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Abstract

Group key agreement is a fundamental building block for

secure peer group communication systems. Several group

key agreement protocols were proposed in the last decade,

all of them assuming the existence of an underlying group

communication infrastructure.

This paper presents a performance evaluation of five no-

table key agreement protocols for peer groups, integrated

with a reliable group communication system (Spread).

They are: Centralized Group Key Distribution (CKD),

Burmester-Desmedt (BD), Steer et al. (STR), Group Diffie-

Hellman (GDH) and Tree-Based Group Diffie-Hellman

(TGDH). The paper includes an in-depth comparison and

analysis of conceptual results and is the first to report prac-

tical results in real-life local and wide area networks. Our

analysis of these protocols’ experimental results offers in-

sights into their scalability and practicality.
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tion.
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1 Introduction

The Internet is being increasingly used to support

collaborative applications such as voice- and video-

conferencing, white-boards, distributed simulations,

as well as games, replicated servers and databases of

all types. To be effective, these applications need sup-

porting services, such as reliable and ordered message

delivery as well as synchronization and fault-tolerance

techniques. A reliable group communication system

can provide an integrated platform containing such

services, thus greatly simplifying the application de-

velopment process and application complexity.

Since most communication over the Internet in-

volves the traversal of insecure networks, basic se-

curity services – such as data secrecy, data integrity

and entity authentication – are necessary for collab-

orative applications. These security services can be

facilitated if group members share a common secret,

which, in turn, makes group key management a fun-

damental service and a design challenge in secure and

reliable group communication systems.

1.1 Key Agreement in Peer Groups

Several group key management approaches have

been proposed in the last decade. (We stress that these

are distinct from multicast key management which

aims to minimize costs of key dissemination and

re-keying in large, single-source multicast groups.)

These approaches generally fall into three categories:

1) centralized, 2) distributed and 3) contributory.
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Centralized group key management is conceptually

simple as it involves a single entity (or a small set of

entities) that generates and distributes keys to group

members. We claim that centralized group key man-

agement is not appropriate for peer group communica-

tion since the central key server must be, at the same

time, continuously available and present in every pos-

sible subset of a group in order to support continued

operation in the event of arbitrary network partitions.

Continuous availability can be addressed with fault-

tolerance and replication techniques. Unfortunately,

the omni-presence issue is impossible to solve in a

scalable and efficient manner.

Distributed group key management is more suitable

to peer group communication, especially over unre-

liable networks. It involves dynamically selecting a

group member that acts as a key server. Although ro-

bust, this approach has a notable drawback in that it

requires the key server to maintain long-term pairwise

secure channels with all current group members in or-

der to distribute group keys. Consequently, each time

a new key server comes into play, significant costs

must be incurred to set up these channels.

In contrast, contributory group key agreement re-

quires each group member to contribute an equal share

to the common group key (computed as a function of

all members’ contributions). This approach avoids the

problems with the single points of trust and failure.

Moreover, some contributory methods do not require

the establishment of pairwise secret channels among

group members.

As can be expected, the cost of group key manage-

ment protocols is largely determined by two dominat-

ing factors: communication and computation. Typ-

ically, efficiency in one comes at the expense of

the other. Protocols that distribute computation usu-

ally require more communication rounds or messages,

whereas, protocols minimizing communication re-

quire more computational effort.

1.2 Focus

In recent previous work [1, 2] we demonstrated how

provably secure, multi-round group key agreement

protocols can be integrated with a reliable group com-

munication system to obtain provably fault-tolerant

group key agreement solutions. Specifically, we de-

signed a robust contributory key agreement proto-

col resilient to any sequence of (possibly cascaded)

events and prove that the resulting protocol preserved

group communication membership and ordering guar-

antees. The protocol was based on Group Diffie-

Hellman (GDH IKA.3) contributory key agreement

[3] that generalizes the two-party Diffie-Hellman [4]

key exchange.

In this paper we focus on the performance of key

agreement protocols. To do so, we identified several

notable protocols and integrated them with a reliable

group communication system (Spread). Centralized

Key Distribution (CKD) is a centralized key distribu-

tion scheme where one member of the group is dy-

namically chosen to act as a key server; Tree Based

Group Diffie-Hellman (TGDH) combines a tree struc-

ture with the Diffie-Hellman key exchange algorithm

to achieve a more computationally efficient protocol

than GDH; STR trades off less communication for in-

creased computation; Burmester-Desmedt (BD) dis-

tributes/minimizes computation by using more mes-

sages. All protocols provide security properties simi-

lar to those of GDH IKA.3.

The main contributions of this work are:

� Group key agreement framework that supports

multiple protocols. This allows the system to as-

sign different key agreement protocols to differ-

ent groups.

� Detailed comparison of the conceptual perfor-

mance of the five key agreement protocols with

respect to communication and computation costs.
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� In-depth analysis of practical results obtained in

real-life experiments over both local and wide

area networks. These results provide insights into

the protocols’ scalability and practicality.

The rest of the paper is organized as follows. Sec-

tion 2 overviews related work. We then present Se-

cure Spread, a secure group communication system

and give a brief description of the key agreement pro-

tocols it supports in Section 4. Next, we analyze the

conceptual costs of these protocols and present perfor-

mance results. Finally, we summarize our work and

identify possible directions for future work.

2 Related Work

In this section we summarize related work in two

areas: group key management and reliable group com-

munication.

2.1 Group Key Management

As indicated above, the focus of this work is on

the performance of group key management protocols

for collaborative, peer groups. Therefore, we consider

only distributed key distribution and contributory key

agreement protocols.

In looking at the available protocols, we are con-

cerned mostly with the cost (performance) of the types

of group key management operations that occur most

often. It might seem, at the first glance, that a typical

collaborative group scenario is: a group forms, exists

for some time and then dissolves itself. If this was

true, we would only need to consider the performance

of the initial key agreement leading to the group’s for-

mation. Moreover, performance would not be of great

concern since the protocol would be run only once or

very infrequently in order to re-key the group. How-

ever, a typical collaborative group is formed incremen-

tally and its population can mutate throughout its life-

time either because members join and leave or because

of network connectivity changes.

We begin with the protocol proposed by Steer et al.

[5] aimed at teleconferencing. As will be seen later, it

is well-suited for adding new members as it takes only

two rounds and two modular exponentiations. Mem-

ber exclusion (re-keying following a member leave

event), however, is relatively inefficient. Burmester

and Desmedt [6] proposed an efficient protocol which

takes only two rounds and three modular exponen-

tiations per member to generate a group key. This

protocol allows all members to re-compute the group

key for any membership change with a constant CPU

cost. However, it requires
���

broadcast messages

which is expensive on a wide area network. Tzeng

and Tzeng proposed an authenticated key agreement

scheme based on secure multi-party computation [7].

This protocol uses two communication rounds, but

each round consists of
�

simultaneous broadcast mes-

sages. Although the cryptographic mechanisms are

quite elegant, the main shortcoming is the lack of per-

fect forward secrecy (PFS).

Steiner et al. addressed dynamic membership is-

sues [3] in group key agreement as part of develop-

ing a family of Group Diffie Hellman (GDH) proto-

cols based on straight-forward extensions of the two-

party Diffie-Hellman protocol. GDH protocols are rel-

atively efficient for member leave and group partition

operations, but the merge protocol requires the num-

ber of rounds equal to the number of new (merging)

members. Follow-on work by Kim et al. yielded a

tree-based Diffie-Hellman (TGDH) protocol which is

more efficient than GDH in both communication and

computation [8].

In contrast to contributory group key agreement

schemes, only few distributed group key distribution

scheme have been proposed [1, 9, 10].

Very little has been done in the performance analy-

sis of peer group key management. One exception is

3



the recent work by Carman, Kruus and Matt [11]. It

compares – via simulation – different group key agree-

ment protocols in ad hoc, sensor network setting based

on their power consumption.

2.2 Reliable Group Communication

Reliable group communication systems in LANs

have a solid history beginning with ISIS [12] and fol-

lowed by more recent systems such as Transis [13],

Horus [14], Totem [15], and RMP [16]. These systems

explored several different models of Group Commu-

nication such as Virtual Synchrony [17] and Extended

Virtual Synchrony [18]. More recent work in this area

focuses on scaling group membership to wide-area

networks [19, 20].

Research in securing group communication is fairly

new. The only implementations of group communica-

tion systems that focus on security (aside from ours)

are the SecureRing [21] project at UCSB, the Ho-

rus/Ensemble work at Cornell [22, 23, 24] and the

RAMPART system at AT&T [25]. The SecureRing

system protects a low-level ring protocol by using

cryptographic techniques to authenticate each trans-

mission of the token and each data message received.

The Ensemble security architecture is the state-of-

the-art in secure reliable group communication and

addresses problems such as group keys and re-keying.

It also allows application-dependent trust models and

optimizes certain aspects of group key generation and

distribution protocols. In comparison with our ap-

proach, Ensemble uses a different group key structure

that is not contributory and provides a different set

of security guarantees. Recent research on Bimodal-

Multicast, Gossip-based protocols [26] and the Sp-

inglass system has largely focused on increasing the

scalability and stability of reliable group communica-

tion services in hostile environments such as wide-

area and lossy networks by providing probabilistic

guarantees about delivery, reliability, and group mem-

bership.

Rampart [25] is the first system providing atomic

and reliable services in a model where some servers

can get corrupted. The system builds the group multi-

cast protocols over a secure group membership proto-

col.

Antigone from UMich [27] is a framework aimed

to provide mechanisms which allow flexible applica-

tion security policies. Antigone addresses four policy

aspects: rekeying policy (defines what events trigger a

rekey), membership awareness policy (determines the

availability and accuracy of the membership informa-

tion), process failure policy (defines the type of fail-

ures supported by the system and when available, the

means of recovery) and access control policy (spec-

ifies the rights and potentially the responsibilities of

the group members). The system implements group

rekeying mechanisms in two flavors: session rekeying

- all group members receive a new key, and session

key distribution where the session leader transmits an

existing session key.

3 Secure Spread Framework

The work presented in this paper evolved from in-

tegrating security services with the Spread wide-area

group communication system. Specifically, multiple

key agreement protocols were integrated resulting in

the Secure Spread library. As its building blocks,

our implementation uses the key agreement primitives

provided by the Cliques group key agreement library.

In this section we overview the Spread group com-

munication system, the Cliques toolkit and the Secure

Spread library.

3.1 Spread Group Communication System

Spread [28, 29, 30] is a group communication sys-

tem for wide and local area networks. It provides re-

liability and ordering of messages (FIFO, causal, total
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ordering) and a membership service. The toolkit sup-

ports two different semantics: Extended Virtual Syn-

chrony [18, 31] and View Synchrony [32, 33]. In this

paper, and for our implementation we use only the

View Synchrony semantics of Spread.

The system consists of a daemon and a library

linked with the application. This architecture has

many benefits, the most important for wide-area set-

tings being the ability to pay the minimum possi-

ble price for different causes of group membership

changes. A simple join or leave of a process translates

into a single message, while a daemon disconnection

or connection requires a full membership change. The

process and daemon memberships correspond to the

model of light-weight and heavy-weight groups [34].

Spread operates in a many-to-many communication

paradigm, each member of the group can be both a

sender and a receiver. It is designed to support small

to medium groups, but can accommodate a large num-

ber of different collaboration sessions, each of which

spans the Internet. This is achieved by using uni-

cast messages over the wide-area network and routing

them between Spread nodes on the overlay network.

Spread scales well with the number of groups used

by the application without imposing any overhead on

network routers. Group naming and addressing is not

a shared resource (as in IP multicast addressing), but

rather a large space of strings which is unique to a col-

laboration session.

The Spread toolkit is publicly available

(www.spread.org) and is being used by several

organizations in both research and practical settings.

The toolkit supports cross-platform applications and

has been ported to several Unix platforms as well as

Windows and Java environments.

3.2 Cliques Library

Cliques is a cryptographic toolkit that implements a

number of key agreement protocols for dynamic peer

groups. The toolkit assumes the existence of a reli-

able communication platform that transports protocol

messages and provides ordering of messages, deals

with group membership management, and performs

all computations required to achieve a shared key in

a group. The current implementation is built atop the

popular OpenSSL library.

Currently, Cliques includes five group key agree-

ment protocols: GDH, CKD, TGDH, STR and BD.

Each is briefly mentioned below and discussed in

more detail in Section 4.

GDH is a protocol based on group extensions of the

two-party Diffie-Hellman key exchange [3] and pro-

vides fully contributory authenticated key agreement.

GDH is fairly computation-intensive requiring ��� ���
cryptographic operations upon each key change. It is,

however, bandwidth-efficient.

CKD is a centralized key distribution with the key

server dynamically chosen from among the group

members. The key server uses pairwise Diffie-

Hellman key exchange to distribute keys. CKD is

comparable to GDH in terms of both computation and

bandwidth costs.

TGDH combines a binary key tree structure with the

group Diffie-Hellman technique [8]. TGDH seems to

be efficient in terms of computation as most member-

ship changes require �����	��
 ��� cryptographic opera-

tions.

STR [35] is a form of TGDH with a so-called

“skinny” or imbalanced tree. It is based on the pro-

tocol by Steer et al. [5]. STR is more efficient than the

above protocols in terms of communication; whereas,

its computation costs for subtractive group events are

comparable to those of GDH and CKD.

BD is a protocol proposed by Burmester-Desmedt

[6], another variation of group Diffie-Hellman. BD

is computation-efficient requiring a constant number

of exponentiations upon any membership (group key)

change. However, communication costs are signifi-
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cant.

All the protocols in the Cliques library provide key

independence and perfect forward secrecy (PFS). In-

formally, key independence means that a passive ad-

versary who knows any proper subset of group keys

cannot discover any other (future or previous) group

key. PFS means that a compromise of a member’s

long-term key cannot lead to the compromise of any

short-term group keys.

Only outside intruders (both passive and active) are

considered in Cliques. In this model, any entity who

is not a current group member is considered an out-

sider1. Attacks coming from the inside of the group

are not considered, as our focus is on the secrecy of

group keys and the integrity of the group membership.

Consequently, insider attacks are not relevant in this

context since a malicious insider can always reveal the

group key and/or its own private key(s) thus allowing

for fraudulent membership authentication.

All the above protocols were proven secure with re-

spect to passive outside (eavesdropping) attacks [3, 8,

35, 6]. Active outsider attacks consist of injecting,

deleting, delaying and modifying protocol messages.

Some of these attacks aim to cause denial of service

and we do not address them. Attacks with the goal

of impersonating a group member are prevented by

the use of public key signatures, since every protocol

message is signed by its sender and verified by all re-

ceivers. Other, more subtle, active attacks aim to in-

troduce a known (to the attacker) or old key. These are

prevented by the combined use of: timestamps, unique

protocol message identifiers and sequence numbers

which identify the particular protocol run.

3.3 Secure Spread Library

Secure Spread [36, 2] is a library that, along with

the same reliable and ordered message dissemination

1Any former or future member is also an outsider according to

this definition.

and membership services as the Spread client library,

provides security services such as data confidentiality

and integrity.

The main added functionality in Secure Spread is

as follows. Whenever the group membership changes,

Secure Spread detects it and initiates the execution of

a group key agreement protocol. It then detects the

termination of the key agreement protocol and notifies

the application about the membership change and the

new key. In addition, Secure Spread encrypts and de-

crypts user data using the group key once a group is

operational.

One major consideration in designing the library

was modularity and flexibility. Secure Spread cur-

rently supports five key agreement protocols: BD,

CKD, GDH, STR, TGDH (all described in detail be-

low). The architecture of Secure Spread allows it to

handle different key agreement algorithms for differ-

ent groups. A client can be a member of different

groups, each group with its own key agreement pro-

tocol.

4 Key Agreement Protocols in Secure Spread

In this section we present the key agreement proto-

cols currently supported in Secure Spread which are

the subject of our performance evaluation. The pro-

tocols were designed to accommodate different mem-

bership changes: join of a new member, leave of a

member, network partition, and network merge. Due

to lack of space, we provide a description only for

merge and partition (multiple members leave), since

join and leave can be seen as special cases of merge

and partition, respectively.

4.1 GDH Protocol

Cliques GDH IKA.3 is a contributory key agree-

ment protocol which is essentially an extension of the
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Protocol GDH - merge: Assume that � members are

added to a group of size
�

. The protocol runs as fol-

lows:

Step 1: ��� generates a new exponent ���� , computes
�	��

����� ������
����� , and unicasts the message to ������� .
Step ��� � for �"!$#%�'&(�*)+�-, : New merging mem-

ber ���'�/. generates an exponent �0���/. , computes�	� 
 ����� � � � ����� � �21�3 and forwards the result to �����/.-��� .
Step �4�5� : Upon receipt of the accumulated value,

� ���76 broadcasts it to the entire group.

Step �8� �
: Upon receipt of the broadcast, ev-

ery member ��9:&0;=<>!?#%� , � �@��)A�-, , computes
� � 
 ����� ��� � ����� � �21CB(��
�D �FE and sends it back to � �'�76 .
Step ���HG : After collecting all the responses � ���76
generates a new exponent � �'�76 , produces the setI5JLK �	��
M����� � � � ����� � �21CB D ��EON ;P<Q!5#%� , � �>�R)+�-,TS and

broadcasts it to the group.

Step ���0U : Upon receipt of the broadcast, every mem-

ber � 9 &V;=<�!�#%� , � �W��, computes the keyX J � � � 
 ����� ��� � ����� � �21CB D ��E � ��E J � � 
 ����� ��� � ����� � �21CB .

Figure 1. GDH - merge protocol

two-party Diffie-Hellman protocol. The basic idea is

that the shared key is never transmitted over the net-

work. Instead, a list of partial keys (that can be used

by individual members to compute the group secret)

is sent. One member of the group – group controller–

is charged with the task of building and distributing

this list. The controller is not fixed and has no special

security privileges.

The protocol works as follows. When a merge event

occurs (see Figure 1), the current group controller gen-

erates a new key token by refreshing its contribution to

the group key and then passes the token to one of the

new members. When the new member receives this

token, it adds its own contribution and passes the to-

ken to the next new member2. Eventually, the token

reaches the last new member. This new member, who

is slated to become the new group controller, broad-

casts the token to the group without adding its con-

tribution. Upon receiving the broadcast token, each

group member (old and new) factors out its contribu-

tion and unicasts the result (called a factor-out token)

to the new group controller. The new group controller

collects all the factor-out tokens, adds its own contri-

bution to each of them, builds the list of partial keys

and broadcasts it to the group. Every member can then

obtain the group key by factoring in its contribution.

When some of the members leave the group (Figure

2), the group controller (who, at all times, is the most

recent remaining group member) removes their cor-

responding partial keys from the list of partial keys,

refreshes each partial key in the list and broadcasts the

list to the group. Each remaining member can then

compute the shared key. Note that if the current group

controller leaves, the last remaining member becomes

the group controller of the group.

2The new member list and its ordering is decided by the un-

derlying group communication system; Spread in our case. The

actual order is irrelevant to GDH.
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Protocol GDH - leave: Assume that a set � of mem-

bers is leaving a group of size
�

. The protocol runs as

follows:

Step 1: The controller ��� generates a new exponent

��� � , produces the set
I J K � � 
 ����� ��� � D ��E N � 9��!�� S and

broadcasts it to the remaining group.

Step 2: Upon receipt of
I

, every remaining mem-

ber ��9 & ;P< �! � computes the key
X J

� � � 
 ����� � � � D ��E � ��E J � � 
 ����� � � �

Figure 2. GDH - leave protocol

4.2 CKD Protocol

CKD protocol is a simple centralized group key dis-

tribution scheme. The group key is not contributory,

but it is always generated by one member, namely, the

current group controller. 3

The group controller establishes a separate secure

channel with each current group member by using au-

thenticated two-party Diffie-Hellman key exchange.

Each such key stays unchanged as long as both parties

(controller and the member) remain in the group. The

controller is always the oldest member of the group.

Whenever group membership changes, the group

controller generates a new secret and distributes it to

the group using the long-term pairwise key (see Fig-

ure 3). In case of a merge, the controller, in addi-

tion, establishes a secure channel with each new mem-

ber. When a partition occurs (i.e., multiple members

leave), the controller also discards the long-term key

it shared with each leaving member. A special case

is the case when the group controller itself leaves the

group. In this case, the oldest remaining member be-

comes the new group controller. Before distributing

the new key, the new group controller must first estab-

3We use the term current to mean that, even in the CKD proto-

col suite, a controller can fail or be partitioned out thus causing the

controller role to be reassigned to the oldest surviving member.

Protocol CKD: Assume that � members are added to

a group of size
�

. � � is the group controller. The

protocol runs as follows:

Step 1: � � selects random 	 ��
 �
��� (this selection

is performed only once),

�W� )�� K � ���/. N � ! #%�'&(��,TS�� K ���M
 
 �
��� N � !
#%�'&(��,TS
Step 2: For each �5! #%�'&(��, , � ���/. selects random

	 ���/. 
 ����� ,
�W��� ) � ���/.�� � � �21�3 
 �
���
Step 3: � � selects a random group secret

X��
and

computes

�W� )�� � 9�� X��! #" 
 " E 
 �
�$� ;P<�!�# � & � �8��,
Step 4: From the broadcast message, every member

can compute the group key.

Figure 3. CKD - merge protocol

lish secure channels with all of remaining group mem-

bers.

4.3 TGDH Protocol

TGDH is an adaptation of key trees [37, 38] in the

context of fully distributed, contributory group key

agreement. TGDH computes a group key derived

from the contributions of all group members using a

binary tree.

The tree is organized in the following manner: each

node %'& &!(�) is associated with a key
X+*-,/. 021

and the

corresponding blinded key 3 X *4,5. 021 J �
687:9-; <>= 
 ���$� .

The key at the root node is the group key shared by all

members, and a key at the leaf node is the random ses-

sion contribution by a group member. (Each leaf node

is associated with a group member.) Every member

knows all the keys on the path from its leaf node to the

root as well as all blinded keys on the key tree.

The basic idea here is that every member can com-
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pute a group key when all blinded keys on the key

tree are known. After any group membership event,

every member unambiguously adds or removes some

nodes related with the event, and invalidates all keys

and blinded keys related with the affected nodes. A

special group member – the sponsor– , then, takes on

a role to compute keys and blinded keys and to broad-

cast the key tree4to the group. If a sponsor could not

compute the group key, then the next sponsor comes

into play. Eventually, some sponsor will compute the

group key and all blinded keys, and broadcast the en-

tire key tree to facilitate the computation of the group

key by the the other members of the group.

� � 
 �����
���	��


� �
�


�
�
	
�� K � � &������ &(� ���76 S
� ��� � ���

���	��

� �
�


�
�
	
��
Round 1: request for merge by both groups

� �� �� ���
���	��


� �
�


�
�
	
�� K �8� &������ &(� ���76 S
Round 2: update tree � � � to get �� � � and broadcast it

Figure 4. TGDH - merge protocol

<2,0> <2,1>

<1,0> <1,1>

<0,0>

<3,4> <3,5>

<0,0>

<1,0> <1,1>

<2,2> <2,3> <2,2> <2,3>

<1,1><1,0>

<0,0>

<3,4> <3,5>

<2,0> <2,1>

<3,0> <3,1> <3,2> <3,3>

Current members new members

New Intermediate node

Sponsor

Sponsor

M1 M2M3 M4

M5

M6 M7

Tree T5
Tree T7 Tree T5

M1 M2

M6 M7 M3 M4

M5

Figure 5. TGDH - merge operation

When a merge event happens (See Figure 4), each

sponsor (the rightmost member of each group) broad-

casts its tree information to the merging sub-group af-

ter refreshing its session random and blinded keys.

Upon receiving this message, all members uniquely

and independently determine the merge position of

4The keys are never broadcasted.

the two trees.5. As described above, all the keys and

blinded keys on the path from the merge point to the

root node are invalidated. The rightmost member of

the subtree rooted at the merge point becomes the

sponsor of the key update operation. The sponsor

computes all the keys and blinded keys and broadcasts

the tree with the blinded keys to all the other members.

All members now have the complete set of blinded

keys, which allows them to compute all keys on their

key path. Figure 5 shows an example of the merge

protocol. Members ��� and �� are added to a group

consisting of members � � , �"! , �"# , �%$ and �"& .

Protocol TGDH - partition: The protocol runs as fol-

lows:

for all � � E �� ��'
���	��


��'
�


�
(
(
�� K � � &������ &(� � S
Round 1 to ) � � � : update tree � � E to get �� � E

Figure 6. TGDH - partition protocol
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Figure 7. TGDH - partition operation

Following a partition, the protocol runs as follows

(see Figure 6). In the first round, each remaining mem-

ber updates its view of the tree by deleting all leaf

nodes associated with partitioned members and (re-

cursively) their respective parent nodes. To prevent

re-use of an old group key, one of the remaining mem-

5Our heuristic is to choose the joining node as the rightmost

“shallowest” node, which does not increase the height. For more

details, see [8]
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bers changes its key share. To this end, in the first pro-

tocol round, the shallowest rightmost sponsor changes

its share. Each sponsor then computes the keys and

blinded keys as far up the tree as possible, and, then,

broadcasts the set of new blinded keys. Upon receiv-

ing the broadcast, each member checks whether the

message contains a new blinded key. This procedure

iterates until all members obtain the group key. Fig-

ure 7 shows a partition example where members �H�
and � $ are removed from the group.

4.4 STR Protocol

STR is basically an “extreme” version of TGDH,

where the key tree structure is completely imbalanced

or stretched out. This protocol and its features are de-

scribed in details in [35].

Like TGDH, the STR protocol uses a tree structure

that associates the leaves with individual random ses-

sion contributions of the group members. Every inter-

nal (non-leaf) node has an associated secret key and

a public blinded key. The secret key is the result of a

Diffie-Hellman key agreement between the node’s two

children. The group key is the key associated with the

root node.
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Figure 8. STR - merge operation

The merge protocol runs in two rounds. In the first

round, each of the two sponsors (topmost members

or right children of the respective root nodes in each

tree) exchange their respective key trees containing all

blinded keys after refreshing its session random and

computing keys and blinded keys up to the root node.

The highest-numbered member of the larger tree be-

comes the sponsor of the second round in the merge

protocol (see Figure 8). Using the blinded session ran-

dom of the other group, the sponsor computes every

(key, blinded key) pair up to the intermediate node just

below the root node. It then broadcasts the key tree

with the blinded keys and blinded session random to

the other members. All members now have the com-

plete set of blinded keys which allows them to com-

pute the new group key.
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Figure 9. STR - partition operation

In a partition, the sponsor is the lowest-numbered

remaining member. After deleting all leaving nodes

(see Figure 9), the sponsor refreshes its session ran-

dom, computes keys and blinded keys up the tree ter-

minating with the root key. It then broadcasts the up-

dated key tree containing only blinded values. Each

member can compute then the group key.

4.5 BD Protocol

Unlike other protocols discussed thus far, the

Burmester-Desmedt (BD) protocol [6] is independent

of the type of group membership change. Further-

more, it has no sponsors, controllers or any other

members charged with any special duties.

The main idea in BD is to distribute the compu-

tation among members, such that each member per-

forms only three exponentiations. This is achieved by

using two communication rounds, each of them con-

sisting of � broadcasts. Figure 10 depicts the actual
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protocol.

Protocol BD: We assume that the group has
�

mem-

bers. The protocol for all membership changes is

identical, thus, we do not separately present the join

and leave scenarios. The key computed as a result of

this protocol is:X J ���'
�� � � � � ��� � ����� � � ���	
�� � 
 �
�$� �
The protocol runs as follows:

Step 1: Each member ��9 selects random 	�9 mod � ,
computes

� 9 J ���(
 mod � and multicasts the message

to the group.

Step 2: Each member ��9 , after receiving
� 9����

and
� 9 ��� , computes 	 < J � � 9 ��� � � 9���� � � E J

� � E 1 
 � E � � E � E �	

and multicasts it to the group.

Step 3: Each member � . , after receiving all 	49:&
<�
J
� , computes

X J X . J � � .���� � � � 3 	 9 ����� �����
	 9 ��� ��� !��
mod � .

Figure 10. BD protocol

5 Theoretical Evaluation

In this section, we analyze the conceptual costs of

the five protocols presented above.

We first evaluate the time to compute a new group

key when a membership change occurs. There are four

events that can lead to a change in membership. The

first two are determined by actions initiated by users:

a new user wants to become a member of the group or

a current member leaves the group. We refer to these

events as join) and leave, respectively. Note that the

latter can also happen when one member gets discon-

nected or simply crashes.

Another category of membership change events is

related with the connectivity of the network. An unre-

liable network can split into disjoint components such

that communication is possible within a component

but not between components. For members in one

component, it appears that the rest of the members

have left. After the network fault heals, members pre-

viously in components can communicate again. From

the group perspective, it appears as if a collection of

new members are added to the group. We refer to these

events as partition and merge, respectively.

From the conceptual perspective, we are interested

in two cost aspects: the cost of communication (num-

ber of rounds, number and type of messages) and the

cost of computation (number of exponentiations, sig-

natures and verifications). Although the cost of com-

munication in a modern high-speed LAN setting can

appear negligible in comparison with the cost of, say,

modular exponentiations, we discuss it nonetheless,

since it becomes meaningful in LANs for protocols

that trade off low computation for high communica-

tion costs. Of course, communication cost is very im-

portant in high-delay networks (e.g., WANs). Because

of the distributed nature of group communication sys-

tems, we consider only serial cost of computation.6

Thus, we stress that the number of cryptographic op-

erations expressed in the table (for each protocol) is

not the sum total for all participants.

Table 1 summarizes the communication and the

computation costs for the five protocols. The num-

bers of current group members, merging members,

and leaving members are denoted as:
� &�� and � , re-

spectively.

The height of the key tree constructed by the TGDH

protocol is denoted by ) 7. The actual cost of the

6Computation that needs to be processed strictly serial. Com-

putation that can be processed in parallel is collapsed accordingly.
7Instead of fully balancing the key tree, TGDH uses best-effort

approach: it tries to balance the key tree only upon an additive

event. The height of the key tree, however, is smaller than ���������
(maximum group size: � ) [8]. The tree can be better balanced

when using the AVL tree management technique described in [23].

However, this will incur a higher communication cost for a leave
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Communication Computation

Rounds Messages Unicast Multicast Exponentiations Signatures Verifications

GDH

Join 4 ����� ����� 2 ����� 4 �����
Leave 1 1 0 1 ����� 1 1

Merge 	
��� ��� ��	
�
� ��� ��	���� 2 ��� ��	
��� 	
��� ��� ��	
���
Partition 1 1 0 1 ����� 1 1

TGDH

Join, merge 2 3 0 3
����

2 3

Leave 1 1 0 1
����

1 1

Partition � ��� 0 ��� ��� � �

STR

Join 2 3 0 3 7 2 3

Leave, partition 1 1 0 1
�T�� � � 1 1

Merge 2 3 0 3 ��	
��� 2 3

BD

Join 2 � ��� � 0 � ��� � 3 2 �����
Leave 2 � ��� � 0 ����� � 3 2 �����
Merge 2 � ��� ��	 0 � ��� ��	 3 2 ����	
� �

Partition 2 � ��� ��� 0 � ��� ��� 3 2 ������� �

CKD

Join 3 3 2 1 ��� � 3 3

Leave 1 1 0 1 ��� � 1 1

Merge 3 	
� � 	 2 ��� ��	 3 	
� �
Partition 1 1 0 1 ��������� 1 1

Table 1. Communication and Computation Costs

TGDH protocol depends on the tree height, the bal-

ancedness of the key tree, the insertion point of the

joining tree (or node) and the locations of the leaving

node(s). To err on the side of safety, we compute the

worst case cost for the TGDH.

The number of modular exponentiations for STR

upon a leave event is determined by the location of

the deepest leaving node. We, therefore, compute the

average cost, i.e. the case when the � ! -th node left the

group. All other protocols, except TGDH and STR,

show exact cost numbers.

Current implementations of TGDH and STR re-

compute a blinded key even though it has been com-

puted already by the sponsor. This provides a form of

key confirmation, since a user who receives a token

from another member can check whether his blinded

key computation is correct. This computation, how-

ever, can be removed for better efficiency, and we con-

sider this optimization when counting the number of

operation.

exponentiations.

The BD protocol has a hidden cost which is not

reflected in Table 1. In Step 3 (see Figure 10), BD

protocol has
� ) � modular exponentiations with a

small exponent. Though a single exponentiation takes

a negligible amount of time, the sum of all the
� )H�

exponentiations is not negligible. For example, it re-

quires 373 1024-bit modular multiplications, if mod-

ular exponentiation is implemented with the square-

and-multiply algorithm. (OpenSSL uses Montgomery

reduction and the sliding window algorithm to imple-

ment the modular exponentiation which is faster than

simple square-and-multiply algorithm. However, the

former requires almost the same time as the latter for

small exponent.) Because of this hidden cost, it is dif-

ficult to compare the computational overhead of BD to

the other protocols.

Join. All protocols except CKD require two commu-

nication rounds. CKD uses three rounds because the

new member must first establish a secure channel (via

12



Diffie-Hellman key exchange) with the current group

controller. The most expensive protocol in terms of

communication is BD which uses
�

broadcast mes-

sages for each round. Other protocols use a constant

number of messages, either two or three.

GDH and CKD are the most expensive in terms of

computation, requiring a linear number of exponenti-

ations relative to the group size. TGDH is compar-

atively efficient, scaling logarithmically in the num-

ber of exponentiations. STR, in turn, uses a constant

number of modular exponentiations. BD requires the

least modular exponentiations, but has the above hid-

den cost.

Leave. Table 1 shows that, for a leave event, the BD

protocol is the most expensive from the communica-

tion point of view. The cost order between the CKD,

GDH, STR and TGDH is determined strictly by the

computation cost, since they all have the same com-

munication cost (one round consisting of one mes-

sage). Therefore, TGDH is best for handling leave

events. STR, GDH and CKD scale linearly with the

group size. We note that the cost of CKD is actually

higher than the one listed in Table 1, because in the

case when the controller leaves the group, the new

group controller must establish secure channels with

all group members. Since BD, again, has a hidden

cost, it is hard to compare with other algorithms.

Merge. We first look at the communication cost. Note

that GDH scales linearly with the number of the mem-

bers added to the group in communication rounds,

while BD, CKD, STR and TGDH are more efficient

using a constant number of rounds. Since BD uses
�

messages for each round and CKD uses � � � mes-

sages, STR and TGDH are the most communication-

efficient for handling merge events.

Looking at the computation costs, it seems that BD

has the lowest cost: only three exponentiations. How-

ever, the impact of the number of small exponent ex-

ponentiations is difficult to evaluate. TGDH scales

logarithmically with the group size, being more effi-

cient than STR, CKD and GDH which scale linearly

with both the group size and the number of new mem-

bers added to the group.

Partition. Table 1 shows that the GDH, STR and

CKD protocols are bandwidth efficient: only one

round consisting of one message. BD is less efficient

with two rounds of
�

messages each. Partition is the

most expensive operation in TGDH, requiring a num-

ber of rounds bounded by the tree height.

As before, computation-wise it is difficult to com-

pare BD with the other protocols because of its hidden

cost in Step 3. TGDH requires a logarithmic number

of exponentiations. GDH, STR, and CKD scale lin-

early with the group size.

6 Experimental Results

In this section we present, compare and evaluate

the experimental costs of the five protocols discussed

above. As mentioned earlier, four events can cause the

group change: join, leave, partition and merge. Our

results reflect only the two most common events: join

and leave.

We measure the “total elapsed time” from the mo-

ment the group membership event happens until the

moment when the group key agreement finished and

the application is notified about the group change and

the new key. This time includes all the communication

and computation costs of the key agreement protocol

as well as the cost of the membership service provide

by the group communication system. In other words

it represents the actual delay experienced by an appli-

cation (or user) using the Secure Spread group com-

munication system, when it performs a join or a leave

operation to a group.
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Figure 11. Join - average time (LAN)
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Figure 12. Leave - average time (LAN)

6.1 Experimental Results in LAN

In this section we present, compare and evaluate the

performance of the five protocols discussed above in a

local area network setting.

6.1.1 Testbed and Basic Parameters

The experimental testbed is a cluster of thirteen
�����

MHz Pentium III dual-processor PCs running

Linux. Each machine runs a Spread daemon. Group

members are uniformly distributed on the thirteen ma-

chines. Therefore, more than one process can be run-

ning on a single machine (which is frequent in many

collaborative applications).

Tests performed on our testbed show that the aver-

age cost of sending and delivering one Agreed mul-

ticast message is almost constant, ranging anywhere

from � ����� milliseconds to � ��� � milliseconds for a

group size ranging from
�

to ��� members. Also, in a

scenario (similar to a BD round) where each member

of the group sends a broadcast message and receives

all the
� )*� messages from the rest of the members (

�

being the group size), the average cost is about
�

mil-

liseconds for a group of
�

members and about
� � mil-

liseconds for a group of size ��� . The cost of the mem-

bership service (see Figures 11 and 12) is negligible
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with respect to the key agreement overhead, varying

between
�

and � milliseconds for a group between
�

and ��� members.

We use RSA signatures for message origin and

data authentication, although the Cliques toolkit sup-

ports any digital signature scheme implemented in

OpenSSL library. This is because RSA signature ver-

ification is quite inexpensive and all group key agree-

ment protocols described in this paper rely heavily

on source authentication, i.e., most protocol messages

must be verified by all receivers. If all processes are

located on different CPU platforms, verification is per-

formed in parallel. In practice, however, a CPU may

have multiple group processes and expensive signa-

ture verification (e.g., as in DSA) noticeably degrades

performance.

We used 1024-bit RSA signatures with the public

exponent of G to reduce the verification overhead, al-

though a quasi-standard in RSA parameter selection

is
� �	& ��G � . This is because 1) there are no security

risks for using G as a public exponent in RSA signature

scheme [39], 2) BD and GDH require
�

simultane-

ous signature verifications, and 3) in our current topol-

ogy, some machines can have multiple group member

processes. On our hardware platform, the RSA sign

and verify operations take � � � and � � � milliseconds,

respectively.8 .

For the short-term group key, we use both � � � - and

� � � U -bit Diffie-Hellman parameter � and � � � -bit � .
The cost of a single exponentiation is � ��� and � � G mil-

liseconds for a � � � - and a � � � U -bit modulus, respec-

tively.

6.1.2 Test Scenarios

Each protocol has its peculiar features which we took

into account by keeping experiments as similar and as

simple as possible.

8This is not surprising since OpenSSL uses the Chinese Re-

mainder Theorem to speed up RSA signatures.

GDH and BD are both oblivious (insofar as cost)

to the position of the joining or leaving member, i.e.,

all leave and all join operations cost the same in these

protocols.

CKD can be expensive for a leave event if the leav-

ing member is the current group controller. We take

this into account by factoring in the � � � probability of

the group controller leaving the group.

Since the theoretical cost for leave in STR is the

average cost, we tested the average case: this hap-

pens when the member leaving the group is the
� � � -th

member located in the middle of the STR key tree.

TGDH is the most difficult protocol to evaluate be-

cause its cost depends on the location of the leave or

join node, tree height, and the balancedness of the

tree. For a truly fair comparison, Secure Spread must

be first run with TGDH for a long time (with a ran-

dom sequence of joins and leaves) in order to gener-

ate a random-looking tree. The experiments for join

and leave must then be conducted on this random tree.

However, such tests are very difficult to perform, as

mentioned above.

Therefore, we chose a simpler experimental setting

by measuring join and leave costs on an artificially

balanced TGDH key tree with
�

members. We note

that for a random tree, the cost of join will be less ex-

pensive since the member will be joined closer to the

root, while leave will be more expensive, but still less

expensive than GDH [8].

6.1.3 Join Results

Figure 11 shows the total average time for a group to

establish secure membership following a join of a new

member.

In the graph on the left ( � � � -bit modulus) it looks,

overall, that STR outperforms other protocols. Closer

inspection reveals that BD is actually the most effi-

cient for small group sizes (less than � or so). Re-

call that BD involves only three full-blown exponenti-
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ations as opposed to STR’s seven. However, BD has

� � � G � signature verifications, whereas STR only has

G . Furthermore, BD requires ��� � �	��
 ��� modular mul-

tiplications in Step G (to compute the key, see Fig-

ure 10). Finally, BD has two rounds of all-to-all broad-

casts. Small group size makes all of these factors neg-

ligible. However, as the group size grows, BD deterio-

rates rapidly since both modular multiplications, RSA

signature verifications and broadcasts add up. In fact,

after passing the group size of thirty, BD becomes the

worst performer if Diffie-Hellman parameter is � � � .

For � � � U -bit modulus, GDH is the worst due to the

sharp increase in modular exponentiation.

Another interesting observation about BD’s perfor-

mance in ALL measurements is that its cost roughly

doubles as the group size grows in increments of � G .
Recall that � G is the number of machines used in

the experiments. Because BD is fully symmetric, as

soon as just one machine starts running one addi-

tional group member (process), the cost of BD dou-

bles. Moreover, it can be noted that starting with the

group size of
���

, the performance degrades signifi-

cantly. As mentioned before the machines we used are

dual processors, so up to a group size of
���

it can be

assumed that there is one client on one processor. For

the other protocols this behavior is less obvious since

in all of them, the most costly tasks are performed by

a single member (controller or sponsor).

The graph on the right ( � � � U -bit modulus) does not

show the same deterioration in BD. It remains the best

for very small groups up to �2U members. This is be-

cause the cost of exponentiations rises sharply from

� � � to � � � U bits, while the cost of RSA signature ver-

ifications and broadcasts (which weighs BD down in

the � � � -bit case) is not felt nearly as much.

In both graphs, TGDH and STR are fairly close

with the latter performing slightly better. Although the

numbers in Table 1 show constant cost for STR, the

measured cost increases slightly because: 1) a CPU

may experience an increasing number processes as

the number of members increases, and, 2) other mi-

nor overhead factors such as tree management. Con-

ceptually, TGDH can never outperform STR in a join,

since the latter’s design includes the optimal case (i.e.,

join at the root) of the former. Experimental results,

however, show that TGDH can sometimes outperform

STR (see small dips in TGDH graph at around � � and

G U members). This is because most members in a fully

balanced TGDH tree compute two modular exponen-

tiations in the last protocol round, as opposed to four

in STR.

The difference between CKD and GDH comes

from exponentiation and signature verifications: ex-

tra operations in GDH include
�

verifications, one

RSA signature and one (DH) modular exponentiation.

GDH and BD each have
� ��G signature verifications,

which is, as mentioned above, relatively expensive

even with a � � � -bit RSA modulus.

6.1.4 Leave Results

Figure 12 shows the average time for a group to estab-

lish secure membership upon a member leave event.

In line with the conceptual evaluation, TGDH outper-

forms the rest, as it requires the fewest ( ���'& � � ���
)

modular exponentiations. This sub-linear behavior be-

comes particularly evident past the group size of G�� .

Note that for a random tree although leave will be

more expensive, it will be less expensive than leave

for the GDH protocol [8].

BD is the worst in � � � -bit leave; recall that, in it,

leave and join incur the same cost. STR, CKD and

GDH all exhibit linear increase in cost. CKD and

GDH are quite close while STR’s linear factor is
���

which makes its slope steeper.

In case of � � � U -bit modulus, STR is the most ex-

pensive protocol, since it involves (costlier in � � � U -
than in � � � -bit case) modular exponentiations. TGDH

exhibits the cost roughly twice that of � � � -bit case
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Figure 13. WAN testbed

and remains the leader. BD, however, is no longer the

worst and, at least for small group sizes, (less than G �
or so) performs close to, or better than, GDH. Once

again, we attribute this to the relatively cheap cost

of RSA signature verifications in the commensurately

small number of full-blown � � � U -bit exponentiations

in BD.

6.2 Experimental Results in WAN: An Extreme

Case

In this section we present some preliminary results

in a WAN environment with high-delays. As in the

LAN experiments, we focused on evaluating the total

time needed to perform a join or a leave operation,

from the moment the group membership changes due

to the join or leave of a member, till the moment a

new key was computed and delivered to all members

of the group. This time includes all communication

and computation costs of the key agreement protocol

as well as the cost of the membership service of the

group communication system.

6.2.1 Testbed and Basic Parameters

Figure 13 presents the network configuration we used

for our experiments on WAN.

To achieve the same computation distribution as

for the LAN experiments, we used an experimental

testbed of thirteen PCs running Linux: ten
�����

MHz

Pentium III dual-processor PCs, one � � � MHz Athlon

and one ��G�� MHz Pentium III PCs, located as fol-

lows: first eleven machines at Johns Hopkins Univer-

sity (JHU), Maryland, one machine at University of

California at Irvine (UCI) and one at the Information

and Communications University (ICU), Korea. We

uniformly distributed group members among the thir-

teen machines with more than one group member pro-

cess running on a single machine. Each machine runs

a Spread daemon. Approximate round-trip latencies

(ping times) as reported by the ping program are: JHU

- UCI � � milliseconds, UCI - ICU G���� milliseconds

and ICU - JHU
� � � milliseconds.

The average delay of sending and delivering one

Agreed multicast message depends on the sender’s lo-

cation. The actual delay (in milliseconds) is: sender

at JHU – G�� � , sender at UCI – G � � , and sender at ICU

– G�G U . When each group member sends a broadcast

message and waits to receive
� )5� messages from

the rest of the group (similar to a BD communication

round), the average cost is about � ����� milliseconds for

a group of size ��� .

It is important to notice that, in a LAN setting, the

cost of the group membership service provided by the

underlying group communication system is negligible

with respect to the key agreement overhead, e.g., about

� milliseconds vs. hundreds of milliseconds. How-

ever, this relative cost becomes significantly higher in

a WAN setting. The cost of the membership service

as it can be seen in Figure 14, varies between U ��� and
� � � milliseconds for a join operation and between

� ���
and

� ��� for a leave operation, for a group of
�

to ���
members.

As in the LAN experiments, we used RSA � � � U -
bit with the public exponent of G to compute message

signatures. On our test PCs, the RSA sign and verify

operations take
� ��� ) � � ��� and � � � ) � ��U milliseconds,

respectively, depending on the platform. For the short-

term group key, we use � � � -bit Diffie-Hellman param-
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eter � and 160-bit � . 9 The cost of a single modular

exponentiation is between � � � and � ��� milliseconds.

6.2.2 Join Results

Figure 14 (left) presents our results for the average

time required to establish a secure group member-

ship when a new member joins the group. The graph

also separately plots the cost of the insecure group

membership service. The difference between the to-

tal time required by each protocol and the insecure

group membership service cost, represents the over-

head of the key agreement itself (both communication

and computation).

The first observation is that the GDH protocol per-

forms significantly worse than others. The main dif-

ference between GDH and the other protocols comes

from communication. First, the number of rounds is

greater than that of the other protocols as shown in

Table 1. GDH requires U rounds while others require

only
�

rounds. Second, a different factor comes from

the round where all members factor out their contri-

bution and then send the result to the group controller

(see Section 4.1). Although theoretically this can be

seen as a one round of
�

unicast messages, for the

correctness and robustness of the key agreement pro-

tocol [2] these messages need to be in Agreed order

with respect to the messages sent within the group.

This raises the cost of such a message to the cost of an

Agreed broadcast message. Lastly, all members but

the controller are sending, while the group controller

needs to receive and process � � )�� � messages, which

increases the cost even more. In conclusion, the cost

of the factor out message round is more expensive than

the theoretical analysis shows and has a big impact on

the performance of the protocol. This behavior was

less obvious in a LAN setup because the communica-

9We intend to include results for ������� -bit Diffie-Hellman in

the final submission.

tion cost in general is much smaller than the computa-

tion overhead.

The rest of the protocols are more or less in the

same range, with BD becoming more expensive for

a group size bigger than G�� , while STR and TGDH

show similar performance. It is interesting to notice

that both STR and TGDH come closer to the BD per-

formance. This is also because of the communication

aspect of the protocols. As stated in Table 1 and Sec-

tions 4.4 and 4.3, both STR and TGDH have
�

rounds,

out of which the first round consists of two “simultane-

ous” broadcasts. In our implementation, these broad-

casts are not simultaneous, since to achieve ordered

delivery of the messages, group communication sys-

tems use a mechanism, where a token is passed be-

tween participants and only the entity that has the to-

ken is allowed to send. Because in our particular WAN

setup, there are three main sites, JHU, UCI and ICU

(the cost of passing the token inside a site is signifi-

cantly smaller than the cost between sites), the cost of

a STR and TGDH scenario -
�

members are sending

two broadcasts and all the members need to receive

them - is close to the cost of a BD scenario -
�

mem-

bers broadcast and all members need to receive
� )8�

messages. 10 BD deteriorates faster than other proto-

cols due to the number of broadcast messages.

Though CKD has three rounds, two of them involve

single-message unicasts. This helps CKD to remain

competitive with respect to the other protocols.

We can clearly conclude that communication costs

(the number of rounds and the numbers of messages

sent in one round) of a group key agreement scheme

affects severely its performance on the wide area net-

work, particularly in one with high-delays as the one

we used in our experiments.

10This is because if one member missed the token, it needs to

wait for the token to pass the whole ring, while in the BD sce-

nario if the token completes a cycle, no matter where it started,

everybody succeeds to send.
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Figure 14. Join and leave - average time (WAN)

6.2.3 Leave Results

In case of leave (see Figure 14, right), BD is the most

expensive protocol in our WAN setup, due to the two

rounds on
�

broadcasts and its high computational

cost.

GDH, CKD and TGDH require only a single broad-

cast, thus, they exhibit similar performance results.

Although STR also requires only one broadcast, it has

significantly higher computation cost with respect to

the rest.

We observe that TGDH exhibits a behavior more

dynamic than GDH and CKD. We attribute this to the

fact that, in CKD and GDH, the controller (who does

the bulk of computation and broadcasts) was running

on a fixed machine. Whereas, in TGDH, the sponsor

(who also does most of computation and broadcasts)

was running on any of the � G testbed machines. If

tested with a fixed sponsor, we suspect that TGDH,

GDH, CKD would have almost identical cost.

The number of rounds seems to be the most im-

portant factor in the performance of the protocols we

investigated, in an ’extreme’ WAN network.

6.3 Discussion

Following our experiments and their interpretation

(as discussed above), we conclude that computation

cost is most important in a low delay network and

communication cost is most important in a high delay

network.

In a LAN setting, TGDH is the best performing pro-

tocol overall. However, we also note that for small

groups – no greater than, say, a dozen members – BD

is a slightly better performer. Another factor in BD’s

favor is its simplicity: all operations are symmetric

and are implemented via the same protocol with few

data structures to manage. In contrast, TGDH involves

some non-trivial tree management. (See [8] for de-

tails.)

An additional factor can skew the comparable per-

formance of the evaluated protocols. TGDH was eval-

uated with a well-balanced tree. In a random (unbal-

anced) tree the join cost would have been less expen-

sive since the joining node would have been inserted

nearer the root node, while the leave cost would have

been more expensive, but less expensive than GDH

[8].

In a high-delay WAN setting, TGDH and CKD

exhibited the best performance. Since TGDH has
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smaller computation overhead, we expect it to out-

perform CKD in a medium delay wide area network

( � � )8� ��� milliseconds round-trip links).

From the above we conclude that TGDH is the best

choice of a key agreement protocol for dynamic peer

groups in both local and wide area networks.

7 Conclusions and Future Work

We presented a framework for cost evaluation of

group key agreement protocols in a realistic network

setting. The focus was on five notable group key

agreement protocols integrated with a reliable group

communication system (Spread). After analyzing the

protocols’ conceptual costs, we measured their behav-

ior in both LAN and WAN settings. In particular,

we presented and discussed the measurements for the

elapsed time required to process two common group

membership change events: join and leave. The re-

sults we presented indicate that TGDH is the protocol

that will work best in both environments.

A few of items remain for future work. Experi-

menting with the protocols on a medium-delay (e.g.,

� � )H� ��� milliseconds round-trip) wide area network

is of interest since communication and computation

costs are expected to equalize, at least in theory. Fi-

nally, we also need to experiment with more complex

group operations such as partition and merge.
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