
A New Look at the Old Domain Name System

Yair Amir1, Daniel Massey2, Ciprian Tutu1 ∗

Technical Report
CNDS-2003-2

http://www.cnds.jhu.edu

July 18, 2003

Abstract

The Domain Name System (DNS) is undergoing
fundamental changes in both design and operations,
but these changes are mostly taking place in piecemeal
extensions. In this paper we consider how to maintain
a simple and robust DNS in the face of these inevitable
and essential changes. We consider some of the fea-
tures that the modern DNS is trying to incorporate and
we look at the ensuing problems from a systematic per-
spective. We identify some key architectural issues and
design principles that we believe are essential to the
successful integration of such features in the DNS in-
frastructure. Following these principles, we sketch two
possible mechanisms that would improve the availabil-
ity and timeliness, and decouple the zone management
from the query/response data-path of DNS while being
deployable in parallel and incrementally with respect
to the existing infrastructure.

1 Introduction

The Domain Name System (DNS)[11] provides
the essential service of translating names into IP ad-
dresses. Virtually all user-level internet services (and
many system-level services) rely on the ability to ac-
cess resources through their Internet name. Typically,
a name needs to be translated into an IP address before
any packets can be routed to the appropriate destina-

∗1Johns Hopkins University. Email {yairamir,
ciprian}@cnds.jhu.edu 2USC/ISI. Email: masseyd@isi.edu

tion. In addition to mapping names to IP addresses,
the DNS maps IP addresses to names, stores mail ex-
change (MX) records needed for routing email, and
includes a growing list of other mappings.

The DNS can be viewed as the equivalent of a pow-
erswitch for the Internet in the sense that DNS prob-
lems can greatly diminish Internet service availability
up to the point where it can paralyze the Internet for
significant periods of time. If the DNS fails to pro-
vide an answer, there is often little that an application
can do to recover and even a delay in obtaining the
DNS data can result in a perception of poor Internet
performance. For example, if the DNS fails to pro-
vide an IP address for www.cnds.jhu.edu, there is little
the browser can do and if the DNS is slow in map-
ping the www.cnds.jhu.edu name, the user may per-
ceive there is a problem with the server. Tools such
as dsniff [10] use false DNS response as a first step
in forging web pages, intercepting email, launching
man-in-the-middle attacks against login sessions and
so forth. [7, 6] provide a detailed overview of existing
DNS vulnerabilities.

The DNS was designed nearly two decades ago and
its tremendous success is a credit to the original de-
sign. However, the original design focused on address-
ing simplefail-stop faults, such as the loss of a server.
The limitations of the fail-stop fault model have been
noted in a variety of contexts[4] as the DNS is vulner-
able to a wide range of more complex faults and in-
tentional attacks. The addition of Dynamic DNS[15]
dramatically changes both the nature of DNS data and
the set of entities that manage the DNS. The success

1



of DNS has made it a tempting solution for storing
all forms of distributed data and the need for a re-
silient DNS has only grown in importance. At the
same time, changes in the Internet have placed increas-
ing demands on the DNS. A long list of piecemeal en-
hancements and new services have been added to the
DNS to the point where it has been suggested we are
“overloading the saddle-bags on an old horse”[8].

We argue that a more systematic approach is needed
in order to properly address the wide variety of issues
that become evident with the current DNS infrastruc-
ture. We identify some of the key design issues shared
among the various DNS changes and argue that the ex-
isting solutions are still limited in their effectiveness.
We suggest two mechanisms that can be deployed in-
crementally and in parallel with the existing system,
and address some of the problems that the DNS is con-
fronted with.

We believe one must tackle the various issues from
two perspectives: at the micro-infrastructure level one
must address the management of a single zone elimi-
nating the single point of failure and providing a build-
ing block for timely propagation of zone updates to all
authoritative servers; at the macro-infrastructure level
one must address the availability of the DNS system as
a whole and guarantee the timely propagation of up-
dates to end resolvers. We show these services help
provide an underlying design structure that will al-
low the DNS to continue its tremendous success and
provide a solid base design that encompasses current
demands and provides the building blocks for future
changes.

In the remainder of this paper, Section 2 describes
the changes facing the DNS and identifies common
underlying themes that a DNS design update should
include. In Section 3, we show how to enhance the
micro-infrastructure to meet the new design goals. In
Section 4, we consider how the larger infrastructure
can also be enhanced. Section 5 concludes the paper
by summarizing the challenges and our proposed ap-
proach to meeting the challenges.

2 Modern DNS and Its Challenges

The DNS was originally designed as a replacement
for “hosts.txt” files that stored centralized names to IP
address mappings. Today, the DNS is arguably one

of the most successful distributed applications. There
have been several fundamental changes since the DNS
was designed nearly two decades ago and, in most
cases, the simple DNS design has adapted extremely
well. For example, the original DNS design envi-
sioned a deep tree structure with many levels, but mar-
ket forces instead generated an extremely flat topology
where nodes like “.com” have over 22 million child
nodes. This model is perhaps somewhat different from
the original design, but it works nevertheless. It is im-
portant to note that the DNS has also adjusted. A large
zone such as “.com” is no longer managed by a single
entity. Instead, a registry maintains the database and
servers, and changes to the zone are passed through
any one of over 100 authorized registrars. The DNS
works, but the structure and operations are unlike those
that were originally envisioned.

The success of the DNS has attracted more appli-
cations and added more demands. New uses for the
DNS range from using DNS responses for load bal-
ancing to providing a type of PKI for IPSEC public
keys[13]. Within the IETF, the registrar/registry issues
have led to the formation of the Provisioning Registry
Protocol working group, the Internationalized Domain
Name working group examines issues related to inter-
national names, the DNS Operations working group is
struggling with the process of adding IPv6 addresses to
the DNS, and the DNS Extensions working group con-
tinues to be active in a number of other areas. Some
results of these groups efforts include the (now ex-
perimental) A6 record that not only added IPv6 ad-
dresses, but provided a technique for fast IPv6 renum-
bering after a provider change. SRV records were in-
troduced to provide pointers from the DNS to other
servers such LDAP servers. Dynamic DNS changes
the update model for the DNS and is implemented in
most modern servers. DNS security also remains an
active topic.

It can be argued that some of these “improvements”
are ill-advised, but at least two changes have gained
wide support in both standards communities such as
IETF and have been incorporated in leading DNS
server implementations [9]. These changes include
improving DNS security [5] and enabling Dynamic
DNS[15]. We discuss each of these in more detail and
then identify common threads shared by the various
DNS enhancements.

2



2.1 DNS Security

With the increasing number of entities managed by
and depending on the DNS, security has become an
obvious issue and its impact was evidentiated by sev-
eral exploits which hijacked DNS entries of popular
sites redirecting client queries. The DNS security ex-
tensions (DNSSEC) add authentication to the DNS
and provide resolvers the opportunity to verify the va-
lidity of a response.

To support DNSSEC, operators must sign their
zones using public key cryptography. Signatures need
to be regenerated at periodic intervals and the exis-
tence of older data (such as public keys or signatures
which should have expired) can present problems for
the DNS. In addition, DNSSEC increases the need for
synchronization between parent and child zones since
the parent zone provides a ”secure entry point” to the
child zone. DNSSEC entails a change in the DNS de-
sign, DNS operations at servers, and DNS behavior at
resolvers.

However, naive deployment can actuallydecrease
DNS survivability and availability. A DNSSEC query
requires timely signatures and public keys. Expired
signatures, added load at servers due to cryptographic
burdens and increased message sizes, and increased
opportunity for administrative errors add new poten-
tial for a delayed answer or lack of answer. This result
in new denial of service opportunities when authenti-
cation fails or the proper records are missing from a re-
sponse (sometimes caused by legitimate behaviour by
old caches). As a result, resolvers that prefer DNSSEC
often choose to readily accept any answer even when
a secure answer should be provided. Accepting an un-
signed answer is essential for availability, but such a
policy eliminates most of the DNSSEC advantages and
potentially introduces higher risks by creating a false
sense of security.

2.2 Dynamic DNS

The addition of “dynamic” DNS also changes the
underlying DNS data model. While the previous
model of DNS operation often revolves around sim-
ply editing a text file, dynamic DNS allows an entity
to update a DNS record on the server “on the fly”. For
example, after a laptop is assigned a new IP address

by a DHCP, it may send an update to the “isi.edu”
DNS servers to update the ”mylaptop.isi.edu” IP ad-
dress records. Dynamic DNS is supported by major
DNS server implementations such as BIND [9].

Dynamic updates can create caching issues and also
reveal additional problems if the updates must be sent
to a single master server, since this places added load
on that single point of failure. At the same time, Dy-
namic DNS vastly expands the number of entities ad-
ministering the DNS and it is becoming more common
that services are run from mobile users who require ac-
cess to resources that are restricted to a certain name
domain.

2.3 Underlying Challenges

The question we are faced with is not whether the
DNS will be changed. The DNS is already undergo-
ing fundamental change in both design and operations.
These changes are mostly taking place in piecemeal
extensions. The real question is can we maintain a sim-
ple and robust DNS in the face of desired (and some
less desired) changes. In the previous section we enu-
merated a few of the features that the modern DNS is
trying to incorporate. Looking at the ensuing problems
from a systematic perspective, we identified three key
architectural issues that we believe are essential to the
successful integration of such features in the DNS in-
frastructure.

• Availability
• Timeliness of both DNS data and operations
• Decoupling DNS management from DNS

query/response
Availability is the hallmark of the DNS. The DNS

is successful because its data is highly available. DNS
availability can be assessed in several ways. First,
availability for queries is what clients(resolvers) ex-
perience directly. Normally this is enhanced by re-
dundant servers within the DNS hierarchy and through
use of caches, although caches also introduce a trade-
off with respect to the accuracy of the response. Sec-
ond, availability of updates is another issue: updates
are performed on a master server then distributed out
to a number of slave servers. If the master is unavail-
able, the update cannot be performed at that time. Fur-
thermore, the propagation of a new update is executed
using pull requests by the secondary servers. A mas-
ter server can send a notification message to its slaves

3



encouraging them to execute an early pull, but this no-
tification message may be lost if there is no direct con-
nectivity between the master and its slaves at that time.
Server partitions are a fact of life in the Internet and the
DNS must work in difficult network conditions as well
as in ideal conditions.

Timelinessapplies to both the freshness of the DNS
data returned in response to a query and the speed at
which DNS operational changes propagate. Elements
such as DNS security introduce signatures with spe-
cific lifetimes. DNS resolvers may reject data with old
signatures and create denial of service. To change the
cryptographic keys used to sign DNS data, coordina-
tion is required among the multiple servers of a single
zone as well as between a zone and its parent. The
addition of Dynamic DNS increases the frequency of
changes as well as increasing the expectation a change
is seen quickly. Dynamic DNS requests entered at one
point should quickly synchronize with other servers.
The potential for multiple updates from different en-
tities authorized to make dynamic changes introduces
questions of ordering. As the DNS is used to store
data other than IP addresses, these new data types in-
troduce their own timing issues. Overall, new services
add new timing issues and a robust underlying infras-
tructure design should provide a structure that reflects
a need to manage timing issues.

Decoupling DNS management from DNS
query/response becomes increasingly important
as operations become more complex. A simple view
of a single administrator editing a simple ”zone file”
in text format and infrequently changing an IP address
is rapidly becoming obsolete. DNS security adds
many new operational tasks and adds more frequent
communication between parent and child zones.
Dynamic DNS creates automatic updates and many
new sets of entities that may update portions of a
zone. The addition of new data types (such as storing
IPSEC public keys in the DNS) adds new management
requirements related to those types. Essentially, DNS
reuses its tree hierarchical structure for authority dele-
gation, zone management, and serving client requests.
Caches are one step that decouples the query/response
data path from the management hierarchy. However,
stronger decoupling needs to be achieved if the DNS
is to become an efficient infrastructure for the variety
of new uses.

Peer

Master 2

Peer Master 4

Old

Slave 1

GCS

BIND

WRAPPER
Client 1

Client 2
ZONE

RECORDS

Peer

Master 3

Peer

Master 4

Peer

Master 1

Old

Slave 2

Old

Slave 3

Client 2

Client 1

Internet

Figure 1. DNS Peer Zone Management

A practical implementation requirement is that any
design changemust be incrementally deployablein the
current system. The DNS is an essential infrastructure
and any change will only occur gradually. At all times,
a new design or extension must assume some servers
and resolvers will continue to use the current DNS.
This is true of both existing work such as DNSSEC
or Dynamic DNS and applies equally well to any fu-
ture change. In addition, a solid solution should add
benefits for those who have deployed the change, re-
gardless of how widespread the solution is adopted. In
the following sections we present some initial work on
the design of two mechanisms that attempt to address
the key issues listed above.

3 Peer Zone Management
At the micro-infrastructure level, we consider a de-

sign where the DNS servers responsible for a given
zone act as peer servers instead of using a master-
slave model. Zone updates, including dynamic up-
dates, can be submitted to any of the servers and the
updates are propagated immediately to all the peers
using a group communication infrastructure. In case
the set of peers becomes partitioned, updates can be
performed in either of the disconnected components.
When two disconnected components remerge, the up-
dates performed in each partition are combined and
all the servers converge to the same state of the zone
records. The reconciliation process relies on the fact
that the DNS zone-updates exhibit a commutative se-
mantics. Every update is disseminated to all servers
and each server can decide, based on the logical times-
tamp associated with each update, what is the most
current value for each DNS resource record.

To validate our model, we have implemented a
wrapper around one of the most widely used DNS

4



servers (BIND). The wrappers communicate using
the Spread [14, 3] group communication system
which provides efficient message delivery guarantees
and membership notifications in a wide-area network
setup. Each wrapper joins the same group associated
with the zone that is managed. Clients that attempt
to perform dynamic updates can connect to any wrap-
per, thinking that they are talking directly to the DNS
server. The wrapper that receives an update sends it to
the local DNS server and also to the group of wrap-
pers, together with a logical timestamp. Upon receiv-
ing an update from the group, each wrapper checks
the attached timestamp against the last recorded times-
tamp for the given record and submits the update to the
bind daemon if it is more recent. The algorithm em-
ployed is very similar to the one described in [1]. Fig-
ure 1 illustrates the resulting zone management archi-
tecture. Note that resolver queries continue to be ser-
viced transparently as the wrapper just forwards them
to the DNS server and propagates the response back to
the client without any additional interference. We have
deployed the wrapper in some of our local DNS zones.

Additionally, the peer servers can coexist (see figure
1) in a zone with standard slave servers which will con-
tinue to recognize only one of the peers as the master
for the zone and will be updated by regularly polling
the master for changes. This allows for easy deploy-
ment of the new solution since DNS best practices rec-
ommend that some slaves for a given zone are under
different management and this management may not
adhere to the new system. The deployment of the peer
zone management system for a given zone will provide
instant benefit to the organization using it, regardless
of the method employed by its parent zones.

The peer architecture reduces the strict dependency
of the entire zone management on a single master
server. Peer zone administrators can submit changes to
any peer server even when disconnected from the pre-
viously designated “master” and can thus increase the
availability of the service, since employing the group
communication membership service combined with a
distributed data replication algorithm creates an infras-
tructure resilient to network partitions and remerges as
well as server crashes and recovery. The peer architec-
ture also enhances thetimelinessof propagating up-
dates to the zone servers. This new architecture makes
no change to the DNS query/response behavior of the

zone, but does change the DNS management model
within the zone thus benefiting from the ability to de-
couple DNS management from DNS query/response.

4 DNS Superchaches

Addressing zone management at the micro-
infrastructure level is only a building block towards ad-
dressing the issues mentioned in section 2.3. Address-
ing the wider range of problems is more challenging
and requires a different global approach. A potential
macro-level approach considers a set of servers that
will cache the information from the root and top level
domain (TLD) portions of the DNS hierarchy. This in-
cludes the name server information needed to reach the
top level domains and the information needed to reach
second level domains such as *.com (but does include
all resource records from within the second level do-
mains).1 We call these servers “supercaches”. The su-
percaches are equal peers and they redundantly store
the same information. Our preliminary work is explor-
ing supercaches on the order of a few hundreds, up to
a thousand, servers, that cache data for tens of millions
of zones.

A local nameserver attempting to resolve a request
will check its local cache and then consult one of
the supercaches instead of going to the root servers
(or other top level servers). The supercache provides
the necessary referrals into the appropriate lower level
zone and also provides the necessary DNS security
data that currently might require additional queries
to the top level servers. The supercaches can run
on top of an overlay network to ensure the correct
and efficient data replication. The nameservers for
the TLD’s and secondary level domains should in-
form one of the supercaches of the zone update. If
the zone is maintained with a peer system, one server
from the zone will be in charge of updating the super-
cache. To support the nameservers that do not imple-
ment the peer zone management, the supercaches di-
vide among themselves the space of DNS names that
they are caching in a redundant manner, so that each
name is covered by several supercaches. Each super-
cache will be responsible for monitoring its subset of
the namespace by regularly polling each nameserver at

1Specifically, we include NS, DS, NXT, and KEY records
along with their associated SIGs and any glue A records

5



intervals smaller than the recommended ttl in order to
help faster propagation of the updates.

There are a number of concerns that need to be care-
fully addressed by such a design. From a systems
perspective, scalability, populating the caches, time-
liness of the update propagation are issues that can be
addressed using scalable overlay network techniques
[12, 2] and efficient distributed algorithms. From a
security perspective several problems need to be ad-
dressed as well. First, the communication protocol be-
tween the zone managers (either a standard master or a
peer) has to be authenticated and it must also take care
to ensure the most recent data is transmitted. Second,
the data propagation among the supercaches needs to
prevent the possibility of a bad supercache poisoning
the other supercaches with bad or stale data. Finally,
the communication between client resolvers and super-
caches also has to be protected against stale/replayed
responses. Our preliminary analysis suggests all these
aspects can be addressed by leveraging from the exist-
ing DNSSEC infrastructure.

Through usage of the supercache layer, we are
essentially decoupling the mechanism for serving
queries (supercache) from the mechanism used for
management delegation (the tree hierarchy). The sug-
gested architecture also presents much bettertimeli-
nessguarantees since a few steps will be skipped in
moving down the DNS tree hierarchy. In addition, a
number of DNSSEC related steps can be combined
efficiently. The timeliness guarantees can be further
tuned depending on the requirements of each zone
and depending on the data types that are stored in the
zones. Furthermore, the many supercaches can pro-
vide a more reliable setup as they are more readily
availablethan the root servers.

5 Conclusions

We have shown that the DNS is undergoing fun-
damental changes in both design and operations. In
some cases, these changes are essential for the DNS
to continue its critical role as the backbone of the In-
ternet. We identified key architectural issues and de-
sign principles that we believe are essential to both
the successful integration of these immediate changes
and to provide a strong underlying infrastructure that
would readily support future demands. We argue that

the future DNS needs to provide increased availability
and timeliness guarantees. In addition, the design is
strengthened by decoupling the zone management and
the query/response mechanisms. For practical reasons,
we also note that any design change needs to be incre-
mentally and even parallelly deployable with the exist-
ing infrastructure. We introduced two possible design
alternatives that follow the principles identified above.

References

[1] Ofir Amir, Yair Amir, and Danny Dolev. A highly
available application in the Transis environment. In
Hardware and Software Architectures for Fault Toler-
ance, pages 125–139, 1993.

[2] Y. Amir and C. Danilov. Reliable communication in
overlay networks. InProceedings of the IEEE Inter-
national Conference on Dependable Systems and Net-
works, June 2003.

[3] Y. Amir and J. Stanton. The Spread wide area group
communication system. Technical Report CNDS 98-
4, Johns Hopkins University, Center for Networking
and Distributed Systems, 1998.

[4] T. Anderson, S. Shenker, I. Stoica, and D. Wether-
all. Design guidelines for robust internet protocols.
In Proceedings of HotNets-I, pages 125–130, Ocotber
2002.

[5] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose. DNS security introduction and requirements.
Work in progress: draft-ietf-dnsext-dnssec-intro-05,
February 2003.

[6] D. Atkins and R. Austein. Threat analysis of the
domain name system.Work in progress: draft-ietf-
dnsext-dns-threats-03, June 2003.

[7] Steven M. Bellovin. Using the domain name sys-
tem for system break-ins. InProceedings of the fifth
Usenix UNIX Security Symposium, pages 199–208,
Salt Lake City, UT, Jun 1995.

[8] Randy Bush. The DNS today: Are we overloading
the saddlebags on an old horse?”.49th IETF Meeting
Plenary Presentation, December 2000.

[9] BIND Berkeley Internet Name Domain.
http://www.isc.org/products/bind/.

[10] dsniff. http://www.monkey.org/ dugsong/dsniff/.

[11] P. Mockapetris. Domain names - concepts and facili-
ties. RFC 1034, November 1987.

[12] The Spines Overlay Network. http://www.spines.org.

6



[13] M. Richardson. A method for storing ipsec keying
material in dns.Work in progress: draft-ietf-ipseckey-
rr-05, June 2003.

[14] The Spread Toolkit. http://www.spread.org.

[15] P. Vixie, S. Thomson, Y. Rekhter, and J Bound. Dy-
namic updates in the domain name system.RFC 2136,
April 1997.

7


