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Abstract—Existing Byzantine-resilient replication protocols satisfy two standard correctness criteria, safety and liveness, even in the

presence of Byzantine faults. The runtime performance of these protocols is most commonly assessed in the absence of processor

faults and is usually good in that case. However, faulty processors can significantly degrade the performance of some protocols,

limiting their practical utility in adversarial environments. This paper demonstrates the extent of performance degradation possible in

some existing protocols that do satisfy liveness and that do perform well absent Byzantine faults. We propose a new performance-

oriented correctness criterion that requires a consistent level of performance, even with Byzantine faults. We present a new Byzantine

fault-tolerant replication protocol that meets the new correctness criterion and evaluate its performance in fault-free executions and

when under attack.

Index Terms—Performance under attack, Byzantine fault tolerance, replicated state machines, distributed systems.
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1 INTRODUCTION

EXISTING Byzantine fault-tolerant state machine replication
protocols are evaluated against two standard correctness

criteria: safety and liveness. Safety means that correct servers
do not make inconsistent ordering decisions, while liveness
means that each update to the replicated state is eventually
executed. Most Byzantine replication protocols are designed
to maintain safety in all executions, even when the network
delivers messages with arbitrary delay. However, the well-
known FLP impossibility result [2] implies that no asyn-
chronous Byzantine agreement protocol can always be both
safe and live, and thus these systems ensure liveness only
during periods of sufficient synchrony and connectivity [3]
or in a probabilistic sense [4], [5].

When the network is sufficiently stable and there are no
Byzantine faults, Byzantine fault-tolerant replication systems
can satisfy much stronger performance guarantees than
liveness. The literature has many examples of systems that
have been evaluated in such benign executions and that
achieve throughputs of thousands of update operations per
second (e.g., [6], [7]). It has been a less common practice to
assess the performance of Byzantine fault-tolerant replica-
tion systems when some of the processors actually exhibit
Byzantine faults. In this paper, we point out that in many
systems, a small number of Byzantine processors can
degrade performance to a level far below what would be
achievable with only correct processors. Specifically, the
Byzantine processors can cause the system to make progress
at an extremely slow rate, even when the network is stable
and could support much higher throughput. While “correct”
in the traditional sense (both safety and liveness are met),

systems vulnerable to such performance degradation are of
limited practical use in adversarial environments.

We experienced this problem firsthand in 2005, when the
US Defense Advanced Research Projects Agency (DARPA)
conducted a red team experiment on our Steward system [8].
Steward survived all of the tests according to the metrics of
safety and liveness, and most attacks did not impact
performance. However, in one experiment, we observed
that the system was slowed down to 20 percent of its
potential performance. After analyzing the attack, we found
that we could slow the system down to roughly one percent
of its potential performance. This experience led us to a new
way of thinking about Byzantine fault-tolerant replication
systems. We concluded that liveness is a necessary but
insufficient correctness criterion for achieving high perfor-
mance when the system actually has Byzantine faults. This
paper argues that new, performance-oriented correctness
criteria are needed to achieve a practical solution for
Byzantine replication.

Preventing the type of performance degradation experi-
enced by Steward requires addressing what we call a
Byzantine performance failure. Previous work on Byzantine
fault tolerance has focused on mitigating Byzantine failures
in the value domain (where a faulty processor tries to subvert
the protocol by sending incorrect or conflicting messages)
and the time domain (where messages from a faulty
processor do not arrive within protocol time-outs, if at all).
Processors exhibiting performance failures operate arbitra-
rily but correctly enough to avoid being suspected as faulty.
They can send valid messages slowly but without triggering
protocol time-outs; reorder or drop certain messages, both of
which could be caused by a faulty network; or, with
malicious intent, take one of a number of possible actions
that a correct processor in similar circumstances might
legitimately take. Thus, processors exhibiting performance
failures are correct in the value and time domains yet have
the potential to significantly degrade performance. The
problem is magnified in wide-area networks, where time-
outs tend to be large and it may be difficult to determine what
type of performance should be expected. A performance
failure is not a new failure mode but rather is a strategy taken
by an adversary that controls Byzantine processors.
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In order to better understand the challenges associated
with building Byzantine fault-tolerant replication protocols
that can resist performance failures, we analyzed existing
protocols to assess their vulnerability to performance
degradation by malicious servers. We observed that most
of the protocols (e.g., [6], [7], [8], [9], [10], [11], [12]) share a
common feature: they rely on an elected leader to coordinate
the agreement protocol. We call such protocols leader based.
We found that leader-based protocols are vulnerable to
performance degradation caused by a malicious leader.

Based on the understanding gained from our analysis,
we developed Prime, the first Byzantine fault-tolerant state
machine replication protocol capable of making a mean-
ingful performance guarantee even when some of the
servers are Byzantine. Prime meets a new, performance-
oriented correctness criterion, called BOUNDED-DELAY.
Informally, BOUNDED-DELAY bounds the latency between
a correct server receiving a client operation and the correct
servers executing the operation. The bound is a function of
the network delays between the correct servers in the
system. This is a much stronger performance guarantee
than the eventual execution promised by liveness.

Like many existing Byzantine fault-tolerant replication
protocols, Prime is leader based. Unlike existing protocols,
Prime bounds the amount of performance degradation that
can be caused by the faulty servers, including by a malicious
leader. Two main insights motivate Prime’s design. First,
most protocol steps do not need any messages from the
faulty servers to complete. Faulty servers cannot delay these
steps beyond the time it would take if only correct servers
were participating in the protocol. Second, the leader should
require a predictable amount of resources to fulfill its role as
leader. In Prime, the resources required by the leader to do
its job as leader are bounded as a function of the number of
servers in the system and are independent of the offered
load. The result is that the performance of the few protocol
steps that do depend on the (potentially malicious) leader
can be effectively monitored by the nonleader servers.

We present experimental results evaluating the perfor-
mance of Prime in fault-free and under attack executions.
Our results demonstrate that Prime performs competitively
with existing Byzantine fault-tolerant replication protocols
in fault-free configurations and that Prime performs an
order of magnitude better in under attack executions in the
configurations tested.

2 CASE STUDY: BFT UNDER ATTACK

This section presents an attack analysis of Castro and
Liskov’s BFT protocol [6], a leader-based Byzantine fault-
tolerant replication protocol. We chose BFT because 1) it is a
widely studied protocol to which other Byzantine-resilient
protocols are often compared, 2) many of the attacks that
can be applied to BFT (and the corresponding lessons
learned) also apply to other leader-based protocols, and
3) its implementation was publicly available. BFT achieves
high throughput in fault-free executions or when servers
exhibit only benign faults. We first provide background on
BFT and then describe two attacks that can be used to
significantly degrade its performance when under attack.

BFT assigns a total order to client operations. The protocol
requires 3f þ 1 servers, where f is the maximum number of
servers that may be Byzantine. An elected leader coordinates
the protocol. If a server suspects that the leader has failed, it
votes to replace it. When 2f þ 1 servers vote to replace the
leader, a view change occurs, in which a new leader is elected
and servers collect information regarding pending opera-
tions so that progress can safely resume in a new view.

A client sends its operation directly to the leader. The
leader proposes a sequence number for the operation by
broadcasting a PRE-PREPARE message, which contains the
view number, the proposed sequence number, and the
operation itself. Upon receiving the PRE-PREPARE, a non-
leader server accepts the proposed assignment by broad-
casting a PREPARE message. When a server collects the PRE-

PREPARE and 2f corresponding PREPARE messages, it
broadcasts a COMMIT message. A server globally orders
the operation when it collects 2f þ 1 COMMIT messages.
Each server executes globally ordered operations according
to sequence number.

2.1 Attack 1: Pre-Prepare Delay

A malicious leader can introduce latency into the global
ordering path simply by waiting some amount of time after
receiving a client operation before sending it in a PRE-

PREPARE message. The amount of delay a leader can add
without being detected as faulty is dependent on 1) the way
in which nonleaders place time-outs on operations they have
not yet executed and 2) the duration of these time-outs.

A malicious leader can ignore operations sent directly by
clients. If a client’s time-out expires before receiving a reply
to its operation, it broadcasts the operation to all servers,
which forward the operation to the leader. Each nonleader
server maintains a FIFO queue of pending operations (i.e.,
those operations it has forwarded to the leader but has not
yet executed). A server places a time-out on the execution of
the first operation in its queue; that is, it expects to execute
the operation within the time-out period. If the time-out
expires, the server suspects the leader is faulty and votes to
replace it. When a server executes the first operation in its
queue, it restarts the timer if the queue is not empty. Note
that a server does not stop the timer if it executes a pending
operation that is not the first in its queue. The duration of
the time-out is dependent on its initial value (which is
implementation and configuration dependent) and the
history of past view changes. Servers double the value of
their time-out each time a view change occurs. BFT does not
provide a mechanism for reducing time-out values.

To retain its role as leader, the leader must prevent f þ 1
correct servers from voting to replace it. Thus, assuming a
time-out value of T , a malicious leader can use the following
attack to cause delay: 1) Choose a set, S, of f þ 1 correct
servers, 2) For each server i 2 S, maintain a FIFO queue of
the operations forwarded by i, and 3) For each such queue,
send a PRE-PREPARE containing the first operation on the
queue every T � � time units. This guarantees that the
f þ 1 correct servers in S execute the first operation on their
queue each time-out period. If these operations are all
different, the fastest the leader would need to introduce
operations is at a rate of f þ 1 per time-out period. In the
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worst case, the f þ 1 servers would have identical queues,
and the leader could introduce one operation per time-out.

This attack exploits the fact that nonleader servers place
time-outs only on the first operation in their queues. To
understand the ramifications of placing a time-out on all
pending operations, we consider a hypothetical protocol
that is identical to BFT except that nonleader servers place a
time-out on all pending operations. Suppose nonleader
server i simultaneously forwards n operations to the leader.
If server i sets a time-out on all n operations, then i will
suspect the leader if the system fails to execute n operations
per time-out period. Since the system has a maximal
throughput, if n is sufficiently large, i will suspect a correct
leader. The fundamental problem is that correct servers
have no way to assess the rate at which a correct leader can
coordinate the global ordering.

Recent protocols [13], [14] attempt to mitigate the PRE-

PREPARE attack by rotating the leader (an idea suggested in
[15]). While these protocols allow good long-term through-
put and avoid the scenario in which a faulty leader can
degrade performance indefinitely, they do not guarantee
that individual operations will be ordered in a timely
manner. Prime takes a different approach, guaranteeing
that the system eventually settles on a leader that is forced
to propose an ordering on all operations in a timely manner.
To meet this requirement, the leader needs only a bounded
amount of incoming and outgoing bandwidth, which
would not be the case if servers placed a time-out on all
operations in BFT.

We note that BFT can be configured to use an
optimization in which clients disseminate operations to all
servers and the leader sends PRE-PREPARE messages
containing hashes of the operations, thus limiting (but not
bounding) the bandwidth requirements of the leader.
However, when this optimization is used, faulty clients
can repeatedly cause performance degradation by dissemi-
nating their operations only to f þ 1 of the 2f þ 1 correct
servers. This causes f correct servers to learn the ordering
of an operation without having the operation itself, which
prevents them from executing subsequent operations until
they recover the missing operations.

2.2 Attack 2: Time-Out Manipulation

BFT ensures safety regardless of network synchrony. How-
ever, while attacks that impact message delay (e.g., denial-of-
service attacks) cannot cause inconsistency, they can be used
to increase the time-out value used to detect a faulty leader.
During the attack, the time-out doubles with each view
change. If the adversary stops the attack when a malicious
server is the leader, then that leader will be able to slow the
system down to a throughput of roughly f þ 1 operations per
time-out T , where T is potentially very large, using the attack
described in the previous section. This vulnerability stems
from BFT’s inability to reduce the time-out and adapt to the
network conditions after the system stabilizes.

One might try to overcome this problem in several ways,
such as by resetting the time-out when the system reaches a
view in which progress occurs, or by adapting the time-out
using a multiplicative increase and additive decrease
mechanism. In the former approach, if the time-out is set
too low originally, then it will be reset just when it reaches

a large enough value. This may cause the system to
experience long periods during which new operations
cannot be executed, because leaders (even correct ones)
continue to be suspected until the time-out becomes large
enough again. The latter approach may be more effective
but will be slow to adapt after periods of instability. As will
be explained in Section 5.4, Prime adapts to changing
network conditions and dynamically determines an accep-
table level of timeliness based on the current latencies
between correct servers.

3 SYSTEM MODEL AND SERVICE PROPERTIES

We consider a system consisting of N servers and M clients
(collectively called processors), which communicate by
passing messages. Each server is uniquely identified from
the set R ¼ f1; 2; . . . ; Ng, and each client is uniquely
identified from the set S ¼ fN þ 1; N þ 2; . . . ; N þMg. We
assume a Byzantine fault model in which processors are
either correct or faulty; correct processors follow the protocol
specification exactly, while faulty processors can deviate
from the protocol specification arbitrarily by sending any
message at any time, subject to the cryptographic assump-
tions stated below. We assume that N � 3f þ 1, where f is
an upper bound on the number of servers that may be
faulty. For simplicity, we describe the protocol for the case
when N ¼ 3f þ 1. Any number of clients may be faulty.

We assume an asynchronous network, in which message
delay for any message is unbounded. The system meets our
safety criteria in all executions in which f or fewer servers are
faulty. The system guarantees our liveness and performance
properties only in subsets of the executions in which message
delay satisfies certain constraints. For some of our analysis,
we will be interested in the subset of executions that model
Diff-Serv [16] with two traffic classes. To facilitate this
modeling, we allow each correct processor to designate each
message that it sends as either TIMELY or BOUNDED.

All messages sent between processors are digitally signed.
We denote a message, m, signed by processor i as hmi�i . We
assume that digital signatures are unforgeable without
knowing a processor’s private key. We also make use of a
collision-resistant hash function, D, for computing message
digests. We denote the digest of message m as D(m).

A client submits an operation to the system by sending it
to one or more servers. Operations are classified as read-
only (queries) and read/write (updates). Each client opera-
tion is signed. Each server produces a sequence of
operations, fo1; o2; . . .g, as its output. The output reflects
the order in which the server executes client operations.
When a server outputs an operation, it sends a reply
containing the result of the operation to the client.

Safety. Server replies for operations submitted by correct
clients are correct according to linearizability [17], as
modified to cope with faulty clients [18]. Prime establishes
a total order on client operations, as encapsulated in the
following safety property:

Definition 3.1 (Safety-S1). In all executions in which f or
fewer servers are faulty, the output sequences of two correct
servers are identical, or one is a prefix of the other.
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Liveness and performance properties. Before defining
Prime’s liveness and performance properties, which we call
PRIME-LIVENESS and BOUNDED-DELAY, we first require
several definitions:

Definition 3.2. A stable set is a set of correct servers, Stable,
such that jStablej � 2f þ 1. We refer to the members of Stable
as the stable servers.

Definition 3.3 (Bounded-Variance(T , S, K)). For each pair
of servers, s and r, in S, there exists a value, Min_La-
tency(s, r), unknown to the servers, such that if s sends a
message in traffic class T to r, it will arrive with delay �s;r,
where Min Latencyðs; rÞ � �s;r � Min Latencyðs; rÞ�K.

Definition 3.4 (Eventual-Synchrony(T , S)). Any message in
traffic class T sent from server s 2 S to server r 2 S will
arrive within some unknown bounded time.

We now specify the degrees of network stability needed
for Prime to meet PRIME-LIVENESS and BOUNDED-DELAY,
respectively:

Definition 3.5 (Stability-S1). Let Ttimely be a traffic class
containing all messages designated as TIMELY. Then, there
exists a stable set, S, a known network-specific constant, KLat,
and a time, t, after which Bounded-Variance(Ttimely, S, KLat)
holds.

Definition 3.6 (Stability-S2). Let Ttimely and Tbounded be traffic
classes containing messages designated as TIMELY and
BOUNDED, respectively. Then, there exists a stable set, S, a
known network-specific constant, KLat, and a time, t, after
which Bounded-Variance(Ttimely, S, KLat) and Eventual-
Synchrony(Tbounded, S) hold.

We now state Prime’s liveness and performance
properties:

Definition 3.7 (Prime-Liveness). If Stability-S1 holds for a
stable set, S, and no more than f servers are faulty, then if a
server in S receives an operation from a correct client, the
operation will eventually be executed by all servers in S.

Definition 3.8 (Bounded-Delay). If Stability-S2 holds for a
stable set, S, and no more than f servers are faulty, then there
exists a time after which the latency between a server in S
receiving a client operation and all servers in S executing that
operation is upper bounded.

Discussion: The degree of stability needed for liveness in
Prime (i.e., Stability-S1) is incomparable with the degree of
stability needed in BFT and similar protocols. BFT requires
Eventual-Synchrony [3] to hold for all protocol messages,
while Prime requires Bounded-Variance (a stronger degree of
synchrony) but only for messages in the TIMELY traffic
class. As described in Section 5, the TIMELY messages
account for a small fraction of the total traffic, are only sent
periodically, and have a small, bounded size. Prime is live
even when messages in the BOUNDED traffic class arrive
completely asynchronously.

It is possible for a strong network adversary capable of
controlling the network variance to construct scenarios in
which BFT is live and Prime is not. These scenarios occur
when the variance for TIMELY messages becomes greater
than KLat, yet the delay is still bounded. This can be made
less likely to occur in practice by increasing KLat, although

at the cost of giving a faulty leader more leeway to cause
delay (see Section 5.4).

In practice, we believe both Stability-S1 and Stability-S2
can be made to hold. In well-provisioned local-area net-
works, network delay is often predictable and queuing is
unlikely to occur. On wide-area networks, one could use a
quality-of-service mechanism such as Diff-Serv [16], with
one low-volume class for TIMELY messages and a second
class for BOUNDED messages, to give Bounded-Variance
sufficient coverage, provided enough bandwidth is available
to pass the TIMELY messages without queuing. The required
level of bandwidth is tunable and independent of the offered
load; it is based only on the number of servers in the system
and the rate at which the periodic messages are sent. Thus, in
a well-engineered system, Bounded-Variance should hold for
TIMELY messages, regardless of the offered load.

Finally, we remark that resource exhaustion denial-of-
service attacks may cause Stability-S2 to be violated for the
duration of the attack. Such attacks fundamentally differ
from the attacks that are the focus of this paper, where
malicious leaders can slow down the system without
triggering defense mechanisms. Handling resource exhaus-
tion attacks at the systemwide level is a difficult problem
that is orthogonal and complementary to the solution
strategies considered in this work.

4 PRIME: DESIGN AND OVERVIEW

In any execution where the network is well behaved,
Prime eventually bounds the time between when a client
submits an operation to a stable server and when all of
the stable servers execute the operation. The nonleader
servers monitor the performance of the leader and replace
any leader that is performing too slowly.

In existing leader-based protocols, variation in workload
can give rise to legitimate variations in a leader’s perfor-
mance, which, in turn, make it hard or impossible for
nonleaders to judge the leader’s performance. In contrast, for
any fixed system size, Prime assigns the leader a fixed
amount of work (to do in its role as leader), independent of
the load on the system. Thus, it is much easier for the
nonleaders to judge the performance of the leader. A leader
in Prime is also assigned tasks unrelated to its role as leader.
It must give priority to its leader tasks so that its performance
as leader will be independent of system workload.

Prime reduces the amount of work assigned to the leader
by offloading to other servers most of the tasks required to
establish an order on client operations. Most offloaded tasks
are done by all of the servers as a group, with the leader
participating but playing no special role. In any execution
where the network is well behaved, the progress of these
tasks has bounded delay regardless of the behavior of
Byzantine servers (including a Byzantine leader).

One offloaded task is handled differently. Much of the
initial work to order and propagate each client operation is
done by a subprotocol coordinated by the server to which
the operation was submitted. If the coordinator of this
subprotocol is correct, the subprotocol will have bounded
delay in executions where the network is well behaved. If
instead the coordinator of the subprotocol is Byzantine,
there is no requirement on whether or when the subpro-
tocol completes (and, in turn, whether or when the
submitted operation is ordered).

AMIR ET AL.: PRIME: BYZANTINE REPLICATION UNDER ATTACK 567



The view change protocol in Prime is also designed so
that the leader has a fixed-size task and hence can have its
performance accurately assessed by its peers.

4.1 Operation Ordering

A client requests the ordering of an operation by submitting
it to a server. A server incrementally constructs a server-
specific ordering of those operations that clients submit
directly to it, and it assumes responsibility for disseminating
the operations to the other servers. Each server periodically
broadcasts a bounded-size summary message that indicates
how much of each server’s server-specific ordering this
server has learned about.

The only thing that the current leader of the main
protocol must do to build the global ordering of client
operations is to incrementally construct an interleaving of
the server-specific orderings. A correct leader periodically
sends an ordering message containing the most recent
summary message from each server. The ordering messages
are of fixed size, and the extension to the global order is
implicit in the set of summary messages included in the
ordering messages sent by the leader. The ordering message
describes for each server a (possibly empty) window of
additional operations from that server’s server-specific
order to add to the global order. The specified window
always starts with the earliest operation from each server
that has not yet been added to the global order. The
window adds only those operations known widely enough
among the correct servers so that eventually all correct
servers will be able to learn what the operations are.

Because the leader’s job of extending the global order
requires a small, bounded amount of work, the nonleader
servers can judge the leader’s performance effectively. The
nonleaders measure the round-trip times to each other to
determine how long it should take between sending a
summary to the leader and receiving a corresponding
ordering message; we call this the turnaround time provided
by the leader. Nonleaders also monitor that the leader is
sending current summary messages. When a nonleader
server sends a summary message to the leader, it can expect
the leader’s next ordering message to reflect at least as
much information about the server-specific orderings as is
contained in the summary.

4.2 Overview of Subprotocols

We now list and describe the subprotocols in Prime.
Client subprotocol. The Client subprotocol defines how

a client injects an operation into the system and collects
replies from servers once the operation has been executed.

Preordering subprotocol. The Preordering subprotocol
implements the server-specific orderings that are later
interleaved by the leader to construct the global ordering.
At all times a separate instance of the subprotocol, coordi-
nated by each server in the system, runs in order to process
operations submitted to that server. The subprotocol has
three main functions. First, it is used to disseminate to
2f þ 1 servers each client operation. Second, it binds each
operation to a unique preorder identifier; we say that a server
preorders an operation when it learns the operation’s unique
binding. Third, it summarizes each server’s knowledge of the
server-specific orderings by generating summary messages.

A summary generated by server i contains a value, x, for each

server j such that x is the longest gap-free prefix of the server-

specific ordering generated by j that is known to i.
Global Ordering subprotocol. The Global Ordering

subprotocol runs periodically and is used to incrementally

extend the global order. The subprotocol is coordinated by

the current leader and, like BFT [6], establishes a total order

on PRE-PREPARE messages. Instead of sending a PRE-

PREPARE message containing client operations (or even

operation identifiers) like in BFT, the leader in Prime sends

a PRE-PREPARE message that contains a vector of at most

3f þ 1 summary messages, each from a different server. The

summaries contained in the totally ordered sequence of

PRE-PREPARE messages induce a total order on the pre-

ordered operations.
To ensure that client operations known only to faulty

processors will not be globally ordered, we define an

operation as eligible for execution when the collection of

summaries in a PRE-PREPARE message indicate that the

operation has been preordered by at least 2f þ 1 servers. An

operation that is eligible for execution is known to enough

correct servers so that all correct servers will eventually be

able to execute it, regardless of the behavior of faulty

servers and clients. Totally ordering a PRE-PREPARE

extends the global order to include those operations that

become eligible for the first time.
Reconciliation subprotocol. The Reconciliation subpro-

tocol proactively recovers globally ordered operations

known to some servers but not others. Because correct

servers can only execute the gap-free prefix of globally

ordered operations, this prevents faulty servers from

blocking execution at some correct servers by intentionally

failing to disseminate operations to them.
Suspect-Leader subprotocol. The Suspect-Leader sub-

protocol determines whether the leader is extending the

global ordering in a timely manner. The servers measure the

round-trip times to each other in order to compute two

values. The first is an acceptable turnaround time that the

leader should provide, computed as a function of the

latencies between the correct servers in the system. The

second is a measure of the turnaround time actually being

provided by the leader since its election. Suspect-Leader

guarantees that a leader will be replaced unless it provides

an acceptable turnaround time to at least one correct server,

and that the threshold for turnaround time is high enough so

that at least f þ 1 correct servers will not be suspected.
Leader Election subprotocol. When the current leader is

suspected to be faulty by enough servers, the nonleader

servers vote to elect a new leader. Each leader election is

associated with a unique view number; the resulting

configuration, in which one server is the leader and the

rest are nonleaders, is called a view. The view number is

increased by one and the new leader is chosen by rotation.
View Change subprotocol. When a new leader is

elected, the View Change subprotocol wraps up in-progress

activity from prior views by deciding which updates to the

global order to process and which can be safely abandoned.
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5 PRIME: TECHNICAL DETAILS

This section describes the technical details of Prime. Due to
space limitations, we only present the details of the
Preordering, Global Ordering, Reconciliation, and Suspect-
Leader subprotocols. Details of the remaining subprotocols
can be found in Appendix A, on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2010.70. Table 1 lists the types and traffic
classes of all of Prime’s messages.

5.1 The Preordering Subprotocol

The Preordering subprotocol binds each client operation to
a unique preorder identifier. The preorder identifier consists
of a pair of integers, ði; seqÞ, where i is the identifier of the
server that introduces the operation for preordering, and
seq is a preorder sequence number, a local variable at i
incremented each time it introduces an operation for
preordering. Note that the preorder sequence number
corresponds to server i’s server-specific ordering.

Operation dissemination and binding. Upon receiving
a client operation, o, server i broadcasts a hPO-REQUEST,
seqi; o; ii�i message. The PO-REQUEST disseminates
the client’s operation and proposes that it be bound to
the preorder identifier ði; seqiÞ. When a server, j, receives
the PO-REQUEST, it broadcasts a hPO-ACK; i; seqi;DðoÞ; ji�j
message if it has not previously received a PO-REQUEST

from i with preorder sequence number seqi.
A set consisting of a PO-REQUEST and 2f matching

PO-ACK messages from different servers constitutes a
preorder certificate. The preorder certificate proves that the
preorder identifier ði; seqiÞ is uniquely bound to client
operation o. We say that a server that collects a preorder
certificate preorders the corresponding operation. Prime
guarantees that if two servers bind operations o and o0 to
preorder identifier ði; seqiÞ, then o ¼ o0.

Summary generation and exchange. Each correct server
maintains a local vector, PreorderSummary[], indexed by
server identifier. At correct server j, PreorderSummary[i]
contains the maximum sequence number, n, such that j has
preordered all operations bound to preorder identifiers
ði; seqÞ, with 1 � seq � n. For example, if server 1 has
PreorderSummary½� ¼ f2; 1; 3; 0g, then server 1 has pre-
ordered the client operations bound to preorder identifiers
ð1; 1Þ and ð1; 2Þ from server 1; ð2; 1Þ from server 2; ð3; 1Þ,
ð3; 2Þ, and ð3; 3Þ from server 3; and the server has not yet
preordered any operations introduced by server 4.

Each correct server, i, periodically broadcasts the
current state of its PreorderSummary vector by sending a
hPO-SUMMARY; vec; ii�i message. Note that the PO-SUM-

MARY message serves as a cumulative acknowledgment
for preordered operations and is a short representation of
every operation the sender has contiguously preordered
(i.e., with no holes) from each server.

A key property of the Preordering subprotocol is that if
an operation is introduced for preordering by a correct
server, the faulty servers cannot delay the time at which the
operation is cumulatively acknowledged (in PO-SUMMARY

messages) by at least 2f þ 1 correct servers. This property
holds because the rounds are driven by message exchanges
between correct servers.

Each correct server stores the most up-to-date and
consistent PO-SUMMARY messages that it has received from
each server; these terms are defined formally in Fig. 1.
Intuitively, two PO-SUMMARY messages from server i,
containing vectors vec and vec0, are consistent if either all of
the entries in vec are greater than or equal to the correspond-
ing entries in vec0, or vice versa. Note that correct servers will
never send inconsistent PO-SUMMARY messages, since
entries in the PreorderSummary vector never decrease. There-
fore, a pair of inconsistent PO-SUMMARY messages from the
same server constitutes proof that the server is malicious.
Each correct server, i, maintains a Blacklist data structure that
stores the server identifiers of any servers from which i has
collected inconsistent PO-SUMMARY messages.

The collected PO-SUMMARY messages are stored in a local
vector, LastPreorderSummaries[], indexed by server identifier.
In Section 5.2, we show how the leader uses the contents of its
own LastPreorderSummaries vector to propose an ordering on
preordered operations. In Section 5.4, we show how the
nonleaders’ LastPreorderSummaries vectors determine what
they expect to see in the leader’s ordering messages, thus
allowing them to monitor the leader’s performance.
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5.2 The Global Ordering Subprotocol

Like BFT, the Global Ordering subprotocol uses three
message rounds: PRE-PREPARE, PREPARE, and COMMIT.
In Prime, the PRE-PREPARE messages contain and propose a
global order on summary matrices, not client operations.
Each summary matrix is a vector of 3f þ 1 PO-SUMMARY

messages. The term “matrix” is used because each PO-

SUMMARY message sent by a correct server itself contains a
vector, with each entry reflecting the operations that have
been preordered from each server. Thus, row i in summary
matrix sm (denoted sm½i�) either contains a PO-SUMMARY

message generated and signed by server i, or a special
empty PO-SUMMARY message, containing a null vector of
length 3f þ 1, indicating that the server has not yet collected
a PO-SUMMARY from server i. When indexing into a
summary matrix, we let sm½i�½j� serve as shorthand for
sm½i�:vec½j�.

A correct leader, l, of view v periodically broadcasts a
hPRE-PREPARE; v; seq; sm; li�l message, where seq is a global
sequence number (analogous to the one assigned to PRE-

PREPARE messages in BFT) and sm is the leader’s
LastPreorderSummaries vector. When correct server i receives
a hPRE-PREPARE; v; seq; sm; li�l message, it takes the follow-
ing steps. First, server i checks each PO-SUMMARY message
in the summary matrix to see if it is consistent with what i
has in its LastPreorderSummaries vector. Any server whose
PO-SUMMARY is inconsistent is added to i’s Blacklist.
Second, i decides if it will respond to the PRE-PREPARE

message using similar logic to the corresponding round in
BFT. Specifically, i responds to the message if 1) v is the
current view number and 2) i has not already processed a
PRE-PREPARE in view v with the same sequence number but
different content.

If i decides to respond to the PRE-PREPARE, it broadcasts
a hPREPARE; v; seq;DðsmÞ; ii�l message, where v and seq
correspond to the fields in the PRE-PREPARE and DðsmÞ is a
digest of the summary matrix found in the PRE-PREPARE. A
set consisting of a PRE-PREPARE and 2f matching PREPARE

messages constitutes a prepare certificate. Upon collecting a
prepare certificate, server i broadcasts a hCOMMIT; v;
seq;DðsmÞ; ii message. We say that a server globally orders
a PRE-PREPARE when it collects 2f þ 1 COMMIT messages
that match the PRE-PREPARE.

Obtaining a global order on client operations. At any
time at any correct server, the current outcome of the Global
Ordering subprotocol is a totally ordered stream of PRE-

PREPARE messages: T ¼ hT1; T2; . . . ; Txi. The stream at one
correct server may be a prefix of the stream at another correct
server, but correct servers do not have inconsistent streams.

We now explain how a correct server obtains a total
order on client operations from its current local value of T .
Let mat be a function that takes a PRE-PREPARE message
and returns the summary matrix that it contains. Let M, a
function from PRE-PREPARE messages to sets of preorder
identifiers, be defined as

MðTyÞ ¼ fði; seqÞ : i 2 R ^ seq 2 N^
fj : j 2 R ^matðTyÞ½j�½i� � seqg
�
�

�
� � 2f þ 1g:

Observe that any preorder identifier in MðTyÞ has been
associated with a specific operation by at least 2f þ 1
servers, of which at least f þ 1 are correct. The Preordering
subprotocol guarantees that this association is unique. The

Reconciliation subprotocol guarantees that any operation in
MðTyÞ is known to enough correct servers so that in any
sufficiently stable execution, any correct server that does
not yet have the operation will eventually receive it (see
Section 5.3). Note also that since PO-SUMMARY messages
are cumulative acknowledgments, if MðTyÞ contains a
preorder identifier ði; seqÞ, then MðTyÞ also contains all
preorder identifiers of the form ði; seq0Þ for 1 � seq0 < seq.

Let L be a function that takes as input a set of preorder
identifiers, P , and outputs the elements of P ordered
lexicographically by their preorder identifiers, with the first
element of the preorder identifier having the higher
significance. Letting k denote concatenation and n denote
set difference, the final total order on clients operations is
obtained by

C1 ¼ LðMðT1ÞÞ;
Cq ¼ LðMðTqÞ nMðTq�1ÞÞ;
C ¼ C1kC2k � � � kCx:

Intuitively, when a PRE-PREPARE is globally ordered, it
expands the set of preordered operations that are eligible
for execution to include all operations o for which the
summary matrix in the PRE-PREPARE proves that at least
2f þ 1 servers have preordered o. Thus, the set difference
operation in the definition of the Cq components causes
only those operations that have not already become
eligible for execution to be executed.

Pre-Prepare flooding. We now make a key observation
about the Global Ordering subprotocol: If all correct servers
receive a copy of a PRE-PREPARE message, then there is
nothing the faulty servers can do to prevent the PRE-

PREPARE from being globally ordered in a timely manner.
Progress in the PREPARE and COMMIT rounds is based on
collecting sets of 2f þ 1 messages. Therefore, since there are
at least 2f þ 1 correct servers, the correct servers are not
dependent on messages from the faulty servers to complete
the global ordering.

We leverage this property by having a correct server
broadcast a PRE-PREPARE upon receiving it for the first
time. This guarantees that all correct servers receive the
PRE-PREPARE within one round from the time that the first
correct server receives it, after which no faulty server can
delay the correct servers from globally ordering it. The
benefit of this approach is that it forces a malicious leader to
delay sending a PRE-PREPARE to all correct servers in order
to add unbounded delay to the Global Ordering subproto-
col. As described in Section 5.4, the Suspect-Leader
subprotocol results in the replacement of any leader that
fails to send a timely PRE-PREPARE to at least one correct
server. This property, combined with PRE-PREPARE flood-
ing, will be used to ensure timely ordering.

In the course of PRE-PREPARE flooding, if a correct server,
i, receives two PRE-PREPARE messages with the same view
number and sequence number but different summary
matrices, server i adds the leader to its Blacklist and invokes
the Leader Election subprotocol (see Appendix A, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TDSC.2010.70). By
periodically broadcasting the conflicting PRE-PREPARE

messages, i will cause all correct servers to blacklist and
suspect the leader, ensuring that a new leader is eventually
elected.
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Summary of normal-case operation. To summarize the
Preordering and Global Ordering subprotocols, Fig. 2 follows
the path of a client operation through the system during
normal-case operation. The operation is first preordered in
two rounds (PO-REQUEST and PO-ACK), after which its
preordering is cumulatively acknowledged (PO-SUMMARY).
When the leader is correct, it includes, in its next PRE-

PREPARE, the set of at least 2f þ 1 PO-SUMMARY messages
that prove that at least 2f þ 1 servers have preordered the
operation. The PRE-PREPARE flooding step (not shown) runs
in parallel with the PREPARE step. The client operation will be
executed once the PRE-PREPARE is globally ordered. Note
that in general, many operations are being preordered in
parallel, and globally ordering a PRE-PREPARE will make
many operations eligible for execution.

5.3 The Reconciliation Subprotocol

The Reconciliation subprotocol ensures that all correct

servers will eventually receive any operation that becomes

eligible for execution. Conceptually, the protocol operates on

the totally ordered sequence of operations defined by the

total order C ¼ C1kC2k . . . kCx. Recall that each Cj is a

sequence of preordered operations that became eligible for

execution with the global ordering of ppj, the PRE-PREPARE

globally ordered with global sequence number j. From the

wayCj is created, for each preordered operation ði; seqÞ inCj,

there exists a set, Ri;seq, of at least 2f þ 1 servers whose PO-

SUMMARY messages cumulatively acknowledged ði; seqÞ in

ppj. The protocol operates by having 2f þ 1 deterministically

chosen servers in Ri;seq send erasure encoded parts of the PO-

REQUEST containing ði; seqÞ to those servers that have not

cumulatively acknowledged preordering it.
Prime uses a Maximum Distance Separable erasure-

resilient coding scheme [19], in which the PO-REQUEST is
encoded into 2f þ 1 parts, each 1=ðf þ 1Þ the size of the
original message, such that any f þ 1 parts are sufficient
to decode. Each of the 2f þ 1 servers in Ri;seq sends one
part. Since at most f servers are faulty, this guarantees
that a correct server will receive enough parts to be able
to decode the PO-REQUEST. The servers run the reconci-
liation procedure speculatively, when they first receive a
PRE-PREPARE message, rather than when they globally
order it. This proactive approach allows operations to be
recovered in parallel with the remainder of the Global
Ordering subprotocol.

Analysis. Since a correct server will not send a
reconciliation message unless at least 2f þ 1 servers have
cumulatively acknowledged the corresponding PO-RE-

QUEST, reconciliation messages for a given operation are
sent to a maximum of f servers. Assuming an operation size
of sop, the 2f þ 1 erasure encoded parts have a total size of
ð2f þ 1Þsop=ðf þ 1Þ. Since these parts are sent to at most
f servers, the amount of reconciliation data sent per

operation across all links is at most fð2f þ 1Þsop=ðf þ 1Þ <
ð2f þ 1Þsop. During the Preordering subprotocol, an opera-
tion is sent to between 2f and 3f servers, which requires at
least 2fsop. Therefore, reconciliation uses approximately the
same amount of aggregate bandwidth as operation dis-
semination. Note that a single server needs to send at most
one reconciliation part per operation, which guarantees that
at least f þ 1 correct servers share the cost of reconciliation.

5.4 The Suspect-Leader Subprotocol

There are two types of performance attacks that can be
mounted by a malicious leader. First, it can send PRE-

PREPARE messages at a rate slower than the one specified
by the protocol. Second, even if the leader sends PRE-

PREPARE messages at the correct rate, it can intentionally
include a summary matrix that does not contain the most
up-to-date PO-SUMMARY messages that it has received.
This can prevent or delay preordered operations from
becoming eligible for execution.

The Suspect-Leader subprotocol is designed to defend
against these attacks. The protocol consists of three mechan-
isms that work together to enforce timely behavior from the
leader. The first provides a means by which nonleader
servers can tell the leader which PO-SUMMARY messages
they expect the leader to include in a subsequent PRE-

PREPARE message. The second mechanism allows the
nonleader servers to periodically measure how long it takes
for the leader to send a PRE-PREPARE containing PO-

SUMMARY messages at least as up-to-date as those being
reported. We call this time the turnaround time provided by
the leader. The third mechanism is a distributed monitoring
protocol in which the nonleader servers can dynamically
determine, based on the current network conditions, how
quickly the leader should be sending up-to-date PRE-

PREPARE messages and decide, based on each server’s
measurements of the leader’s performance, whether to
suspect the leader. We now describe each mechanism in
more detail.

5.4.1 Reporting the Latest PO-SUMMARY Messages

If the leader is to be expected to send PRE-PREPARE

messages with the most up-to-date PO-SUMMARY mes-
sages, then each correct server must tell the leader which
PO-SUMMARY messages it believes are the most up-to-date.
This explicit notification is necessary because the reception
of a particular PO-SUMMARY by a correct server does not
imply that the leader will receive the same message—the
server that originally sent the message may be faulty.
Therefore, each correct server, i, periodically sends the
leader the complete contents of its LastPreorderSummaries
vector in a hSUMMARY-MATRIX; sm; ii�i message.

Upon receiving a SUMMARY-MATRIX, a correct leader
updates its LastPreorderSummaries vector by adopting any of
the PO-SUMMARY messages in the SUMMARY-MATRIX that
are more up-to-date than what the leader currently has in
its data structure. Since SUMMARY-MATRIX messages have
a bounded size-dependent only on the number of servers in
the system, the leader requires a small, bounded amount of
incoming bandwidth and processing resources to learn
about the most up-to-date PO-SUMMARY messages in the
system. Furthermore, since PRE-PREPARE messages also
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have a bounded size independent of the offered load, the
leader requires a bounded amount of outgoing bandwidth
to send timely, up-to-date PRE-PREPARE messages.

5.4.2 Measuring the Turnaround Time

The preceding discussion suggests a way for nonleader
servers to monitor the leader’s performance effectively.
Given that a correct leader can send timely, up-to-date PRE-

PREPARE messages, a nonleader server can measure the time
between sending a SUMMARY-MATRIX message, SM, to the
leader and receiving a PRE-PREPARE that contains
PO-SUMMARY messages that are at least as up-to-date as
those in SM. This is the turnaround time provided by the
leader. As described below, Suspect-Leader’s distributed
monitoring protocol forces any server that retains its role as
leader to provide a timely turnaround time to at least one
correct server. Combined with PRE-PREPARE flooding (see
Section 5.2), this ensures that all eligible client operations
will be globally ordered in a timely manner.

Fig. 3 depicts the maximum amount of delay that can be
added by a malicious leader that performs well enough to
avoid being replaced. The leader ignores PO-SUMMARY

messages and sends its PRE-PREPARE to only one correct
server. PRE-PREPARE flooding ensures that all correct
servers receive the PRE-PREPARE within one round of the
first correct server receiving it.

In order to define the notion of turnaround time more
formally, we first define the covers predicate:

Thus, server i is satisfied that a PRE-PREPARE covers a
SUMMARY-MATRIX, SM, if, for all servers not in i’s blacklist,
each PO-SUMMARY in the PRE-PREPARE is at least as up-to-
date (see Fig. 1) as the corresponding PO-SUMMARY in SM.

We can now define the turnaround time provided by the
leader for a SUMMARY-MATRIX message, SM, sent by
server i, as the time between i sending SM to the leader
and i receiving a PRE-PREPARE that 1) covers SM, and 2) is
for the next global sequence number for which i expects to
receive a PRE-PREPARE. Note that the second condition
establishes a connection between receiving an up-to-date
PRE-PREPARE and actually being able to execute client
operations once the PRE-PREPARE is globally ordered.
Without this condition, a leader could provide fast turn-
around times without this translating into fast global
ordering.

5.4.3 The Distributed Monitoring Protocol

Before describing Suspect-Leader’s distributed monitoring
protocol, we first define what it means for a turnaround
time to be timely. Timeliness is defined in terms of the
current network conditions and the rate at which a correct

leader would send PRE-PREPARE messages. In the definition
that follows, we let L�timely denote the maximum latency for
a TIMELY message sent between any two correct servers;
�pp denote a value greater than the maximum time between
a correct server sending successive PRE-PREPARE messages;
and KLat be a known network-specific constant accounting
for latency variability.

Property 5.1. If Stability-S1 holds, then any server that retains a
role as leader must provide a turnaround time to at least one
correct server that is no more than B ¼ 2KLatL

�
timely þ�pp.

Property 5.1 ensures that a faulty leader will be suspected
unless it provides a timely turnaround time to at least one
correct server. We consider a turnaround time, t � B, to be
timely because B is within a constant factor of the turn-
around time that the slowest correct server might provide.
The factor is a function of the latency variability that Suspect-
Leader is configured to tolerate. Note that malicious servers
cannot affect the value of B, and that increasing the value of
KLat gives the leader more power to cause delay.

Of course, it is important to make sure that Suspect-
Leader is not overly aggressive in the timeliness it requires
from the leader. The following property ensures that this is
the case:

Property 5.2. If Stability-S1 holds, then there exists a set of at
least f þ 1 correct servers that will not be suspected by any
correct server if elected leader.

Property 5.2 ensures that when the network is suffi-
ciently stable, view changes cannot occur indefinitely.
Prime does not guarantee that the slowest f correct servers
will not be suspected because slow faulty leaders cannot be
distinguished from slow correct leaders.

We now present Suspect-Leader’s distributed monitor-
ing protocol, which allows nonleader servers to dynami-
cally determine how fast a turnaround time the leader
should provide and to suspect the leader if it is not
providing a fast enough turnaround time to at least one
correct server. Pseudocode is contained in Fig. 4.

The protocol is organized as several tasks that run in
parallel, with the outcome being that each server decides
whether or not to suspect the current leader. This decision is
encapsulated in the comparison of two values: TATleader and
TATacceptable (see Fig. 4, lines E1-E3). TATleader is a measure of
the leader’s performance in the current view and is
computed as a function of the turnaround times measured
by the nonleader servers. TATacceptable is a standard against
which the server judges the current leader and is computed
as a function of the round-trip times between correct servers.
A server decides to suspect the leader if TATleader >
TATacceptable.

As seen in Fig. 4, lines A1-A4, the data structures used
in the distributed monitoring protocol are reinitialized at
the beginning of each new view. Thus, a newly elected
leader is judged using fresh measurements, both of what
turnaround time it is providing and what turnaround time
is acceptable given the current network conditions. The
following two sections describe how TATleader and
TATacceptable are computed.

Computing TATleader. Each server keeps track of the
maximum turnaround time provided by the leader in the
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current view and periodically broadcasts the value in a TAT-

MEASURE message (Fig. 4, lines B1-B3). The values reported
by other servers are stored in a vector, Reported_TATs,
indexed by server identifier. TAT leader is computed as the
ðf þ 1Þst lowest value in Reported_TATs (line B7). Since at
most f servers are faulty, TATleader is therefore a value v

such that the leader is providing a turnaround time t � v to
at least one correct server.

Computing TATacceptable. Each server periodically runs a
ping protocol to measure the RTT to every other server
(Fig. 4, lines C1-C5). Upon computing the RTT to server j,
server i sends the RTT measurement to j in an RTT-

MEASURE message (line C8). When j receives the RTT
measurement, it can compute the maximum turnaround
time, t, that i would compute if j were the leader (line C10).
Note that t is a function of the latency variability constant,
KLat, as well as the rate at which a correct leader would
send PRE-PREPARE messages. Server j stores the minimum
such t in TATs_If_Leader[i].

Each server, i, can use the values stored in TATs_If_Leader

to compute an upper bound, �, on the value of TATleader that
any correct server will compute for i if it were leader. This
upper bound is computed as the ðf þ 1Þst highest value in
TATs_If_Leader (line D2). The servers periodically exchange
their � values by broadcasting TAT-UB messages, storing the
values in TAT_Leader_UBs (lines D5-D6). TATacceptable is
computed as the ðf þ 1Þst highest value in TAT_Leader_UBs.

We prove that Suspect-Leader meets Properties 5.1 and
5.2 in Appendix B, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TDSC.2010.70.

6 ANALYSIS

In this section, we show that in those executions in which
Stability-S2 holds, Prime provides BOUNDED-DELAY (see
Definition 3.8). As before, we let L�timely and L�bounded denote
the maximum message delay between correct servers for
TIMELY and BOUNDED messages, respectively, and we let
B ¼ 2KLatL

�
timely þ�pp. We also let �agg denote a value

greater than the maximum time between a correct server
sending any of the following messages successively:
PO-SUMMARY, SUMMARY-MATRIX, and PRE-PREPARE.

We first consider the maximum amount of delay that can
be added by a malicious leader that performs well enough to
avoid being replaced. The time between a server receiving
and introducing a client operation, o, for preordering and all
correct servers sending SUMMARY-MATRIX messages con-
taining at least 2f þ 1 PO-SUMMARY messages that cumula-
tively acknowledge the preordering of o is at most three
bounded rounds plus 2�agg. The malicious servers cannot
increase this time beyond what it would take if only correct
servers were participating. By Property 5.1, a leader that
retains its role as leader must provide a TAT, t � B, to at
least one correct server. By definition, �agg � �pp. Thus,
B � 2KLatL

�
timely þ�agg. Since correct servers flood PRE-

PREPARE messages, all correct servers receive the PRE-

PREPARE within three bounded rounds and one aggregation
delay of when the SUMMARY-MATRIX messages are sent. All
correct servers globally order the PRE-PREPARE in two
bounded rounds from the time, t, the last correct server
receives it. Reconciliation guarantees that all correct servers
receive the PO-REQUEST containing the operation within one
bounded round of time t. Summing the total delays yields a
maximum latency of � ¼ 6L�bounded þ 2KLatL

�
timely þ 3�agg.

If a malicious leader delays proposing an ordering, by
more than B, on a summary matrix that proves that at least
2f þ 1 servers preordered operation o, it will be suspected
and a view change will occur. View changes require a finite
(and, in practice, small) amount of state to be exchanged
among correct servers, and thus they complete in finite
time. As described in Section A.3 in Appendix A, a faulty
leader will be suspected if it does not terminate the view
change in a timely manner. Property 5.2 of Suspect-Leader
guarantees that at most 2f view changes can occur before
the system settles on a leader that will not be replaced.
Therefore, there is a time after which the bound of � holds
for any client operation received and introduced by a stable
server.

7 PERFORMANCE EVALUATION

To evaluate the performance of Prime, we implemented the
protocol and compared its performance to that of an
available implementation of BFT. We show results evaluat-
ing the protocols in an emulated wide-area setting with
seven servers (f ¼ 2). More extensive performance results,
including results in a local-area setting, are presented in
Appendix C, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2010.70.

7.1 Testbed and Network Setup

We used a system consisting of seven servers, each running
on a 3.2 GHz, 64-bit Intel Xeon computer. RSA signatures [20]
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provided authentication and nonrepudiation. We used the
netem utility [21] to place delay and bandwidth constraints
on the links between the servers. We added 50 ms delay
(emulating a US-wide deployment) to each link and limited
the aggregate outgoing bandwidth of each server to 10 Mbps.
Clients were evenly distributed among the servers, and no
delay or bandwidth constraints were set between the client
and its server.

Clients submit one update operation to their local server,
wait for proof that the update has been ordered, and then
submit their next update. Updates contained 512 bytes of
data. BFT uses an optimization where clients send updates
directly to all of the servers and the BFT PRE-PREPARE

message contains batches of update digests. Messages in
BFT use message authentication codes for authentication.

7.2 Attack Strategies

Our experimental results during attack show the minimum
performance that must be achieved in order for a malicious
leader to avoid being replaced. Our measurements do not
reflect the time required for view changes, during which a
new leader is installed. Since a view change takes a finite
and, in practice, relatively small amount of time, malicious
leaders must cause performance degradation without
being detected in order to have a prolonged effect on
throughput. Therefore, we focus on the attack scenario
where a malicious leader retains its role as leader
indefinitely while degrading performance.

To attack Prime, the leader adds as much delay as
possible (without being suspected) to the protocol, and
faulty servers force as much reconciliation as possible. As
described in Section 5.4, a malicious leader can add
approximately two rounds of delay to the Global Ordering
subprotocol, plus an aggregation delay. The malicious
servers force reconciliation by not sending their PO-RE-

QUEST messages to f of the correct servers. Therefore, all
PO-REQUEST messages originating from the faulty servers
must be sent to these f correct servers using the Reconcilia-
tion subprotocol (see Section 5.3). Moreover, the malicious
servers only acknowledge each other’s PO-REQUEST mes-
sages, forcing the correct servers to send reconciliation
messages to them for all PO-REQUEST messages introduced
by correct servers. Thus, all PO-REQUEST messages undergo

a reconciliation step, which consumes approximately the
same outgoing bandwidth as the dissemination of the PO-

REQUEST messages during the Preordering subprotocol.
To attack BFT, we use the attack described in Section 2.1.

We present results for a very aggressive yet possible time-
out (300 ms). This yields the most favorable performance for
BFT under attack.

7.3 Results

Fig. 5 shows system throughput, measured in updates/sec,
as a function of the number of clients in the emulated wide-
area deployment. Fig. 6 shows the corresponding update
latency, measured at the client. In the fault-free scenario,
the throughput of BFT increases at a faster rate than the
throughput of Prime because BFT has fewer protocol rounds.
BFT’s performance plateaus due to bandwidth constraints at
slightly fewer than 850 updates/sec, with about 250 clients.
Prime reaches a similar plateau with about 350 clients. As
seen in Fig. 6, BFT has a lower latency than Prime when the
protocols are not under attack, due to the differences in the
number of protocol rounds. The latency of both protocols
increases at different points before the plateau due to
overhead associated with aggregation. The latency begins
to climb steeply when the throughput plateaus due to update
queuing at the servers.

The throughput results are different when the two
protocols are attacked. With an aggressive time-out of
300 ms, BFT can order fewer than 30 updates/sec. With the
default time-out of five seconds, BFT can only order two
updates/sec (not shown). Prime plateaus at about 400 up-
dates/sec due to the bandwidth overhead incurred by the
Reconciliation subprotocol. Prime’s throughput continues
to increase until it becomes bandwidth constrained. BFT
reaches its maximum throughput when there is one client
per server. This throughput limitation, which occurs when
only a small amount of the available bandwidth is used, is a
consequence of judging the leader conservatively.

The slope of the curve corresponding to Prime under
attack is less steep than when it is not under attack due to
the delay added by the malicious leader. We include results
with KLat ¼ 1 and KLat ¼ 2. KLat accounts for variability in
latency (see Section 3). As KLat increases, a malicious leader
can add more delay to the turnaround time without being
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Fig. 5. Throughput of Prime and BFT as a function of the number of
clients in a seven-server configuration.

Fig. 6. Latency of Prime and BFT as a function of the number of clients
in a seven-server configuration.



detected. The amount of delay that can be added by a
malicious leader is directly proportional to KLat. For
example, if KLat were set to 10, the leader could add
roughly 10 round-trip times of delay without being
suspected. When under attack, the latency of Prime
increases due to the two extra protocol rounds added by
the leader. When KLat ¼ 2, the leader can add approxi-
mately 100 ms more delay than when KLat ¼ 1. The latency
of BFT under attack climbs as soon as more than one client
is added to each server because the leader can order one
update per server per time-out without being suspected.

8 RELATED WORK

This paper focused on leader-based Byzantine fault-tolerant
protocols [6], [7], [8], [9], [10], [11], [12] that achieve
replication via the state machine approach [22], [23]. The
consistency of these systems does not rely on synchrony
assumptions, while liveness is guaranteed assuming the
network meets certain stability properties. To ensure that
the stability properties are eventually met in practice, they
use exponentially growing time-outs during view changes.
This makes these systems vulnerable to the type of
performance degradation when under attack described in
Section 2.2. In contrast, Prime uses the Suspect-Leader
subprotocol to allow correct servers to collectively decide
whether the leader is performing fast enough by adapting
to the network conditions once the system stabilizes. Aiyer
et al. [15] first noted the problems that can be caused by a
faulty primary and suggested rotating the primary to
mitigate its attacks. Prime takes a different approach,
enforcing timely behavior from any leader that remains in
power and eventually settling on a leader that provides
good performance. Singh et al. [24] demonstrate how the
performance of different protocols can degrade under
unfavorable network conditions.

More recently, the Aardvark system of Clement et al. [13]
proposed building robust Byzantine replication systems that
sacrifice some normal-case performance in order to ensure
that performance remains acceptably high when the system
exhibits Byzantine failures. The approaches taken by Prime
and Aardvark are quite different. Prime aims to guarantee
that every request known to correct servers will be executed
in a timely manner, limiting the leader’s responsibilities in
order to enforce timeliness exactly where it is needed.
Aardvark aims to guarantee that over sufficiently long
periods, system throughput remains within a constant
factor of what it would be if only correct servers were
participating in the protocol. It achieves this by gradually
increasing the level of work expected from the leader,
which ensures that view changes take place. Aardvark
guarantees high throughput when the system is saturated,
but individual requests may take longer to execute (e.g., if
they are introduced during the grace period that begins any
view with a faulty primary). The Spinning protocol of
Veronese et al. [14] constantly rotates the primary to reduce
the impact of faulty servers.

Rampart [25] implements Byzantine atomic multicast
over a reliable group multicast protocol. This is similar to
how Prime uses preordering followed by global ordering.
Both protocols disseminate requests to 2f þ 1 servers before
a coordinator assigns the global order. Drabkin et al. [26]

observe the difficulty of setting time-outs in the context of
group communication in malicious settings. Prime’s Re-
conciliation subprotocol uses erasure codes for efficient data
dissemination. A similar approach was taken by Cachin and
Tessaro [27] and Fitzi and Hirt [28].

Other Byzantine fault-tolerant protocols [4], [5], [29], [30]
use randomization to circumvent the FLP impossibility
result, guaranteeing termination with probability one.
These protocols incur a high number of communication
rounds during normal-case operation (even those that
terminate in an expected constant number of rounds).
However, they do not rely on a leader to coordinate the
ordering protocol and thus may not suffer the same kinds of
performance vulnerabilities when under attack.

Byzantine quorum systems [31], [32], [33], [34] can also be
used for replication. While early work in this area was
restricted to a read/write interface, recent work uses
quorum systems to provide state machine replication. The
Q/U protocol [33] requires 5f þ 1 replicas for this purpose
and suffers performance degradation when write contention
occurs. The HQ protocol [34] showed how to mitigate this
cost by reducing the number of replicas to 3f þ 1. Since HQ
uses BFT to resolve contention when it arises, it is vulnerable
to the same types of performance degradation as BFT.

A different approach to state machine replication is to
use a hybrid architecture in which different parts of the
system rely on different fault and/or timing assumptions
[35], [36], [37]. The different components are therefore
resilient to different types of attacks. We believe leveraging
stronger timing assumptions may allow for more aggressive
performance monitoring.

9 CONCLUSIONS

In this paper, we pointed out the vulnerability of current
leader-based Byzantine fault-tolerant state machine repli-
cation protocols to performance degradation when under
attack. We proposed the BOUNDED-DELAY correctness
criterion to require consistent performance in all execu-
tions, even when the system exhibits Byzantine faults. We
presented Prime, a new Byzantine fault-tolerant state
machine replication protocol, which meets BOUNDED-

DELAY and is an important step toward making
Byzantine fault-tolerant replication resilient to perfor-
mance attacks in malicious environments. Our experi-
mental results show that Prime performs competitively
with existing protocols in fault-free configurations and an
order of magnitude better when under attack in the
configurations tested.
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