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Abstract types.

Secue groupcommunicationis crucial for building
distributed applicationsthat work in dynamicervi-
ronmentsand communicatever unsecued networks
(e.g. thelnternet). Key agreements a critical part of
providing securityservicesfor group communication
systems.Most of the current contributory key agree-
mentprotocols are not designedto tolerate failures
and membeship changes during execution. In par-
ticular, nestedor cascadedyroup membeship events
(sud aspartitions) are notaccommodated.

In this paperwe presentthe first robust contribu-
tory key agreemenprotocolsresilientto anysequence
of eventswhile preservingthe group communication
membeshipandorderingguarantees.

1 Introduction

The explosive growth of the Internethasincreased
boththenumberandthepopularityof applicationghat
requireareliablegroupcommunicationnfrastructure,
suchasvoice- andvideo-conferencingwhite-boards,
distributed simulations,and replicatedseners of all
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Securegroup communicationis crucial for build-
ing distributedapplicationghatwork in dynamicnet-
work ervironmentsand communicateover insecure
networks suchas the global Internet. Key manage-
mentis the basefor providing commonsecurityser
vices (datasecreyg, authenticatiorand integrity) for
group communication.Thereare several approaches
to groupkey management.

Oneapproacltrelieson a single,centralizedentity;
to generatekeys anddistribute themto the group. In
this case,a so-calledkey sener maintainslong-term
sharedkeys with eachgroup memberin orderto en-
able securetwo-party communicationfor the actual
key distribution. A specificform of this solutionuses
a fixed trustedthird party (TTP) asthe key sener.
This approachastwo problems:1) the TTP mustbe
constantlyavailableand2) a TTP mustexist in every
possiblesubsebf a groupin orderto supportcontin-
uedoperationin the eventof network partitions. The
first problem can be addressedvith fault-tolerance
andreplicationtechniques.The second however, is
impossibleto solve in a scalableand efficient man-
ner We note, however, that centralizedapproaches
work well in a one-to-may multicastscenariosince
a TTP (or a setthereof)placedat, or very near the
sourceof communicatiorcansupportcontinuedoper
ationwithin anarbitrarypartitionaslongasit includes
the source.(Typically, one-to-map settingsonly aim
to offer continuedoperationwithin a single partition
thatincludesthe source;whereasmary-to-mary en-
vironmentamustoffer thesamen anarbitrarynumber
of partitions.)

Another key managemenapproachinvolves dy-
namicallyselecting- in somedeterministicmanner
a group memberchaged with the task of generating



keys and distributing themto other group members.
This approachs robustandmoreamenabldgo mary-
to-mary type of groupcommunicatiorsinceary par
tition cancontinueoperationby electinga temporary
key sener. Thedravbackhereis that,asin the TTP
case,a key sener mustestablishlong-term pairwise
securechannelsvith all currentgroupmembersn or-
derto distribute groupkeys. Consequentlyeachtime
a new key sener comesinto play, significant costs
must be incurredto setup thesechannels. Another
disadwantageagainasin the TTP casejs thereliance
onasingleentity to generategyood(i.e., cryptographi-
cally strong,random)keys.

In contrastto the above, contritutory key manage-
mentaskseachgroupmemberto contritute an equal
shareto the commongroupkey (computedasa func-
tion of all members’contrilutions). This approach
avoidsthe problemswith thesinglepointsof trustand
failure. Moreover, somecontritutory methodsdo not
requirethe establishmenof pairwisesecretchannels
amonggroup members. However, currentcontriku-
tory key agreementprotocolsarenot designedo tol-
eratefailuresand group membershipchangesduring
execution.In particular nestedor cascadedbailures,
partitionsand other group events are not accommo-
dated. This is not surprisingsincemostmulti-round
cryptographicprotocolsdo not offer built-in robust-
nesswith the notableexceptionof protocolsfor fair
exchangd1].

The main goal of this paperis to demonstratdowv
provably secure,multi-round group key agreement
protocolscanbe combinedwith reliable group com-
municationservicego obtainprovably fault-toler ant
group key agreemensolutions. More precisely we
presenttwo robust contritutory key agreemenpro-
tocolswhich areresilientto ary sequencéeven cas-
caded)of eventswhile preservinggroupcommunica-
tionsmembershi@ndorderingguaranteesBoth pro-
tocols are basedon Cliques GDH contrikutory key
agreementhat generalizeson the two-party Diffie-
Hellman[2] key exchange.Our first protocolutilizes
membershipnformationprovided by the groupcom-
municationsystemin orderto appropriatelyre-start
CliquesGDH key agreemenin anagreed-upoman-

1\We usetheterm”agreement, asopposedo "distribution”, to
emphasizehe contributory natureof the key management.

nerevery time the groupchanges.The secondproto-
col optimizestheperformancef commoncasestthe
costof amoresophisticategrotocolstatemachine.

Therestof the paperis organizedasfollows. The
remaindef this sectionfocuseson our motivationin
pursuingthis work and overviews relatedwork. We
thenpresentSecureSpreada securegroupcommuni-
cationsystemwhich utilizesour key agreemenproto-
cols. Thetwo subsequensectiongpresentwo robust
key agreemenprotocolsand prove their correctness.
Finally, we summarizeour work anddiscusssomefu-
turedirections.

1.1 Motivation

As mentionedearlier a prominentchallengeen-
counteredn securinggroup communicatioris in de-
velopingrobust, reliable and fault-tolerantgroup key
managemeninechanismshat performwell in prac-
tice. While the motivation for securityservices(key
managemenin particular)in atightly-coupledgroup
communicatiorsettingis fairly intuitive, the needfor
reliable group communicationservicesby the group
key managemenis lessolvious. We claim that re-
liable and sequencednessagelelivery is important
(andeven crucial) for cryptographiogroup protocols.
Asynchronousetwork behaior mustbe handledby
the underlying group communicationlayer, which
promptsthe needfor a highly reliablegroupcommu-
nicationservice.

This dependencés both natural and mutual. It
is natural since securedynamic peer groupsalways
require certain communicationguarantees. (Best-
effort datagranserviceis not usuallya viable option,
whereasjt may sufiice for one-to-maw type groups
encounteredn Internetmulticastsettings.) It is mu-
tual sincereliable group communicationsystemsare
of limited utility in opennetworks without strongse-
curity servicesand guaranteesThus, we have inter-
dependencamongreliablegroupcommunicatiorand
groupkey managementrotocols.

Cryptographic protocols designersare primarily
concernedavith securityandtypically assumehatpro-
tocol robustnesss handledby the particularapplica-
tion or by theunderlyingcommunicatiorayer Thisis
reasonablén two-partyprotocolswherecommunica-
tion failuresarerelatively easyto handleandrecover



from. The picturechangesiramaticallyin grouppro-
tocolswherethe behaior modelis richet

Multi-round groupkey managemenmprotocolscan-
not be expectedto run to completion without be-
ing possiblyinterruptedby variousgroupmembership
events: joins, leaves, disconnectspartitions, meiges
or ary combinatiornthereof.

Our previouswork [3] focusedon the performance
evaluationin the scenariowith no network faults or
cascadedventsand provided a good insight of the
overall costof high securityin agroupcommunication
ervironment.Thepresentvork goesinto thedetailsof
acompletesolutionthathandlesvery possiblecombi-
nationof groupmembershigvents. The contritution
of this paper therefore,is the design,andthe proof
of correctnessf, arobustcontrikutory key agreement
algorithm.

1.2 Related Work

In this sectionwe considerelatedwork in two ar
eas:groupkey managemenandreliablegroupcom-
munication.

121 Group Key Management

Cryptographictechniquesfor securingall types of

multicast-or group-basegrotocolsrequireall parties
to sharea commonkey. This requiresa Group Key

Managemen{GKM) protocolto provide methodgor

generatinghew groupkeysandupdatingexistingkeys.

GKM protocolsgenerallyfall into two classes:

e Protocolsgdesignedor large-scalde.g.,IP Multi-
cast)applicationswith a one-to-mag communi-
cationparadigmandrelatively weaksecurityre-
quirements.

e Protocols designedto support tightly-coupled
dynamic peer groups with modest scalability
requirements,a mary-to-mary communication
paradigmandstrongsecurityrequirements.

GKM protocolsof thefirst typearebeingdevelopedin
the context of IETF/IRTF. Oneexampleis the Group
Key Managemen®Protocol (GKMP) [4] which pro-
videskey disseminatiorusinga dedicatedyroupcon-
troller. Another is the Multicast Key Management

Protocol (MKMP) [5] which assumesa number of
trusted “key distributors” exist throughoutthe net-
work. (MKMP providesaway for agroupmemberto
probefor the nearestistributor in orderto geta copy
of a groupkey.) SomeGKM protocolsleverageoff
particularIP Multicast routing protocols. The Scal-
ableMulticastKey Distribution [6] approactusesthe
CoreBasedTrees[7] multicastrouting protocolstate
and structureto authorizemembersand disseminate
keys. Althoughit providesan efficient methodof key
disseminationthis methodis limited to domainsthat
useCBT for multicastrouting.

Some key managemen@pproachedameting IP
Multicastusehierarchicakey distribution. For exam-
ple, the lolus system[8], partitionsthe multicasttree
into subgroupsgachsub-grouphasa differentgroup
key and nodeson the bordersof sub-groupgperform
re-encryptiorof multicastdatain realtime. Thework
of [9] andthe Intra-domainGroup Key Management
Protocoladwancethis conceptby allowing eachsub-
groupto be a separatelomainwith independenton-
trol over whatgroupkeying protocolis used.Another
hierarchicalapproachmalesthe groupkey itself hier-
archical,usuallywith a tree-basedtructure.In [10],
atree-orientedey structureallows eachleafto repre-
sentanumberof nodesandsomemembershighanges
to only requirelog(n) key changes.

A numberof GKM protocolssupportingabstract
peergroupshave beendevelopedin the last decade
[11], [12], [13], [14], [15], [16], [17]. All, except[17],
extendthe well-knovn Diffie-Hellmankey exchange
[2] methodto group of n parties. Theseprotocols
vary in degreesof protectionfrom hostileattacksand
in their performancecharacteristics(For anin-depth
comparison,see[16].) In this paper we male use
of the CLIQUES toolkit which implements— among
other methods— a suite of protocols,called generic
Group Diffie-Hellman(GDH). GDH offers contriku-
tory authenticatedyroup key agreementnd handles
dynamic membershipchanged15, 16]. The entire
protocolsuite hasbeenproven securewith respecto
both passie andactive attacks.

1.2.2 Reliable Group Communication

Reliablegroupcommunicatiorin LAN ervironments
have a well-developed history beginning with 1SIS



[18], and more recentsystemssuchas Transis[19],
Horus[20], Totem[21], andRMP[22]. Thesesystems
explored several differentmodelsof Group Commu-
nicationsuchasVirtual Synchrory [23] andExtended
Virtual Synchrowy [24]. Morerecentwork in thisarea
focuseson scaling group membershipto wide-area
networks[25], [26].

Researcln securinggroupcommunications fairly
new. Theonly actualimplementation®f groupcom-
municationsystemghatfocuson security(in addition
to ours), are SecureRing27] projectat UCSB, and
the Horus/Ensemblevork at Cornell [28]. The Se-
cureRingsystemprotectsa low-level ring protocolby
using cryptographictechniquesto authenticateesach
transmissiorof the token and eachdatamessagee-
ceived. The Ensemblesecuritywork is the state-of-
the-artin securereliable group communicationand
addresseproblemsas group keys andre-keying. It
also allows application-depedent trust models and
optimizescertainaspect®f groupkey generatiorand
distribution protocols. In comparisonwith our ap-
proach Ensembleusesa differentgroupkey structure
thatis not contributory andprovidesa differentsetof
securityguarantees.

Recentresearchon Bimodal-Multicast, Gossip-
basedprotocols[29] and the Spinglasssystemhas
largely focusedon increasingthe scalability and sta-
bility of reliable group communicationservicesin
more hostile ervironments such as wide-areaand
lossy networks by providing probabilisticguarantees
aboutdelivery, reliability, andmembership.

2 A Secure Group Communication Environ-
ment

The work discussedn this paperhasinvolved in-
tegratingthe Spreadwide-areagroupcommunication
systemwith the group key agreementprotocolsin
the Cligues GDH protocol suite. In this sectionwe
overvien both SpreadandCliquestoolkits.

2.1 Spread Toolkit

Spread30], [31] is agroupcommunicatiorsystem
for wide andlocal areanetworks. It providesall the
servicesof traditionalgroupcommunicatiorsystems,
including: unreliable/reliabledelivery, FIFO, causal,

total ordering,and membershipserviceswith strong
semantics.

Spreadcreatesan overlay network that can im-
poseanarbitrarynetwork configuration(suchaspoint-
to-multi-point, tree, ring, tree-with-subgroupsr ary
combinationthereof)to adaptthe systemto different
network ervironments. The Spreadarchitectureal-
lows multiple protocolsto be usedon links both be-
tweenandwithin sites. TheSpreadoolkit is very use-
ful for applicationsthat needtraditional group com-
municationservicegsuchascausablndtotal ordering,
membershi@nddelivery guaranteeshut alsoneedto
operateover wide-areanetworks.

The systemconsistsof along-runningdaemorand
a library linked with the application. This architec-
ture hasmary benefits,the mostimportantfor wide-
areasettingsbeing the ability to pay the minimum
possibleprice for differentcausesof groupmember
ship changes. A simple join or leave of a process
translatesnto a singlemessagewhile a daemondis-
connectionor connectionrequiresa full membership
change.Luckily, thereis a stronginverserelationship
betweerthefrequeng of theseeventsandtheir costin
apracticalsystem.The processaanddaemormember
shipscorrespondo the morecommonmodelof light-
weightandheary-weightgroups.

Spreadscaleswell with the numberof groupsused
by the applicationwithout imposingary overheadon
network routers.Groupnamingandaddressings not
a sharedresource(asin IP multicastaddressingput
ratheralarge spaceof stringswhichis uniqueto acol-
laborationsession.

The toolkit can supporta large numberof differ-
ent collaborationsessionsgachof which spansthe
Internetbut hasonly a moderatenumberof partici-
pants.Thisis achiezedby usingunicastmessagesver
the wide-areanetwork, routing thembetweenSpread
nodeson the overlaynetwork.

The Spreadsystemprovidestwo differentseman-
tics: ExtendedVirtual Synchroy [24, 32] and View
Synchrory [33]. In this papeyandfor ourimplemen-
tation we only usethe View Synchroy semanticof
Spread.

The Spreadtoolkit is available publicly andis be-
ing usedby severalorganizationgor bothresearctand
practicalprojects.Thetoolkit supportscross-platform
applicationsandhasbeenportedto several Unix plat-



formsaswell asWindows andJava ervironments.
2.2 Cliques Toolkit

Cliques[16, 15, 34] is a cryptographidoolkit pro-
viding key managemenservicesfor dynamic peer
groups.Cliquesincludesseveral protocolsuites:

e GDH: basedon group extensionsof the 2-party
Diffie-Hellmankey exchange[15, 16]; provides
fully contritutory authenticatedkey agreement.
GDH is fairly computation-intenge requiring
O(n) cryptographicoperationsupon each key
changelt is, however, bandwidth-éicient.

e CKD: centralizedkey distribution with the key
senerdynamicallychoserfrom amongthegroup
members. A key sener usespairwise Diffie-
Hellmankey exchangeto distribute keys. CKD
is comparabléo GDH in termsof bothcomputa-
tion andbandwidthcosts.

e TGDH: tree-basedgroup Diffie-Hellman [34];
TGDH is more efficient than the abore in
termsof computatiorasmostoperationgequire
O(log n) cryptographiomperations(Thesecurity
of TGDH is slightly wealer andit lacksseveral
otherfeaturesnot germanen this context.)

e BD: a protocol basedon BurmesteDesmedt
[13] variation of group Diffie-Hellman. BD is
computation-dicient requiring constantumber
of exponentiationauponary key change.How-
ever, communicationcostsare significant with
two roundsof n-to-n broadcasts.

All' Cliques protocol suitesoffer key independence,
perfectforward secreg andresistanceao known key
attacks. (See[35, 16] for precisedefinitionsof these
properties.)

In this paper we focusonly on the GDH protocol
suite within the Cliquestoolkit. As mentionedear
lier, our specificgoal is to take a provably secure,
multi-round group key agreementprotocol (GDH)
and, by combiningit with the reliable group com-
municationservice(Spread)pbtaina provably fault-
tolerant groupkey agreemensolution.

Cligues GDH API [36] is the implementationof
the GDH protocol suite. It containsGDH crypto-
graphicprimitives while assuminghe existenceof a

reliablecommunicatiorplatformfor transportingoro-
tocol messagesGDH assignsa specialrole to thelast
memberto join a group. This role, referredto asthe
groupcontroller floatsasgroupmembershighanges.
A groupcontrolleris chagedwith initiating key up-
datesfollowing membershighangesg. Thefollowing
operationgriggerakey update:

¢ join: addasinglenew membetto thegroup(han-
dledasa specialcaseof memge).

e mege: addmultiple membergo thegroup.

e |leavre: onemembervoluntarily leavesthe group
(handledasa specialcaseof partition).

e partition: multiple memberdeave the groupdue
to expulsionor anetwork event.

3 System Model

In this sectionwe specifythefailureandthe group
communicatiormodelsusedin this paper

3.1 FailureModel

We considera distributed systema group of pro-
cessegxecutingon oneor morecomputersandcoor
dinatingactionsby exchangingmessage§37]). The
messagexchanges achievedvia asynchronousul-
ticastandunicastmessagedMessagesanbelost.

Thesystemis subjectto processrashesandrecor-
eries. A crashof ary componenbf the processsuch
asthekey-agreemenlayer, the Cliqueslibrary, or the
groupcommunicatiorsystemis considereda process
crash.It isassumedhatthe crashof oneof thesecom-
ponentds detectedy all the othercomponentandis
treatedasaprocessrash.

Also, the systemis proneto partitionswhich may
result a network being split into disconnectedsub-
networks. When sucha partition is fixed, the dis-
connecteccomponentsnerge into a larger connected
component.While processesrein separataliscon-
nectedcomponentshey cannotexchangemessages.

We assumeahatmessageorruptionis maskedby a
lower layer Byzantinefailuresarenot considered.

2GDH API alsoallows a key refreshoperatiomwhich may be
initiated only by the currentcontroller



Our intrudermodeltakesinto accountonly outside
intruders both passie andactive. An outsideris ary-
onewho is not a currentgroupmember (Of course,
ary formerandfuture membeyis anoutsideraccord-
ing to this definition.) We do not considerinsiderat-
tackssinceour threatmodel concentrate®n the se-
creqy of group keys and the integrity of the group
membershigi.e., theinability to spoofauthenticated
membership). Consequentlyinsider attacksare not
relevantbecaus@maliciousinsidercanalwaysreveal
thegroupkey and/orits own privatekey thusallowing
for fraudulentmembershi@uthentication.

Passve outsiderattacksnvolve eavesdroppingvith
the aim of discovering the groupkey(s). This attack
type hasbeenproven to be computationallyinfeasi-
blein [15]. Active outsiderattacksinvolve injecting,

deleting,delayingand modifying protocol messages.

Someof theseattacksaim to causedenial of service;
we do not addresghesedenialof serviceattacks.At-
tackswith the goal of impersonatinga groupmember
are preventedby the use of public key-basedsigna-
tures.(All protocolmessagearesignedby thesender
andverified by all recevers.) Other moresubtle,ac-
tive attacksaimto introducea known (to the attacler)
or old key. Theseare preventedby the combineduse
of: timestampsunique protocol messagadentifiers
andsequenceumbergidentifying the particularpro-
tocol run) in eachprotocolmessage.

3.2 Group Communication Model

A group communicationsystemusually provides
fundamentakervicessuchas membershipaswell as

disseminationreliability and ordering of messages.

The membershipservicenotifies the upperlevel ap-
plication with a list of group memberseachtime the
groupchanges.This notification-of-membersp ser
viceis calledaview. Every procesghatis partof the
groupcommunicatiorsystenrunsthemembershigl-
gorithm and decideson the new view in agreement
with other connectedprocesses.Oncethis decision
is made,the view is installedandthe upperlevel ap-
plicationis notified.

Several different sets of membershipproperties
have beendefinedin the literature. Eachprovidesa
differentsetof semantigguaranteeto theapplication,
andareusuallycalledVirtual Synchroy semanticor

somevariant on the name. The mary variationsof
virtual synchroly are all basedon the propertythat
processesnoving togetherfrom oneview to another
deliver the samesetof messages the former mem-
bershipview.

Some group communicationsystemshave been
built [20], [22], [26] thatapproximatehe virtual syn-
chrory model along with some related properties.
However, eachsystemdoesnotprovidetheexactsame
setof properties,andto the bestof our knowledgea
canonical'Virtual Synchroy model” of anentiresys-
tem hasnot beendefinedin the literature. A good
suney describingmary of the variationsof differ-
ent propertiesfor virtual synchroy semanticxanbe
foundin [38].

Virtual synchroy strengthengshe sharedstate of
the systemby delivering messages the samemem-
bershipas they were sentin. This enablesthe use
of a sharedkey to encryptdata,sincethe recever is
guaranteedo have the samemembershipview asthe
senderandthereforethe samekey (ignoring for now
someconstrainton rekeying).

This work assumeghat the group communication
systemsupportsvirtual synchroy semanticsasthey
aredefinedbelown. The descriptionof the propertiess
largely basednthesuney [38] andthedescriptionof
the ExtendedVirtual Synchroy semantic§24].

Note that we define that someevent occurredin
view v at process if the mostrecentview installed
by proces® wasw.

1. Selfinclusion
If procesy installsa view v thenp is amember
of v.

2. Local Monotonicity
If processp installsa view v after installing a
view v’ thentheidentifierid of v is greaterthan
theidentifierid’ of v'.

3. Sendingview Delivery
A messageés deliveredin theview thatit wassent
in.

4. DeliveryIntegrity
If processp deliversa messagen in a view v,
then there exists a processqg that sentm in v
causallybeforep deliveredm.



5. No Duplication
A messages not senttwice. A messages not
deliveredtwice to the sameprocess.

6. SelfDelivery:
If procesgp sendsa messagen, thenp delivers
m unlesst crashes.

7. Transitional Set

1) If two processep andgq install the sameview,
andgq is includedin p’s transitionalset for this
view thenp’s previous view wasidenticalto ¢’'s
previousview.

2) If two processep andq install the sameview,
andgq is includedin p’s transitionalset for this
view thenp is includedin ¢’s transitionalsetfor
this view.

8. Mirtual Syn@irony
Two processeshat move togethet throughtwo
consecutie views deliver the samesetof mes-
sagesn theformer

9. CausalDelivery
If messagen causallyprecedesnessagen’, and
both are sentin the sameview, thenary process
g thatdeliversm/ deliversm beforem/'.

10. AgreedDelivery

1) Agreed delivery maintains causal delivery
guarantees.

2) If agreednessages: andm/' aredeliveredat
proces in this order andm andm' aredeliv-
eredby processy, thenm/ is deliveredby q after
it deliversm.

3) If agreedmessages: andm' aredeliveredby
proces in view v in thisorder andm’ is deliv-
eredby procesg; in v beforeatransitionakignal,
thenq deliversm. If messages andm’ arede-
liveredby process in view v in this order and
m! is deliveredby processy in v after a transi-
tional signal,thenq deliversm if r, thesendeof
m, belonggo ¢’'s transitionalset.

11. SafeDelivery
1) Safedelivery maintainsagreeddelivery guar
antees.

3If procesy installsaview v with processgy in its transitional
setandprocesg; installsv aswell, thenp andg aresaidto move
together

2) If proces® deliversasafemessagen in view
v beforethe transitionalsignal, then every pro-
cessq of view v deliversm unlessit crashes.If
processp delivers a safemessagen in view v
afterthetransitionalsignal,thenevery process;
thatbelongsto p’s transitionalsetdeliversm af-
terthetransitionalsignalunlesst crashes.

4 A Basic Robust Algorithm

This sectiondiscusseshe detailsof a basicrobust
key agreemenalgorithm. We describethe algorithm
andprove its correctnessi.e. thatthe algorithmpre-
senes the virtual synchroy semanticspresentedn
Section3.2. Throughoutthe remainderof the paper
we meanby the groupcommunicatiorsystem(GCS),
a group communicationsystemproviding the virtual
synchroly semantics.

4.1 Algorithm Description

Our basicalgorithmis basedon the CliquesGDH
IKA.2 protocol.Briefly, thisprotocolworksasfollows
(se€e[15] for acompletedescription):

When an additive group view changehappenga
join or a mege) the currentgroup controller gener
atesa new key token by refreshingits contritution to
the groupkey andpasseshe tokento oneof the nen
membersWhenthatnen memberecevesthistoken,
it addsits own contritution andpasseshetokento the
next nev membef. Eventually the tokenreacheghe
lastnew member This nev membeywho is slatedto
becomehenew groupcontroller broadcastthetoken
to the groupwithout addingits contritution. Uponre-
ceving the broadcastoken, eachgroupmember(old
andnew) factorsout its contritution andunicaststhe
result(calledafactorout token)to thenew controller
The new controllercollectsall the factorout tokens,
addsits own contritution to eachof them, builds a
list of partialkeys andbroadcastghelist to thegroup.
Every membercanthenobtainthe groupkey by fac-
toring in its contritution. (Thisis actuallyperformed
with modularexponentiation.)

“The new memberlist andits orderingis decidedby the un-
derlying groupcommunicationsystem;Spreadin our case. The
actualorderis irrelevantto Cliques.



When somemembersleave the group, the group
controller(who, atall times,is the mostrecentgroup
member) removes their correspondingpartial keys
from thelist of partialkeys, refreshegachpartial key
in the list andbroadcastshe list to the group. Each
remainingmembercanthencomputethe sharedkey.

The algorithm describedabore is secureand cor
rect. Securityis presered independentlyof any se-
guenceof membershigvents,while correctnesiolds
only aslong asno additionalgroupview changetakes
placebeforethe protocolterminates.

To elaborateon this claim, considerwhat happens
if asubtractie (leave or partition) groupmembership
eventoccurswhile the above protocolis in progress,
for example,while the groupcontrolleris waiting for
individual unicastsfrom all group members. Since
the Cliques protocol is unavare of the membership
changgwhichis "visible” only to the groupcommu-
nicationsystem)thegroupcontrollerwill notproceed
until all factorout tokens (including thosefrom for-
mer members)are collected. Therefore,the system
will block. Similar scenariosrealsopossible e.g.,if
oneof thenew membersrashesvhile addingits con-
tribution to a groupkey. In this case,the token will
never reachthe new groupcontrollerandthe protocol
will, onceagain,simply block.

If the nestedeventis additive (join or meige), the
protocoloperatesorrectly In otherwords,it runsto
completionand the nestedevent is handledserially
(We note,however, thatthis is not optimalsince,ide-
ally, multiple additve eventscanbe "chained” effec-
tively reducingbroadcastandfactorout tokenimplo-
sions.)

As theabove examplesillustrate,the protocoldoes
notfunctioncorrectlyin the faceof cascadedubtrac-
tive membershipvents. This behaior is not accept-
able for reliable group communicationsystemsthat
aim to provide a high degreeof robustnessandfault-
tolerance.

A naturalandcorrectsolutionto this problemis as
follows: every time a groupview changeoccurs,the
group deterministicallychoosesa member(say the
oldest)and runsthe CliguesGDH protocolwith the
chosemmembeilinitializing it. Notethatthis approach
coststwicein computatiorandO(n) morein thenum-
berof messagefor thecommoncasewith no cascad-
ing membershipevents. This will be rectifiedin the
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model

secondprotocoldescribedn Section 5.

Whenthekey-agreemenprotocolis integratedwith
agroupcommunicatiorsystemandvirtual synchrony
semanticsmust be presered, extra care must be
taken in order to provide all its guaranteedo the
application,including delivery of the correctviews,
transitional signal and transitional sets. We will
elaborateon theseissueslater Figure 1 presents
the architectureof a securegroup communication
system. The systemusesthe following types of
messages:Cliques messagegfinal_token.msg, par
tial_token.msg, key_list_msg, factoutmsg), which
arespecificto the key agreemenprotocol (see[36]);
membershimotificationmessagenemhmsg);tran-
sitional signal messagestranssignalmsg); applica-
tion message&datamsg);flushmechanismmessages
(flush-requestmsg,flush.ok_msg).

To satisfy Sendingview Delivery without discard-
ing message$rom live and connectedmembers,a
group communicationsystemmust block the send-
ing of messagevefore the nev membershipis in-
stalled. In orderto implementSendingView Deliv-
erythegroupcommunicatiorsystemsendsamessage
(flush.requestmsg)to theclientaskingfor permission
to install a nev membershigbeforeactually creating
the membership. The applicationrespondswith an
acknavledgemenmessagéflush.ok-msg)which fol-



lows all the messagesentby the applicationin the
old view. After sendingthe acknavledgementmes-
sage the applicationis not allowed to sendary mes-
sageauntil thenew view is delivered.In Figurel, the
key-agreemendlgorithminteractswith boththeappli-
cationandGCS.Thekey-agreemenalgorithmimple-
mentsthe blocking mechanisntransparently When
aflush-requestimsgmessagés recevedfrom GCS,it
is deliveredto the userapplication. Whenthe appli-
cationacknavledgementmessagés recevedit is sent
downto GCS.

A processstartsexecutingthe algorithmby invok-
ing the join primitive of the key-agreemenimodule
whichtranslatesnto agroupcommunicatiorjoin call.
In ary stateof the algorithma processcanvoluntar
ily leave by invoking the leave primitive of the key-
agreementmodule which translatesit into a group
communicatiorieave call.

The specificationof the algorithm is definedin
termsof the following receved eventswhich are as-
sociatedwith a specificgroup:

e PartiaL Token: a partial token message(par
tial_tokenmsg) was receved by the key-
agreemenalgorithmfrom the GCS.

e FinalLToken: a final token message (fi-
nalLtokenmsg) was receved by the key-
agreemenalgorithmfrom the GCS.

e FactOut: afactorout messagéfactorout msg)
was receved by the key-agreementalgorithm
from the GCS.

e Key_List: akey list messagékey_list_msg)was
received by the key-agreementalgorithm from
theGCS.

e UserMessage: a data application message
(datamsg) was receved by the key-agreement
algorithm from the application. The usercan
send messagesising broadcastor unicastser
vices.

e DataMessage: a data application message
(datamsg) was receved by the key-agreement
algorithmfrom the GCS.

e TransitionalSignal: a transitional signal mes-
sage(transsignal msg)wasreceved by the key-
agreemenélgorithmfrom the GCS.

e Membership: a membership message
(memhmsg)wasreceived by the key-agreement
algorithmfrom the GCS.

e FlushRequest: a flush request message
(flush.requestmsg) was receved by the key-
agreemenalgorithmfrom the GCS.

e SecureFlushRequest:a flush requestmessage
(flush-requestmsg)wasreceved by the applica-
tion from the key-agreemenéalgorithm.

e SecureFlushOk: a flush acknavledge mes-
sage (flush.ok_msg) was receved by the key-
agreemenéalgorithmfrom theapplication.

Note that the sametype of messagecan be associ-
ated with different events, dependingon the source
of the message. For example, both Flush Request
and SecureFlush Requeskeventsare associatedvith
a flush.requesimsgmessagebut in the first casethe
messages receved by the key-agreemenglgorithm
from the application, while in the secondcasethe
messagés receved by the applicationfrom the key-
agreemenéalgorithm.

The algorithm consistsof a statemachinehaving
thefollowing states:

e SECURE(S): in this statethe securegroup is
functional, all of the membershave the group
key and can communicatesecurely; the pos-
sible events are DataMessage,UserMessage,
SecureFlush Ok, FlushRequest, and Transi-
tional Signal; getting a SecureFlush.Ok with-
outreceving aFlushRequests illegal; all other
eventsarenot possible.

e WAIT_FORPARTIAL _TOKEN  (PT): in
this state the processis waiting for a par
tial_tokenmsg message; the possible events
are PartialLToken, FlushRequestand Tran-
sitional Signal, UserMessage and Se-
cureFlushOk are illegal; all other events
arenot possible.



e WAIT _FORFINAL _TOKEN (FT): in this state
the processs waiting for afinal_tokenmsgmes-
sage; the possible events are FinalToken,
FlushRequest and TransitionalSignal;
UserMessage and SecureFlushOk are il-
legal; all othereventsarepossible.

e COLLECT.FACT_.OUTS (FO): in this statethe
procesds waiting for N — 1 factoutmsgmes-
sagegwhereN is thesizeof thegroup);theonly
possible events are FactOut, FlushRequest,
and TransitionalSignal; UserMessageand Se-
cureFlush Ok areillegal; all othereventsarenot
possible.

e WAIT_FORKEY _LIST (KL): in this statethe
processis waiting for a key_list.msg message;
the possibleeventsare Key_List, Flush Request
and TransitionalSignal; UserMessageand Se-
cure Flush Ok areillegal; all othereventsarenot
possible.

e WAIT _FOR CASCADING.MEMBERSHIP
(CM): in this statethe procesds waiting for are
membershipand transitional signal messages
(memhmsgand transsignalmsg); the possible
events are Membership, TransitionalSignal,
DataMessage (possible only the first time
the processgets in this state), PartialL Token,
FinalLToken, FactOut and Key_List (they cor
respondto Cligues messagedrom a previous
instanceof the key agreementprotocol when
cascadedevents happen); UserMessageand
SecureFlush Ok areillegal; all othereventsare
not possible.

A process handles an event by performing two
types of actions. The first type of action is
a group communicationoperation and can be ei-
ther a messagedelivery, or a messagesend such
as unicast, broadcast,or sendflushok. The sec-
ond type of action is a key agreementspecific
action. This translatesinto either computation
(clg_firstmember clg.nev_membey clg_updatectx,
clg.updatekey, clg_factorout, clg_memge) or ac-
cessto Cliques state information (clg-destry_ctx,
clg_getsecret,clg_newv_gc, clg_next_member). These
primitivesarepartof the CliguesGDH API specifica-
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tion andaredescribedn detailin [36]. We make use
of afew trivial procedures:

e alone given a membershipnotification for a
group, which containsa list of all membersof
agroup,it returnsTRUE if the processnvoking
it is theonly memberof thegroup,FALSE other
wise;

e ready givenakey_list messageit returnsTRUE
whenthe list is readyto be broadcastFALSE
otherwise;

e last givena Clg_ctx anda hameof a processit
returnsTRUE if the processs thelastoneonthe
Cliqueslist, FALSE otherwise;

e is_in: given anitem anda set, returnsTRUE if
thesetcontaingheitem, FALSE otherwise;

e empty given a set, returnsTRUE if the setis
empty FALSE otherwise;

e choose given a set, deterministicallychoosea
memberandreturnsthatmember;

e -: thisis the subtractioroperatorfor sets;

We alsomale useof someimportantdatastructures.
The Membeship datastructurekeepsinformationre-
gardinga membershimotification:

e mhid, theuniqueidentifier of the view;
o mb.set thesetof all the memberof this view;

e VS set thetransitionalsetassociatedvith thisno-
tification;

e mege_set the memberdrom the new view that
arenotin thetransitionalsetof the new view;

o |leaveset the membersfrom the previous view
thatarenotin thetransitionalsetof thenew view.

Group communicationsystemsusually provide only
thefirst threepiecesof informationin a membership
notification. By usingthe membershisetof the pre-
vious membershimotification,andthe currentmem-
bershipnatification, the memge_set and leave_setcan
becomputedy eitherthekey-agreemenalgorithmor



New_nenber shi p. vs_set : = EMPTY

New_nenber shi p. nb_set := M Case Event is
New_nenber shi p. nerge_set := EMPTY

New_nenber shi p. | eave_set := EMPTY Dat a_Message:

New nenbership.nb_id : =0

First_transitional := TRUE del i ver (dat a_nsgQ)
VS transitional := FALSE -

Fi rst _cascaded_nenbership : = TRUE User _Message:
VWait_for_sec_flush_ok : = FALSE -

KL_got _flush_req := FALSE br oadcast (dat a_nsg)
Event := NULL

dgctx := NULL Fl ush_Request :

Q oup_key := NUL

Wait_for_sec_flush_ok := TRUE

Figure 3. Initialization of global variables deliver (flush_request_msg)
the GCS.To simplify the presentatiorof the pseudo- Secur e_Fl ush_Ck:
codeof the algorithmwe assumethat the mege_set i f (Wi t_for_sec_flush_ok)
andleavesetare provided by the groupcommunica- Véi t_for_sec_flush ok := FALSE
. . . . send_f | ush_ok( G oup_narre)
tion systemas part of the membershipnotification. State := WAl T_FCR CASCADI NG MEMBERSH P
The Cliquesctx datastructureis part of the Cliques i (g Lo L L
GDH API specificationdescribedn [36]. el se
. illegal, return an error to the user

Every processexecutesthe algorithm for a spe- endi f
cific group and maintainsa list of global variables. Transi ti onal _Si gnal :
Group.name is the name of the group for which 3 _ .

. . . —»del i ver (trans_si gnal _nsg)
the algorithm is executed, Groupkey is the shared First_transitional := FALSE
VS transitional := TRUE

secretof the group, while Me is the processexe-
cuting the algorithm. The Eventvariablerepresents Al other events:
the current event handled. Clg.ctx keepsall the not possibl e

cryptographiccontet requiredby the Cliques API.
New_Membeship is the new membershipthat will

Figure 4. Code executed in SECURE state

be delivered, and VSset is used to compute the

transitionalsetdeliveredto theapplicationwith a new case Bvent s

membership.Five global booleanvariablesare used R
in orderto facilitate the updatingof the VS_setvari- fact_out_nsg : = clq_fact or_ou]t(_(G Iq_ft)lé' ;
" . . I nal oKen_ns
able, the transitionalsignal delivery, the correctness new gc : = cl q_new gc(d g_cxt) - Sl
; uni cast (FI FQ f act _out _nsg, new_gc)

of the SecureFIushOK events and_the dellv'e'ry of KL got flush req To FA SE
securemembershipnotifications: Firsttransitional State := WAI T_FOR KEY_LI ST
First.cascadednembeship Wait_for_secfl_ok, Fl ush_Request :
VStran5|t|onalar1d KL_goLfIgshreg.. _ send_f | ush_ok(Q oup_nane)

All global variablesare written with capitalletter, State := WA T_FOR CASCADI NG MEMBERSH P
while all othervariablesareassumedo belocal. Fig- Transitional _Signal :
ure 3 shaws theinitialization of the globalvariables. e o

) L . - 3 if(First_transitional)
A diagramof the statemachineis presentedn Fig- ~— deliver(trans_signal _nsg)
: . : First_transitional := FALSE

ure2 andthecorrespondingseudo-code Figures4, endi
5,6,7,8,9. VS transitional := TRUE

User _Message, Secure_Fl ush_Ck:

4.2 Correctness Proof illegal, return an error to the user
In this sectionwe prove that the basicrobust al- AL other events:

gorithm preseres the Virtual Synchroy Model de-

not possible

scribedin Section3.2. We assumehatthe underlying Figure 5. Code executed in
groupcommunicatiorlayer providesthe Virtual Syn- WAIT_FOR_FINAL _TOKEN state
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Join group

Partial_Token & I'm last:
broadcast final_tokemsg

Fact_Out &

llast factor_outmsg
update key Iis

Flush_Request:
Wait for send flush_okmsg

Flush_Request:
send flush_okmsg

Partial_Token
L
N, %

Fact_Out & last factor_oumnsg
7, ; = =
% % update key list,

Membership & I'm alone:
destroy old Cliques context
create new Cliques context

update partial_token,
unicast partial_tokemnsgto next

Data_Message
\ 4 deliver datamsg

o,
e e €
0 safely ! update VS set
Iz‘ o broadcast key_listnsg installmemb Trans Sig:
deliver
Partial_Token "
- [ trans sig_ msi
& I'm not last: %%, Use;_dMessag £1gmsg
send datamsg

Sec_Flush_Ol

send
flush_ok msg

Trans Sig&
first trans sig:
deliver

trans sig_ msg

Flush_Request:
send flush_okmsg

A 4
Trans Sig& Flush_Request 13 X 14
send flush_okmsg Wait for .

A

Flush_Request:

- 17
deliver flush_requesinsg .
Data_Message:
deliver datamsg

Key_List:
extract key;
installmemb

Final_Token

Key_List
(FT) (KL)
Final_Token: fact out final_token; unicast factor to collector
aY - - s

Notes: VS_set is delivered as part of the membership
: All Cliques messages but key_listsgare sent FIFO
: A process can leave the group in any state

Figure 2. Basic algorithm

chrory Model. The Cliques protocolwas proven to
be correctin [16]. We alsonotethat,asevidentfrom
the statemachinein Figure 2, the CliquesGDH pro-
tocol remainsintact, i.e., all of its protocolmessages
are sentanddeliveredin the sameorderas specified
in [15]. Thereforethe basicrobustkey agreemenal-
gorithm providesthe samesecurityguaranteessthe
CliquesGDH protocol.

A securemembershipnotification is definedas a
notificationdeliveredby thekey-agreemenalgorithm,
and a VS membershipnotification is a notification
deliveredby the group communicatiorsystemto the
key-agreemenalgorithm. A secureview is aview in-
stalledby thekey-agreemenalgorithmanda VS view
is a view installedby the group communicatiorsys-
tem.

Thefollowing two lemmasarestraightforvard, but
they aredefinedto clarify the proof. Thefirstlemma
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is partof the VS Model provided by the group com-
municationsystem.The secondemmais enforcedby
the key-agreemenalgorithm.

Lemma4.1 EveryVSMembeshipeventis preceded
by the processsendinga flush.ok.msg with theexcep-
tion of the casewhena processjoins a group. For a

joining processho flushok.msgmessge is sentand

the membeship notificationis thefirst messge deliv-

eredtoit.

Lemma4.2 A processis not allowed to sendmes-
sages while it is performingthe key agreement(this
is betweerthe time it sendsa flush ok messge until
thetimeit receivesa secue membeshipnotification).

Someusefulobsenationscanbemadeaboutmember
ship notificationsandapplicationmessagesThe key-
agreemenalgorithmdiscards/S membershigvents,



case Event is
Parti al _Token:

if(llast(dg_ctx, M))
partial _token_nsg : = cl q_update_key(d g_ctx)
next _menber : = cl g_next_menber (A g_ctx)
uni cast (FI FQ parti al _t oken_nsg, next _menber)

State := WA T_FOR FI NAL_TCKEN
el se
final _token_nsg : = partial _token_nsg

br oadcast (FI FQ fi nal _t oken_nsg, G oup_narne)
State : = GOLLECT FACT QUTS
endi f

Fl ush_Request :

send_f | ush_ok( G oup_narre)
State : = WAl T_FCOR _CASCADI NG MEMBERSH P
Transitional _Signal :

3 if(First_transitional)
— deliver(trans_signal _nsg)
First_transitional := FALSE
endi f
VS transitional := TRUE
User _Message, Secure_Fl ush_Ck:

illegal, return an error to the user

Al other events:

not possible

Figure 6. Code executed in
WAIT_FOR_PARTIAL _TOKEN state

notevery VS view delivery eventhasa corresponding
secureview delivery event. The securemembership
notificationis built andsavedin theCM state(seeFig-
ure9). For every VS membershigecevedin the CM
state,thelist of membersthe view identifier andthe
transitionalsetof the new securemembershigareup-
datedin the Nev_membeshipvariable.Theonly state
in which a membershigrom the group communica-
tion systemis receved,is CM.

User messagesre delivered immediatelyas they
arereceved, they arenot delayedor reordered.The
only statesvhich deliverusermessageareSandCM.

We now prove thefollowing lemmas.

Lemma 4.3 Theonly statewhere VSmembeshipno-
tifications are receivedby the key-agreementalgo-
rithmis CM.

Proof: By Lemma 4.1, a membershipnotifica-
tion delivery is precededby the processsendinga
flush.ok_msg message,unlessthe processis join-
ing. By the algorithm, immediatelyafter sendinga
flush.ok_msg messagethe processransitionsto the
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case Event is
Key_Li st:

if(!VS_transitional)
dg_ctx := clqg update_ctx(d g_ctx,

key_list_|

Qoup_Key := clg_get_secret(dqg_ctx)

New nenb_nsg. vs_set := Vs_set

del i ver (New_nenb_nsq)

First_transitional := TRUE

Fi rst _cascaded_nenbership : = TRE

State : = SEQURE

i f(KL_got_flush_req)
Vait_for_sec_flush_ok : = TRUE
del i ver (fl ush_request _nsg)

endi f

endi f

Fl ush_Request :

if(VS_transitional)

send_f | ush_ok( G oup_narre)

State : = WAl T_FCR_CASCADI NG MEMBERSH P
endi f
KL _got _flush_req := TRUE

Transi tional _Signal :

if(First_transitional)
del i ver (trans_si gnal _nsg)
First_transitional := FALSE
endi f
i f(KL_got _flush_req)
send_f | ush_ok( QG oup_nane)
State : = WAl T_FCR_CASCADI NG MEMBERSH P
endi f
VS transitional

—

1= TRUE
User _Message, Secure_Fl ush_Ck:

illegal, return an error to the user
Al other events:

not possi bl e

Figure 7. Code executed

WAIT_FOR_KEY _LIST state

nsg)



case Bvent is

Fact _out :
key_list_nsg := clqg_nerge(d qg_ctx,
fact_out _nsg, key_l i st_nsQ)
i f(ready(key_list_nsg))
br oadcast (SAFE, key_list_nsg,
KL_got _flush_req := FALSE
State : = WA T_FOR KEY_LI ST
endi f

Q oup_narne)

Fl ush_Request :

send_f | ush_ok( & oup_nane)
State := WA T_FOR CASCAD NG MEMBERSH P

Transi tional _Signal :

3 if(First_transitional)
—> deliver(trans_signal _nsg)
First_transitional := FALSE
endi f
VS transitional := TRE

User _Message, Secure_Fl ush_Ck:

illegal, return an error to the user
Al other events:
not possi bl e
Figure 8. Code executed in COL-

LECT_FACT_OUTS state

CM stateanddoesnot leave the CM stateuntil it re-
ceivesa Membershipevent. A joining processstarts
executingthe algorithmin the CM stateanddoesnot
leave it until it recevesamembershigvent.

Lemma 4.4 Theonly stateswvhele usermessgesare
receivedby the key-agreementalgorithm from the
groupcommunicatiorsysterrare Sand CM.

Proof: After receving a VS membershimoatification
in the CM state(by Lemma4.3 this is the only state
wheremembershimotificationsarereceved)the pro-
cessmovesto oneof the statesFT, PT, FO, KL, or S.
Thetransitionto stateS installsa new secureview, so
in thatstatetheprocescansendandreceve usermes-
sagesln ary of the FT, PT, FO,KL or CM stateghe

procesds not allowed to sendapplicationmessages.

If anapplicationmessagés recevedin ary of theFT,
PT, FO or KL statesiwo casesrepossiblefirst, this
is a messageentin the previous secureview in state
S, or secondthis is a messageentby a procesghat
completedthe key agreemenbeforethis processdid

andalreadyinstalledthe new view andsentmessages.

The first caseis not possiblebecauset implies
thatthegroupcommunicatiorsystemdelivereda user
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Case Event is
Dat a_Message:

del i ver (dat a_nsQ)
Transitional _Signal:

3 if(First_transitional)
=, deliver(trans_signal _nsg)

First_transitional := FALSE
endi f
VS transitional := TRUE

Menber shi p:

4 i f (Fi rst_cascaded_nenber shi p)
—» VS set := New nenb_nsg. nb_set
Fi r st _cascaded_menber shi p : = FALSE
endi f
— VS set := VS set — menb_nsg. | eave_set
if(!enpty(menb_nsg. | eave_set) &&
First_transitional)
del i ver (trans_si gnal _nsg)
First_transitional := FALSE
endi f
New nenb_nsg.nb_id := nenb_nsg.nb_id
New nenb_nsg. nb_set : = nenb_nsg. nb_set
i f(!al one(menb_nsg. nb_set))
i f (choose(nenb_nsg. nb_set) == M)
cl g_destroy_ctx(d g_ctx)
Aqg_ctx := clqg_first_nenber (M,
Q oup_nane)
menb_nsg. nb_set - Me
: = cl g_updat e_key(
d g_ctx, nerge_set)
next _menber : = cl g_next _menber (A g_ct x)
uni cast (FI FQ parti al _t oken_nsg,
next _menber)
State : = WA T_FCR _FI NAL_TCKEN
el se /* not chosen */
cl g_destroy_ctx(d g_ctx)
A g_ctx := cl q_new nmenber (M)
State : = WAl T_FCR_PARTI AL_TCKEN
endi f
else /* alone */
cl g_destroy_ctx(d g_ctx)
A qg_ctx := clqg_first_nenber (M, G oup_nane)
Q oup_key : = clg_extract_key(d q_ctx)
New nenb_nsg. vs_set := Me
del i ver (New_nenb_nsg)
First _transitional := TRUE
Fi r st _cascaded_nenbership : = TRUE
State : = SECURE
endi f
VS transitional

3

=

—

2

=

nerge_set :=
parti al _t oken_nsg

= FALSE

Parti al _Token, Final_Token, Fact_out, Key_ List:

i gnore
User _Message, Secure_Fl ush_Ck:
illegal, return an error to the user
Al other events:
not possi bl e

Figure 9. Code executed in

WAIT_FOR_CASCADING _.MEMBERSHIP
State



messageot in the view in which it was sent,which
contradictshe Sendingview Delivery property In the
seconctase notethatthekey list messagés broadcast
asasafemessageA usermessageannotbereceved
in theKL statebeforethe key list messagdecausét
was sentafter its sendemprocessedhe key list mes-
sage. This contradictsthe CausalDelivery property
Thereforethe only statesvherea processanreceve
usermessageareS andCM.

421 SefInclusion

Theorem 4.1 Whenprocessp installs a secue view,
theview includesp.

Proof: By the protocol, we update the view-
to-be-installedonly when a membershipnotifica-
tion is receved from GCS (i.e., when we update
Newv_membeship.mhsetin Figure 9, Mark 2). By
Lemmad4.3,thisoccursonly in the CM state.

By the algorithm,therearetwo transitionsthatin-
stall secureviews. Thefirst transitioncorrespondso
a Membershipevent occurrencdan the CM state,in-
dicatingthat process is alone. In this case the se-
curemembershimotificationis immediatelydelivered
with p (theonly one)in it. Thesecondransitioncorre-
spondgo aKey_List eventoccurrencen theKL state.
In this case at thetime the new secureview is deliv-
ered,it indicatesthe VS groupmemberdist, andas
GCSprovidesSelfInclusion,p is guaranteedo beon
thatlist.

4.2.2 Local Monotonicity

Lemma4.5 Theidentifierofasecueviewistheiden-
tifier of themostrecentlyinstalledVSview.

Proof: By the protocol, we update the view-
to-be-installedonly when a membershipnotifica-
tion is receved from GCS (i.e., when we update
Newv_membeship.mhid in Figure 9, Mark 1). By
Lemmad4.3,thisoccursonly in the CM state.

By the algorithm, therearetwo transitionsthatin-
stallsecureviews. Thefirst transitioncorrespondso a
Membershipventrecevedin theCM state jndicating
thatprocesw is alone. In this case the securemem-
bershipnatificationis immediatelydeliveredwith the
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mostrecentVS identifier The secondtransitioncor
respondgo aKey_List eventrecevedin theKL state.
In this case whenthe secureview is delivered,it indi-
catesthe mostrecentVS identifier

Theorem 4.2 If proces installsa secue view v_sec
after installing a view v_sec’ then the identifier of
v_sec is greaterthantheidentifierof v_sec’.

Proof: The algorithmdoesnot createor changeview

identifiers. It only usesthe identifiers provided by

the VS membershimotificationswithout reordering
them. By Lemma 4.5, p always delivers a secure
view with the sameidentifier asthe mostrecentVS

identifier, therefore,it delivers a subsequencef the
sequenceof VS identifiers. Becauseit delivers a
subsequencef VS identifiersandbecausesCS pro-

vides Local Monotonicity the key-agreementalgo-
rithm providesLocal Monotonicitytoo.

4.2.3 Sending View Delivery

Theorem 4.3 A messge is deliveed by the key-
agreemenalgorithmin thesecue view thatit wassent
in.

Proof: By the algorithm, messagesare delivered
by the key-agreementalgorithm only in the S and
CM states. In the S state, the secureview is
the most recent VS view (i.e., when we update
Newnv_membeship.mhsetin Figure9, Mark 2). By the
SendingView Delivery property of GCS, the abore
claimis true.

By thealgorithm,a procesamovesto the CM state
after the applicationagreedto closethe membership
by sendinga flush.ok messagé¢seeFigure4). Since
the key-agreementlgorithm delivers a messagem-
mediately after it was receved and GCS provides
SendingView Delivery, all the messagesentin view
v Will be deliveredbeforethe next VS view wasre-
ceived, andtherefore beforea new secureview is in-
stalled.

4.2.4 Dédlivery Integrity

Theorem 4.4 If processp delivels a messge m in a
secue view v, thenthere existsa processq that sent
m in v causallybefoe p deliveedm.



Proof: This proof containstwo parts. First, we shav
thatthe key-agreemenalgorithmdeliversmessagen
causallyafter it wassent. This is true by transitvity
since:

e The key-agreemenatlgorithm sendsm immedi-
ately afterit wassentby theapplication.

e By the delivery integrity property of GCS, the
group communicationsystemdelivers message
m causallyafterit wassent.

e The key-agreemenalgorithmdeliversm imme-
diatelyafterit wasrecevedfrom thegroupcom-
municationsystem.

Notethattheusermessagearenotreorderedthey are
deliveredassoonasthey arereceved.

Secondwe shaw thatif proces® deliversmessage
m in v, thenthereexistsa process; thatsentm in v.
Thisclaimis trueby Theorend.3.

4.25 No Duplication

Theorem 4.5 A messge is not senttwice using the
key-agreementalgorithm. The key-agreementalgo-
rithm doesnot deliver a messge twice to the same
process.

Proof: By the algorithm,usermessageare sentonly
in the S state,whenthe applicationis sendingthem,
soamessagés not senttwice.

By the algorithm, messagegre deliveredonly in
the S andCM states.They aredeliveredimmediately
uponreceiptfrom the group communicationsystem.
Since GCS guaranteesio duplication, it cannot be
thata messagesentonceto the groupcommunication
systemis recevedtwice. Notethatthekey-agreement
algorithm generateliques messageshut theseare
never deliveredto theapplicationsothey do notaffect
theNo Duplicationproperty

426 Sdf Delivery

Theorem 4.6 If procesgp sendsa messge m, thenp
delivels m unlesst crashes.

Proof: By the algorithm, a messagas sentby the
applicationvia the group communicatiorsystemand
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the key-agreementlgorithm never discardsapplica-
tion messageandit deliversthemimmediatelyafter
receving them.SinceGCSprovidesSelfDelivery, the
theoremis true.

427 Transtional Set

Lemma 4.6 If proces installeda secue view v_sec
with processgy in themembes set,they bothinstall the
samenext VSview, andp’sVStransitionalsetincludes
g, theng musthaveinstalledv_sec.

Proof: By the protocol, a processinstalls a secure
view with more than one memberonly in the KL
state.A processn theKL stateinstallsa secureview
if andonly if it recevesa key_list_msg messagéde-
fore a transitionalsignalfor the currentVS view. Be-
causep and ¢ move togetherto the new VS view
andthe key_list. msgis a safe messageby the Safe
Delivery propertiesof GCS, ¢ mustalsoreceve the
key_list_msg messagebefore the transitional signal.
Thereforeg mustalsohave installedv_sec.

Theorem 4.7 If two processegp and ¢ install the
samesecue view v_sec, andgq is includedin p’stran-
sitional setfor this view, thenp’s previoussecue view
wasidenticalto ¢’s previoussecue view.

Proof: By thealgorithm,thetransitionalsetfor a nenv
securemembershimotificationis initialized to be the
sameastheprevioussecureview memberset. Further
more,we only remove from this setmemberseported
by VS membershimotificationsas not beingin our
VS transitionalset(i.e. the leavese), andwe never
addmembergo thetransitionalset. Dueto this, if g is
includedin p's securdransitionalsettheng musthave
beenincludedin all of p’s VS transitionalsetssince
thelastsecureview deliveredatp. Additionally, p and
g musthave installedthe samesequencef VS views
prior to v_sec because¢hey bothinstalledthe VS view
correspondindo v_sec andbecausef the GCStran-
sitional setpropertynumbertwo.

Thereforepy Lemma4.6,qg musthave installedthe
sameprevious secureview asp. To shaw thatg in-
stalledno interveningsecureviews, the sameproof is
repeatedeversingp andq’s roleswith the additional
informationthatp is in ¢'s securetransitionalsetbe-
causeof the way the setis computedand GCStransi-
tional setpropertynumbertwo.



Theorem 4.8 If two processesgp and ¢ install the
samesecue view, andq is includedin p’stransitional
setfor this view, thenp is includedin ¢’s transitional
setfor this view.

Proof: If p andq install the samesecureview, and
g is includedin p’s transitionalsetfor this view, but
p is notincludedin ¢'s transitionalsetfor this view,
two casesrepossible First, ¢'s previous secureview
wasnot the sameasp’s secureview. In this case by
theorem4.7, ¢ is notincludedin p’s transitionalset,
contradictingour assumptiorthat g is includedin p's
transitionalset.

Secondy’s previoussecureview wasthesame put
anintermediaryVS notificationdeliveredto ¢ did not
includep in its transitionalset. Sincep andq install
the samesecureview, it mustbethat, p andg install
the sameVS view at somepoint. Thefirst suchview
installedat ¢ preseresthatp is notin ¢'s transitional
setby GCStransitionalsetpropertynumberone. By
GCStransitionalsetpropertynumbertwo, p mustnot
have g in itstransitionaketfor thatview. By theproto-
col, theng isremovedfrom p’s securdransitionalset,
andbecause’s transitionalsetnever grows g will not
bein p’'ssecurdransitionaketwhenp andgq installthe
new secureview, which contradictsour assumption.

4.2.8 Virtual Synchrony

Theorem 4.9 Two processe® and ¢ that move to-
getherthroughtwo consecutivesecue views, deliver
the samesetof messgesin theformerview.

Proof: By Lemma4.4, user messagesire receved
by the key-agreemenalgorithmonly in the S or CM
statesand as specifiedby the protocol, they are de-
liveredassoonasthey arereceved. Therefore,user
messagearedeliveredonly in theS andCM states.

By Lemma4.3, VS membershimotificationsare
receved only in the CM state. By the protocol (the
way we computethetransitionalset),if procesy and
q move togetherfrom v1 _sec to v2_sec, thenp andq
movedtogetherthroughthe sequencef VS views v1
tovly, ...,vl,_ 1 tovl,, vl, tov2 2.

Therefore py the Virtual Synchroy propertyguar
anteedby GCS, processe® and ¢ deliver the same

®Note thatn canbe zerowith the in-betweenset potentially
empty (vl to v2).
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setof messagebetweerwl andvly, vl; andvl,, ...
vl, andv2. No othermessagearedeliveredbetween
v2 andv2_sec installationsbecausary suchmessage
hasto be sentin v2 by the GCS SendingView De-
livery property By the protocol, upon sendingthe
flush.ok msgmessagé¢hatconcludes 1 eachprocess
maovesto the CM stateand by Lemma4.2, will not
senddatamessagebeforeinstallingv2_sec. In partic-
ular, it will notsendmessagebetweens2 andv2_sec.
Thereforep andq deliver the samesetof messagem
vl_sec.

429 Causal Delivery

Lemma4.7 All the messges deliveed by the key-
agreementlgorithm, supportthe ordering properties
with which they were deliveed by the group commu-
nicationsystem.

Proof: By the protocol, the messageseliveredby a
procesdn secureview v_sec, aremessagesdelivered
by the GCSin VS view v. Sincemessagesire de-
liveredto the applicationin the orderthey werere-
ceived from the GCS, without beingdelayed,no ap-
plication messagearedroppedor duplicated,andno
phantommessagearegeneratedthe messagedeliv-
eredin v_sec, supportthe sameorderingrequirements
asthey weredeliveredin v.

Theorem 4.10 If messge m causallyprecedesnes-
sage m/, and both are sentin the samesecue view,
thenany process; that delivers m' delivers m befoe

m'.

Proof: Thisis trueby Lemma4.7.

4.2.10 Agreed Delivery

Theorem 4.11 If messgesm andm/’ are deliveedat
proces in thisorder andm andm’ are deliveed by
processy thenm' is deliveedby g afterm is deliveed
bygq.

If messgesm andm' are delivered by processp in
secue view v1_sec in this order andm/ is deliveed
by processqg in secue view v2_sec and messge m
wassentby a process which is a memberof secue
view v2_sec, theng deliveedm.



Proof: Thisis trueby Lemma4.7 andbecauséhe se-
curetransitionalsetis the intersectionof all the VS
transitionalsets.

4211 SafeDelivery

Theorem 4.12 If procesy delivers a safemessge m
in view v befoe thetransitionalsignal,theneverypro-
cesgy of view v delivels m unlesdt crashes|f process
p delivers a safemessge m in view v afterthetransi-
tional signal,thenevery process; that belongsto p's
transitionalsetdelivers m afterthetransitionalsignal
unlesst crashes.

Proof: By Lemmad4.7, key-agreementelivers mes-
sageswith the sameorderingguaranteesvith which
they weredeliveredby the GCS.

By the algorithm, the first transitional signal re-
ceived from GCSis deliveredto the application(see
Mark 3 in Figures4,7,6,5, 8, 9).

By thealgorithm,thetransitionalsetdeliveredwith
a new securemembershipin calculatedas follows,
whenagroupchangéhappensvhile thegroupis stable
(stateS), thetransitionalsetis initialized to thecurrent
securemembershipist (seeMark 4, in Figure 9) and
thenevery time anothermembershiphappensefore
installing this securemembershipthe memberghat
left the group are removed from the transitionalset,
suchthat whenthe new securemembershigs deliv-
ered thetransitionalsetis correct. Thereforethe safe
delivery requirementsrepresered.

5 An Optimized Robust Algorithm

In this sectionwe shav how the algorithm pre-
sentedin the previous section can be optimized,
suchthat the price paid for handlingcommon,non-
cascadeaventsis lower, while preservingthe same
set of group communicationsemanticsand security
guarantees.

5.1 Algorithm Description

The basicalgorithm presentedn Section4 is ro-
bust even when cascadedjroup eventsoccur Every
time a membershimotificationis deliveredfrom the
group communicationsystem,the algorithmignores
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all the previous key agreemeninformationandstarts
the meige protocolchoosinga memberfrom the new

groupto initialize it. Therefore,this algorithm pays
morethannecessaryor computinga groupkey in a
regular case becausat doesnot distinguishbetween
amembershighatfinishedwithout beinginterrupted
andacascadednembership.

Thealgorithmdescribedibore canbeoptimizedso
thatit distinguishedetweenthesetwo cases.Every
time the group view changesthe algorithm detects
the causeof the group change(join, leave, partition,
meige or a combinationof partition and merge) and
invokes the CliquesGDH specificprotocol. For ex-
ample,in the casewherea leave occurred,the leave
protocolis invoked. Computinga new key in the case
that a leave or partition occurred,requiresonly one
broadcast.Thus, leave eventscanbe handledimme-
diatelywith alower communicatiorandcomputation
costthanthebasicalgorithmrequired.

In the optimizedkey-agreemenalgorithmthe pro-
cessstill startsexecutingthe statemachineby invok-
ing the Join primitive. Also, at ary moment,a pro-
cesscanvoluntarily leave the algorithm by invoking
the Leaveprimitive.

The optimizedalgorithmutilizesthefollowing two
statedn additionto thoseof the basicalgorithm:

e WAIT_FORSELFJOIN (SJ): this is the initial
statein which a procesghatjoined a groupen-
tersthe statemachine;the processs waiting for
the membershipmessagehat notifiesthe group
aboutits joining. In caseanetwork eventhappens
betweerthejoin requesandthemembershimo-
tification delivery, the GCSwill reportthe cause
of thegroupchangeasbeinganetwork eventand
the transitionalsetwill containonly the joining
member The only possibleeventis a Member
ship. UserMessagendSecureFlush Ok events
areillegal. An errorwill bereturnedo theuserif
they areattempted All othereventsarenot pos-
sible.

WAIT _FORMEMBERSHIP (M): in this state
the processis waiting for a membershipno-
tification. The possible events are: Transi-
tionalLSignal, DataMessageand Membership.
The membership notification can be caused
by voluntarily events such as join or leave,



or network events. UserMessageand Se-
cureFlush Ok eventsareillegal. An error will
be returnedto the user All othereventsarenot
possible.

While a processstartsthe basicalgorithmin the CM
state,in the optimizedalgorithma processstartsthe
algorithmin stateSJ.Fromthe stablestate(S state)if
the group changedhe processnovesto the M state
insteadof moving to the CM stateasin the basicalgo-
rithm. Fromhere dependingnthecauseof thegroup
changethemeigeor theleave CliguesGDH protocols
areinvoked. Also, a combinednetwork eventwhich
includesbothjoins andleaves simultaneouslycanbe
handledby a modified versionof the Cligues GDH
meige protocol (as describedn Section5.2). If an-
othergroupchangehappendeforeakey is computed,
theprocesswill move to the CM stateandexecutethe
basicalgorithm.

The melge_setandleavesetfields of the member
shipnotificationcanbeusedto determinghe causeof
the group view change. In addition, we usea mod-
ified versionof the procedureclg_.updatekey proce-
durewhich canhandlecombinednetwork events.

Thediagramof thestatemachineof thealgorithmis
presentedn Figurel2 andthe correspondingseudo-
codein Figures4,5,6,7,8,9, 10,11.

5.2 Handling Bundled Events

Most group events are homogeneousn nature:
leave (partition) or join (meige) of oneor moremem-
bers. However, a group communicationsystemcan
decideto bundle several sucheventsif they occurin
closeproximity, i.e., within avery shorttime intenal.
The mainincentie for doingsois to reducecommu-
nication costsand limit the impactand overheadon
theapplication.

As mentionedabore, Cliquesprovidestwo separate
protocolsthathandleleave andmeige events.Eachof
theseprotocolscantrivially handlebundledeventsof
thesametype,i.e.,the Cliquesmerge protocolcanac-
commodateary combinationof bundledmegesand
the Cliguesleave protocol can do the samefor ary
combinationof leavesandpartitions.A moreinterest-
ing scenariooccurswhena single membershipevent
bundlesmemges/joinswith leaves/partitions.One ob-
vious way to handlethis type of eventis to first in-
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Case Event is

Menber shi p:
4
I:VS_set 1= New_nmenb_nsg. nb_set
New nenb_nsg.nb_id := nenb_nsg.nb_id
—New_nenb_nsg. nb_set : = nenb_nsg. nb_set

Fi r st _cascaded_nenbershi p : = FALSE
i f(!al one(menb_nsg. nb_set))
i f (choose(menb_nsg. nb_set) = M)
Ag_ctx := clq_first_nenber (M,
QG oup_nane)
mer ge_set : = menb_nsg. mer ge_set
partial _token_nsg : = cl q_updat e_key(

d g_ct x, merge_set)
next _menber : = cl q_next_menber (A g_ctx)
uni cast (FI FQ parti al _t oken_nsg,

next _menber)
State : = WAl T_FCR _FI NAL_ TCKEN
el se
d g_ctx := cl g_new nenber (M)
State : = WA T_FCR _PARTI AL_TCKEN
endi f
el se
Aqg_ctx :=clq_first_nenber (M, G oup_nane)
G oup_key := cl g_extract_key(d qg_ctx)
New nenb_nsg.vs_set := M
del i ver (New_nenb_nsg)
Fi r st _cascaded_nenbership : = TRUE
State : = SEQURE
endi f
VS transitional := FALSE

User _Message, Secure_Fl ush_Ck:
illegal, return an error to the user
Al other events:

not possi bl e

Figure 10. Code executed in
WAIT_FOR_SELF_JOIN state



Join group

NET & I'm not alone & MEMB & I'm alone:

is_Merge & | am a new guy: update key,
update VS set update VS set
installmemb
User_Message:
send datamsg
Trans_Sis: (Join & I'm not alone) | v
deliver transsig msg (Network & )
I'm not alone & I'm not chosen): .
> update VS set /Wa't for Collect
»{ Partial_Token Fact_Outs
PT FO
4 Data_Message: (PT) (FO)
deliver datamsg Network & Wait for
Flush_Request: ) ) I'm not alone & I'm choser} Cascadlng
deliver Membership & I'm alone: generate partial token, Member ship
flush_requestms generate key, unicast (c™m)
—fequesinsg update VS set ) partial_tokenmsg to nex )
installmemb Wait for update VS set Wait for
sdf Join »\ Final_Token
S FT
Sec_Flush_OH}: Membership & I'm alone: (CY) & )
send update key, A
flush_ok_msg update VS set Join:
installmemb if (I'm chosen) {
24 update partial token,
v . unicast partial_tokemsgto next
Wait fOI\ update VS set
M ember ship
(M) Network & I'm not alone & | am an old guy & is_merge (Leave ||
if (I'm chosen) { (Network & lis_Merge)
Data_Message: If(is_Partition) { & | am chosen: {
L deliver datamsg remove leave_list from cliques_list generate new share;
Trans Sig& ) } update key list;
first trans sig update partial token, safely broacast
deliver unicast partial_tokennsgto next key_list msg
trans_sig_ msg } } Key List
ey_List:
update VS set update VS set extract key;
install memf.

Notes: VS_set is delivered as part of the membership

: All Cliques messages but key_listsgare sent FIFO; key_lisinsgis sent as a safe message.

: A process can leave the group in any state

Figure 12. Optimiz ed algorithm

voke Cliquesleave to processll leaves/partitionsand
then invoke Cliques meige to processjoins/meges.
However, this is inefficient sincethe groupwould es-
sentially performtwo separate&key agreemenproto-
cols whereonly one is truly needed. We can take
adwantageof the fact that both protocolsin Cliques
areinitiated by the groupcontroller After processing
all leaves/partitionsthegroupcontrollercansuppress
the usualbroadcasbf new partial keys and, instead,
forward the resulting setto the first meiging/joining
memberthereby initiating a meige protocol. This
savesanextraroundof broadcasandatleastonecryp-
tographicoperationfor eachmember

5.3 Correctness Proof

In this sectionwe prove that the optimized algo-
rithm describedabove providesthe virtual synchroy
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semantigresentednh Section3.2.

We notethatthe optimizedalgorithmstatemachine
utilizes two more statesthat caninstall securemem-
berships:SJand M. In both of thesestatesa secure
view canbeinstalledonly in thespecialcasewhenthe
groupconsistf only onemembersothe processan
computea key andinstall the securememberships.

Unlike the basicalgorithmwhereapplicationmes-
sagesveredeliveredonly in statesS andCM, in the
optimized algorithm applicationmessagesire deliv-
eredin the SandM states.Membershipnotifications
arerecevedin theCM, SJ,andM states.

It canbenoticedthatfor theoptimizedalgorithm,a
processstartsthe algorithmin the SJstate.Also, from
the stablestate(the S state),dueto a group change
notificationthattriggersthe key-agreemenalgorithm,
insteadof moving to the CM stateasin thebasicalgo-
rithm, theprocessnovesto theM state.A processan



Case Event is
Dat a_Message:

del i ver (dat a_nsg)
Transitional _Signal :

if(First_transitional)
3, deliver(trans_signal _nsg)

First_transitional := FALSE
endi f
VS transitional := TRUE
Menber shi p:
HVSset ;= New_nenb_nsg. nb_set
2»VS set := VS set - nenb_nsg. | eave_set
New nmenb_nsg. nb_id : = nenb_nsg. nb_i d
2+New _nenb_nsg. nb_set := nenb_nsg. nb_set
New nenb_nsg. vs_set := Vs_set
Fi rst_cascaded_menbership : = FALSE
i f (! al one(menb_nsg. nb_set))
merge_set := nmenb_nsg. nerge_set
| eave_set := nenb_nsg. | eave_set

if(lenpty(l eave_set) || enpty(merge_set))
i f (choose(menb_nsg. nb_set) = M)
key list_msg := clq_|l eave(d g_ctx,

| eave_set)
br oadcast ( SAFE, key_| i st _nsg, G oup_nane)
endi f
State : = WA T_FCR KEY_LI ST
el se

i f(is_in(chosen(menb_nsg. nb_set),
menb_nsg. vs set)) /* old nmenber */
i f (choose(menb_nsg. nb_set) = M)
partial _token_nsg : = cl q_updat e_key(
d g_ctx, | eave_set, nerge_set)
next _menber : = cl g_next _menber (
ad g_ctx)
uni cast (FI FQ parti al _t oken_nsg,
next _menber)
State : = WA T_FCR _FI NAL_TCKEN
endi f
el se /* new nenber */
cl g _destroy_ctx(d g_ctx)
d g_ctx := cl q_new nenber (M)
State : = WAl T_FCR _PARTI AL_TCKEN
endi f
else /* alone */
Adg_ctx :=clqg_first_menber (M, QG oup_nane)
QG oup_key := cl g_extract_key(d qg_ctx)

New nenb_nsg.vs_set := M
del i ver (New_nenb_nsQ)
First_transitional := TRUE

Fi r st _cascaded_nenber ship : = TRUE
State : = SECQURE
endi f
VS transitional := FALSE
User _Message, Secure_Fl ush_Ck:
illegal, return an error to the user
Al other events:

not possi bl e

Figure 11. Code executed in
WAIT_FOR_MEMBERSHIP state
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move in the CM stateonly from the PT, FT, FO, and
KL states.Fromthe momentthatthe procesamoves
to the CM state it executeghe basicalgorithm.

For the rest of the proof, we make use of Lem-
mas4.1and4.2which arestill valid. Thefirstlemma
is a property of the underlying group communica-
tion layerandthe secondoneis enforcedby the key-
agreementlgorithm. We also note that Lemma4.2
which specifiesthat a processs not allowed to send
user messagesvhile performing the key-agreement
algorithm, enforcesthat a processcan not senduser
message@ ary of the M, CM, PT, FT, FO, or KL
states.

Lemmab5.1 The only stateswhere VS membeship
notificationsarereceivecaretheSJ CM andM states.

Proof: By Lemma 4.1, a membershipnotifica-
tion delivery is precededby the processsendinga
flush.ok_msg message,unlessthe processis join-
ing. By the algorithm, immediatelyafter sendinga
flush.ok_msg messagethe processtransitionsto ei-
thertheM or CM statesanddoesnotleave thesestates
until it recevesa Membershipevent. A joining pro-
cessstartsexecutingthe algorithmin the SJstateand
doesnotleave it until it recevesamembershigvent.

Lemma 5.2 Theonly stateswhele usermessgescan
bereceivedare SandM.

Proof: By the protocol,in the S statethe processcan
sendand/orreceve messageBy Lemma4.1,thefirst
messagéehat a processecevesin the SJstateis the
VS membershimotification which triggersimmedi-
atelyatransitionto anotherstate sono usermessages
arerecevedin the SJstate.

After receving a VS membershimotificationfrom
GCSin ary of theSJ,M or CM stategby Lemma5.1
thesearethe only stateswheremembershimotifica-
tions are receved), the processmoves to one of the
statesFT, PT, FO, KL, or S. Thetransitionto stateS
installsa new secureview, soin thatstatethe process
cansendandreceve usermessagesin ary of the M,
FT, PT, FO, KL or CM statesthe processis not al-
lowedto sendapplicationmessagedf anapplication
messageés recevedin ary of the CM, FT, PT, FO or
KL statestwo casesarepossible:first, thisis a mes-
sagesentin theprevioussecureview in stateS, or sec-
ond,thisis amessagsenthy aprocesghatcompleted



the key-agreementlgorithm before this processdid

andalreadyinstalledthe new view andsentmessages.

The first caseis not possiblebecauset implies
thatthegroupcommunicatiorsystemdelivereda user
messageot in the view in which it was sent,which
contradictshe Sendingview Delivery property In the
secondcasenotethatthekey list messages broadcast
asasafemessageA usermessageannotbereceved
in the KL statebeforethekey list messagdecauset
was sentafter its sendermrocessedhe key list mes-
sage. This contradictsthe CausalDelivery property
Thereforethe only stateswherea procesanreceve
usermessageareS andM.

53.1 Sdf Inclusion

Theorem 5.1 Whenprocessp installs a secue view,
theview includesp.

Proof: By the protocol, we updatethe view-to-be-
installed only when a memberships receved from
GCS(i.e., whenwe updateNenv_membeship.mhset
in Figures9, 11 and 10, Mark 2). By Lemmab.1,
this occursonly in theSJ,M andCM states.

By the algorithm,therearefour transitionsthatin-
stall secureviews. The first threetransitionscorre-
spondto aMembershipaventrecevedin the CM, M,
or SJstatesjndicatingthatprocesw is alone. In this
casethesecurememberships immediatelydelivered
with p (theonly one)in it.

The fourth transition correspondso a Key_List
eventrecevedin theKL state.In thiscaseatthetime
the new secureview is deliveredit indicatesthe most
recentVS groupmemberdist, andasthe groupcom-
municationsystemprovidesSelf Inclusion,p is guar
anteedo beonthatlist.

5.3.2 Local Monotonicity

The proof of this propertyis very similar to the one
we gave for the basicalgorithm. It is enoughto shav
that Lemmad4.5 is still true for the optimizedproto-
col, therefore py Theoremé.2,Local Monotonicityis
provided by the key-agreemenalgorithm.

Lemma5.3 Theidentifierofasecueviewistheiden-
tifier of themostrecentlyinstalledVSview.
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Proof: By the protocol, we updatethe view-to-be-
installed only when a membershipis receved from
GCS(i.e.,whenwe updateNew_membeship.mhid in
Figures9, 10,and11, Mark 1). By Lemmab5.1, this
occursonly in theCM, SJ,andM states.

By the algorithm,therearefour transitionsthatin-
stall secureviews. The first threetransitionscorre-
spondto a Membershipevent receved in one of the
CM, SJ,or M statesjndicatingthatproces® is alone.
In thiscasethesecuranemberships immediatelyde-
liveredwith the mostrecentVS identifier

The fourth transition correspondgo a Key_List
eventrecevedin the KL state.In this case whenthe
view is delivered, it indicateghemostrecentvVS iden-
tifier.

5.3.3 Sending View Delivery

Theorem 5.2 A messge is deliveed by the key-
agreementalgorithm in the secue view that is was
sentin.

Proof: By the algorithm,messagearedeliveredonly
in the SandM states.In the S state the securemem-
bershipis the mostrecentVS membershigi.e., when
we updateNew_membeship.mhsetin Figure9, mark
2). By the GCS SendingView Delivery property all
the messagesentin the S stateare deliveredin the
secureview thatthey weresentin.

By thealgorithm,aprocessnovesto theM stateaf-
ter the applicationagreedo closethe membershigy
sendinga flush.ok messagéseeFigure4). Thegroup
communicatiorsystemguaranteethatbeforedeliver
ing the new VS view, it will deliver all the messages
that were sentin the previous view. Sincethe key-
agreemenalgorithmdeliversa messagemmediately
afterit wasreceved andGCSprovidesSendingView
Delivery thenall the messagesentin view v will be
deliveredbeforethe next VS view wasreceved, and
thereforepeforea new secureview is installed.

534 Ddivery Integrity

Theorem 5.3 If processp delivels a messge m in a
view v, thenthere existsa processg that sentm in v
causallybefoe p deliveedm.



Proof: The proofis identicalto the proof in the case
of thebasicalgorithm.

5.3.5 No Duplication

Theorem 5.4 A messge is not senttwice using the
key-agreementalgorithm. The key-agreementalgo-
rithm doesnot deliver a messge twice to the same
process.

Proof: The proofis very similar to the onein the case
of thebasicalgorithm.

5.3.6 Self Delivery

Theorem 5.5 If procesgp sendsa messge m, thenp
delives m unlessit crashes.

Proof: The proof is identicalto the onewe gave for
thebasicalgorithm.

5.3.7 Transitional Set

We remarkthatin the optimizedprotocol,whena se-
cure view changesthe first VS view notification is

recevedin theM statewhile latercascade¥S mem-
bershipsarerecevedin the CM state. The computa-
tion of the securetransitionalsetis the sameas for

thebasicalgorithm. Thereforetheamgumentsve pro-

videdto prove Lemma4.6 andTheorems4.7 and4.8
arestill valid.

5.3.8 Virtual Synchrony

Theorem 5.6 Two processe® and ¢ that move to-
getherthroughtwo consecutivesecue views, deliver
thesamesetof messgesin theformerview.

Proof: By Lemmab.2, usermessagearereceved by
the key-agreemenalgorithmfrom GCSonly in the S
or M statesandasspecifiedby the protocol,they are
deliveredassoonasthey arereceved. Thereforeuser
messagearedeliveredto theapplicationonly in theS
andM states.

By Lemmab5.1, VS membershimotificationsare
recevedonly in the SJ,CM andM states By thepro-
tocol (theway we computethetransitionalset),if pro-
cessp and g move togetherfrom v1_sec to v2_sec,
thenp andg movedtogetherthroughthe sequencef
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VSviewswvl tovly, ...,vl,_; tovl,,vl, tov28. Ifn
is zero,v2 will berecevedin theM state,otherwise,
vl isrecevedin theM stateandall otherpossiblevS
views (includingv2) will berecevedin the CM state.

Therefore py the Virtual Synchron propertyguar
anteedby GCS, processe® and ¢ deliver the same
setof messagebetweerwl andvly, vl; andvls, ...
vl, andv2. No othermessagearedeliveredbetween
v2 andv2_sec installationsbecausary suchmessage
hasto be sentin v2 by the GCS SendingView De-
livery property By the protocol, upon sendingthe
flush.ok msgmessagé¢hatconcludes 1 eachprocess
movesto theM stateandby Lemma4.2,will notsend
datamessagedbeforeinstalling v2_sec. In particu-
lar, it will not sendmessagebetweeny2 andv2_sec.
Thereforep andq deliver the samesetof messagem
vl_sec.

539 Causal Delivery

Theorem 5.7 If messge m causally precedesmes-
sage m/, and both are sentin the samesecue view,
thenany process; that delivers m' delivers m befoe

m'.

Proof: The proof is identicalto the one provided for
thebasicalgorithm.

5.3.10 Agreed Delivery

Theorem 5.8 If messgesm andm' are deliveed at
processp in this order and m and m’ are deliveed
by processq then m' is deliveed by ¢ after m is
deliveedbyq.

If messges m and m' are deliveed by process
p in secue view vl_sec in this order and m' is
deliveed by processg in secue view v2_sec and
messge m wassentby a process whichis amember
of secue view v2_sec, theng deliveedm.

Proof: The proof is identicalto the one provided for
thebasicalgorithm.

®Note thatn canbe zerowith the in-betweenset potentially
empty (vl to v2).



53.11 SafeDelivery

Theorem 5.9 If procesp delives a safemessge m

in view v befoe thetransitionalsignal,theneverypro-

cesg of view v delivels m unlesst crasheslf process
p delivers a safemessge m in view v after thetransi-

tional signal,thenevery process; that belongsto p’s

transitionalsetdelivels m unlesst crashes.

Proof: By Lemmad4.7, the key-agreementlgorithm
deliversmessagewith the sameorderingguarantees
with which they weredeliveredby the groupcommu-
nicationsystem.

By the algorithm, the first transitional signal re-
ceived from the group communicationsystemis de-
liveredto the application(seeMark 3 in Figures4, 7,
6,5,8,9and11.

By thealgorithm,thetransitionalsetdeliveredwith
a newv securemembershipnotification is calculated
asfollows, when a group changehappenswhile the
groupis stable(stateS), the transitionalsetis initial-
izedto thecurrentsecuranembershipist (seeFigures
10 and 11, Mark 4) andthenevery time anotherVS
membershipotificationis receved from GCSbefore
installing this secureview, the memberghat left the
groupareremoved from the transitionalset (seeFig-
ure9 and11, Mark 5), suchthatwhenthe new secure
membershimotificationis delivered,the transitional
setis correct. Therefore,the safe delivery require-
mentsarepresered.

6 Conclusions

Implementingsecureand robust handling of cas-
cadinggroupevents,usinganapproactoptimizedfor
the most frequentevents (join andleave), is crucial
in orderto have a completesecuregroup communi-
cationsystem.Hardeningsecurityprotocolsto make
themrohustto asynchronousetwork eventsalthough
difficult is possible. This work provides two robust
key agreemenalgorithms.We prove thatby integrat-
ing themwith a group communicationsystemssup-
porting Virtual Synchrory, the groupcommunication
membershi@ndorderingguaranteearepresered.

We intendto implementthe optimizedprotocolin
the SecureSpreadsystem. In addition we intendto
explore andexperimentwith robustnessandrecovery
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techniquedor a spectrunof othergroupkey manage-
ment mechanismssuch as the centralizedapproach
andthe BurmesteiDesmedfprotocol.

Finally, several necessaryservicesfor a secure
groupcommunicatiorcould leadto interestingfuture
work. They include servicessuchas group member
certification,intra-groupauthenticationprivate com-
municationwithin agroupandprivatecommunication
betweermmembersandnon-membersf the group.
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