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Abstract

In this paper we design a generic, consistent replication architecture that enables transparent
database replication and we present the optimizations and tradeoffs of the chosen design. We
demonstrate the practicality of our approach by building a prototype that replicates a Post-
greSQL database system. We provide experimental results for consistent wide-area database
replication. We claim that the use of an optimized synchronization engine is the key to building
a practical synchronous replication system for wide-area network settings.

1 Introduction

In many Internet applications, a large number of users that are geographically dispersed may
routinely query and update the same database. In this environment, a centralized database is
exposed to several significant risks:

• performance degradation due to high server load.

• data-loss risk due to server crashes.

• high latency for queries issued by remote clients.

• availability issues due to lack of network connectivity or server downtime.

The apparent solution to these problems would be to consistently replicate the database server
on a set of peer servers. In such a system queries can be answered by any of the servers, without
any additional communication, but in order for the system to remain consistent, all the transactions
that update the database need to be disseminated and synchronized at all the replicas. Obviously,
if most of the transactions in the system are updates, a replicated system trades off performance
for availability and fault tolerance. By replicating the database on a local cluster, this cost is
relatively low and the solution successfully addresses the first two problems. However, response
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time and availability due to network connectivity remain valid concerns when clients are scattered
on a wide-area network and the cluster is limited to a single location. Furthermore, a local cluster
cannot provide fault-tolerance in the presence of catastrophic failures that may affect an entire
location. Wide-area database replication, coupled with a mechanism to direct the clients to the
best available server (network- and server-wise) [1] can greatly enhance both the response time and
availability. However, in wide-area network settings, the cost of synchronizing updates among peer
replicas while maintaining global system consistency is magnified by the high network latency and
the increased likelihood of network partitions.

1.1 Our Contribution

In this paper, we introduce an optimized architecture for consistent replication1 in local and wide-
area networks. The architecture provides peer replication, where all the replicas serve as master
databases that can accept both updates and queries. The supported failure model includes network
partitions and merges, computer crashes and recoveries, and message omissions, all of which are
handled by our system.

The replication system can be employed as a black box to replicate a database system without
modifying the database and can be used transparently by a significant number of applications. We
investigate the limitations imposed by this design and we show how it can be adapted to alleviate
these limits and provide even more efficient synchronous replication when tightly integrated with
a specific database system, or when adapted to the needs of specific applications. Furthermore,
we argue that a transparent replication architecture not only avoids complex tailoring to a specific
application or database system, but also facilitates interoperability between different database
systems.

To validate our architecture design, we have developed a prototype system that replicates a
PostgreSQL database system. The prototype uses the Spread group communication toolkit [2,
3] and the replication algorithm presented in [4]. Our prototype is able to replicate seamlessly
existing applications that use standards such as JDBC or ODBC. We evaluate the architecture’s
performance both in local area and wide-area network settings, investigating the impact of latency,
disk operation cost, and query versus update mix on the overall replication performance. The results
help identifying the update synchronization algorithm as the bottleneck of a synchronous replicated
system. To our knowledge, our results are the first to show that consistent database replication can
be practical for wide-area network settings, being able to maintain a throughput that is sufficient
for a large number of modern applications. We show that high latency is not an inherent obstacle
in achieving wide-area transaction throughput similar to that achieved in local-area clusters.

The remainder of the paper is organized as follows: Section 2 surveys the related work. Section
3 describes our proposed transparent synchronous replication architecture while Section 4 details
its main components and discusses the design optimizations and tradeoffs. In section 5 we evaluate
the performance of our system. Section 6 concludes the paper.

2 Related Work

Despite their inefficiency and lack of scalability, two-phase commit protocols [5] remain the principal
technique used by most commercial database systems that provide synchronous peer replication.

1Throughout the paper we use the terms consistent replication and synchronous replication interchangeably as
they reflect the nomenclature used in the distributed and database communities, respectively.
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The Accessible Copies algorithms [6, 7] maintain an approximate view of the connected servers,
called a virtual partition. A data item can be read/written within a virtual partition only if
this virtual partition (which is an approximation of the current connected component) contains
a majority of its read/write votes. If this is the case, the data item is considered accessible and
read/write operations can be done by collecting sub-quorums in the current component. The
maintenance of virtual partitions greatly complicates the algorithm, as a view change requires the
servers to execute a protocol to agree on the new view, as well as to recover the most up-to-date
item state. Moreover, although view decisions are made only when the “membership” of connected
servers changes each update requires end-to-end acknowledgments from the entire quorum.

Most of the state-of-the-art commercial database systems provide some level of database repli-
cation. However, in all cases, their solutions are highly tuned to specific environment settings and
require a lot of effort in their setup and maintenance. Oracle [8], supports both asynchronous and
synchronous replication. However, the former requires some level of application decision for conflict
resolution, while the latter requires that all the replicas in the system are available to be able to
function, making it impractical. Informix [9], Sybase [10] and DB2 [11] support only asynchronous
replication which again ultimately relies on the application for conflict resolution.

In the open-source database community, two database systems have emerged as leaders: MySQL
[12] and PostgreSQL [13]. By default both systems only provide limited master-slave replication
capabilities. Other projects exist that provide more advanced replication methods for PostgreSQL
such as Postgres Replicator, which uses a trigger-based store and forward asynchronous replication
method [14].

The most evolved of these approaches is Postgres-R [15], a project that combines open-source
expertise with academic research. Postgres-R implements algorithms designed by Kemme and
Alonso [16] into the PostgreSQL database manager in order to provide synchronous replication.
The current version also uses Spread [2, 17] as the underlying group communication system and
focuses on integrating the method with version 7.2 of the PostgreSQL system. However, the existing
implementation only provides master-slave replication.

In [16] the authors demonstrate the practicality of synchronous database replication in a lo-
cal area network environment, where network partitions cannot occur. Their approach is tightly
integrated with the database system and uses group communication in order to totally order the
write-sets of each transaction and establish the order in which locks are acquired to avoid dead-
locks. In contrast to our method [4], this algorithm requires two multicast messages (one total order
multicast and one generic multicast) for each transaction. However, this method allows concurrent
execution of transactions at each site, if allowed by the local concurrency manager, although trans-
actions may be aborted due to conflicts. [16] also presents performance results of a PostgreSQL
replicated database prototype (Postgres-R). In [18], the authors examine several methods to pro-
vide online reconfiguration for a replicated database system, in order to make it cope with network
partitions and server crashes and recoveries.

In [19, 20] the authors present yet another approach to the replication problem, also targeted
at local area clusters, without supporting network partitions and merges or server recoveries. This
solution is not tightly integrated with the database nor is it completely transparent, but it requires
the application to provide conflict class information in order to allow concurrent processing of
non-conflicting transactions. Similar to [4], each transaction is encapsulated in a message that is
multicast to all sites. The transaction will be executed only at the ”master” site for its conflict
class based on the optimistic delivery order. A commit message containing the write-set of the
transaction is issued if the optimistic order does not conflict with the final total order. The write-
set is then applied to all replicas according to the total order. [21] presents an enhanced online
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reconfiguration technique for the algorithms described above, that allows parallel recovery of nodes.
The algorithm is based on a primary component membership model according to which only nodes
in the primary component make progress, while nodes separated from the primary component
are considered failed until they rejoin the primary component. In contrast, our solution allows
multiple components to make progress by exchanging information and applying updates for which
the commit order has already been determined.

All of the more recent methods take advantage of the primitives offered by the modern group
communication systems. However, the various solutions are different in the degree in which they
exploit the group communication properties. We argue that an optimal usage of the group com-
munication primitives can lead to significant performance improvements for the synchronization
algorithm and that these improvements, in turn, can be used to build a practical synchronous
database replication solution for both local and wide-area networks.

Research on protocols to support group communication across wide area networks such as the
Internet has begun to expand. Recently, new group communication protocols designed for such wide
area networks have been proposed [22, 23, 24, 3] which continue to provide the traditional strong
semantic properties such as reliability, ordering, and membership. The only group communication
systems we are aware of that currently exist, are available for use, and can provide the Extended
Virtual Synchrony semantics are Horus [25], Ensemble [26], and Spread [17].

3 A Transparent Synchronous Replication Architecture

We present an architecture that provides transparent peer replication, supporting diverse applica-
tion semantics. At the core of the system we use the synchronization algorithm introduced in [4].
Peer replication is a symmetric approach where each of the replicas is guaranteed to invoke the
same set of actions in the same order. This approach requires the next state of the database to
be determined by the current state and the next action, and it guarantees that all of the replicas
reach the same database state.

Throughout this section we use the generic term action to refer to any non-interactive determin-
istic, multi-operation database transaction, such that the state of the database after the execution
of a new action is defined exclusively by the state of the database before the execution of that action
and the action itself. Each database transaction (e.g. a multi-operation SQL transaction) will be
packed into one action by our replication engine. In this model, a user cannot abort transactions
submitted into the system after their initiation. Since the transactions are assumed deterministic,
if an abort operation is present within the transaction boundaries, it will be executed on all repli-
cas or on none of them, as dictated by the database state and the transaction itself at the time
of the execution. In Section 4.3, we discuss how the architecture can be augmented to support
more generic transaction types. In the following sections we will refer to read-only transactions as
queries while non read-only transactions (those that contain update operations) will be referred to
as updates.

The architecture is structured into two layers: a replication server and a group communication
toolkit (Figure 1).

Each of the replication servers maintains a private copy of the database. The client application
requests an action from one of the replication servers. The replication servers agree on the order of
actions to be performed on the replicated database. As soon as a replication server knows the final
order of an action, it applies this action to the database (execute and commit). The replication
server that initiated the action returns the database reply to the client application. The replication
servers use the group communication toolkit to disseminate the actions to the servers group and to
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Figure 1: Synchronous Database Replication Architecture

help reach an agreement about the final global order of the set of actions.
In a typical scenario, when an application submits a request to a replication server, this server

logically multicasts a message containing the action through the group communication. The lo-
cal group communication toolkit sends the message over the network. Each of the currently

connected group communication daemons eventually receives the message and then delivers the
message in the same order to their replication servers.

The group communication toolkit provides multicast and membership services according to the
Extended Virtual Synchrony model [27]. For this work, we are particularly interested in the Safe
Delivery property of this model. Delivering a message according to Safe Delivery requires the group
communication toolkit both to determine the total order of the message and to know that every
other daemon in the membership already has the message. The careful use of Safe Delivery and
Extended Virtual Synchrony allows us to eliminate end-to-end acknowledgments on a per-action
basis. As long as no membership change takes place, the system eventually reaches consistency.
End to end acknowledgements and state synchronization are only needed once a membership change
takes place. Moving the acknowledgements from the application level (end-to-end) to the group
communication level provides a fundamental performance increase since the synchronization be-
tween end points will be determined exclusively by the speed of the network without adding the
extra overhead of application synchronization (extra IPC, writes to disk, etc.). Furthermore, by
aggregating acknowledgements, the group communication layer additionally increases the efficiency
of this phase.

We chose Spread [2] as our supporting group communication system. The group communication
toolkit overcomes message omission faults and notifies the replication server of changes in the
membership of the currently connected servers. These notifications correspond to server crashes
and recoveries or to network partitions and re-merges. When notified of a membership change by
the group communication layer, the replication servers exchange information about actions sent
before the membership change. This exchange of information ensures that every action known to
any member of the currently connected servers becomes known to all of them. Moreover, knowledge
of final order of actions is also shared among the currently connected servers. As a consequence,
after this exchange is completed, the state of the database at each of the connected servers is
identical. The cost of such synchronization amounts to one message exchange among all connected
servers plus the retransmission of all updates that at least one connected server has and at least
one connected server does not have. Of course, if a site was disconnected for an extended period
of time, it might be more efficient to transfer a current snapshot [18].
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Figure 2: Transparent PostgreSQL Replication Architecture

The consistency of the system in the presence of network partitions and remerges or server
crashes and recoveries is guaranteed through the use of a quorum system that uniquely identifies
one of the connected components as the primary component of the system. Examples of quorum
systems include monarchy, majority and dynamic linear voting [28]. Updates can continue to be
committed only in the primary component, while the other components continue to remain active
and answer queries consistently.

Advanced replication systems that support a peer-to-peer environment must address the possi-
bility of conflicts between the different replicas. Our architecture eliminates the problem of conflicts
because updates are always invoked in the same order at all the replicas. Of course, in its basic
form, this model also excludes the possibility of concurrently executing updates on the same replica.
This restriction is inherent to any completely generic solution that does not assume any knowledge
about the application semantics nor does it rely on the application to resolve potential conflicts.

The latency and throughput of the system for updates are obviously highly dependent on the
performance of the group communication Safe Delivery service. We will dedicate the following
subsection to explaining the optimizations we implemented in the Safe Delivery mechanism of the
Spread Toolkit. Queries will not be sent over the network as they can be answered immediately by
the local database.

An important property that our architecture achieves is transparency - it allows replicating
a database without modifying the existing database manager or the applications accessing the
database. The architecture does not require extending the database API and can be implemented
directly above the database or as a part of a standard database access layer (e.g. ODBC or JDBC).

Figure 2.A presents a non-replicated database system that is based on the PostgreSQL database
manager. Figure 2.B. presents the building blocks of our implementation, replicating the Post-
greSQL database system. The building blocks include a replication server and the Spread group
communication toolkit. The database clients see the system as in figure 2.A., and are not aware
of the replication although they access the database through our replication server. Similarly, any
instance of the database manager sees the local replication server as a client.

The replication server consists of several independent modules that together provide the database
integration and consistency services (Figure 2.B). They include:

• A Replication Engine that includes all of the replication logic from the synchronizer algorithm,
and can be applied to any database or application. The engine maintains a consistent state
and can recover from a wide range of network and server failures. The replication engine is
based on the algorithm presented in [4, 29].

6



• A Semantics Optimizer that can decide whether to replicate transactions and when to apply
them based on application semantics (if they are specified), on the actual content of the
transaction, and on whether the replica is in a primary component or not.

• A database specific interceptor that interfaces the replication engine with the DBMS client-
server protocol. As a proof of concept, to replicate PostgreSQL, we created a PostgreSQL
specific interceptor. Existing applications can transparently use our interceptor layer to pro-
vide them with an interface identical to the PostgreSQL interface, while the PostgreSQL
database server sees our interceptor as a regular client. The database itself does not need
to be modified nor do the applications. A similar interceptor could be created for other
databases.

4 Design Details and Considerations

4.1 Scalable Safe Delivery for Wide Area Networks

The architecture and reliability algorithms of the Spread toolkit [3, 17], provide basic services for
reliable, FIFO, total order and Safe delivery. However, our architecture requires a high-performance
implementation of the Safe Delivery service for wide-area networks, something not developed in
previous work.

Spread uses a three level hierarchy, in which a set of daemons provide networking services for
client applications. The Spread daemons are organized in sites, where a site represents one or
more daemons connected through a local area network. Each site chooses a representative that is
responsible for forwarding messages to and from other sites.

Delivering a message according to Safe Delivery requires the group communication toolkit to
determine the total order of the message and to know that every other daemon in the membership
already has the message before delivering it to the application. The latter property (sometimes
called message stability) is traditionally implemented by group communication systems for garbage
collection purposes, and therefore is usually not optimized.

The straightforward way to achieve message stability would require all the daemons to imme-
diately acknowledge each Safe message. These acknowledgements are sent to all of the daemons,
thus reaching all the possible destinations of the original Safe message within the time of one net-
work diameter, which leads to a message latency of twice the network diameter. However, this
algorithm is obviously not scalable. For a system with N sites, each message requires N broadcast
acknowledgements, leading to N times more control messages than the data messages.

Our approach avoids this problem by aggregating information into cumulative acknowledge-
ments. However, minimizing the bandwidth at all costs will cause extremely high latency for Safe
messages, which is also undesirable. Therefore our approach permits tuning the tradeoff between
bandwidth and message latency.

The structure of our acknowledgements, referred to as an ARU update (all received up-to), is
as follows when originating at a certain site A:

Site Sequence is the sequence number of the last message originated by any daemon at site A

and forwarded in order to other sites (Spread may forward messages even out of order to other
sites to optimize performance). This number guarantees that no messages will be originated in the
future from site A with a lower sequence number.

Site Lts is the Lamport timestamp [30] that guarantees that site A will never send a message
with a lower Lamport timestamp and a sequence number higher then Site Sequence.
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Site Aru is the Lamport timestamp such that all the messages with a lower Lamport timestamp
that originated from any site are already received at site A.

Each daemon keeps track of these three values received from each of the currently connected
sites. In addition, each daemon updates a local variable, Global Aru, which is the minimum of the
Site Aru values received from all of the sites. This represents the Lamport timestamp of the last
message received in order by all the daemons in the system. A Safe message can be delivered to
the local application (the replication server, in our case) when its Lamport timestamp is smaller or
equal to the Global Aru.

In order to achieve minimum latency, an ARU update message should be sent immediately upon
a site receiving a Safe message at any of the daemons in the site. However, if one ARU update is sent
for every message by every site, the traffic on the network will increase linearly with the number of
sites. Spread optimizes this by trading bandwidth for improved latency when the load of messages
is low, and by sending the ARU update after a number of messages have been received when the
message load is high. The delay between two consecutive ARU update messages is bounded by
a certain timeout delta. For example, if five Safe messages are received within one delta time,
only one ARU update will be sent for an overhead of 20%, however, if a message is received and no
ARU update has been sent in the last delta interval, then an ARU update is sent immediately. Note
that this is a simplification of the actual implementation which piggybacks control information on
data messages.

In practical settings, delta will be selected higher than the network diameter Dn, which leads
to a Safe Delivery latency between 3 ∗ Dn and 2 ∗ delta + 2 ∗ Dn.

The above latency bounds could be optimized by including in the ARU update the complete
table with information about all of the currently connected sites, instead of just the three local
values described above. This would reduce the Safe Delivery latency to be between 2 ∗ Dn and
delta + 2 ∗ Dn. However, such a scheme is not scalable, since the size of the ARU update will
grow linearly with the number of sites. For a small number of sites (e.g. 10), this technique could
be useful, but in order to preserve the scalability of the system (e.g. 100’s sites) we used in our
experiments the more scalable method described above that leads to a message latency between
3 ∗ Dn and 2 ∗ delta + 2 ∗ Dn.

4.1.1 Example of Safe Delivery in Action

Table 1: Scalable Safe Delivery for Wide Area Networks
seq lts aru seq lts aru seq lts aru seq lts aru

0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

Global Aru: 0 Global Aru: 0 Global Aru: 0 Global Aru: 1

(a) (b) (c) (d)

Let’s consider a network of five daemons N1– N5 where each of the daemons represents a site.
Table 1 shows how the Safe Delivery mechanism works at daemon N4, when a Safe message is sent
by N1, considering the worst case scenario when the latency from N1 to N4 is the diameter of the
network. Initially all the daemons have all their variables initialized with zero (Table 1.a).

Upon receiving the Safe message from N1, the daemon N4 updates its Site lts (Table 1.b).
Assuming there are no losses and no other messages in the system, all the daemons will behave
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similarly, updating their Site lts value. It takes one network diameter Dn for the message to get
from N1 to all the other daemons.

After at most a delta interval, every daemon sends an ARU update containing the row repre-
senting themselves in their matrix. Depending on the time each daemon waits until sending its Aru
update, the daemons will receive information from all the other daemons in between Dn and delta
+ Dn time. Upon receiving these updates, daemon N4 knows that all of the daemons increased
their Site lts to 1, and since it did not detect any loss, it can update its Site Aru to 1 (Table
1.c). Similarly, all the other daemons will update their Site Aru values to 1, assuming there are no
losses. At this point, N4 knows that no daemon will create a message with a Lamport timestamp
lower than 1 in the future, so according to total order delivery, it could deliver this message to the
upper layer. However, this is not enough for Safe Delivery; N4 does not know yet whether all of
the daemons received all of the ARU updates.

Already, at least Dn time has elapsed at N1 (the farthest daemon from N4) between the time it
sent its last Aru update and the time N4 got it. Therefore, after waiting at most delta – Dn time,
N1 (as well as the other daemons) can send another ARU update containing their Site Aru value
advanced to 1. Finally, after one more Dn time, when N4 receives all these Aru updates, it can
advance its Global Aru to 1 (Table A1.d), and deliver the Safe message. The total latency in the
worst case is Dn + (delta + Dn) + ((delta - Dn) + Dn), which is equal to 2 * delta + 2 * Dn.

Note that ARU updates are periodic and cumulative, and as more Safe messages are sent in
a delta interval, this delay will be amortized between different messages. However, the expected
latency for a Safe message is at least 3 * Dn, as the delivery mechanism includes three rounds in
this scalable approach.

4.2 The Semantics Optimizer

The Semantics Optimizer provides an important contribution to the ability of the system to support
various application requirements as well as to the overall performance. The level of sophistication
that the semantics optimizer incorporates or the degree of integration with the database system will
determine the amount of additional optimizations that the replication system can take advantage
of (concurrent transaction execution, data partitioning). It is not the purpose of this paper to
detail how this integration can be achieved, but we outline some basic variations from the standard
implementation to illustrate the flexibility of the architecture.

In the strictest model of consistency, updates can be applied to the database only while in a
primary component, when the global consistent persistent order of the action has been determined.
However, read-only actions (queries) do not need to be replicated. A query can be answered
immediately by the local database if there is no update pending generated by the same client. A
significant performance improvement is achieved if the system distinguishes between queries and
actions that also update the database. For this purpose in the PostgreSQL prototype that we built,
the Semantics Optimizer implements a very basic SQL parser that identifies the queries from the
other actions.

If the replica handling the query is not part of the primary component, it cannot guarantee
that the answer of its local database reflects the current state of the system, as determined by
the primary component. Some applications may require only the most updated information and
will prefer to block until that information is available, while others may be content with outdated
information that is based on a prior consistent state (weak consistency), preferring to receive an
immediate response. The system can allow each client to specify its required semantics individually,
upon connecting to the system. The system can even support such specification for each action but
that will require the client to be aware of the replication service.
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In addition to the strict consistency semantics and the standard weak consistency, the implemen-
tation supports, but is not limited to, two other types of consistency requirements: delay updates
and cancel actions, where both names refer to the execution of updates/actions in a non-primary
component. In the delay updates semantics, transactions that update the database are ordered
locally, but are not applied to the database until their global order is determined. The client is not
blocked and can continue submitting updates or even querying the local database, but needs to be
aware that the responses to its queries may not yet incorporate the effect of its previous updates.
In the cancel actions semantics a client instructs the Semantics Optimizer to immediately abort
the actions that are issued in a non-primary component. This specification can also be used as
a method of polling the availability of the primary component from a client perspective. These
decisions are made by the Semantics Optimizer based on the semantic specifications that the client
or the system setup provided.

The following examples demonstrate how the Semantics Optimizer determines the path of the
action as it enters the replication server. After the Interceptor reads the action from the client, it
passes it on to the Semantics Optimizer. The optimizer detects whether the action is a query and,
based on the desired semantics and the current connectivity of the replica, decides whether to send
the action to the Replication Engine, send it directly to the database for immediate processing, or
cancel it altogether.

If the action is sent through the Replication Engine, the Semantics Optimizer is again involved
in the decision process once the action is ordered. Some applications may request that the action
is optimistically applied to the database once the action is locally ordered. This can happen either
when the application knows that its update semantics is commutative (i.e. order is not important)
or when the application is willing to resolve the possible inconsistencies that may arise as the result
of a conflict. Barring these cases, an action is applied to the database when it is globally ordered.

4.3 Design Tradeoffs

From a design perspective, we can distinguish between three possible approaches to the architecture
of a replicated database. We opted for the black box approach that does not assume any knowledge
about the internal structure of the database system or about the application semantics. The
flexibility of this architecture enables the replication system to support heterogeneous replication
where different database managers from different vendors replicate the same logical database.

In contrast, a white box approach [16] will integrate the replication mechanism within the
database itself, attempting to exploit the powerful mechanisms (concurrency control, conflict reso-
lution) that are implemented inside the database, at the price of losing transparency. A middle-way
gray box approach [20] assumes that the database system is enhanced by providing additional prim-
itives that can be used from the outside but does not include the replication mechanism inside the
database itself. [20] also exploits the data partitioning common in many databases, assuming that
the application can provide information about the conflict classes that are addressed by each trans-
action. This approach also permits the use of row replication, where a transaction is executed on
just one database and its effect is replicated to the other servers. This reduces the load on each
database server but may increase significantly the network load as the modified row data can be
significantly larger than the standard SQL transaction.

We argue that although our design does not allow, in its basic form, concurrent transaction
execution, it doesn’t suffer a performance drawback because it uses an efficient synchronization
algorithm. As well, even a highly concurrent synchronous replication system cannot overcome the
fundamental cost of global synchronization and would be therefore limited by the performance of
the synchronization module.
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Figure 3: Layout of the CAIRN Network

In the presentation of our model we mention that our replication architecture assumes that
each (possibly multi-operation) transaction is deterministic and can be encapsulated in one action,
thus removing the possibility of executing normal interactive transactions. This assumption can
be relaxed to a certain degree. We can allow, for example, a transaction to execute a deterministic
procedure that is specified in the body of the transaction and that depends solely on the current
state of the database. These transactions are called active transactions.

With the help of active transactions, one can mimic interactive transactions where a user starts
a transaction, reads some data then makes a user-level interactive decision regarding updates. Such
transactions can be simulated with the help of two actions in our model. The first action contains
the query part of the transaction. The second action is an active action that encapsulates the
updates dictated by the user, but first checks whether the values of the data read by the first action
are still valid. If they are not valid, the second action is aborted, as if the transaction was aborted
in the traditional sense. Note that if one server aborts, all of the servers abort that (trans)action
since they apply an identical deterministic rule to an identical state of the database, as guaranteed
by the algorithm.

5 Prototype Performance Evaluation

We evaluated the performance of the PostgreSQL replication prototype in two environments. A
local area cluster and the Emulab wide-area testbed [31]. The cluster contains 14 Linux Dual PIII
667 computers with 256 Mbytes memory and 9G SCSI disks. Emulab2 (the Utah Network Test-
bed) provides a configurable test-bed where the latency, throughput and link-loss characteristics of
each of the links can be controlled. The configured network is then emulated in the Emulab local
area network, using actual routers and in-between computers that enforce the required latency, loss
and capacity constraints. We used 7 Emulab Linux computers to emulate the real CAIRN [32]
network depicted in Figure 3. Each of the Emulab machines is a PIII 850 with 512Mbytes and 40G
IDE disk.

In order to better understand the context of the results we measured the throughput that a single
non-replicated database can sustain from a single, serialized stream of transactions. The computers
used in the local area experiments can perform on a non-replicated PostgreSQL database approx-
imately 120 update transactions or 180 read-only transactions per second, as defined below. The

2Emulab is available at www.emulab.net and is primarily supported by NSF grant ANI-00-82493 and Cisco Sys-
tems.
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Figure 4: LAN Postgres Throughput under
Varying Number of Replicas
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Figure 5: LAN Postgres Throughput under
Varying Number of Clients

computers used in the wide-area experiment can perform on a non-replicated PostgreSQL database
approximately 120 update transactions or 210 read-only transactions per second, as defined below.

Our experiments were run using PostgreSQL version 7.1.3 standard installations. In order to
facilitate comparisons, we use a database and experiment similar to that introduced by [16, 20].

The database consists of 10 tables, each with 1000 tuples. Each table has five attributes (two
integers, one 50 character string, one float and one date). The overall tuple size is slightly over 100
bytes, which yields a database size of more than 1MB. We use transactions that contain either only
queries or only updates in order to simplify the analysis of the impact each poses on the system.
We control the percentage of update versus query transactions for each experiment. Each action
used in the experiments was of one of the two types described below, where table-i is a randomly
selected table and the value of t-id is a randomly selected number:

update table-i set attr1="randomtext",

int_attr=int_attr+4

where t-id=random(1000);}

select avg(float_attr), sum(float_attr)

from table-i;

Before each experiment, the PostgreSQL database was “vacuumed” to avoid side effects from
previous experiments. Each client only submits one action (update or query) at a time. Once that
action has completed, the client can generate a new action.

5.1 Local Area Performance Evaluation

In [4] we benchmarked the replication engine used by our architecture in the same local area
network setup used in this experiment. We compared our replication engine with another group
communication based method and with an upper-bound two phase commit implementation and
noticed that our engine outperforms the other solutions by up to an order of magnitude, reaching
up to 1000 updates per second. In this work we analyze the overall performance of the PostgreSQL
replication prototype.

The first experiment conducted with our new architecture tested the scalability of the system
as the number of replicas of the database increases. Each replica executed on a separate computer
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Figure 7: WAN PostgreSQL Throughput with
varied update/query load

with one local client over a local area network. Figure 4 shows five separate experiments. Each
experiment used a different proportion of updates to queries.

The 100% update line shows the disk bound performance of the system. As replicas are added,
the throughput of the system increases until the maximum updates per second the disks can sup-
port is reached – about 107 updates per second with replication (which adds one additional disk
sync for each N updates, N being the number of replicas). Once the maximum is reached, the
system maintains a stable throughput. The achieved update throughput, when the overhead of the
Replication Server disk syncs are taken into account, matches the potential number of updates the
machine is capable of as presented in the previous subsection. Further analysis of the difference
between the synchronization engine potential performance and the observed prototype performance
is presented in the following subsection discussing the wide-area experimentation.

The significant improvement in the number of sustained actions per second when the proportion
of queries to updates increases is attributed to the Semantics Optimizer, which executes each query
locally without any replication overhead. The maximum throughput of the entire system actually
improves because each replica can handle an additional load of queries. The throughput with 100%
queries increases linearly, reaching 2473 queries per second with 14 replicas as expected.

The next experiment fixed the number of replicas at 14, one replica on each computer on the
local area network. The number of clients connected to the system increased from 1 to 28, evenly
spread among the replicas. In Figure 5 one sees that a small number of clients cannot produce
maximum throughput for updates. The two reasons for this are: first, each client can only have
one transaction active at a time, so the latency of each update limits the number of updates each
client can produce per second. Second, because the Replication Server only has to sync updates
generated by locally connected clients, the work of syncing those updates is more evenly distributed
between the computers as clients are added. Again, the throughput for queries increases linearly
up to 14 clients (reaching 2450 in the 100% queries case), and is flat after that as each database
replica is already saturated.

5.2 Wide-Area Performance Evaluation

In order to visualize the performance gain introduced by our synchronization algorithm through the
use of optimized Safe Delivery and avoiding end-to-end acknowledgements, we first compared the
performance of our replication engine, using full disk syncing in order to guarantee data consistency,
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against an upper-bound3 two-phase commit algorithm (2PC). (Figure 6) The upper-bound 2PC
engine reaches its maximum capacity at approximately 80 actions per second, which is consistent
with the performance reported in similar setups by commercial databases that use 2PC at the core
of their synchronous replication method. Our replication engine is saturated at 350 actions per
second due to the optimizations mentioned in the previous section.

The wide area experiment conducted on Emulab measured the throughput under a varying
client set and action mix. The system was able to achieve a throughput close to that achieved on a
local area network with a similar number of replicas (seven), but with more clients as depicted in
Figure 7. The latency each update experiences in this experiment is 268ms when no other load is
present and reaches 331ms at the point the system reaches the maximum throughput of 85 updates
per second. For queries, similarly to the LAN test, the performance increases linearly with the
number of clients until the seven servers reach 1422 queries per second. The results for in-between
mixes are as expected.

Notice that the throughput achieved for update replication is not close to the performance
exhibited by the synchronization algorithm (Figure 6). One of the difficulties in conducting database
experiments is that real production database servers are very expensive and are not always available
for academic research. We conducted our experiments on standard, inexpensive Intel PCs whose
disk and memory performance is significantly poorer and that lack specialized hardware such as
flash RAM logging disks. To evaluate the potential performance of our system on such hardware
we reran the same experiment as in Figure 7 for the 100% updates scenario, under varied disk sync
conditions (Figure 8. When only the Replication Server uses forced syncs to disk, disabling this
feature in the database, the system achieves a maximum throughput of 183 updates per second
(with 70 clients). When synchronous disk sync is disabled for both PostgreSQL and the replication
engine, a maximum throughput of 272 updates per second is reached (with 105 clients in the system)
which is close to the potential exhibited by the replication engine alone.

Finally, to test the impact of network latency on performance, we used Emulab to construct
two additional networks, identical in topology to our original network, but with either one half
or double the latency on each link. In effect, this explores the performance of the system as the
diameter of the network changes. The original network has a diameter of about 45ms (typical for
a network spanning the US), and the additional networks have about 22ms and 90ms diameters

3Our 2PC implementation will assume that all the locks are granted instantly, thus ensuring the maximum level
of concurrency the 2PC method can support.
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respectively. Figure 9 illustrates that under any of these diameters, the system can achieve the
same maximum throughput of 85 updates per second. However, as the diameter increases, more
clients are required to achieve the same throughput.

It is difficult to directly compare our results with those presented in [16, 20] due to significant
difference in the hardware platforms. Our PostgreSQL proof of concept demonstrates that our
overall architecture can replicate a database in a useful and efficient manner. By using a more
efficient synchronization method than previous solutions we are able to sustain high throughput
rates, despite giving up on additional gains through use of concurrent transaction execution or
semantic knowledge about the application. The throughput that our prototype was able to sustain
would be sufficient for a large number of applications while maintaining a reasonably low response
time even in wide-area settings.

5.3 Partition behaviour

In order to evaluate the performance of our prototype in the presence of temporary network fail-
ures (partitions/remerges) we ran the following experiment. On the wide area Emulab setup we
partitioned off the node MITPC in Boston from ISEPC in Virginia. While the node is partitioned
we submit a varying number of updates into the database, to the 6 remaining connected sites. We
then reconnect the MITPC node to the rest of the system and record the time necessary for it to be
updated with the data it missed. In parallel, we run clients that query the databases every second,
and check how many updates have been applied. We record the progress noted by these clients.

In figure 10 we generate updates into the system at a steady rate of 4 updates per second.
These updates are replicated among the six connected replicas. After generating 2500 updates, we
reconnect the 7th node to the rest of the replicas, bring it up to date and then continue submitting
updates at the same rate as before. It can be noted that the time needed for the MITPC node to
catch up to the other nodes is 17 seconds, only a fraction of the time that was needed to replicate
the updates at the given steady rate.

Figure 11 plots the synchronization time after remerge from the previous graph while we change
the number of updates applied during the partition time from 100 to 5000. We note a linear increase
of the synchronization time with the number of outstanding updates. This shows a constant time
per synchronized update regardless of the synchronization load.
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6 Conclusion

In this paper we have presented a transparent peer synchronous database replication architecture
that employs an optimized update synchronization algorithm in order to improve the performance
of the system. In contrast with the existing techniques we sacrifice the performance gains attained
through parallelization of transaction execution in favor of an enhanced synchronization method -
the real bottleneck in a synchronous replication system, and we show the viability of the approach
through practical experimentation. The improvements are notable on the local area network and
even more so in wide-area experiments. Furthermore, the synchronization engine that was used
to build a generic, transparent solution in this work, can be adapted and employed in replication
solutions that are integrated with the database or that exploit specific application information,
creating an exciting new realm of opportunities in wide-area database replication.
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