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Abstract— Although telephony subscribers are accus-
tomed to the consistent voice quality and high reliability
of the traditional PSTN, the promise of a single converged
IP network to carry voice and data – and the cost sav-
ings therein – motivates the interest to adopt voice-over-IP
(VoIP) technologies. However, the Internet provides best ef-
fort delivery, without any inherent quality of service guar-
antees. Low latency is a key factor in supporting high
quality interactive conversations, and as such contempo-
rary VoIP solutions use UDP to transfer data over the IP
layer, despite being subject to network loss and failures.

This paper describes the use of an overlay network
through which streams of voice packets are transmitted.
Flexible application level overlay routers can understand
the stringent requirements of VoIP and implement new al-
gorithms that mask the limitations of the underlying Inter-
net. We describe two protocols that facilitate localized re-
covery for lost packets and rapid rerouting in the event of
network failures. Experimental results indicate that these
two approaches can be combined to yield a quantitative im-
provement to voice communication quality.

Index Terms—System design, Simulations, Experimenta-
tion with real networks/Testbeds

I. INTRODUCTION

It is non-trivial to engineer a solution that meets the
stringent constraints expected by humans of a high qual-
ity, reliable, real-time voice communication service. De-
lays of 100-150 msec and above are detectable by humans
and can impair the interactivity of conversations. By com-
parison, humans are far less tolerant of audio degradation
than of video degradation. Hence, to meet these require-
ments it is crucial to minimize primarily the network la-
tency and secondarily packet loss as much as possible. To
minimize latency, contemporary VoIP solutions rely upon
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UDP as the transport protocol. However this has the po-
tential to expose VoIP packets to network loss and fail-
ures. Although the Internet can offer reasonable quality
(relatively low loss and good stability) for the majority of
VoIP streams, it has been shown [1] [2] [3] that it remains
vulnerable to occasional bursts of high loss and link fail-
ures that preclude it from delivering a constant, high qual-
ity service demanded for telephony.

This paper describes an overlay architecture that can
easily be deployed to address these intervals of network
loss and failures. It maintains a high packet delivery ra-
tio even under high loss, and adds minimal overhead un-
der low, or no loss conditions. Our first observation is
that it is often possible to recover packets even given the
tight delay budget of VoIP. While many VoIP streams ex-
hibit large latencies that prohibit timely end-to-end re-
covery, it is possible to perform recovery for many short
links that are in the order of up to 30 msec. Our sec-
ond observation is that by breaking long links into several
smaller links, an overlay network architecture can help
localize the packet recovery within overlay hops. Thus,
even for VoIP streams with end-to-end latencies consider-
ably larger than 30 msec, the vast majority of the packet
losses can be rapidly recovered on the shorter overlay hop
on which they were dropped. Overlay networks facilitate
the deployment of flexible routing protocols that can ad-
dress the needs of a specific application. Our third obser-
vation is that the overlay approach allows the deployment
of a routing algorithm that optimizes the probability of
packets being delivered within the delay requirements of
VoIP, hence having a significant impact on the resulting
voice quality.

The contribution of this paper is an overlay network
system that is tailored to support VoIP by judiciously
combining two complementary mechanisms: First, a real-
time1 packet recovery protocol that immediately delivers

1Our definition of real-time refers to timely recovery of packets on
short overlay links. Protocols such as RTP and RTCP, that do not re-
cover packets, work independently of our protocols.
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newly received packets, similarly to UDP, but this proto-
col attempts to recover missing packets. Recovery is at-
tempted only once, and only if a packet is likely to arrive
at the destination within the VoIP delay constraint. This
protocol is deployed on every overlay link. Second, an
adaptive overlay routing protocol tailored to VoIP, that op-
timizes path selection based on an approximation metric
that combines the measured latency and loss of a link.

The system was implemented as part of an open source
overlay network platform, Spines [4]. The behavior of our
protocols was evaluated under controlled network condi-
tions on the Emulab [5] testbed and directly in the Inter-
net on the Planetlab [6] network. The performance of the
proposed routing metric was evaluated through extensive
simulations, comparing it to other metrics, on thousands
of random topologies with various loss and delay link
characteristics. We show that by leveraging our overlays
for disseminating VoIP streams, the loss rate of the com-
munication can be drastically reduced. For example, for
a network loss rate of 5%, our system can usually recover
within the latency constraints all but 0.5% of the packets.
This leads to a commensurate increase in the voice qual-
ity of the calls. Our results reveal that using a standard
voice codec, we could achieve PSTN voice quality despite
loss rates of up to 7%. Our routing metric achieves good
performance, selecting paths that optimize packet deliv-
ery ratio. It achieves better performance than individual
latency, loss or hop-based routing schemes – especially
in high latency networks where the voice delay constraint
becomes more stringent.

The rest of the paper is organized as follows: In Sec-
tion II we present the motivation and background of our
work. In Section III we introduce our overlay architecture.
We present and evaluate our protocols in Section IV. The
routing limitations of overlay networks and how they can
be addressed in real systems are described in Section V.
Section VI discusses how we can integrate our approach
in the current VoIP infrastructure. Section VII presents
related work, and Section VIII concludes our paper.

II. BACKGROUND

A. Voice over IP

As opposed to media streaming, VoIP communication
is interactive, i.e. participants are both speakers and lis-
teners at the same time. In this respect, delays higher
than 100-150 msec can greatly impair the interactivity of
conversations, and therefore delayed packets are usually
dropped by the receiver codec.

Voice quality can be adversely affected by a number of
factors including latency, jitter, node or link failures, and

by the variability of these parameters. The combined im-
pact, as perceived by the end-users, is that voice quality
is reduced at random. Contemporary VoIP codecs use a
buffer at the receiver side to compensate for shortly de-
layed packets, and use forward error correction (FEC) or
packet loss concealment (PLC) mechanisms to ameliorate
the effect of packet loss or excessive delay. The error cor-
rection mechanisms usually add redundancy overhead to
the network traffic and have limited ability to recover from
bursty or sudden loss increase in the network.

In the experiments of this paper we used a well-
understood, widely deployed and good quality codec, the
standard ITU-T G.711 [7], combined with its PLC [8]
mechanism. The G.711 codec we used samples the au-
dio signal at a rate of 8kHz and partitions the data stream
into 20 msec frames, thus sending 160 byte packets at a
rate of 50 packets/sec.

The VoIP quality is evaluated using an objective
method described in ITU-T recommendation P.862 [9],
known as Perceptual Evaluation of Speech Quality
(PESQ). The PESQ score is estimated by processing both
the input reference and the degraded output speech signal,
similarly to the human auditory system. The PESQ score
ranks speech signals on a scale from -0.5 (worst) to 4.5
(best), where 4.0 is the desired quality of regular PSTN.

B. Internet loss characteristics

Data packets are lost in the Internet due to congestion,
routing anomalies and physical errors, although the per-
centage of physical errors is very small at the core of the
network. Paxson in [2] studied the loss rate for a num-
ber of Internet paths and found that it ranged from 0.6%
to 5.2%. Furthermore in that study and a follow-up [10],
Paxson discovered that loss processes can be modeled as
spikes where loss occurs according to a two-state process,
where the states are either “packets not lost” or “packets
lost”. According to the same studies, most loss spikes are
very short-lived (95% are 220 msec or shorter) but outage
duration spans several orders of magnitude and in some
cases the duration can be modeled by a Pareto distribu-
tion. In a recent study, Andersen et al in [3] confirmed
Paxson’s earlier results but showed that the average loss
rate for their measurements in 2003 was a low 0.42%.
Most of the time, the 20-minute average loss rates were
close to zero; over 95% of the samples had a 0% loss rate.
On the other hand, during the worst one-hour period mon-
itored, the average loss rate was over 13%. An important
finding in [3] is that the conditional probability that a sec-
ond packet is lost given that the first packet was lost was
72% for packets sent back-to-back and 66% for packets
sent with a 10-msec delay, confirming the results in [10].
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Fig. 1. Network loss - Average PESQ

 2.5

 3

 3.5

 4

 4.5

 0  1  2  3  4  5  6  7  8  9  10

U
D

P 
PE

SQ
 - 

5 
pe

rc
en

til
e

loss rate (%)

Uniform
25% burst
50% burst
75% burst

Fig. 2. Network loss - 5 percentile PESQ

In addition to link errors and equipment failures, the
other major factor contributing to packet losses in Internet
is delayed convergence of the existing routing protocols.
Labovitz et al [11] use a combination of measurements
and analysis to show that inter-domain routes in the Inter-
net may take tens of minutes to reach a consistent view of
the network topology after a fault. They found that dur-
ing this period of delayed convergence, end-to-end com-
munication is adversely affected. In [12], Labovitz et al.
find that 10% of all considered routes were available less
than 95% of the time and that less than 35% of all routes
were available more than 99.99% of the time. In a fol-
lowup study [13], Chandra et al showed that 5% of all
failures last more than 2 hours and that failure durations
are heavy-tailed and can last as long as 20 hours before
being repaired. In a related study performed in 2003, An-
dersen et al [3] showed that while some paths are respon-
sible for a large number of failures, the majority of the
observed Internet paths had some level of instability. All
these statistics indicate the Internet today is not ready to
support high quality voice service as we are going to show
in the following section.

C. Voice quality degradation with loss

We evaluated the effect of a loss pattern such as the one
reported on the Internet on the VoIP quality, using the the
standardized PESQ measure. To do so, we instantiated
a network with various levels of loss and burstiness (we
define burstiness as the conditional probability of loos-
ing a packet when the previous packet was lost) in the
Emulab [5] testbed, and measured the quality degradation
when sending a VoIP stream on that network.

Emulab is a testing environment that allows deploy-
ment of networks with given characteristics composed
of real computers running Linux, connected through real
routers and switches. Link latency, capacity and loss2 are

2Emulab cannot set conditional loss probability on the links. For
burstiness experiments we dropped packets with conditional probabil-
ity at the application level, before processing them.

emulated using additional computers that delay packets
or drop them with certain probability or if their rate ex-
ceeds the requested link capacity. All the Emulab ma-
chines are also directly connected through a local area
network through which they are managed and can be ac-
cessed from the Internet. On this local area network we
constantly monitored the clock synchronization between
the computers involved in our experiments and accurately
adjusted our one-way latency measurements.

We used the G.711 codec with PLC to transfer a 5
minute audio file using UDP over the lossy network, re-
peating each experiment for 20 times. The network had a
50 msec delay and 10 Mbps capacity, enough to emulate a
trans-continental long-distance call over a wide area net-
work. We finally decoded the audio file at the destination,
divided it into 12 second intervals corresponding to nor-
mal conversation sentences, and compared each sentence
interval with the original to generate its PESQ score.

Figure 1 shows the average PESQ score of all the sen-
tence intervals as a function of loss rate and burstiness of
the link. We can see that on average, the G.711 codec
can handle up to 1% loss rate, while keeping a PESQ
score higher than 4.0 (the expected PSTN quality level).
Burstiness does not play a major role until the loss rate
is relatively high, when the voice quality is anyway low.
However, given the regular expectancy of high quality
phone calls, we also need to analyze the most affected
voice streams. Figure 2 presents the 5 percentile of the
above measurements. We can see that for the most af-
fected streams burstiness does have a significant impact,
and even at 0.5% loss rate the G.711 codec cannot pro-
vide PSTN standard voice quality. At 0.5% loss and 75%
burstiness the PESQ score dropped to 3.69.

Considering the fact that current loss rate measure-
ments in the Internet average at about 0.42% with an av-
erage burstiness of 72%, and that occasionally loss can be
even much higher, these experiments show that new solu-
tions are required to improve the quality of VoIP traffic if
it is to compete with the existing PSTN.
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III. AN OVERLAY ARCHITECTURE

Overlay networks allow easy deployment of new ser-
vices, as they allow full control over the protocols running
between participating nodes. While the Internet provides
generic communication solutions that are not tailored to
a specific application, an overlay network usually has a
limited scope and therefore can deploy application aware
protocols.

The use of overlay networks usually comes with a price,
partially due to the management overhead of the overlay,
but mostly due to sub-optimal placement of the overlay
routers in the physical network topology. However, over-
lays are small compared to the global underlying network,
and therefore protocols that exploit the relatively limited
size and scope of overlays not only can overcome their
drawbacks, but can actually offer better performance to
end-user applications.

A. Spines

Spines [4] is an open source overlay network that al-
lows easy deployment and testing of overlay protocols. It
runs in user space, does not need root access or kernel
modifications, and encapsulates packets on top of UDP.
Spines offers a two-level hierarchy in which applications
(clients) connect to the closest overlay node, and then the
node is responsible for forwarding and delivering data to
the final destination through the overlay network. The
benefit of this hierarchy is that it limits the size of the
overlay network, thus reducing the amount of control traf-
fic exchanged.

Overlay nodes act both as servers (accepting connec-
tions from various applications) and as routers (forward-
ing packets towards clients connected to other overlay
nodes). Applications may reside either locally with the
Spines nodes or on machines different than the overlay
node they connect to.

In order to connect to a Spines overlay node, applica-
tions use a library that enables UDP and TCP communica-
tion between the application and the selected Spines node.
The API offered by the Spines library closely resembles
the Unix socket interface, and therefore it is easy to port
any application to use Spines. We describe in Section VI
the necessary steps to adapt current VoIP applications to
use Spines. Each application is uniquely identified by the
IP address of the overlay node it connects to, and by an
ID given at that node, which we call Virtual Port. Spines
provides both reliable and best-effort communication be-
tween end applications, using the applications’ node IP
address and the Virtual Port in a way similar to TCP and
UDP. Similar to the socket() call, a spines socket() func-
tion returns a descriptor that can be used for sending and

receiving data. A spines sendto() call resembles the regu-
lar sendto(), and a spines recvfrom() resembles the regular
recvfrom(), with similar parameters. Virtual Ports are only
defined in the context of an overlay node, and have no re-
lation to the actual operating system ports.

Spines nodes connect to each other using virtual links
forming the overlay network. Spines offers a number of
protocols on each virtual link, including a best effort ser-
vice, a TCP-fair reliable protocol [14] and a real time re-
covery protocol that we describe below in section IV-A.

Each overlay node pings its direct neighbors periodi-
cally to check the link status and latency. Round trip time
measurements are smoothed by computing a 5%-95% de-
caying average. Spines nodes add a link specific sequence
number on every data packet sent between two neighbor-
ing overlay nodes. The receiving overlay node uses this
sequence number to estimate link loss rate. The loss rate
is computed by averaging the number of packets received
between two subsequent loss events over the last L loss
events (in our implementation L = 50). This way, the
loss estimate converges relatively fast when loss rate in-
creases (less number of packets will be received between
two loss events), but is conservative in switching to op-
portunistic low-loss overlay links. Based on link loss and
latency, a cost for each link is computed as described in
Section IV-B and propagated through the network by an
incremental link-state mechanism that uses reliable con-
trol links created among neighboring Spines nodes.

The control traffic required for maintaining the over-
lay network is small compared to the overall data traffic,
consisting in our implementation of periodical hello mes-
sages and small link updates. One 32 byte hello message
is sent every second by each of the two end-nodes of a
direct link. A single link update is propagated to all the
nodes in the overlay through a reliable flooding algorithm
only in case of a network change, such as a variation in the
estimation of delay or loss rate of the link, or when a link
or node goes down. On the initial state transfer, when a
new node is brought up, as well as in the case of multiple
network events that happen simultaneously, multiple link
updates are aggregated, so that a regular Ethernet packet
can carry between 60 and 90 distinct updates, depending
on the sparsity of the network. In the current implementa-
tion, Spines scales to up to several hundred overlay nodes,
and up to one thousand clients per node.

IV. PROTOCOLS FOR INCREASING VOIP
PERFORMANCE

Traditional VoIP systems use the UDP best effort deliv-
ery service to transfer data, exposing the audio channels to
packet losses and path failures. One of the main reasons
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Fig. 3. Real-time recovery loss - 1 link
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Fig. 4. Real-time loss recovery - 2 concatenated links

for not using packet retransmissions is that lost packets,
even when recovered end-to-end from the source, are not
likely to arrive in time for the receiver to play them. Over-
lay networks break end-to-end streams into several hops,
and even though an overlay path may be longer than the
direct Internet path between the two end-nodes, each in-
dividual overlay hop usually has smaller latency, thus al-
lowing localized recovery on lossy overlay links.

A. Real-time recovery protocol

Our overlay links run a real-time protocol that recovers
packets only if there is a chance to deliver them in time,
and forward packets even out of order to the next hop. We
describe our real time recovery protocol as follows:

• Each node in the overlay keeps a circular packet
buffer per outgoing link, maintaining packets sent
within a time equal to the maximum delay supported
by the audio codec. Old packets are dropped out of
the buffer if they are expired, or when the circular
buffer is full.

• Intermediate nodes forward packets as they are re-
ceived, even out of order.

• Upon detecting a loss on one of its overlay links, a
node asks the upstream node for the missed packet.
A retransmission request for a packet is only sent
once. We only use negative acknowledgments, thus
limiting the amount of traffic when no packets are
lost.

• When an overlay node receives a retransmission re-
quest it checks in its circular buffer, and if it has the
packet it resends it, otherwise it does nothing. A to-
ken bucket mechanism regulates the maximum ratio
between the number of retransmissions and the num-
ber of data packets sent. This way we limit the num-
ber of retransmissions on lossy links.

• If a node receives the same packet twice (say because
it was requested as a loss, but then both the original
and the retransmission arrive), only the first instance

of the packet will be forwarded towards the destina-
tion.

The protocol does not involve timeouts and never
blocks for recovering of a packet. The downside is that
this is not a fully reliable protocol and some of the packets
will be lost in case the first retransmission attempt fails.
Such events can appear when a packet is lost, the next
packet arrives and triggers a retransmission request, but
the retransmission request is also lost. For a symmetric
link with independent loss rate p in both directions, this
happens with probability: p·(1−p)·p = p2

−p3. Another
significant case is when the retransmission request does
arrive, but the retransmission itself is lost, which can hap-
pen with probability: p·(1−p)·(1−p)·p = p2

−2p3+p4.
Other types of events, that involve multiple data packets
lost can happen, but their probability of occurrence is neg-
ligible. We approximate the loss rate of our real-time pro-
tocol by 2p2

− 3p3, assuming a uniform3 loss probability
on the link.

The delay distribution of packets follows a step curve,
such that for a link with delay T and loss rate p, (1 − p)
fraction of packets arrive in time T , (p − 2p2 + 3p3) are
retransmitted and arrive in time 3T + ∆, where ∆ is the
time it takes the receiver to detect a loss, and (2p2

− 3p3)
of the packets will be lost by the real time recovery pro-
tocol. For a path that includes multiple links, the delay
of the packets will have a a composed distribution given
by the combination of delay distributions of each link of
the path. The time ∆ it takes the receiver to trigger a re-
transmission request depends on the inter-arrival time of
the packets (the receiver needs to receive a packet to know
that it lost the previous one) and on the number of out of
order packets that the protocol can tolerate. For a sin-
gle VoIP stream, packets usually carry 20 msec of audio,
so they arrive at relatively large intervals. In our over-
lay approach, we aggregate multiple voice streams sent

3In many cases, the loss rate probability may not be uniform. Later
in the paper, we investigate the impact of burstiness on our protocols.
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by different applications within a single real-time recov-
ery protocol on each link. The overlay link protocol han-
dles packets much more often than a single VoIP stream,
and therefore the inter-arrival time of the packets is much
smaller. Standard TCP protocol needs three packets out
of order before triggering a loss. Since latency is crucial
for VoIP applications, and as packet reordering happens
relatively rarely [15], in our experiments we trigger a re-
transmission request after receiving the first out of order
packet.

We implemented the real time protocol in the Spines
overlay network platform and evaluated its behavior by
running Spines on Emulab. Figure 3 shows the loss
rate of the real time recovery protocol on a symmetric
10 msec link with various levels of loss and burstiness,
and Figure 4 shows the combined loss for two concate-
nated 10 msec links that experience the same amount of
loss and burstiness, in both directions, running Spines
with the real-time protocol on each link. For each exper-
iment, an application sent traffic representing the aggre-
gate of 10 VoIP streams for a total of two million packets
of 160 bytes each, and then average loss rate was com-
puted. We can see that the level of burstiness on the link
does not affect the loss rate of the real-time protocol. The
real-time loss rate follows a quadratic curve that matches
our 2p2

− 3p3 estimate. For example, for a single link
with 5% loss rate, applying the real-time protocol reduces
the loss rate by a factor of 10, to about 0.5% regardless
of burstiness, which yields an acceptable PESQ score (see
Figure 1).

For the single 10 msec link experiment with 5% loss
rate, the packet delay distribution is presented in Figure 5.
As expected, 95% of the packets arrive at the destination
in about 10 milliseconds. Most of the losses are recovered,
showing a total latency of 30 msec plus an additional de-
lay due to the inter-arrival time of the packets required for
the receiver to detect the loss, and about 0.5% of the pack-
ets are not recovered. In the case of uniform loss probabil-
ity the delay of the recovered packets is almost constant.

10 Mbps 10 Mbps 10 Mbps 10 Mbps 10 Mbps

10 ms 10 ms 10 ms 10 ms 10 msA B C D E F

… …

Fig. 7. Spines network - 5 links

However, when the link experiences loss bursts, multiple
packets are likely to be lost in a row, and therefore it takes
longer for the receiver to detect the loss. The increase of
the interval ∆ results in a higher delay for the recovered
packets. Obviously, the higher the burstiness, the higher
the chance for consecutive losses, and we can see that the
packet delay is mostly affected at 75% burstiness.

Figure 6 shows the delay distribution for the two-link
network, where both links experience 5% uniform distri-
bution loss rate. As in the single link experiment, most of
the losses are recovered, with the exception of 1% of the
packets. We notice, however, a small fraction of packets
(slightly less than 0.25%) that are lost and recovered on
both links, and that arrive with a latency of about 66 msec.
This was expected to happen with the compound probabil-
ity of loss on each link, pc = 0.05·0.05. Burstiness results
for the two-link network, not plotted in the figure, follow
the same pattern as shown in Figure 5.

In order to evaluate the effect of local recovery on voice
quality we ran the same experiment depicted in Figure 1
and Figure 2 on top of a Spines overlay network. We di-
vided the 50 msec network into 5 concatenated 10 msec
links as shown in Figure 7, ran Spines with the real-time
protocol on each link, and sent 10 VoIP streams in parallel
from node A to node F . We generated losses with differ-
ent levels of burstiness on the middle link C − D and set
the threshold network latency for the G.711 codec to be
100 msec.

Figure 8 presents the average PESQ score of the G.711
streams using Spines, and compares it with the results ob-
tained when sending over UDP directly. Since most of
the packets are received in time to be decoded at the re-
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Fig. 10. Two-metric routing decision

ceiver, we can see that when using Spines, regardless of
burstiness, the G.711 codec can sustain on average even
network losses of 7% with PSTN voice quality.

As discussed earlier, users of phone services expect
high quality service. Therefore, in addition to average per-
formance characteristic, it is important to look at the per-
formance of the worst cases. Figure 9 shows the quality
of the worst 5 percentile calls. We can see that the codec
can handle up to 3.5% losses with PSTN quality and even
for the worst 5% calls, the burstiness did not play a major
role in the voice quality.

B. Real time routing for audio

The real time protocol recovers most of the missed
packets in case of occasional, or even sustained periods
of high loss, but if the problem persists, we would like to
adjust the overlay routing to avoid problematic network
paths.

Given the packet delay distribution and the loss rate
of the soft real-time protocol on each overlay link, the
problem is how to find the overlay path between a pair of
source and destination, for which the packet delay distri-
bution maximizes the number of packets that arrive within
a certain delay, so that the audio codec can play them. The
problem is not trivial, and deals with a two metric routing
optimizer. For example, in Figure 10, assuming a maxi-
mum delay threshold for the audio codec to be 100 msec,
if we try to find the best path from node A to node E,
even in the simple case where we do not recover packets,

we cannot determine which partial path from node A to
node D is better (maximizes the number of packets arriv-
ing at E within 100 msec) without knowing the latency of
the link D-E. On the other hand, computing all the pos-
sible paths with their delay distribution and choosing the
best one is prohibitively expensive.

However, if we can approximate the cost of each link by
a metric dependent on the link’s latency and loss rate, tak-
ing into account the characteristics of our real-time proto-
col and the requirements of VoIP, we can use this metric in
a regular shortest path algorithm with reasonable perfor-
mance results. Our approach is to consider that packets
lost on a link actually arrive, but with a delay Tmax bigger
than the threshold of the audio codec, so that they will be
discarded at the receiver. Then, the packet delay distribu-
tion of a link will be a three step curve defined by the per-
centage of packets that are not lost (arriving in time T ), the
percentage of packets that are lost and recovered (arriving
in 3T + ∆), and the percentage of packets missed by the
real-time protocol (considered to arrive after Tmax). The
area below the distribution curve represents the expected
delay of the packets on that link, given by the formula:
Texp = (1− p) ·T +(p− 2p2 +3p3) · (3T +∆)+(2p2

−

3p3)·Tmax . Since latency is additive, for a path consisting
of several links, our approximation for the total expected
delay will then be the sum of the expected delay of each
individual link. We call this metric expected latency cost
function.

We evaluated the performance of the expected latency
based routing and compared it with other cost metrics. We
used the BRITE [16] topology generator to create random
topologies using the Waxman model, where the probabil-
ity to create a link depends on the distance between the
nodes. We chose this model because it generates mostly
short links that that fit our goal for localized recovery. We
assigned random loss from 0% to 5% on half of the links
of each topology, selected randomly. We considered ev-
ery node generated by BRITE to be an overlay node, and
every link to be an overlay edge. For each topology we



8

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 0  10  20  30  40  50  60  70

A
vg

. d
el

iv
er

y 
ra

tio
 (%

)

Network diameter (ms)

expected latency
hop distance

latency
loss rate

greedy optimizer
best route

Fig. 11. Comparing routing metrics - 15 node networks
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Fig. 12. Comparing routing metrics - 100 node networks

determined the nodes defining the diameter of the net-
work (the two nodes for which the shortest latency path
is longest), and determined the routing path between them
given by different cost metrics.

By adjusting the size of the plane in which BRITE gen-
erates topologies, networks with different diameters are
created. For each network diameter we generated 1000
different topologies and evaluated the packet delivery ra-
tio between the network diameter nodes when running
the real-time protocol on the links of the network, using
different routing metrics. Figure 11 shows the average
delivery ratio for network topologies with 15 nodes and
30 links, and Figure 12 shows the delivery ratio for net-
work topologies with 100 nodes and 200 links. For a link
with direct latency T and loss rate p, considering an audio
codec threshold Tmax = 100 msec and the packet inter-
arrival time ∆ = 2 msec, the cost metrics used are com-
puted as follows:

• Expected latency: Cost = (1 − p) · T + (p − 2p2 +
3p3) · (3T + ∆) + (2p2

− 3p3) · Tmax

• Hop distance: Cost = 1
• Link latency: Cost = T

• Loss rate: Cost = −log(1 − p)
• Greedy optimizer: We used a modified Dijkstra al-

gorithm that, at each iteration, computes the delay
distribution of the selected partial paths and chooses
the one with the maximum delivery ratio.

• Best route: All the possible paths and their delay dis-
tributions were computed, and out of these the best
one was selected. Obviously, this operation is very
expensive, mainly because of the memory limitation
of storing all combinations of delay distributions .
Using a computer with 2GB memory we could not
compute the best route for networks with more than
16 nodes.

As expected, for small diameter networks the loss-
based routing achieves very good results, as the delay of
the links is less relevant. With the increase in the net-
work diameter, the latency-based routing achieves better

results. At high latencies, the packet recovery becomes
less important than the risk of choosing a highly delayed
path, with latency more than the codec threshold. The ex-
pected latency routing achieves lower delivery ratio than
the loss-based routing for small diameter networks, but
behaves consistently better than the latency-based routing.
The slight drop in delivery ratio for low diameter networks
is causing just a small change in VoIP quality (see Fig-
ures 1 and 2), while the robustness at high network delays
is very important. Interestingly, the greedy optimizer fails
at high latency networks, mainly due to wrong routing de-
cisions taken early in the incremental algorithm, without
considering the full topology.

Our conclusion is that the expected latency metric,
while being slightly worse than other routing metrics for
small diameter networks achieves better routing in high
latency networks, exactly where we need it the most.

V. ROUTING LIMITATIONS OF OVERLAY NETWORKS

Running overlay nodes in user level space gives us
great flexibility and usability, but comes at the expense
of packet processing through the entire networking stack,
and process scheduling on the machines running the over-
lay nodes.

Executing overlay network functionality on loaded
computers naturally degrades the performance of the over-
lay system. This degradation is critical especially for la-
tency sensitive VoIP streams. For example, if the overlay
daemon runs as a user level process on a computer that
has other CPU intensive processes, it is common for the
overlay network system not to be scheduled for several
hundred milliseconds, and even seconds, which of course,
is not useful for VoIP. In fact, our experience with another
messaging system, the Spread toolkit [17] that is com-
monly deployed on large websites, shows that on heavily
loaded web servers a process may be scheduled only af-
ter eight seconds. It is common practice on such systems
to assign the messaging system higher priority (real time
priority in Linux). For a VoIP service it is reasonable to
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expect that the overlay nodes will be well provisioned in
terms of CPU and networking capabilities.

A. Routing performance in Spines

It is interesting to evaluate the overhead of running
the overlay nodes as regular applications in the user
space, and how the routing performance is affected by the
amount of traffic or load on the computers. We deployed
Spines in Emulab on a three node network as shown in
Figure 13, where the middle node B had two network
interfaces and was directly connected to nodes A and C

through local area links. All the computers used were In-
tel Pentium III 850MHz machines. The one-way UDP
latency between node A and node C measured sending
160 byte packets and adjusted with the clock difference
between the nodes was 0.189 msec.

We ran a Spines node on each node, using the real-time
protocol on the links A − B and B − C . Then we sent
a varying number of voice streams in parallel (from 1 to
200 streams), consisting of 20000 packets of 160 bytes
each, from node A to node C using Spines. We measured
the one way latency of each packet, adjusted by the clock
difference between machines A and C . When forwarding
200 streams, the middle node B running Spines showed
an average CPU load of about 40%. However, the sending
node A, on which both Spines and our sending application
were running, reached a maximum 100% CPU utilization.

Figure 14 shows the average latency of packets for-
warded through Spines as the number of parallel streams
increases from 1 to 200, and compares it to the base
network latency measured with UDP probes. The stan-
dard deviation of all the measurements was a very low
0.012, and the highest single packet latency measured,

which happened when we sent 200 streams in parallel,
was 0.963 msec. What we see is that regardless of the
number of streams, the three Spines nodes add a very
small delay totaling about 0.15 msec due to user-level pro-
cessing and overlay routing.

We evaluated the routing performance of Spines on a
CPU loaded computer by running a simple while(1) in-
finite loop program on the middle node B, and repeated
the above experiment. Running Spines with the same
priority as the loop program, when forwarding a single
voice stream we achieved a very high packet delay aver-
age of 74.815 msec, and the maximum packet delay was
154.468 msec. When competing with 4 loop programs
in parallel, with the same priority as Spines, the average
packet delay for a single stream went up even more to
298.354 msec (about 900 times more than without CPU
competing applications), and the maximum packet delay
was 604.917 msec. Obviously, such delays are not suit-
able for VoIP. However, when we set real-time priority for
the Spines process, the high CPU load did not influence
our performance. Even when competing with 10 loop pro-
grams and a load of 200 streams, the average packet de-
lay was a low 0.315 msec and the maximum packet delay
measured was 0.469 msec.

TABLE I
PLANETLAB SITES

1 CMU 9 UC San Diego
2 Columbia 10 U. of Georgia
3 Dartmouth College 11 U. of Maryland
4 Duke 12 U. of Oregon
5 Intel Resrc. Berkeley 13 U. of Virginia
6 Intel Resrc. Seattle 14 U. of Washington
7 MIT 15 U. of Utah
8 Princeton

B. Case study: Planetlab

Planetlab [6] is a large overlay testbed that can be seen
as a collection of computers distributed around the world,
each of them directly accessing the Internet. Currently
Planetlab has 403 nodes at 169 sites. As opposed to Em-
ulab, which has a reservation mechanism that completely
allocates computers to a particular experiment, Planetlab
uses a shared environment. Users create slices on each
computer they need to run their programs on, and each
slice acts like a virtual machine, sharing the computer re-
sources with other users, running within their own slices.
In the current deployment of Planetlab it is not possible to
set process priorities higher than other processes in other
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 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.25  0.5  0.75  1  1.25  1.5  1.75  2

C
D

F:
 S

tr
ea

m
s 

(%
)

loss rate (%)

Spines
UDP

Fig. 16. Planetlab - missed packets

slices, and the CPU load and availability on the machines
is dependent on the particular applications that various re-
searchers run at the same time.

Out of the sites in the US we found 15 to have comput-
ers synchronized to under 30 msec. The 15 sites are pre-
sented in Table I. Note that our overlay protocols do not
require clock synchronization, but we do need synchro-
nized clocks in our experiments to evaluate the number
of packets arriving within a certain delay constraint. The
average load measured on the machines at these sites var-
ied from 0.56 to 5.95, with an average of 2.91 (i.e. at any
point in time there are on average 2.91 processes ready
and competing for CPU), with only 2 nodes having a load
below 1. Such a high load is expected and normal for a
shared testbed, and can be easily handled by Spines if we
run it with real-time priority. However, as we cannot set
higher process priorities against users running in different
slices, we expect that any overlay path that uses at least an
intermediate high CPU loaded node on Planetlab, would
delay much more packets than it can recover using the
real-time protocol, and therefore behave worse than the
direct Internet connection between the end nodes.

It is interesting though to see how the real time recov-
ery protocol behaves, even at high CPU load, on the direct
connections between the Planetlab nodes. We deployed
a Spines overlay network consisting of a fully connected
graph, such that each of the 15 overlay nodes had a di-
rect overlay link to each of the other 14 nodes. We then
sent streams of 20000 packets, 160 byte each at a rate
of 50 packets/sec from each node to all the other nodes,
both directly using UDP and using Spines. We combined
nodes in alternating groups of 7 pairs, such that each node
can only be a sender or a receiver at a time, but not both.
We also alternated UDP and Spines streams, so that we
minimized as much as possible the effect of loss or delay
variations between the same nodes when running different
streams.

We considered only 94 streams for which the minimum
packet delay was less than 30 msec (so that the real-time

protocol had a chance to recover any packets) and set the
delay threshold for the codec to be 115 msec (we add 15
milliseconds to compensate for the 0 to 30 msec clock
difference between the nodes). For each UDP and Spines
stream we counted the lost packets, the late packets (ar-
riving at destination after more than 115 msec) and the
packets missed by the codec as the sum of both lost and
late packets.

Figure 15 presents the CDF of the streams as a func-
tion of lost packets. First, we see that many of the UDP
streams in Planetlab are affected by loss. About 22%
of the UDP streams lost more than 0.25% of the pack-
ets, and about 4% of the UDP streams lost more than 1%
of their packets. Spines all the packets for most of the
streams, such that there was only one stream that lost more
than0.25% of the packets. That stream lost 609 packets to-
tal, most of them in three bursts of 102, 359 and 87 pack-
ets respectively. We believe this happened either because
of short outages between Planetlab nodes, but most likely
because Spines was not scheduled to run for several sec-
onds.

Figure 16 presents the CDF of the streams as a function
of missed packets. Even though Spines did recover almost
all of the packets, some of the recoveries did not arrive
in time at the destination, also due to process scheduling
delays when sending retransmissions. Nevertheless, while
almost 27% of the UDP streams missed more than 0.25%
of the packets, only about 4% of the Spines streams had
more than 0.25% of the packets missed.

VI. INTEGRATION WITH THE CURRENT

INFRASTRUCTURE

Given the large installed base of VoIP end clients and
the even larger planned future deployments it is impera-
tive that our system integrates seamlessly with the existing
infrastructure. We explain what are the necessary steps to
achieve this in the rest of this section.

The first component of the integration has to do with
how VoIP clients are able to find their closest Spines
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server. We assume that each domain that wants to take
advantage of the benefits provided by our system will de-
ploy a Spines node as part of their infrastructure. In this
case VoIP clients can use DNS SRV [18] records to lo-
cate the Spines node that is serving their administrative
domain. This DNS query will return the IP address of (at
least one) Spines node that can serve as their proxy in the
Spines overlay. Once this node is found the VoIP clients
can communicate with it using the interface we described
in Section III-A. Then, the VoIP clients have to direct me-
dia traffic to flow through the Spines network rather than
directly with over UDP.

We have two proposed solutions for this issue: one that
requires changes to the end-clients and one that does not.
We begin with the solution that requires “Spines-enabled”
clients. In the current architecture, the Session Initia-
tion Protocol (SIP) [19] is used as a signaling protocol
so that the two communication endpoints can negotiate
the session parameters, including the IP address and ports
that each client is waiting to receive media traffic on. A
Spines-enabled VoIP client announces its capability us-
ing the parameter negotiation feature that is part of SIP,
within the initial INVITE SIP message. The VoIP client
includes in the same INVITE message the IP address and
the Virtual Port that it’s Spines server is waiting to receive
media traffic for the client. If the peering VoIP client is
also Spines-enabled it will reply positively and include in
its reply the address and Virtual Port at its own server. On
the other hand, if the peer is not Spines-enabled it will re-
turn an error code indicating to the session initiator that it
will have to revert to a “legacy” session. After the SIP ne-
gotiation has successfully finished, each source will send
media traffic through its local Spines server towards the
Spines server indicated by the peer client. As the traffic is
forwarded through the overlay network, the egress Spines
node will finally deliver it to the destination VoIP client.

RTP [20] and RTCP data is sent seamlessly through the
Spines network, offering the end clients information about
the network conditions along the overlay path they use.

While this first solution is architecturally pure, it re-
quires changes to the end clients which may not be ini-
tially possible. In this case, we propose to use a solu-
tion similar to the NAT-traversal in SIP [21]. Specifically,
Spines nodes will be required to intercept SIP INVITE
messages and change the IP address and ports to point to
themselves rather than to the VoIP clients. This way all the
media traffic will flow through the Spines network which
will eventually deliver it to the end-hosts.

VII. RELATED WORK

Our goal in this work is to reduce the effect of Internet
losses on the quality of VoIP traffic. We do so by using
an overlay network that attempts to quickly recover lost
packets by using limited hop-by-hop retransmissions and
an adaptive routing algorithm to avoid persistently lossy
links. In this respect our work is related with techniques
that try to reduce the loss rate of underlying Internet paths
and with other work in overlay networks.

Multi Protocol Label Switching (MPLS) [22] has been
recently proposed as a way to improve the performance
of underlying network. This is done by pre-allocating re-
sources across Internet paths (LSPs in MPLS parlance)
and forwarding packets across these paths. Our system
is network agnostic and therefore does not depend on
MPLS, but it can leverage any reduction in loss rate of-
fered by MPLS. At the same time, MPLS will not elim-
inate route and link failures or packet loss. Since it runs
at a higher level, our overlay network can continue to for-
ward packets avoiding failed network paths. Forward Er-
ror Correction (FEC) schemes [23] have also been pro-
posed as a method of reducing the effective loss rate of
lossy links. These schemes work by adding redundant
information and sending it along with the original data,
based on the feedback estimate of loss rate given by RTCP,
such that in case of a loss, the original information (or part
of it) can be recreated. Most of the VoIP solutions today
(including the G.711 codec we use in this paper) use some
form of FEC to ameliorate the effect of loss. Given the oc-
casional bursty loss pattern of the Internet, many times the
FEC mechanisms are slow in estimating the current loss
rate, and therefore we believe that localized retransmis-
sions are required for maintaining voice quality. More-
over, since our approach increases the packet delivery ra-
tio, FEC mechanisms will notice a considerable reduction
in loss, and therefore reduce their redundancy overhead.

Overlay networks have emerged as an increasingly
growing field over the last few years, motivated mainly
by the need to implement new services not supported by
the current Internet infrastructure. Some of the pioneers of
overlay network systems are X-Bone [24] and RON [25],
which provides robust routing around Internet path fail-
ures. Other overlay networks focus on multicast and mul-
timedia conferencing [26],[27]. Our work uses the same
basic architecture of an overlay network but it is targeted
towards the specific problems of VoIP traffic. Finally,
OverQoS [28] is probably closest to our work, as it pro-
poses an overlay link protocol that uses both retransmis-
sions and FEC to provide loss and throughput guarantees.
OverQoS depends on the existence of an external overlay
system (the authors suggest RON as an option) to provide
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path selection and overlay forwarding. In this respect, our
system can use OverQos as a plug-in module as an alter-
native to our real-time recovery protocol presented in Sec-
tion IV-A, probably with the necessary modifications that
take into account the special requirements of voice traffic.

VIII. CONCLUSION

In this paper we have shown that current conditions in-
hibit the deployment of PSTN quality Voice over IP, and
we proposed a deployable solution that can overcome the
bursty loss patern of the Internet. Our solution uses the
open source Spines overlay network to segment end-to-
end paths into shorter overlay hops and attempts to re-
cover lost packets using limited hop-by-hop retransmis-
sions. Spines includes an adaptive routing algorithm that
avoids chronically lossy paths in favor of paths that will
deliver the maximum number of voice packets within the
predefined time budget. We evaluated our algorithms and
our system implementation in controlled networking en-
vironments in Emulab, on the Internet using the Planetlab
testbed, and through extensive simulations on various ran-
dom topologies. Our results show that Spines can be very
effective in masking the effects of packet loss, thus offer-
ing high quality VoIP even at loss rates higher than those
measured in the Internet today.
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