicas. Since at most
replicas may be Byzantine, this ensures that the RTU’s mes-

sage is received by a correct replica the first time it is sent. The
trade-off is that in fault-free executions (like the one tested),
each message is actually ordered times (twice, in this
case), reducing the maximum throughput that can be achieved.
The throughput numbers that we report apply to the number of
unique requests ordered per second.

Fig. 5. Request latency vs. replication engine throughput.

Fig. 5 shows the average latency of a request vs. the
throughput achieved by our replication engine. Latency was
measured at the RTU and computed as the time between sub-
mitting a request for ordering and receiving the corresponding
reply, averaged across all requests during the run. Throughput
was measured at the SCADA Master replicas as the number of
requests ordered per second. The performance of our baseline
test is shown in the line labeled “Baseline, RTU to
replicas” in Fig. 5. Requests experienced a latency of about 25
ms when 12 000 requests per second were ordered, and they
experienced a latency of about 30 ms when 13 500 requests
per second were ordered. For loads beyond this point, latency
dramatically increased because the system was saturated and at
its peak throughput.
In running our baseline scalability test, we observed that the

throughput of the system was CPU bound, and that the perfor-
mance bottleneck was the computation required to verify the
RSA signatures contained in all Prime messages. Therefore,
we re-engineered our engine to use a separate thread for the
verification of digital signatures, allowing the implementation
to better exploit multiple CPU cores. As seen in the middle
plot in Fig. 5, using a verification thread significantly increased
the peak throughput of our engine, resulting in requests expe-
riencing a latency of about 27 ms when 20 000 requests per
second were ordered and about 35 ms when 24 000 requests per
second were ordered.
In the two tests just described, the RTU submitted its requests

to replicas. A different strategy would be for the RTU to
initially submit its request to only one replica, and if it does not
receive a reply within a timeout period, it submits to a different
replica. This strategy can result in higher peak throughput in
fault-free executions, but in under-attack scenarios it can cause
latency to be increased by the duration of the RTU’s timeout. To
assess the fault-free performance impact of this approach, we
configured each RTU to submit its requests to a randomly-se-
lected replica. As seen in Fig. 5, this modification increased the
scalability of our engine even further, enabling it to order 30 000
requests per second with a latency just under 30 ms. We com-
ment that although this optimistic strategy may be suitable for
some SCADA systems, others may be more sensitive to delay,
and thus which strategy to prefer is deployment-specific.

68 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014

TABLE I
LOGICAL TIMEOUT ACCURACY, SINGLE TIMEOUT

The above results suggest that the performance of our in-
trusion-tolerant replication engine will be sufficient for most
SCADA systems, even large-scale systems with several thou-
sand RTUs being polled approximately once per second.

D. Logical Timeout Performance

Accuracy: To measure the accuracy of our logical timeout
protocol, we configured the SCADA Master application so that
it set logical timeouts at various periods; upon delivering a log-
ical timeout, each application replica re-scheduled a new one
with the same duration. As shown in Table I, we ran the applica-
tion in this scenario with several different target periods (Table I,
column 1). In each run, the replicas set timeouts at the given
period for a five minute duration. For each logical timeout, we
measured the time between replica 1 setting the timeout and de-
livering the event indicating that the timeout expired. Columns
2, 3, and 4 of Table I report the minimum, maximum, and av-
erage delays measured by replica 1, respectively. Column 5 re-
ports the average , defined as the actual delay experienced
minus the target delay, and Column 6 reports the standard devi-
ation.
Table I shows that the average for all measured target de-

lays is between 15 and 20 ms, indicating that the application
consistently experienced a delay 15–20 ms higher than it re-
quested. As discussed in Section IV-A, this “error” reflects the
clock resolution of the logical timeout protocol and is caused by
the time required for Prime to reach agreement on SYNC mes-
sages. Since the values are fairly consistent, the results sug-
gest that an application should take the error into account when
specifying its polling period. For example, Table I shows that
an application wishing to poll at one second intervals should
specify a polling period of 980 ms to compensate for the error.
The 0 ms row in Table I shows the clock resolution directly
when logical timeouts are set sequentially (i.e., the next one
is started only after the current one expires). The data show
that Prime can deliver roughly 60 sequential timeout events per
second, reflecting an agreement time of roughly 17 ms.
Scalability: To evaluate the scalability of our logical timeout

protocol, we measured the average observed by the applica-
tion when increasing numbers of periodic logical timeouts are
set. We repeated this experiment for four different target pe-
riods: 10 ms, 100 ms, 500 ms, and 1 s.
Fig. 6 shows the intuitive result that the number of timeouts

that can be set before the system reaches saturation (and the
values spike) increases with the target period. For example, the
replicas can reach agreement on roughly 20 000 500 ms time-
outs with a of about 27 ms, and they can reach agreement
on roughly 30 000 1 s timeouts with a of 28 ms. Recall from
Table I that the values for 500 ms and 1 s timeouts when only

Fig. 6. Logical timeout scalability. is the difference between the actual delay
observed by the application and the target delay (timeout period).

one timeout was being set at a time were 14.7 and 17.1 ms, re-
spectively. Thus, in the 1 s case, the number of timeouts being
set increased by a factor of 30 000while the average increased
by less than a factor of 2, reflecting the protocol’s scalability.

VI. RELATED WORK

The number of reported cyber attacks, especially insider at-
tacks, continues to rise; McAfee reported more than 90 million
unique pieces of malware in its database in its Q2 2012 threat
report [24], up from 70 million just one year earlier. There-
fore, SCADA systems have begun deploying standard IT secu-
rity technologies to harden their defenses. Some representative
technologies include firewalls [25] to police incoming traffic;
intrusion-detection systems [26] to monitor network and system
events to log and report suspicious behavior; and application
whitelisting [27] to ensure that only known, trusted executables
can run. Although these technologies significantly enhance the
security of today’s SCADA systems, they focus on preventing
attacks and do not protect the SCADA application if an attack
compromises part of the system.
The field of intrusion tolerance [12] represents a different

way of thinking about security and availability. An intrusion-
tolerant protocol assumes that some of the protocol participants
may be Byzantine [13] and act in an arbitrary manner. Over the
last decade, using intrusion-tolerant protocols to achieve con-
sistent global state (e.g., [6]–[11]) has been shown to be an ef-
fective technique for building highly available systems able to
withstand partial compromises. Such protocols are known as in-
trusion-tolerant replication protocols. While earlier protocols
guaranteed correctness (i.e., replica consistency) in the face of
partial compromise, more recent protocols [6], [11], [28] also
guarantee minimal performance degradation whilst under at-
tack and hence meet our definition of survivability. Importantly,
these recent protocols can also scale to support thousands of
clients.
A different approach to applying intrusion tolerance tech-

niques to critical infrastructure systems was presented by
Bessani et al. [29]. Rather than integrating intrusion-tolerant
replication within the SCADA system itself, one creates an
intrusion-tolerant “firewall” (called a CRUTIAL Information
Switch) that sits on the perimeter of the network and ensures

KIRSCH et al.: SURVIVABLE SCADA VIA INTRUSION-TOLERANT REPLICATION 69

that only messages which adhere to policy are admitted into the
system, even if some of the replicas implementing the firewall
are compromised. Such an approach has the benefit that it does
not require any changes to, or integration with, the SCADA
Master. However, its effectiveness requires the policy to be
specified and implemented correctly, and (unlike our approach)
it does not protect the SCADA Master from attacks launched
from within the system’s security perimeter. Another important
distinction is that CRUTIAL relies on trusted hardware com-
ponents, which are assumed to be unable to be compromised.
In contrast, our survivable SCADA system assumes that any
machine may be compromised.

VII. CONCLUSION

In addition to the conventional challenges to availability,
such as hardware crashes, power failures, and network parti-
tions, SCADA providers must also anticipate the consequences
of cyber attacks. Whereas conventional enterprise security
technologies have sought to build increasingly sophisticated
perimeter defenses, in this research we sought to answer
whether it is possible to build a SCADA system that is able to
operate correctly and with good performance even if a cyber
attack was successful at evading these conventional defenses.
As the compromise of the highest value asset, the SCADA

Master, can have potentially disastrous consequences, our work
has focused on protecting this entity via intrusion-tolerant repli-
cation. In effect, intrusion tolerance allows the SCADA Master
application to act as its own firewall, thus providing protection
in the event of a security breach.
This paper reports on our experience designing and eval-

uating the first survivable SCADA system. We described the
unique requirements imposed by the SCADA architecture and
gave an overview of several new techniques facilitating the in-
tegration of intrusion-tolerant replication and SCADA. Our ex-
perimental results illustrate that our replication engine performs
sufficiently well to meet the needs of even large-scale SCADA
systems containing thousands of RTUs.

REFERENCES

[1] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Pri-
mary-backup protocols: Lower bounds and optimal implementations,”
in Proc. 3rd IFIP Conf. Dependable Comput. Critical Appl., 1992, pp.
187–198.

[2] E. Byres, “Next generation cyber attacks target oil and gas SCADA,”
Pipeline Gas J., vol. 239, no. 2, 2012.

[3] D. S. Wall, “Organization security and the insider threat: Malicious,
negligent, and well-meaning insiders,” 2011, Symantec.

[4] J. Kirsch, S. Goose, Y. Amir, and P. Skare, “Toward survivable
SCADA,” in Proc. Annu. Cyber Security Inf. Intell. Res. Workshop
(CSIIRW11), Oct. 2011.

[5] J. Kirsch, “Intrusion-tolerant replication under attack,” Ph.D. disserta-
tion, Johns Hopkins University, Baltimore, MD, USA, 2010.

[6] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” IEEE Trans. Dependable Secure Comput., vol. 8, no. 4,
pp. 564–577, 2011.

[7] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp.
398–461, 2002.

[8] J. Yin, J.-P.Martin, A. Venkataramani, L. Alvisi, andM.Dahlin, “Sepa-
rating agreement from execution for Byzantine fault-tolerant services,”
in Proc. 19th ACM Symp. Oper. Syst. Principles, 2003, pp. 253–267.

[9] J.-P. Martin and L. Alvisi, “Fast Byzantine consensus,” IEEE Trans.
Dependable Secure Comput., vol. 3, no. 3, pp. 202–215, 2006.

[10] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J.
Olsen, and D. Zage, “Steward: Scaling Byzantine fault-tolerant replica-
tion to wide area networks,” IEEE Trans. Dependable Secure Comput.,
vol. 7, no. 1, pp. 80–93, 2010.

[11] A. Clement, E.Wong, L. Alvisi, M. Dahlin, andM.Marchetti, “Making
Byzantine fault tolerant systems tolerate Byzantine faults,” in Proc. 6th
USENIX Symp. Netw. Syst. Design Implementation, 2009, pp. 153–168.

[12] P. E. Veríssimo, N. F. Neves, and M. P. Correia, R. Lemos, C. Gacek,
and A. Romanovsky, Eds., “Intrusion-tolerant architectures: Concepts
and design,” in Architecting Dependable Systems, 2003, vol. 2677,
Lecture Notes in Computer Science.

[13] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.
382–401, 1982.

[14] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[15] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.
299–319, 1990.

[16] R. Rodrigues, M. Castro, and B. Liskov, “BASE: Using abstraction to
improve fault tolerance,” in Proc. 18th ACM Symp. Operating Systems
Principles (SOSP’01), Banff, AB, Canada, 2001, pp. 15–28.

[17] M.Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “OS diver-
sity for intrusion tolerance: Myth or reality,” in Proc. 41st IEEE/IFIP
Int. Conf. Dependable Syst. Netw. (DSN’11), 2011, pp. 383–394.

[18] PaXTeam, PaXAddress Space Layout Randomization [Online]. Avail-
able: http://pax.grsecurity.net/docs/aslr.txt

[19] A. Avizeinis, “The N-Version approach to fault-tolerant software,”
IEEE Trans. Softw. Eng., vol. SE-11, no. 12, pp. 1491–1501, Dec.
1985.

[20] M. Franz, “E unibus pluram: Massive-scale software diversity as a de-
fensemechanism,” inProc. New Security ParadigmsWorkshop (NSPW
2010), Concord, MA, USA, Sep. 2010.

[21] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proc. 2012 ACM Conf. Comp. Commun. Security (CCS’12), 2012, pp.
157–168.

[22] Secure Computing SnapGear User Manual, Revision 3.1.4 Aug. 2006,
Secure Computing.

[23] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM, vol.
21, no. 2, pp. 120–126, 1978.

[24] Z. Bu, T. Dirro, P. Greve, Y. Lin, D. Marcus, F. Paget, V. Pogulievsky,
C. Schmugar, J. Shah, D. Sommer, P. Szor, and A. Wosotowsky,
“McAfee threats report: Second quarter 2012,” 2012.

[25] R. Oppliger, “Internet security: Firewalls and beyond,” Commun.
ACM, vol. 40, no. 5, pp. 94–102, 1997.

[26] D. E. Denning, “An intrusion detection model,” in Proc. 7th IEEE
Symp. Security and Privacy, May 1986, pp. 119–131.

[27] J. V. Harrison, “Enhancing network security by preventing user-ini-
tiated malware execution,” in Proc. Int. Conf. Inf. Technol.: Coding
and Computing (ITCC’05)—Volume II, Washington, DC, USA, pp.
597–602, IEEE Computer Society.

[28] G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung, “Spin one’s
wheels? Byzantine fault tolerance with a spinning primary,” in Proc.
28th IEEE Int. Symp. Reliable Distrib. Syst., 2009, pp. 135–144.

[29] A. Bessani, P. Sousa, M. Correia, N. F. Neves, and P. Verissimo, “The
CRUTIAL way of critical infrastructure protection,” IEEE Security
Privacy, vol. 6, no. 6, pp. 44–51, Nov.–Dec. 2008.

Jonathan Kirsch received the B.Sc. degree from
Yale University, New Haven, CT, USA, in 2004 and
the M.S.E. degree from Johns Hopkins University,
Baltimore, MD, USA, in 2007. He received a Ph.D.
degree in computer science from Johns Hopkins
University in 2010.
He is currently a Research Scientist at the Siemens

Technology to Business Center, Berkeley, CA, USA.
His research interests include fault-tolerant replica-
tion and survivable systems.
Dr. Kirsch has served on the program committee

for the International Symposium on Stabilization, Safety, and Security of
Distributed Systems, as well as the Cyber Security and Information Intel-
ligence Research Workshop. He is an active reviewer for several journals,
including IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING,
IEEE TRANSACTIONS ON COMPUTERS, and ACM Transactions on Computer
Systems.

70 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 1, JANUARY 2014

Stuart Goose received the B.Sc. and Ph.D. de-
grees in computer science from the University of
Southampton, U.K., in 1993 and 1997, respectively.
He held a Postdoctoral position at the University

of Southampton. He then joined Siemens Corpo-
rate Research Inc., Princeton, NJ, USA, holding
various positions in the Multimedia Technology
Department where he led a research group exploring
and applying various aspects of Internet, mobility,
multimedia, speech, and audio technologies. His
current position is Director of Venture Technology

at Siemens Technology-To-Business Center in Berkeley, CA, USA. He scouts
for disruptive technologies from universities and startups, runs projects to
validate the technical and business merit of technologies, and, if successful, the
technologies are transferred to the relevant product lines within Siemens.
Dr. Goose serves as program committee member and reviewer for IEEE Inter-

national Conference on DistributedMultimedia Systems and IEEE International
Conference Multimedia Expo.

Yair Amir received B.S. and M.S. degrees from the
Technion, Israel Institute of Technology, in 1985 and
1990, respectively, and a Ph.D. degree from the He-
brew University of Jerusalem, Israel, in 1995.
He has served as Professor of Computer Science

at Johns Hopkins University. Baltimore, MD, USA,
since 1995. Prior to his Ph.D., he gained extensive
experience building C3I systems. He is a creator of
the Spread and Secure Spread group communication
toolkits, the Backhand and Wackamole clustering
projects, the Spines overlay network messaging

system, and the SMesh wireless mesh network.
Dr. Amir has been a member of various program committees including the

IEEE International Conference on Distributed Computing Systems, the ACM
Conference on Principles of Distributed Computing, and the IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks. He currently serves as
an Associate Editor for the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING. He co-founded Spread Concepts LLC (2000) and LTN Global
Communications Inc (2008), and is a member of the ACM and the IEEE Com-
puter Society.

Dong Wei (S’00–M’04) received his B.S. degree
in electrical engineering from Tsinghua University,
Beijing, China. He received his M.S. and Ph.D.
degrees from New Jersey Institute of Technology,
Newark, NJ, USA, both in electrical engineering. is a
research scientist at Siemens Corporation, Corporate
Technology.
He has worked at Siemens for more than 10 years.

He has worked on factory automation systems, PLC,
motion control, human-machine interface, drive
system, and industrial communication networks for

more than 10 years. He has more than 20 publications, including book chapters
and journal papers.
Dr. Wei works as Principal Investigator for several government-funded

research projects. He is also an active reviewer of IEEE TRANSACTIONS
ON SMART GRID, IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND

ENGINEERING, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE
TRANSACTIONS ON SYSTEM, MAN, AND CYBERNETICS, Computer in Industry,
Journal of the Network and Systems Management, etc.

Paul Skare is the Chief Cyber Security Program
Manager in Electricity Infrastructure at Pacific
Northwest National Laboratory, Richland, WA
(PNNL). Programs that he manages include PNNL’s
work on the Department of Energy’s Cybersecurity
for Energy Delivery Systems (CEDS) and the
Cybersecurity Risk Information Sharing Program
(CRISP). Previously he worked for Northern States
Power for 4 years, and Siemens Energy for 26 years,
including roles in power applications, R&D manager
for SCADA, Product Lifecycle Manager for EMS

and substation automation products, and most recently he was the Director of
Cyber Security. He has a patent published on cybersecurity for control systems.
He is the Convenor of Working Group 19 in IEC TC 57 and a member of WG
13 & 15 and former WG 7. He is a member of the IEEE PES and worked in
IEEE P1689, P1711, and P2030. He has twice testified to the U.S. Congress
on cyber security for control systems. Paul has been active in the NERC
CSSWG, has been in numerous NERC working groups including Hydra and
the GridEx cyber security exercises, and has been active in the DHS ICSJWG
and CyberStorm III programs.

