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Abstract 
This paper explores the architecture, implementation and performance of a wide and 

local area database replication system. The architecture provides peer replication, 
supporting diverse application semantics, based on a group communication paradigm. 
Network partitions and merges, computer crashes and recoveries, and message omissions 
are all handled. Using a generic replication engine and the Spread group communication 
toolkit, we provide replication services for the PostgreSQL database system. We define 
three different environments to be used as test-beds: a local area cluster, a wide area 
network that spans the U.S.A, and an emulated wide area test bed. We conduct an 
extensive set of experiments on these environments, varying the number of replicas and 
clients, the mix of updates and queries, and the network latency. Our results show that 
sophisticated algorithms and careful distributed systems design can make symmetric, 
synchronous, peer database replication a reality for both local and wide area networks. 

1. Introduction 
Database management systems are among the most important software systems 

driving the information age. In many Internet applications, a large number of users that 
are geographically dispersed may routinely query and update the same database. In this 
environment, the location of the data can have a significant impact on application 
response time and availability. A centralized approach manages only one copy of the 
database. This approach is simple since contradicting views between replicas are not 
possible. The centralized approach suffers from two major drawbacks: 

• Performance problems due to high server load or high communication latency for 
remote clients. 

• Availability problems caused by server downtime or lack of connectivity. Clients 
in portions of the network that are temporarily disconnected from the server 
cannot be serviced. 

The server load and server downtime problems can be addressed by replicating the 
database servers to form a cluster of peer servers that coordinate updates. However, 
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communication latency and server connectivity remain a problem when clients are 
scattered on a wide area network and the cluster is limited to a single location. Wide area 
database replication coupled with a mechanism to direct the clients to the best available 
server (network-wise and load-wise) [APS98] can greatly enhance both the response time 
and availability. 

A fundamental challenge in database replication is maintaining a low cost of updates 
while assuring global system consistency. The problem is magnified for wide area 
replication due to the high latency and the increased likelihood of network partitions in 
wide area settings. 

In this paper, we explore a novel replication architecture and system for local and 
wide area networks. We investigate the impact of latency, disk operation cost, and query 
versus update mix, and how they affect the overall performance of database replication. 
We conclude that for many applications and network settings, symmetric, synchronous, 
peer database replication is practical today.  

The paper focuses on the architecture, implementation and performance of the 
system. The architecture provides peer replication, where all the replicas serve as master 
databases that can accept both updates and queries. The failure model includes network 
partitions and merges, computer crashes and recoveries, and message omissions, all of 
which are handled by our system. We rely on the lower level network mechanisms to 
handle message corruptions, and do not consider Byzantine faults. 

Our replication architecture includes two components: a wide area group 
communication toolkit, and a replication server. The group communication toolkit 
supports the Extended Virtual Synchrony model [MAMA94]. The replication servers use 
the group communication toolkit to efficiently disseminate and order actions, and to learn 
about changes in the membership of the connected servers in a consistent manner.  

Based on a sophisticated algorithm that utilizes the group communication semantics 
[AT01, A95], the replication servers avoid the need for end-to-end acknowledgements on 
a per-action basis without compromising consistency. End-to-end acknowledgments are 
only required when the membership of the connected servers changes due to network 
partitions, merges, server crashes and recoveries. This leads to high system performance. 
When the membership of connected servers is stable, the throughput of the system and 
the latency of actions are determined mainly by the performance of the group 
communication and the single node database performance, rather than by other factors 
such as the number of replicas. When the group communication toolkit scales to wide 
area networks, our architecture automatically scales to wide area replication. 

We implemented the replication system using the Spread Group Communication 
Toolkit [AS98, ADS00, Spread] and the PostgreSQL database system [Postgres]. We 
then define three different environments to be used as test-beds: a local area cluster with 
fourteen replicas, the CAIRN wide area network [CAIRN] that spans the U.S.A with 
seven sites, and the Emulab emulated wide area test bed [Emulab]. 

We conducted an extensive set of experiments on the three environments, varying the 
number of replicas and clients, and varying the mix of updates and queries. Our results 
show that sophisticated algorithms and careful distributed systems design can make 
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symmetric, synchronous, peer database replication a reality over both local and wide area 
networks. 

The remainder of this paper is organized as follows. The following subsection 
discusses related work. Section 2 presents our architecture for transparent database 
replication. Section 3 presents the Spread group communication toolkit and the 
optimization we implemented to support efficient wide area replication. Section 4 details 
our replication server. Section 5 presents the experiments we constructed to evaluate the 
performance of our system, and Section 6 concludes the paper. 

Related Work 
Despite their inefficiency and lack of scalability, two-phase commit protocols [GR93] 

remain the principal technique used by most commercial database systems that try to 
provide synchronous peer replication. Other approaches investigated methods to 
implement efficient lazy replication algorithms using epidemic propagation [Demers87, 
HAE00]. 

Most of the state-of-the-art commercial database systems provide some level of 
database replication. However, in all cases, their solutions are highly tuned to specific 
environment settings and require a lot of effort in their setup and maintenance. Oracle 
[Oracle], supports both asynchronous and synchronous replication. However, the former 
requires some level of application decision in conflict resolution, while the latter requires 
that all the replicas in the system are available to be able to function, making it 
impractical. Informix [Informix], Sybase [Sybase] and DB2 [DB2] support only 
asynchronous replication, which again ultimately rely on the application for conflict 
resolution. 

In the open-source database community, two database systems emerge as clear 
leaders: MySQL [Mysql] and PostgreSQL [Postgres]. By default both systems only 
provide limited master-slave replication capabilities. Other projects exist that provide 
more advanced replication methods for Postgres such as Postgres Replicator, which uses 
a trigger-based store and forward asynchronous replication method [Pgrep]. 

The more evolved of these approaches is Postgres-R [Postgres-R], a project that 
combines open-source expertise with academic research. This work implements 
algorithms designed by Kemme and Alonso [KA00] into the PostgreSQL database 
manager in order to provide synchronous replication. The current work focuses on 
integrating the method with the upcoming 7.2 release of the PostgreSQL system. 

Kemme and Alonso introduce the Postgres-R approach in [KA00] and study its 
performance on Local Area settings. They use an eager-replication method that exploits 
group communication ordering guarantees to serialize write conflicts at all sites. The 
initial work was done on version 6.4.2 of PostgreSQL. In similar approaches, Jimenez-
Peris and Patino-Martinez, together with Kemme and Alonso analyze various other 
methods and their performance in local area settings [JPKA00, PJKA00]. 

Research on protocols to support group communication across wide area networks 
such as the Internet has begun to expand.  Recently, new group communication protocols 
designed for such wide area networks have been proposed [KSMD00, KK00, AMMB98, 
ADS00] which continue to provide the traditional strong semantic properties such as 
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reliability, ordering, and membership. The only group communication systems we are 
aware of that currently exist, are available for use, and can provide the Extended Virtual 
Synchrony semantics are Horus[RBM96], Ensemble[H98], and Spread[AS98]. The 
JGroups[Mon00] system provides an object-oriented group communication system, but 
its semantics differ in substantial detail from Extended Virtual Synchrony. 

2. An Architecture for Transparent Database Replication 
Our architecture provides peer replication, supporting diverse application semantics, 

based on a group communication paradigm. Peer replication is a symmetric approach 
where each of the replicas is guaranteed to invoke the same set of actions in the same 
order. In contrast with the common Master/Slave replication model, in peer replication 
each replica acts as a master. This approach requires the next state of the database to be 
determined by the current state and the next action, and it guarantees that all of the 
replicas reach the same database state. 

The architecture is structured into two layers: a replication server and a group 
communication toolkit (Figure 1). 

Each of the replication servers maintains a private copy of the database. The client 
application requests an action from one of the replication servers.  The replication servers 
agree on the order of actions to be performed on the replicated database. As soon as a 
replication server knows the final order of an action, it applies this action to the database. 
The replication server that initiated the action returns the database reply to the client 
application. The replication servers use the group communication toolkit to disseminate 
the actions among the servers group and to help reach an agreement about the final global 
order of the set of actions. 
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Figure 1: A Database Replication Architecture 
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In a typical operation, when an application submits a request to a replication server, 
this server logically multicasts a message containing the action through the group 
communication. The local group communication toolkit sends the message over the 
network. Each of the currently connected group communication daemons eventually 
receives the message and then delivers the message in the same order to their replication 
servers. 

The group communication toolkit provides multicast and membership services 
according to the Extended Virtual Synchrony model [MAMA94]. For this work, we are 
particularly interested in the Safe Delivery property of this model. Delivering a message 
according to Safe Delivery requires the group communication toolkit both to determine 
the total order of the message and to know that every other daemon in the membership 
already has the message. 

The group communication toolkit overcomes message omission faults and notifies the 
replication server of changes in the membership of the currently connected servers. These 
notifications correspond to server crashes and recoveries or to network partitions and re-
merges. On notification of a membership change by the group communication layer, the 
replication servers exchange information about actions sent before the membership 
change. This exchange of information ensures that every action known to any member of 
the currently connected servers becomes known to all of them. Moreover, knowledge of 
final order of actions is also shared among the currently connected servers. As a 
consequence, after this exchange is completed, the state of the database at each of the 
connected servers is identical. The cost of such synchronization amounts to one message 
exchange among all connected servers plus the retransmission of all updates that at least 
one connected server has and at least one connected server does not have. Of course, if a 
site was disconnected for an extended period of time, it might be more efficient to 
transfer a current snapshot [KBB01]. 

The careful use of Safe Delivery and Extended Virtual Synchrony allows us to 
eliminate end-to-end acknowledgments on a per-action basis. As long as no membership 
change takes place, the system eventually reaches consistency. End to end 
acknowledgements and state synchronization are only needed once a membership change 
takes place. A detailed description of the replication algorithm we are using is given in 
[AT01, A95]. 

Advanced replication systems that support a peer-to-peer environment must address 
the possibility of conflicts between the different replicas. Our architecture eliminates the 
problem of conflicts because updates are always invoked in the same order at all the 
replicas. 

 The latency and throughput of the system for updates is obviously highly dependent 
on the performance of the group communication Safe Delivery service. Read-only 
queries will not be sent over the network. 

An important property our architecture achieves is transparency - it allows replicating 
a database without modifying the existing database manager or the applications accessing 
the database. The architecture does not require extending the database API and can be 
implemented directly above the database or as a part of a standard database access layer 
(e.g. ODBC or JDBC).  
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Figure 2: Modular Software Architecture 

Figure 2.A presents a non-replicated database system that is based on the Postgres 
database manager. Figure 2.B. presents the building blocks of our implementation, 
replicating the Postgres database system. The building blocks include a replication server 
and the Spread group communication toolkit. The Postgres clients see the system as in 
figure 2.A., and are not aware of the replication although they access the database 
through our replication server. Similarly, any instance of the Postgres database manager 
sees the local replication server as a client. 

The replication server consists of several independent modules that together provide 
the database integration and consistency services (Figure 2.B). They include: 

• A provably correct generic Replication Engine that includes all of the replication 
logic, and can be applied to any database or application. The engine maintains a 
consistent state and can recover from a wide range of network and server failures. 
The replication engine is based on the algorithm presented in [AT01, A95].   

• A Semantics Optimizer that decides whether to replicate transactions and when to 
apply them based on the required semantics, the actual content of the transaction, 
and whether the replica is in a primary component or not.  

• A database specific interceptor that interfaces the replication engine with the 
DBMS client-server protocol. To replicate Postgres, we created a Postgres 
specific interceptor. Existing applications can transparently use our interceptor 
layer to provide them with an interface identical to the Postgres interface, while 
the Postgres database server sees our interceptor as a regular client. The database 
itself does not need to be modified nor do the applications. A similar interceptor 
could be created for other databases.  

To optimize performance, the replication server could be integrated with the database 
manager, allowing more accurate determination of which actions could be parallelized 
internally. 
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The flexibility of this architecture enables the replication system to support 
heterogeneous replication where different database managers from different vendors 
replicate the same logical database. 

3. The Spread Toolkit 
Spread is a client-server group messaging toolkit that provides reliable multicast, 

ordering of messages and group membership notifications under the Extended Virtual 
Synchrony semantics [MAMA94] over local and wide-area networks to clients that 
connect to daemons. 

To provide efficient dissemination of multicast messages on wide-area networks, all 
Spread daemons located in one local area network are aggregated into a group called a 
site, and a dissemination tree is rooted at each site, with other sites forming the nodes of 
the tree. Messages that originate at a Spread daemon in a site will first be multicast to all 
the daemons of the site. Then, one of those daemons will forward the message onto the 
dissemination tree where it will be forwarded down the tree until all of the sites have 
received the message. Therefore, the expected latency to deliver a message is the latency 
of the local area network plus the sum of the latencies of the links on the longest path 
down the tree. 

The total order of messages is provided by assigning a sequence number and a 
Lamport time stamp to each message when it is created by a daemon. The Lamport time 
stamps provide a global partial causal order on messages and can be augmented to 
provide a total causal order by breaking ties based on the site identifier of the message 
[L78]. To know the total order of a message that has been received, a server must receive 
a message from every site that contains a Lamport time stamp at least equal to the 
Lamport time stamp of the message that is to be delivered. Thus, each site must receive a 
message from every other site prior to delivering a totally ordered message.  

The architecture and reliability algorithms of the Spread toolkit [AS98, ADS00], and 
its global flow control [AADS01] provide basic services for reliable, FIFO, total order 
and Safe delivery. However, our architecture requires a high-performance 
implementation of the Safe Delivery service for wide-area networks, something not 
developed in previous work.  

Delivering a message according to Safe Delivery requires the group communication 
toolkit to determine the total order of the message and to know that every other daemon 
in the membership already has the message. The latter property (sometimes called 
message stability) was traditionally implemented by group communication systems for 
garbage collection purposes, and therefore was not optimized. For this work, we designed 
and implemented scalable, high performance wide-area Safe Delivery for Spread. 

Scalable Safe Delivery for Wide Area Networks  
A naive algorithm will have all the daemons immediately acknowledge each Safe 

message. These acknowledgements are sent to all of the daemons, thus reaching all the 
possible destinations of the original Safe message within one network diameter. Overall, 
this leads to a latency of twice the network diameter. However, this algorithm is 
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obviously not scalable. For a system with N sites, each message requires N broadcast 
acknowledgements, leading to N times more control messages than the data messages. 

Our approach avoids this ack explosion problem by aggregating information into 
cumulative acknowledgements. However, minimizing the bandwidth at all costs will 
cause extremely high latency for Safe messages, which is also undesirable. Therefore our 
approach permits tuning the tradeoff between bandwidth and latency. 

The structure of our acknowledgements, referred to as ARU_updates (all received up-
to), is as follows for an ARU_update originating at site A: 

• Site_Sequence is the sequence number of the last message originated by any 
daemon at site A and forwarded in order to other sites (Spread may forward 
messages even out of order to other sites to optimize performance). This number 
guarantees that no messages will be originated in the future from site A with a 
lower sequence number. 

• Site_Lts is the Lamport timestamp that guarantees that site A will never send a 
message with a lower Lamport timestamp and a sequence number higher then 
Site_Sequence.  

• Site_Aru is the highest Lamport timestamp such that all the messages with a 
lower Lamport timestamp that originated from any site are already received at 
site A.  

Each daemon keeps track of these three values received from each of the currently 
connected sites. In addition, each daemon updates another variable, Global_Aru, which is 
the minimum of the Site_Aru values received from all of the sites. This represents the 
Lamport timestamp of the last message received in order by all the daemons in the 
system. A Safe message can be delivered to the application (the replication server, in our 
case) when its Lamport timestamp is smaller or equal to the Global_Aru.  

In order to achieve minimum latency, an ARU_update message should be sent 
immediately upon a site receiving a Safe message at any of the daemons in the site. 
However, if one ARU_update is sent for every message by every site, the traffic on the 
network will increase linearly with the number of sites. Spread optimizes this by trading 
bandwidth for improved latency when the load of messages is low, and by sending  the 
ARU_update after a number of messages have been received when the message load is 
high. The delay between two consecutive ARU_updates it is bounded by a certain timeout 
delta. For example, if five Safe messages are received within one delta time, only one 
ARU_update will be sent for an overhead of 20%, however, if a message is received and 
no ARU_update has been sent in the last delta interval, then an ARU_update is sent 
immediately. Note that this is a simplification of the actual implementation which 
piggybacks control information on data messages. 

In practical settings, delta will be selected higher than the network diameter Dn. 
Therefore, the Safe Delivery latency is between Dn*3  and Dndelta *2*2 + .  

This could be optimized by including in the ARU_update the complete table with 
information about all of the currently connected sites, instead of just the three local 
values described above. This would reduce the Safe Delivery latency to be between 
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Dn*2  and Dndelta *2+ .  However, this scheme is not scalable, since the size of the 
ARU_update will grow linearly with the number of sites. For a small number of sites (e.g. 
10), this technique could be useful, but we elected not to report results based on it in 
order to preserve the scalability of the system (e.g. 100 sites). 

A detailed example of how Safe Delivery is performed, is provided in Appendix 1.  

4. The Replication Server 
A good group communication system is unfortunately not sufficient to support 

consistent synchronous peer database replication. The replication server bridges the gap. 
The replication server is constructed with three main modules, as depicted in Figure 2.B 
in Section 2. Each of the modules is responsible for the following tasks: the Replication 
Engine consistently and efficiently orders actions; the database interceptor manages the 
user connections and the replication server connections to the database; the Semantics 
Optimizer optimizes the handling of actions based on the required application semantics 
and the current connectivity. Below we discuss these modules as they are used to 
replicate the Postgres database.  

The Replication Engine 
The specifics of the Replication Engine and its algorithm are discussed elsewhere 

[AT01, A95] and are not part of this paper. However, it is important to summarize the 
properties of the engine in order to understand how the replication server uses it. 

The Replication Engine implements a complete and provably correct algorithm that 
provides global persistent consistent order of actions in a partitionable environment 
without the need for end-to-end acknowledgements on a per action basis. End-to-end 
acknowledgements are only used once for every network connectivity change event such 
as network partition or merge, or server crash or recovery. The engine uses Spread as the 
group communication toolkit. 

The Replication Engine minimizes synchronous disk writes: it requires only a single 
synchronous disk write per action at the originating replica, just before the action is 
multicast (see Figure 1) via the group communication. Any peer replication scheme will 
have to include at least this operation in order to cope with a failure model that includes 
crashes and recoveries as well as network partitions and merges, and to allow a recovered 
database to work without connecting to the primary component first. 

The above properties lead to high performance of the replication server: the 
throughput and latency of actions while in the primary component are mainly determined 
by the Safe Delivery performance of the group communication and are less influenced by 
other factors such as the number of replicas and the performance of the synchronous disk 
writes. Of course, the performance of actually applying updates to the database depends 
on the quality of the database and the nature of the updates. 

In the presence of network partitions, the replication servers identify at most a single 
component of the servers group as the primary component. The other components of the 
partitioned server group are non-primary components. While in the primary component, 
actions are immediately applied to the database upon their delivery by the group 
communication according to the Safe Delivery service. While in a non-primary 
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component, they will be applied according to the decision made by the Semantic 
Optimizer, described below. Updates that are generated in non-primary components will 
propagate to other components as the network connectivity changes. These updates will 
be ordered in the final persistent consistent order upon the formation of the first primary 
component that includes them. 

Every architecture that separates the replication functionality from the database 
manager needs to guarantee the exactly once semantics for updates. The difficulty occurs 
when the database manager crashes and the replication server does not know if the update 
was committed. One solution to this problem is to use the ordinal of the update assigned 
by the consistent persistent order. This ordinal will be stored in the database and updated 
as part of each update transaction. Upon recovery, the replication server can query the 
database for the highest ordinal transaction committed and re-apply actions with higher 
ordinal values. Since the database guarantees all-or-none semantics, this solution 
guarantees exactly once semantics. 

The Replication Engine uses the Dynamic Linear Voting [JM90] quorum system to 
select the primary component. Dynamic Linear Voting allows the component that 
contains a weighted majority of the last primary component to form the next primary 
component. This quorum system performs well in practice [PL88], establishing an active 
primary component with high probability (better than weighted majority, for example). 

The Replication Engine employs the propagation by eventual path technique, where 
replication servers that merge into a network component exchange their knowledge 
immediately upon the delivery of a membership notification. If the servers stay connected 
long enough to complete a re-conciliation phase, they share the same knowledge and will 
appear identical to clients. This technique is optimal in the sense that if no eventual path 
exists between two servers, no algorithm can share information between these servers. If 
such an eventual path exists between two servers, the Replication Engine will be able to 
propagate the information between them. 

Employing the Dynamic Linear Voting quorum system and the propagation by 
eventual path techniques contributes to the high availability of our system. 

The Postgres Interceptor 
The interceptor module provides the link between the replication server and a specific 

database. Therefore, it is the only non-generic module of the architecture. The interceptor 
facilitates handling client connections, sends client messages to the database, gets back 
results from the database, and forwards the results back to the relevant clients.  

Our interceptor was implemented for the Postgres version 7.1.3 database system. We 
intercept the clients that use the TCP interface to connect to the database. Once a client 
message is received, it is passed to the Semantics Optimizer that decides the next 
processing step, as described in the following subsection. The Postgres Interceptor reuses, 
with minor modifications, parts of the Postgres libpq library implementation in order to 
communicate with the database and the database clients. 

In order to capture the client-database communication, the interceptor listens for 
client connections on the standard Postgres database port, while Postgres itself listens on 
a different private port, known only to the interceptor. The clients that attempt to connect 
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to Postgres will transparently connect to the interceptor, which will take care of 
redirecting their queries to the database and passing back the response. The interceptor 
can handle multiple clients simultaneously, managing their connections and identifying 
transactions initiated by a local client from transactions initiated by a client connected to 
a different replica.  This method can be applied to any database manager with a 
documented client-server communication protocol. 

When the interceptor receives an action from the Replication Engine, it submits the 
action to the database. Under normal execution, Postgres creates one process for each 
client connected to the database, taking advantage of the parallelism of transaction 
execution when there are no conflicts between the transactions issued by different clients.  

Our architecture however, has to make sure that the order assigned to the transactions 
by the replication engine is not modified by this parallelization. Since we do not control 
the Postgres scheduler, as our implementation resides entirely outside of the database, in 
order to maintain the established ordering we need to know which actions can be 
parallelized. Our current implementation, benchmarked in the next section, ensures a 
correct execution by maintaining a single connection to the database on each replica, 
serializing the execution of transactions.  

The performance could be improved by implementing a partial SQL parser that can 
allow us to parallelize the execution of local queries. Any such action, that does not 
depend on an update transaction issued by the same client and that was not yet executed, 
can be sent to the database independently of other transactions submitted by other clients 
(local or remote). For this purpose, the interceptor can maintain a pool of connections to 
the database where one connection is used for all update transactions (and thus maintains 
their order) and the others are shared by all local independent queries. This optimization 
is not implemented yet in our system.  

A lower-level integration of our replication server inside the database manager could 
exploit the same parallelization as the database exploits. Of course, that would incur the 
price of losing the database transparency.  

The Semantics Optimizer 
The Semantics Optimizer provides an important contribution to the ability of the 

system to support various application requirements as well as to the overall performance.  

In the strictest model of consistency, updates can be applied to the database only 
while in a primary component, when the global consistent persistent order of the action 
has been determined. However, read-only actions (queries) do not need to be replicated. 
A query can be answered immediately by the local database if there is no update pending 
generated by the same client. A significant performance improvement is achieved 
because the system distinguishes between queries and actions that also update the 
database. For this purpose the Semantics Optimizer implements a very basic SQL parser 
that identifies the queries from the other actions.  

 If the replica handling the query is not part of the primary component, it cannot 
guarantee that the answer of its local database reflects the current state of the system, as 
determined by the primary component. Some applications may require only the most 
updated information and will prefer to block until that information is available, while 
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others may be content with outdated information that is based on a prior consistent state 
(weak consistency), preferring to receive an immediate response. Our system allows each 
client to specify its required semantics individually, upon connecting to the system. Our 
system can even support such specification for each action but that will require the client 
to be aware of our replication service.  

In addition to the strict consistency semantics and the standard weak consistency, our 
implementation supports, but is not limited to, two other types of consistency 
requirements: delay updates and cancel actions, where both names refer to the execution 
of updates/actions in a non-primary component. In the delay updates semantics, 
transactions that update the database are ordered locally, but are not applied to the 
database until their global order is determined. The client is not blocked and can continue 
submitting updates or even querying the local database, but needs to be aware that the 
responses to its queries may not yet incorporate the effect of its previous updates. In the 
cancel actions semantics a client instructs the Semantics Optimizer to immediately abort 
the actions that are issued in a non-primary component. This specification can also be 
used as a method of polling the availability of the primary component from a client 
perspective. These decisions are made by the Semantics Optimizer based on the semantic 
specifications that the client or the system setup provided. 

The following examples demonstrate how the Semantics Optimizer determines the 
path of the action as it enters the replication server. After the Interceptor reads the action 
from the client, it passes it on to the Semantics Optimizer. The optimizer detects whether 
the action is a query and, based on the desired semantics and the current connectivity of 
the replica, decides whether to send the action to the Replication Engine, send it directly 
to the database for immediate processing, or cancel it altogether.  

If the action is sent through the Replication Engine, the Semantics Optimizer is again 
involved in the decision process once the action is ordered. Some applications may 
request that the action is optimistically applied to the database once the action is locally 
ordered. This can happen either when the application knows that its update semantics is 
commutative (i.e. order is not important) or when the application is willing to resolve the 
possible inconsistencies that may arise as the result of a conflict. Barring these cases, an 
action is applied to the database when it is globally ordered.  

5. Performance Evaluation 
We evaluated the performance of our system in three different environments. 

• A local area cluster at our lab at Johns Hopkins University. The cluster 
contains 14 Linux computers, each of which has the characteristics described 
by the Fog machine in Figure 3. 

• The CAIRN wide-area network [CAIRN]. We used seven sites spanning the 
U.S.A. as depicted in Figure 4. CAIRN machines generally serve as routers 
for networking experiments. As a consequence, many of the CAIRN machines 
are weak machines with slow disks and not a lot of memory. The 
characteristics of each of the different CAIRN machines used in our 
evaluation is described in Figure 3. Especially note the low Postgres 
performance achieved by some of these machines without replication.   
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• The Emulab wide-area test-bed [Emulab]. Emulab2 (the Utah Network Test-
bed) provides a configurable test-bed where the network setup sets the 
latency, throughput and link-loss characteristics of each of the links. The 
configured network is then emulated in the Emulab local area network, using 
actual routers and in-between computers that emulate the required latency, 
loss and capacity constraints. We use 7 Emulab Linux computers, each has the 
characteristics described by the Emu machine in Figure 3. Most of our 
Emulab experiments emulated the CAIRN network depicted in Figure  4. 

Our experiments were run using PostgreSQL version 7.1.3 standard installations. We 
use a database and experiment setup similar to that introduced by [KA00, JPKA00]. 

The database consists of 10 tables, each with 1000 tuples. Each table has five 
attributes (two integers, one 50 character string, one float and one date). The overall tuple 
size is slightly over 100 bytes, which yields a database size of more than 10MB. We use 
transactions that contain either only queries or only updates in order to simplify the 
analysis of the impact each poses on the system. We control the percentage of update 
versus query transactions for each experiment. Each action used in the experiments was 
of one of the two types described below, where table-i is a randomly selected table and 
the value of t-id is a randomly selected number: 

update table-i set attr1="randomtext", int_attr=int_attr+4  
            where t-id=random(1000); 

 
select avg(float_attr), sum(float_attr) from table-i;  

Before each experiment, the Postgres database was “vacuumed” to avoid side effects 
from previous experiments. 

Figure 3: System Specification for the Three Test-beds 

                                                 
2 Emulab is available at www.emulab.net and is primarily supported by NSF grant ANI-00-82493 and 
Cisco Systems.  

Machine Processor Memory 
(MB) 

HDD (GB) Postgres 
Updates/sec 

Postgres 
Queries/sec 

 
Local Area cluster 
Fog [1-14] Dual PIII 667 256  9G SCSI 119.9 181.8 
 
Cairn wide area testbed 
TISWPC PII 400 128   4G IDE 37.26 77.49 
ISIPC4 Pentium 133 64   6G IDE 25.44 11.97 
ISIPC PII 450 64 19G IDE 42.34 90.41 
ISIEPC3 PII 450 64   6G IDE 50.10 93.41 
ISIEPC PII 450 64 19G IDE 43.52 92.72 
MITPC2 Ppro 200 128   6G IDE 48.22 40.40 
UDELPC Ppro 200 128   4G SCSI 23.75 39.07 
 
Emulab emulated wide-area testbed 
Emu[1-7] PIII 850 512 40 G IDE 118.3 211.4 
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Figure 4: Layout of The CAIRN Test-bed 

One of the difficulties in conducting database experiments is that real production 
database servers are very expensive and are not always available for academic research. 
We conducted our experiments on standard, inexpensive Intel PCs whose disk and 
memory performance is significantly poorer and that lack specialized hardware such as 
flash RAM logging disks. To evaluate the potential performance of our system on such 
hardware we conducted several tests either with Postgres not syncing its writes to disk 
(forced writes that the OS must not cache), or with both Postgres and our Replication 
Server not syncing the writes to disk. In all of these tests we also report the full-sync 
version. All tests that do not specify no-sync, or replication server sync, were conducted 
with full data sync on all required operations. 

Each client only submits one action (update or query) at a time. Once that action has 
completed, the client can generate a new action.  

Note that any database replication scheme has to guarantee that any query can be 
answered only after the effects of all of the updates preceding the query are reflected in 
the database. If the replication scheme is transparent, all the above updates have to be 
applied to the database before answering the query. Therefore, any such scheme is 
limited by the native speed of the database to execute updates. In our experiments, the 
local Fog and Emulab machines are limited to about 120 updates/sec as can be seen in 
Figure 3. Therefore any transparent replication method is limited to less than 120 
updates/sec in a similar setting. Using our scheme to replicate a database with better 
performance could achieve better results as is indicated by the replication server sync 
tests, since our replication scheme is not the bottleneck. 

First, we evaluate our system over the local area cluster defined in Figure 3. The first 
experiment tested the scalability of the system as the number of replicas of the database 
increased. Each replica executes on a separate Fog machine with one local client. Figure 
5 shows five separate experiments. Each experiment used a different proportion of 
updates to queries. 
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Figure 5: Max Throughput under a Varying Number of Replicas (LAN) 
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Figure 6: Latency of Updates (LAN)  

The 100% update line shows the disk bound performance of the system. As replicas 
are added, the throughput of the system increases until the maximum updates per second 
the disks can support is reached – about 107 updates per second with replication (which 
adds one additional disk sync for each N updates, N being the number of replicas). Once 
the maximum is reached, the system maintains a stable throughput. The achieved updates 
per second, when the overhead of the Replication Server disk syncs are taken into 
account, matches the potential number of updates the machine is capable of as specified 
in Figure 3. The significant improvement in the number of sustained actions per second 
when the proportion of queries to updates increases is attributed to the Semantics 
Optimizer which executes each query locally, without any replication overhead. The 
maximum throughput of the entire system actually improves because each replica can 
handle an additional load of queries. The throughput with 100% queries increases 
linearly, reaching 2473 queries per second with 14 replicas.  
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In addition to system throughput, we evaluated the impact of replication on the 
latency of each update transaction both under no load and medium load of 75 updates per 
second. Figure 6 shows that the latency of update transactions does not increase as the 
number of replicas increases. When the system becomes more loaded, the latency per 
transaction caused by Postgres increases from around 23ms to an average of 77ms. It is 
interesting to note that the latency does not increase under higher load when Postgres 
sync is disabled, but the Replication Server does sync. 
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Figure 7: Throughput under Varied Client Set and Action Mix (LAN) 
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Figure 8: Throughput under Varied Client Set and Disk Sync Options (LAN) 

The next two experiments fixed the number of replicas at 14, one replica on each Fog 
machine. The number of clients connected to the system was increased from 1 to 28, 
evenly spread among the replicas. In Figure 7 one sees that a small number of clients 
cannot produce maximum throughput for updates. The two reasons for this are: first, each 
client can only have one transaction active at a time, so the latency of each update limits 
the number of updates each client can produce per second. Second, because the 
Replication Server only has to sync updates generated by locally connected clients, the 
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work of syncing those updates is more distributed when there are more clients. Again, the 
throughput for queries increases linearly up to 14 clients (reaching 2450 in the 100% 
queries case), and is flat after that as each database replica is already saturated. 

To test the capacity of our system for updates, we reran the same experiment as 
Figure 7, but only with 100% updates, under the three sync variations mentioned at the 
beginning of this section. This is depicted in Figure 8. Under full-sync the maximum 
throughput of 107 updates per second is reached, while with sync disabled for both 
Postgres and the Replication Server, we reach a maximum throughput of 336 updates per 
second. The interesting point is that when the Replication Server does updates with full-
sync, the system still achieves 326 updates per second. This shows that as the number of 
replicas and clients increase, the Replication Server overhead decreases considerably. 
The cost of disk syncs when only a few clients are used is still noticeable. 

We next evaluated our system on the CAIRN wide-area network depicted in Figure 4. 
The diameter of the network as measured by ping, is approximately 45ms involving 
seven sites and a tree of six links. These experiments validated that the system works as 
expected on a real operational network. The system was able to achieve the potential 
performance the hardware allowed, as presented in Figure 3. 
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Figure 9: Throughput under Varied Client Set and Action Mix (CAIRN) 

We ran the same basic experiment as done for Figure 7. In this experiment, however, 
the number of replicas is seven, because only seven sites were available. Figure 9 shows 
the throughput of the system as the number of clients connected to the system increases. 
Clients are evenly spread among the replicas. Because of the high network latency, more 
clients are required to achieve the potential maximum throughput when updates are 
involved. Also, the lines are not as smooth because the machines are very heterogeneous 
in their capabilities (ranging from an old Pentium 133 up to a Pentium II 450). 

The latency each update experiences in the CAIRN network is 267ms under no load 
(measured at TISWPC in San Jose) and reaches 359ms at the point the system reaches 
maximum throughput of 20 updates per second. Once the throughput limit of the system 
is reached, the latency experienced by each client increases because more clients are 
sharing the same throughput. 
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As explained in the beginning of this section, the CAIRN machines were not adequate 
for our database performance tests because of their hardware limitations. We extended 
our wide-area tests by utilizing the Emulab facility. As accurately as possible, we 
emulated the CAIRN network on Emulab. 
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Figure 10: Latency of Safe Delivery on CAIRN and Emulab 

Figure 10 shows the validation of Emulab against CAIRN by presenting the latency 
of Safe Delivery in the system under different Safe message load that resembles updates 
and queries in size. Under all loads both networks provided very similar message latency. 
Therefore, we believe that Emulab results are comparable to equivalent real-world 
networks running on the same machines. 
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Figure 11: Throughput under Varying Client Set and Action Mix (Emulab) 

The first experiment conducted on Emulab duplicated the experiment of Figure 9. In 
this case, the system was able to achieve a throughput close to that achieved on a local 
area network with similar number of replicas (seven), but with more clients as depicted in 
Figure 11. For updates, the maximum throughput achieved on Emulab is 85 updates per 
second (with about 28 clients in the system), compared with 98 updates per second on 
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LAN for the same number of replicas (with about 10 clients in the system) as can be seen 
in Figure 5. Although these results show very useful performance on a wide area 
network, we are not entirely happy with them since the algorithm predicts that the 
Emulab system should be able to reach similar maximum throughput for updates (as long 
as enough clients inject updates). We attribute the 14% difference to the fact that the Fog 
machines used in the LAN test are dual processor machines with SCSI disks, while the 
Emulab machines are single (though somewhat stronger) processor machines with IDE 
disks. 

The latency each update experiences in this Emulab experiment is 268ms when no 
other load is present (almost identical to the corresponding CAIRN experiment above) 
and reaches 331ms at the point the system reaches maximum throughput of 85 updates 
per second. Again, once the throughput limit of the system is reached, the latency 
experienced by each client increases because more clients are sharing the same 
throughput. 

For queries, similarly to the LAN tests in Figure 7, the performance increases linearly 
with the number of clients until the seven servers are saturated with seven clients at 1422 
queries per second. The results for in-between mixes are as expected. 
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Figure 12: Throughput under Varied Client Set and Disk Sync Options (Emulab) 

To test the capacity of our system for updates, we reran the same experiment as 
Figure 11, but just with 100% updates, under the three sync variations mentioned at the 
beginning of this section. Figure 12 shows that under full-sync the maximum throughput 
of 85 updates per second is reached, while with sync disabled for both Postgres and the 
Replication Server a maximum throughput of 272 updates per second is reached (with 
105 clients in the system). When only the Replication Server syncs to disk, the system 
achieves 183 updates per second (with 70 clients in the system). The system performance 
does not degrade as clients are added. 

To test the impact of network latency, we used Emulab to construct two additional 
networks, identical in topology to the CAIRN network, but with either one half or double 
the latency on each link. In effect, this explores the performance of the system as the 
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diameter of the network changes, as the original CAIRN network has a diameter of about 
45ms, and the additional networks have about 22ms and 90ms diameters respectively. 
Figure 13 illustrates that under any of these diameters the system can achieve the same 
maximum throughput of 85 updates per second. However, as the diameter increases, 
more clients are required to achieve the same throughput.  
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Figure 13: Throughput under Varied Network Latency (Emulab) 

We conclude that the above results demonstrate that for many applications, peer 
synchronous database replication is becoming an attractive option not only for local area 
networks, but also for wide area networks. 

6. Conclusions 
One of the difficulties in providing efficient and correct wide area database 

replication is that it requires integrating different techniques from several research fields 
including distributed systems, databases, network protocols and operating systems. Not 
only does each of these techniques have to be efficient by itself, they all have to be 
efficient in concert with each other.  

Some highlights of our results, replicating the Postgres database (that can perform 
about 120 updates per second without replication): For a local-area cluster with 14 
replicas, the latency each update experiences is 27ms under zero throughput and 50ms 
under a throughput of 80 updates per second. The highest throughput in this setting is 106 
updates per second.  

For a wide-area network with a 45ms diameter and 7 replicas, the latency each update 
experiences is 268ms under zero throughput and 281ms under a throughput of 73 updates 
per second. The highest throughput in this setting is 85 updates per second, which is 
achieved with 28 clients and a latency of 331ms per update. When the diameter of the 
network is doubled to 90ms, the 85 updates per second throughput is maintained 
(although more clients are needed).  

In all cases, the throughput for read-only actions approaches the combined power of 
all the replicas. 



 21

These results demonstrate the practicality of local and wide area peer (synchronous) 
database replication. Using our scheme to replicate a database with better performance 
could achieve better results since our replication architecture was not the bottleneck. 

To achieve these results optimizations had to take place at various levels: First, at the 
network level, we had to optimize the latency of Safe Delivery on wide area networks. 
Second, we had to avoid end-to-end acknowledgments for each transaction while not 
compromising correctness of the system even in partitionable and crash-prone 
environments, and not delaying transaction execution. Third, we had to minimize the 
synchronous disk writes the replication server requires in addition to those performed by 
the database manager. Fourth, we had to obtain some semantic knowledge to correctly 
avoid replicating transactions that do not require it (e.g. read-only queries). 

We show the feasibility of a database replication architecture that is transparent to 
both client and database manager, correctly handles arbitrary failures, and supports a 
number of different semantic guarantees for transactions such as one-copy serializability, 
weak consistency and delayed updates. 
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Appendix 1.  Example of Safe Delivery in Action  
Let’s consider a network of five daemons N1 – N5 where each of the daemons 

represents a site. Figure A1 shows how the Safe Delivery mechanism works at daemon 
N4, when a Safe message is sent by N1, considering the worst case scenario when the 
latency from N1 to N4 is the diameter of the network. Initially all the daemons have all 
their variables initialized with zero (Figure A1.a).  

Upon receiving the Safe message from N1, the daemon N4 updates its Site_lts (Figure 
A1.b). Assuming there are no losses and no other messages in the system, all the 
daemons will behave similarly, updating their Site_lts value. It takes one network 
diameter Dn for the message to get from N1 to all the other daemons.  

 

 

 

 

 

 

 

Figure A1: Scalable Safe Delivery for Wide Area Networks 

After at most a delta interval, every daemon sends an ARU_update containing the row 
representing themselves in their matrix. Depending on the time each daemon waits until 
sending its Aru update, the daemons will receive information from all the other daemons 
in between Dn and delta + Dn time. Upon receiving these updates, daemon N4 knows that 
all of the daemons increased their Site_lts to 1, and since it did not detect any loss, it can 
update its Site_Aru to 1 (Figure A1.c). Similarly, all the other daemons will update their 
Site_Aru values to 1, assuming there are no losses. At this point, N4 knows that no 
daemon will create a message with a Lamport timestamp lower than 1 in the future, so 
according to total order delivery, it could deliver this message to the upper layer. 
However, this is not enough for Safe Delivery; N4 does not know yet whether all of the 
daemons received all of the ARU_updates. 

Already, at least Dn time has elapsed at N1 (the farthest daemon from N4) between the 
time it sent its last Aru_update and the time N4 got it. Therefore, after waiting at most 
delta – Dn time, N1 (as well as the other daemons) can send another ARU_update 
containing their Site_Aru value advanced to 1. Finally, after one more Dn time, when N4 
receives all these Aru_updates, it can advance its Global_Aru to 1 (Figure A1.d), and 
deliver the Safe message. The total latency in the worst case is Dn + (delta + Dn) + 
((delta - Dn) + Dn), which is equal to 2 * delta + 2 * Dn. 

Note that ARU_updates are periodic and cumulative, and as more Safe messages are 
sent in a delta interval, this delay will be amortized between different messages. 
However, the expected latency for a Safe message is at least 3 * Dn, as the delivery 
mechanism includes three rounds in this scalable approach. 

                   
     
 
 
 
 
 
 
 

seq lts aru 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
Global_Aru: 0 

(a) 

seq lts aru 
0 0 0 
0 0 0 
0 0 0 
0 1 0 
0 0 0 
Global_Aru: 0 

(b)

seq lts aru 
0 1 0 
0 1 0 
0 1 0 
0 1 1 
0 1 0 
Global_Aru: 0 

(c)

seq lts aru 
0 1 1 
0 1 1 
0 1 1 
0 1 1 
0 1 1 
Global_Aru: 1 

(d) 


