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Abstract— The cost savings and novel features associated with
Voice over IP (VoIP) are driving its adoption by service providers.
Such a transition however can successfully happen only if the
quality and reliability offered is comparable to the existing
PSTN. Unfortunately, the Internet’s best effort service model
provides no inherent quality of service guarantees. Because
low latency and jitter is the key requirement for supporting
high quality interactive conversations, VoIP applications use
UDP to transfer data, thereby subjecting themselves to quality
degradations caused by packet loss and network failures.

In this paper we describe an architecture to improve the
performance of such VoIP applications. Two protocols are used
for localized packet loss recovery and rapid rerouting in the event
of network failures. The protocols are deployed on the routers of
an application-level overlay network and require no changes to
the underlying infrastructure. Experimental results indicate that
the architecture and protocols can be combined to yield voice
quality on par with the PSTN.

I. INTRODUCTION

Although subscribers are accustomed to the consistent voice
quality and high reliability provided by the traditional Public
Switched Telephone Network (PSTN), the promise of a single
converged IP network to carry voice and data — and the
cost savings therein — motivates the adoption of voice-over-
IP (VoIP) technologies. However, customers expect VoIP to
meet and exceed the standard of quality long offered by the
Public Switched Telephone Network (PSTN). It is non-trivial
to engineer a solution that meets the stringent constraints
expected by humans of a high quality, reliable, real-time voice
communication service. Delays of 100-150 msec and above
are detectable by humans and can impair the interactivity of
conversations. By comparison, humans are far less tolerant
of audio degradation than of video degradation. Hence, to
meet these requirements it is crucial to minimize primarily
the network latency and secondarily packet loss as much as
possible. To minimize latency, contemporary VoIP solutions
rely upon UDP as the transport protocol. However this has the
potential to expose VoIP packets to network loss and failures.
Although the Internet can offer reasonable quality (relatively
low loss and good stability) for the majority of VoIP streams,
it has been shown [1], [2], [3] that it remains vulnerable to
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occasional bursts of high loss and link failures that preclude
it from delivering a constant, high quality service demanded
for telephony.

This paper describes an overlay architecture that can easily
be deployed to address the problems that happen during these
intervals of network loss and failures. The overlay main-
tains high packet delivery ratio even under high loss, while
adding minimal overhead under low, or no-loss conditions.
The system is based on several observations regarding VoIP
applications. First, we notice that it is often possible to recover
packets even within the tight delay budget of VoIP. While
many VoIP streams are subject to large latencies that prohibit
timely end-to-end recovery, it is possible to perform recovery
for many short links that are in the order of up to 30 msec.
Our second observation is that by breaking long links into
several smaller links, an overlay network architecture can help
localize the packet recovery within overlay hops. Thus, even
for VoIP streams with end-to-end latencies considerably larger
than 30 msec, the vast majority of the packet losses can be
rapidly recovered on the shorter overlay hop on which they
were dropped. Overlay networks facilitate the deployment of
flexible routing protocols that can address the needs of a
specific application. Our third observation is that the overlay
approach allows the deployment of a routing algorithm that
optimizes the probability of packets being delivered within the
delay requirements of VoIP, hence having a significant impact
on the resulting voice quality.

The contribution of this paper is an overlay network system
that is tailored to support VoIP by judiciously combining
two complementary mechanisms: First, a real-time' packet
recovery protocol that immediately delivers newly received
packets, in a way similar to UDP, but this protocol attempts
to recover missing packets. Recovery is attempted only once,
and only if a packet is likely to arrive at the destination within
the VoIP delay constraint. This protocol is deployed on every
overlay link. Second, an adaptive overlay routing protocol
tailored to VoIP, that optimizes path selection based on an
approximation metric that combines the measured latency and
loss rate of a link. The approximation metric dynamically
assigns a cost to each overlay link by estimating the packet
latency distribution and loss rate of the real-time recovery
protocol.

The system was implemented as part of the Spines [4]

'Our definition of real-time refers to timely recovery of packets on short
overlay links. Protocols such as RTP, RTCP, that do not recover packets, work
independently of our protocols and benefit of our higher packet delivery ratio.



open source overlay network platform. The behavior of our
protocols was evaluated under controlled network conditions
on the Emulab [5] testbed and directly in the Internet on
the Planetlab [6] network. The performance of the proposed
routing metric was evaluated through extensive simulations,
comparing it to other metrics, on thousands of random topolo-
gies with various loss and delay link characteristics. We show
that by leveraging our overlay for disseminating VoIP streams,
the loss rate of the communication can be drastically reduced.
For example, for a packet loss rate of 5%, our system can
usually recover within the latency constraints all but 0.5% of
the packets. This leads to a commensurate increase in the voice
quality of the calls. Our results reveal that using a standard
voice codec, we could achieve PSTN voice quality despite
loss rates of up to 7%. Our routing metric improves overall
performance by selecting paths that optimize packet delivery
ratio. It achieves outperforms individual latency, loss or hop-
based routing schemes — especially in high latency networks
where the voice delay constraint becomes more stringent.

When using overlay routing on regular computers issues
such as process scheduling and application processing over-
head need to be addressed. We show that when overlay routers
are run with high priority, application-level routing adds a
relatively small delay of under 0.15 msec, even on loaded
computers where 10 processes constantly compete for CPU at
the same time.

The rest of the paper is organized as follows: In Sec-
tion II we present the motivation and background of our
work. In Section III we introduce our overlay architecture.
We present and evaluate our protocols in Section IV. The
routing limitations of overlay networks and how they can
be addressed in real systems are described in Section V.
Section VI discusses how we can integrate our approach in
the current VoIP infrastructure. Section VII presents related
work, and Section VIII concludes our paper.

II. BACKGROUND
A. Voice over IP

There are several steps involved in sending voice commu-
nication over the Internet. First, the analog audio signal is
encoded at a sampling frequency compatible with the human
voice. The resulting data is partitioned into frames representing
signal evolution over a specified time period. Each frame is
then encapsulated into a packet and sent using a transport
protocol (usually UDP) towards the destination. The receiver
of a VoIP communication decodes the received frames and
converts them back into analog audio signal.

Unlike media streaming, VoIP communication is inferactive,
i.e. participants are both speakers and listeners at the same
time. In this respect, delays higher than 100-150 msec can
greatly impair the interactivity of conversations, and therefore
delayed packets are usually dropped by the receiver codec.

Voice quality can be adversely affected by a number of
factors including latency, jitter, node or link failures, and by
the variability of these parameters. The combined impact, as
perceived by the end-users, is that voice quality is reduced
at random. Contemporary VoIP codecs use a buffer at the

receiver side to compensate for shortly delayed packets, and
use forward error correction (FEC) or packet loss concealment
(PLC) mechanisms to ameliorate the effect of packet loss or
excessive delay. The error correction mechanisms usually add
redundancy overhead to the network traffic and have limited
ability to recover from bursty or sudden loss increase in the
network.

In our experiments we used a well-understood, widely de-
ployed and good quality codec, the standard ITU-T G.711 [7],
combined with its PLC mechanism [8]. The G.711 codec
we used samples the audio signal at a rate of 8kHz and
partitions the data stream into 20 msec frames, thus sending
160 byte packets at a rate of 50 packets/sec. VoIP quality
is evaluated using an objective method described in ITU-T
recommendation P.862 [9], known as Perceptual Evaluation
of Speech Quality (PESQ). The PESQ score is estimated by
processing both the input reference and the degraded output
speech signal, similarly to the human auditory system. The
PESQ score ranks speech signals on a scale from -0.5 (worst)
to 4.5 (best), where 4.0 is the desired PSTN quality.

B. Internet loss characteristics

Packets are lost in the Internet due to congestion, routing
anomalies and physical errors, although the percentage of
physical errors is very small at the core of the network. Paxson
in [2] studied the loss rate for a number of Internet paths
and found that it ranged from 0.6% to 5.2%. Furthermore
in that study and a follow-up [10], Paxson discovered that
loss processes can be modeled as spikes where loss occurs
according to a two-state process, where the states are either
“packets not lost” or “packets lost”. According to the same
studies, most loss spikes are very short-lived (95% are 220
msec or shorter) but outage duration spans several orders of
magnitude and in some cases the duration can be modeled by
a Pareto distribution. In a more recent study, Andersen et al
in [3] confirmed Paxson’s earlier results but showed that the
average loss rate for their measurements in 2003 was a low
0.42%. Most of the time, the 20-minute average loss rates were
close to zero; over 95% of the samples had a 0% loss rate. On
the other hand, during the worst one-hour period monitored,
the average loss rate was over 13%. An important finding in
[3] is that the conditional probability that a second packet is
lost given that the first packet was lost was 72% for packets
sent back-to-back and 66% for packets sent with a 10-msec
delay, confirming the results in [10].

In addition to link errors and equipment failures, the other
major factor contributing to packet losses in Internet is delayed
convergence of the existing routing protocols. Labovitz et
al [11] use a combination of measurements and analysis to
show that inter-domain routes in the Internet may take tens of
minutes to reach a consistent view of the network topology
after a fault. They found that during this period of delayed
convergence, end-to-end communication is adversely affected.
In [12], Labovitz et al. find that 10% of all considered routes
were available less than 95% of the time and that less than
35% of all routes were available more than 99.99% of the
time. In a follow-up study [13], Chandra et al showed that 5%
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of all failures last more than 2 hours and that failure durations
are heavy-tailed and can last as long as 20 hours before being
repaired. In a related study performed in 2003, Andersen et al
[3] showed that while some paths are responsible for a large
number of failures, the majority of the observed Internet paths
had some level of instability. All these statistics indicate the
Internet today is not ready to support high quality voice service
as we are going to show in the following section.

C. Voice quality degradation with loss

We evaluated the effect of a loss pattern such as the
one reported on the Internet on the VoIP quality, using the
standardized PESQ measure. To do so, we instantiated a
network with various levels of loss and burstiness (we define
burstiness as the conditional probability of loosing a packet
when the previous packet was lost) in the Emulab [5] testbed,
and measured the quality degradation when sending a VoIP
stream on that network.

Emulab is a testing environment that allows deployment of
networks with given characteristics composed of real com-
puters running Linux, connected through real routers and
switches. Link latency, capacity and loss® are emulated using
additional computers that delay packets or drop them with
certain probability or if their rate exceeds the requested link
capacity. All the Emulab machines are also directly connected
through a local area network through which they are managed
and can be accessed from the Internet. On this local area
network we constantly monitored the clock synchronization
between the computers involved in our experiments and accu-
rately adjusted our one-way latency measurements.

We used the G.711 codec with PLC to transfer a 5 minute
audio file using UDP over the lossy network, repeating each
experiment for 20 times. The network had a 50 msec delay and
10 Mbps capacity, enough to emulate a trans-continental long-
distance call over a wide area network. We finally decoded
the audio file at the destination, divided it into 12 second
intervals corresponding to normal conversation sentences, and

2Emulab cannot set conditional loss probability on the links. For burstiness
experiments we dropped packets with conditional probability at the application
level, before processing them.
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compared each sentence interval with the original to generate
its PESQ score.

Figure 1 shows the average PESQ score of all the sentence
intervals as a function of loss rate and burstiness of the link.
We can see that on average, the G.711 codec can handle up to
1% loss rate, while keeping a PESQ score higher than 4.0 (the
expected PSTN quality level). Burstiness does not play a major
role until the loss rate is relatively high, when the voice quality
is anyway low. However, given the regular expectancy of high
quality phone calls, we also need to analyze the most adversely
affected voice streams. Figure 2 presents the 5 percentile of
the above measurements. We can see that for the most affected
streams burstiness does have a significant impact, and even at
0.5% loss rate the G.711 codec cannot provide PSTN standard
voice quality. At 0.5% loss and 75% burstiness the PESQ score
dropped to 3.69.

Considering the fact that current loss rate measurements in
the Internet average at about 0.42% with an average burstiness
of 72%, and that occasionally loss can be even much higher,
these experiments show that new solutions are required to
improve the quality of VoIP traffic if it is to compete with
the existing PSTN.

IIT. AN OVERLAY ARCHITECTURE

Overlay networks allow easy deployment of new services,
as they allow full control over the protocols running be-
tween participating nodes. While the Internet provides generic
communication solutions that are not tailored to a specific
application, an overlay network usually has limited scope and
therefore can deploy application aware protocols.

The use of overlay networks usually comes with a price,
partially due to the management overhead of the overlay, but
mostly due to the sub-optimal placement of the overlay routers
in the physical network topology. However, overlays are small
compared to the global underlying network, and therefore
protocols that exploit the relatively limited size and scope
of overlays not only can overcome these drawbacks, but can
actually offer better performance to end-user applications.

The overlay handles traffic for multiple connections in var-
ious directions, such that every connection can have a limited
number of intermediate overlay hops. Previous work [14] [15]
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shows that increasing the number of nodes in an overlay
follows a diminishing return function. At some early point,
the benefit of adding additional nodes to an existing overlay
is small, and is overcome by the overhead associated with a
larger overlay. Therefore we opt for having a relatively small
overlay (tens to hundreds of nodes) with direct link latencies
in the order of milliseconds or tens of milliseconds.

A. Spines

Spines [4] is an open source overlay network that allows
easy deployment and testing of overlay protocols. It runs in
user space, does not need special privileges or kernel modifi-
cations, and encapsulates packets on top of UDP. Spines offers
a two-level hierarchy in which applications (clients) connect
to the closest overlay node, and this node is responsible for
forwarding and delivering data to the final destination through
the overlay network. The benefit of this hierarchy is that
it limits the size of the overlay network, thus reducing the
amount of control traffic exchanged. An example of a Spines
overlay network is shown in Figure 3. Overlay nodes act both
as servers (accepting connections from various applications)
and as routers (forwarding packets towards clients connected
to other overlay nodes). Applications may reside either locally
with the Spines nodes or on machines different than the over-
lay node they connect to. In this paper we focus only on the
overlay protocols and in all of our experiments, applications
reside either on the same machine as their overlay node, or on
a different machine connected through a local area network
to the overlay node. We expect that the overlay nodes are
connected through high latency wide area links.

In order to connect to a Spines overlay node, applications
use a library that enables UDP and TCP communication
between the application and the selected Spines node. The
API offered by the Spines library closely resembles the Unix
socket interface, and therefore it is easy to port any application
to use Spines. We describe in Section VI the necessary steps to
adapt current VoIP applications to use Spines. Each application
is uniquely identified by the IP address of the overlay node it
connects to, and by an ID given at that node, which we call
Virtual Port. Spines provides both reliable and best-effort com-
munication between end applications, using the applications’
node IP address and the Virtual Port in a way similar to TCP

and UDP. Similar to the socket() call, a spines_socket() function
returns a descriptor that can be used for sending and receiving
data. A spines_sendto() call resembles the regular sendto(),
and a spines_recvfrom() resembles the regular recvfrom(), with
similar parameters. Virtual Ports are only defined in the
context of an overlay node, and have no relation to the actual
operating system ports.

Spines nodes connect to each other using virtual links form-
ing the overlay network. Spines offers a number of protocols
on each virtual link, including a best effort service, a TCP-fair
reliable protocol [14] and a real time recovery protocol [16].

Each overlay node pings its direct neighbors periodically to
check the link status and latency. Round trip time measure-
ments are smoothed by computing an exponential weighting
average. Spines nodes add a link specific sequence number
on every data packet sent between two neighboring overlay
nodes. The receiving overlay node uses this sequence number
to estimate the loss rate of overlay links. Upon receiving
a number of packets out of order (in our implementation,
three), the node decides that a loss event happened. The
loss rate is computed by averaging the number of packets
received between two subsequent loss events over the last L
loss events (in our implementation L. = 50). This way, the
loss estimate converges relatively fast when loss rate increases
(fewer packets will be received between two loss events), but
is conservative in switching to temporarily low-loss overlay
links. Based on link loss and latency, a cost for each link is
computed as described in Section IV-B and propagated through
the overlay network by an incremental link-state protocol that
uses reliable flooding mechanism.

The control traffic required for maintaining the overlay
network is small compared to the overall data traffic, consisting
in our implementation of periodical hello messages and link
updates. One 32 byte hello message is sent every second by
each of the two end-nodes of a direct link. A single link update
is propagated to all the nodes in the overlay through a reliable
flooding algorithm only in case of a network change, such as
a variation in the estimation of delay or loss rate of the link,
or when a link or node goes down. On the initial state transfer
the entire routing table is transfered. In this case, as well as
when multiple network events happen simultaneously, multiple
link updates are aggregated, so that a regular Ethernet packet
can carry between 60 and 90 distinct updates, depending on
the sparsity of the network. In the current implementation,
Spines scales to up to several hundred overlay nodes, and
up to a thousand clients per node. Spines detects network
failures through its hello protocol in under 10 seconds. Our
experiments on the Planetlab network show that reducing the
failure detection interval to less than 10 seconds increases the
chance of route instability.

IV. PROTOCOLS FOR INCREASING VOIP QUALITY

Traditional VoIP systems use UDP to transfer data, exposing
the audio channels to packet loss. One of the main reasons
for not using end-to-end retransmissions is that lost packets,
even when recovered end-to-end from the source, are not
likely to arrive in time for the receiver to play them. Overlay
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networks break end-to-end streams into several hops, and even
though an overlay path may be longer than the direct Internet
path between the two end-nodes, each individual overlay hop
usually has smaller latency, thus allowing localized recovery
on lossy overlay links.

A. Real-time recovery protocol

Our overlay links run a real-time protocol that recovers
packets only if there is a chance to deliver them in time, and
forward packets even out of order to the next hop. We describe
our real time recovery protocol next:

o Each overlay node keeps a circular packet buffer per
outgoing link, maintaining packets sent within a time
equal to the maximum delay supported by the audio
codec. Packets are dropped out of the buffer when they
expire, or when the circular buffer is full.

o Intermediate nodes forward packets as they are received,
even out of order.

o Upon detecting a loss on one of its overlay links, a
node asks the upstream node for the missed packets. A
retransmission request for a packet is only sent once.
We only use negative acknowledgments, thus limiting the
amount of traffic when no packets are lost.

« When an overlay node receives a retransmission request
it checks in its circular buffer, and if it has the packet
it resends it, otherwise it does nothing. A token bucket
mechanism regulates the maximum ratio between the
number of retransmissions and the number of original
packets sent. This way we limit the number of retrans-
missions on lossy links.

o If a node receives the same packet twice (say because it
was requested as a loss, but then both the original and
the retransmission arrive), only the first instance of the
packet will be forwarded towards the destination.

The protocol does not involve timeouts and never blocks
for recovery of a packet. On the other hand, this is not a fully
reliable protocol and some of the packets will be lost in case
the first retransmission attempt fails. Such events can appear
when a packet is lost, the next packet arrives and triggers a
retransmission request, but the retransmission request is also
lost. For a link with independent loss rate p in both directions,

45 w

Unif(‘)rm L
4 25% burst ----e--- |
50% burst -
75% burst B’
35
S
2 25 ¥
° A
g 2
£ 15 /
' "
0.5
0 ‘ ‘ ‘ ‘
0 6 7 8 9 10
Per-link link loss (%)
Fig. 5. Real-time loss recovery - 2 concatenated links

the above sequence of events will happen with probability
p-(1—p)-p=p?—p>. Another significant case is when the
retransmission request does arrive, but the retransmission itself
is lost, which can happen with probability p-(1—p)-(1—p)-p =
p? —2p3+p*. Other types of events, that involve multiple data
packets lost can happen, but their probability of occurrence
is negligible. We approximate the loss rate of our real-time
protocol by 2p? — 3p?, assuming that the loss probability on
the link is a uniform?.

The delay distribution of packets follows a step curve, such
that for a link with one way delay T and loss rate p, (1 — p)
fraction of packets arrive in time T, (p — 2p? + 3p3) are
retransmitted and arrive in time 37 + A, where A is the time
it takes the receiver to detect a loss, and (2p? — 3p?) of the
packets will be lost by the real time recovery protocol. For
a path that includes multiple links, the delay of the packets
will have a a composed distribution given by the combination
of delay distributions of each link of the path. The time A it
takes the receiver to trigger a retransmission request depends
on the inter-arrival time of the packets (the receiver needs
to receive a packet to know that it lost the previous one)
and on the number of out of order packets that the protocol
can tolerate. For a single VoIP stream, packets usually carry
20 msec of audio, so they arrive at relatively large intervals.
In our overlay approach, we aggregate multiple voice streams
within a single real-time connection on each link. The overlay
link protocol handles packets much more often than a single
VoIP stream, and therefore the inter-arrival time of the packets
is much smaller. Standard TCP protocol needs three packets
out of order before triggering a loss. Since latency is crucial for
VoIP applications, and as packet reordering is a rare event [17],
in our experiments we trigger a retransmission request after
receiving the first out of order packet.

We implemented the real time protocol in the Spines overlay
network platform and evaluated its behavior by running Spines
on Emulab. Figure 4 shows the loss rate of the real time
recovery protocol on a 10 msec link with various levels of loss
and burstiness, and Figure 5 shows the combined loss for two
concatenated 10 msec links that experience the same amount

3In many cases, the loss rate probability may not be uniform. Later in the
paper, we investigate the impact of burstiness on our protocols.
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of loss and burstiness, in both directions, running Spines with
the real-time protocol on each link. For each experiment, we
generate traffic representing the equivalent of 10 VoIP streams
for a total of two million packets of 160 bytes each, and then
average loss rate was computed. We can see that the level
of burstiness on the link does not affect the loss rate of the
real-time protocol. The real-time loss rate follows a quadratic
curve that matches our 2p? — 3p3 estimate. For example, for a
single link with 5% loss rate, applying the real-time protocol
reduces the loss rate by a factor of 10, to about 0.5% regardless
of burstiness, which yields an acceptable PESQ score (see
Figure 1).

For the single 10 msec link experiment with 5% loss rate,
the packet delay distribution is presented in Figure 6. As
expected, 95% of the packets arrive at the destination in about
10 milliseconds. Most of the losses are recovered, showing
a total latency of 30 msec plus an additional delay due to
the inter-arrival time of the packets required for the receiver
to detect the loss, and about 0.5% of the packets are not
recovered. In the case of uniform loss probability the delay
of the recovered packets is almost constant. However, when
the link experiences loss bursts, multiple packets are likely to
be lost in a row, and therefore it takes longer for the receiver
to detect the loss. The increase of the interval A (the time it
takes to detect a loss) results in a higher delay for the recovered
packets. Obviously, the higher the burstiness, the higher the
chance for consecutive losses, and we can see that the packet
delay is mostly affected at 75% burstiness.

Figure 7 shows the delay distribution for the two-link
network, where both links experience 5% uniform distribution
loss rate. As in the single link experiment, most of the losses
are recovered, with the exception of 1% of the packets. We
notice, however, a small fraction of packets (slightly less than
0.25%) that are lost and recovered on both links, and that
arrive with a latency of about 66 msec. This was expected to
happen with the compound probability of loss on each link,
pe = 0.05 - 0.05. Burstiness results for the two-link network,
not plotted in the figure, follow the same pattern as shown in
Figure 6.

In order to evaluate the effect of local recovery on voice
quality we ran the same experiment depicted in Figure 1 and
Figure 2 on top of a Spines overlay network. We divided the
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50 msec network into 5 concatenated 10 msec links as shown
in Figure 8, ran Spines with the real-time protocol on each link,
and sent 10 VoIP streams in parallel from node A to node F'.
We generated losses with different levels of burstiness on the
middle link C'— D and set the network latency threshold for
the G.711 codec to be 100 msec.

Figure 9 presents the average PESQ score of all the sentence
segments in the G.711 streams using Spines, and compares it
with the results obtained when sending over UDP directly.
Since most of the packets are received in time to be decoded
at the receiver, we can see that when using Spines, regardless
of burstiness, the G.711 codec can sustain on average even
network losses of 7-8% with PSTN voice quality.

As discussed earlier, users of telephony services expect high
quality service. Therefore, in addition to average performance
characteristic, it is important to look at the performance of
the worst cases. Figure 10 shows the quality of the worst 5
percentile sentence intervals. We can see that the codec can
handle up to 3.5% losses with PSTN quality and even for the
worst 5% sentence segments, the burstiness did not play a
major role in the voice quality.

B. Real time routing for audio

The real time protocol recovers most of the missed packets
in case of occasional, or even sustained periods of high loss,
but if the problem persists, we would like to adjust the overlay
routing to avoid problematic network paths.

Given the packet delay distribution and the loss rate of the
soft real-time protocol on each overlay link, the problem is
how to find the overlay path between a pair of source and
destination, for which the packet delay distribution maximizes
the number of packets that arrive within a certain delay, so
that the audio codec can play them. The problem is not trivial,
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and deals with a two metric routing optimizer. For example, in
Figure 11, assuming a maximum delay threshold for the audio
codec to be 100 msec, if we try to find the best path from
node A to node E, even in the simple case where we do not
recover packets, we cannot determine which partial path from
node A to node D is better (maximizes the number of packets
arriving at E within 100 msec) without knowing the latency
of the link D-E. On the other hand, computing all the possible
paths with their delay distribution and choosing the best one
is prohibitively expensive as the network size increases.

However, if we can approximate the cost of each link by
a metric dependent on the link’s latency and loss rate, taking
into account the characteristics of our real-time protocol and
the requirements of VoIP, we can use this metric in a regular
shortest path algorithm with reasonable performance results.
Our approach is to consider that packets lost on a link actually
arrive, but with a delay 7,,,, bigger than the threshold of the
audio codec, so that they will be discarded at the receiver.
Then, the packet delay distribution of a link will be a three
step curve defined by the percentage of packets that are not
lost (arriving in time 7T'), the percentage of packets that are
lost and recovered (arriving in 37"+ A), and the percentage of
packets missed by the real-time protocol (considered to arrive
after T,,4,). The area below the distribution curve represents
the expected delay of the packets on that link, given by the
formula: .., = (1—p)-T+(p—2p?+3p3)-(3T+A)+(2p* —
3p?) - Thnax- Since latency is additive, for a path consisting of
several links, our approximation for the total expected delay
will then be the sum of the expected delay of each individual
link. We call this metric expected latency cost function.
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We evaluated the performance of the expected latency
based routing and compared it with several other cost metrics
described below. We used the BRITE [18] topology generator
to create random topologies using the Waxman model, where
the probability to create a link depends on the distance between
the nodes. We chose this model because it generates mostly
short links that that fit our goal for localized recovery. We
assigned random loss from 0% to 5% on half of the links of
each topology, selected randomly. We considered every node
generated by BRITE to be an overlay node, and every link
to be an overlay edge. For each topology we determined the
nodes defining the diameter of the network (the two nodes for
which the shortest latency path is longest), and determined the
routing path between them given by different cost metrics.

By adjusting the size of the plane in which BRITE generates
topologies, networks with different diameters are created. For
each network diameter we generated 1000 different topologies
and evaluated the packet delivery ratio between the network
diameter nodes when running the real-time protocol on the
links of the network, using different routing metrics. Figure 12
shows the average delivery ratio for network topologies with
15 nodes and 30 links, and Figure 13 shows the delivery ratio
for network topologies with 100 nodes and 200 links. For
a link with direct latency 7' and loss rate p, considering an
audio codec threshold T}, = 100 msec and the packet inter-
arrival time A = 2 msec, the cost metrics used are computed
as follows:

o Expected latency: Cost = (1 —p)-T + (p — 2p* + 3p3) -
(BT + A) + (2p° = 3p°) - Thna

o Hop distance: Cost =1

« Link latency: Cost =T

o Loss rate: Cost = —log(1 — p)

o Greedy optimizer: We used a modified Dijkstra algorithm
that, at each iteration, computes the delay distribution of
the selected partial paths and chooses the one with the
maximum delivery ratio.

o Best route: All the possible paths and their delay dis-
tributions were computed, and out of these the best one
was selected. Obviously, this operation is very expensive,
mainly because of the memory limitation of storing all
combinations of delay distributions . Using a computer
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with 2GB memory we could not compute the best route
for networks with more than 16 nodes.

As expected, for small diameter networks the loss-based
routing achieves very good results, as the delay of the links is
less relevant. With the increase in the network diameter, the
latency-based routing achieves better results. At high latencies,
the packet recovery becomes less important than the risk
of choosing a highly delayed path, with latency more than
the codec threshold. The expected latency routing achieves
lower delivery ratio than the loss-based routing for small
diameter networks, but behaves consistently better than the
latency-based routing. The slight drop in delivery ratio for
low diameter networks is causing just a small change in VoIP
quality (see Figures 1 and 2), while the robustness at high
network delays is very important. Interestingly, the greedy
optimizer fails at high latency networks, mainly due to wrong
routing decisions taken early in the incremental algorithm,
without considering the full topology.

Our conclusion is that the expected latency metric, while
being comparable with other routing metrics for small diame-
ter networks achieves better routing in high latency networks,
exactly where we need it the most.

V. ROUTING LIMITATIONS OF OVERLAY NETWORKS

Running overlay nodes in user level gives us great flexibility
and usability, but comes at the expense of packet processing
through the entire networking stack, and process scheduling
on the machines running the overlay nodes.

Executing overlay network functionality on loaded comput-
ers naturally degrades the performance of the overlay system.
This degradation is critical especially for latency sensitive
VoIP streams. For example, if the overlay daemon runs as a
user level process on a computer that has other CPU intensive
processes, it is common for the overlay network system not
to be scheduled for several hundred milliseconds, and even
seconds, which of course, is not useful for VoIP. In fact,
our experience with another messaging system, the Spread
toolkit [19] that is commonly deployed on large websites,
shows that on heavily loaded web servers a process may be
scheduled only after eight seconds. It is common practice on
such systems to assign the messaging system higher priority
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(real time priority in Linux). For a VoIP service it is reasonable
to expect that the overlay nodes will be well provisioned in
terms of CPU and networking capabilities.

A. Routing performance in Spines

It is interesting to evaluate the overhead of running the
overlay nodes as regular applications in the user space, and
how the routing performance is affected by the amount of
traffic or load on the computers. We deployed Spines in
Emulab on a three node network as shown in Figure 14,
where the middle node B had two network interfaces and
was directly connected to nodes A and C' through local area
links. All the computers used were Intel Pentium III 850MHz
machines. The one-way latency between node A and node
C measured sending 160 byte packets and adjusted with the
clock difference between the nodes was 0.189 msec.

We ran a Spines instance on each node, using the real-
time protocol on the links A — B and B — C. Then we



sent a varying number of voice streams in parallel (from 1 to
200 streams), consisting of 20000 packets of 160 bytes each,
from node A to node C using Spines. We measured the one
way latency of each packet, adjusted by the clock difference
between machines A and C. When forwarding 200 streams,
the middle node B running Spines showed an average CPU
load of about 40%. However, the sending node A, on which
both Spines and our sending application were running, reached
a maximum 100% CPU utilization.

Figure 15 shows the average latency of packets forwarded
through Spines as the number of parallel streams increases
from 1 to 200, and compares it to the base network latency
measured with UDP probes. The standard deviation of all the
measurements was a very low 0.012, and the highest single
packet latency measured, which happened when we sent 200
streams in parallel, was 0.963 msec. What we see is that
regardless of the number of streams, the three Spines nodes
add a very small delay totaling about 0.15 msec due to user-
level processing and overlay routing.

We evaluated the routing performance of Spines on a CPU
loaded computer by running a simple while(l) infinite loop
program on the middle node B, and repeated the above
experiment. Running Spines with the same priority as the
loop program, when forwarding a single voice stream we
achieved a very high packet delay average of 74.815 msec,
and the maximum packet delay was 154.468 msec. When
competing with 4 loop programs in parallel, with the same
priority as Spines, the average packet delay for a single stream
went up even more to 298.354 msec (about 900 times more
than without CPU competing applications), and the maximum
packet delay was 604.917 msec. Obviously, such delays are not
suitable for VoIP. However, when we set real-time priority for
the Spines process, the high CPU load did not influence our
performance. Even when competing with 10 loop programs
and a load of 200 streams, the average packet delay was a
low 0.315 msec and the maximum packet delay measured was
0.469 msec.

Our conclusion is that the performance of overlay routing
at the application level can be highly affected by the load
on the supporting computers. However, this overhead can be
easily reduced to negligible amounts compared to wide area
latencies simply by increasing the priority of the overlay node
applications. This should not be a problem in general, as the
overlay node applications do not use CPU unless they send
packets, and if they do need to send packets, in a system
dependent on real-time packet arrival, the overlay nodes should
not be delayed.

B. Case study: Planetlab

Planetlab [6] is a large overlay testbed consisting of a set of
computers distributed around the world, each of them directly
accessing the Internet. Currently Planetlab has 583 nodes at
275 sites. As opposed to Emulab, which has a reservation
mechanism that completely allocates computers to a particular
experiment, Planetlab uses a shared environment. Experiments
run within slices created on several (or all) Planetlab comput-
ers. Each slice acts like a virtual machine on each computer,

sharing the resources with other users, running within their
own slices. In the current deployment of Planetlab it is not
possible to set real-time process priorities, and the available
CPU on the nodes is dependent on the particular applications
that other researchers run at the same time. Due to the high
CPU load on the machines, Planetlab losses occur mostly at
the end nodes, happen in large bursts (tens to hundreds of
packets lost in a row) and are mainly caused by delays in
scheduling the receiver application while competing with other
processes. As such, we believe that Planetlab, in its current
configuration, is not suitable for deploying VoIP applications.

However, it is useful to evaluate the behavior of our overlay
protocols on an Internet testbed that has real-life latency
characteristics. We deployed Spines on 32 Planetlab nodes that
we found to be synchronized to under 20 msec, and that were
located at 26 sites within the North American Continent. The
sites and the number of nodes used in each site are shown
in Table I. The maximum delay between two Spines nodes
was 47 msec, and appeared between MIT and Internet2 -
Denver. Note that our overlay protocols do not require clock
synchronization, however we do need synchronized clocks in
our experiments to evaluate the number of packets arriving
within a certain delay constraint. In order to compensate for
the 20 msec clock difference between the nodes we set the
codec threshold at 120 msec.

We created a Spines overlay network consisting of a fully
connected graph, such that each of the 32 overlay nodes had a
direct overlay link to all other nodes. Based on the latency and
loss rate measured on each link, Spines selected the routing
paths that minimize the expected latency metric presented in
Section IV-B.

We then sent traffic consisting of 4 voice streams from each
node to all the other nodes, in pairs, such that at any time there
was only one node sending packets to only one receiver node.
Each voice stream was sending a total of 2000 packets. At the
same time, and between the same pair of nodes, we sent equal
traffic consisting of 4 voice streams directly via UDP, using
point to point connections between sender and receiver. This
way, dynamic variations of loss and latency in the network
affected equally the UDP streams and the streams sent through
the Spines overlay. In addition to the native Planetlab losses,
we generated 5% more loss on each overlay link and also on
each UDP stream by dropping packets packets at each node,
just before processing them. As we ran our experiment on 32
nodes, with 8 voice streams running simultaneously between
each pair of nodes, there were a total of 992 sender-receiver
combinations, and the combined traffic between the sender and
receiver at any time during the experiment was 512 Kbps.

For each UDP and Spines stream we counted the number
of lost packets and the number of late packets (arriving at
destination after more than 120 msec). Based on these we
computed the packets missed by the codec as the sum of both
lost and late packets. Figure 16 presents the CDF of the lost
packets over all streams (i.e. the percentage of streams that lost
less than a certain percentage of packets). We first notice that
about 50% of the UDP streams experienced only the 5% loss
we injected, the rest of the streams being highly affected by
native Planetlab loss. In contrast, a large majority of the Spines
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TABLE I
PLANETLAB SITES WE USED

Canarie - Calgary

Canarie - Halifax

Canarie - Toronto

Harvard University

Internet2 - Atlanta

Internet2 - Chicago

Internet2 - Denver

Internet2 - Indianapolis

Internet2 - Washington

Johns Hopkins Information Security Institute

Massachusetts Institute of Technology

New York University

Northeastern University CCIS

Princeton

Purdue

Rutgers University

University of Florida - ACIS Lab

University of Georgia

University of Illinois at Urbana-Champaign

University of Kansas

University of Maryland

University of Pennsylvania

University of Rochester

University of Wisconsin

Washington University in St Louis

Wayne State University
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streams were able to recover most of the losses. As the native
loss increases, for about 5% of the streams, Spines could not
improve the delivery ratio over UDP. We believe this is due
to the loss nature of highly CPU loaded Planetlab nodes - in
long bursts and happening at the end nodes. In Figure 17 we
present the CDF of missed packets that could not be decoded
by the voice codec, either because they were lost or because
they arrived in more than 120 msec. Even though our testbed
was confined to the North American Continent, with delays
well below the 120 msec codec threshold, we see that many
of the packets received by the UDP streams arrive late; the
number of missed packets being considerably higher than the
number of lost packets. Spines streams were able to deliver
more packets than UDP in time in almost all cases, until the
loss rate became very high (20%) and CPU scheduling delays
equally affected Spines and UDP streams.

VI. INTEGRATION WITH THE CURRENT INFRASTRUCTURE

Given the large installed base of VoIP end clients and the
even larger planned future deployments it is imperative that our
system integrates seamlessly with the existing infrastructure.
We explain what are the necessary steps to achieve this in the
rest of this section.

The first component of the integration has to do with how
VoIP clients are able to find their closest Spines server. We
assume that each domain that wants to take advantage of the
benefits provided by our system will deploy a Spines node
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as part of their infrastructure. In this case VoIP clients can
use DNS SRV [20] records to locate the Spines node that
is serving their administrative domain. This DNS query will
return the IP address of (at least one) Spines node that can
serve as their proxy in the Spines overlay. Once this node
is found the VoIP clients can communicate with it using the
interface we described in Section III-A. Then, the VoIP clients
have to direct media traffic to flow through the Spines network
rather than directly over UDP.

We have two proposed solutions for this issue: one that
requires changes to the end-clients and one that does not. We
begin with the solution that requires “Spines-enabled” clients.
In the current architecture, the Session Initiation Protocol (SIP)
[21] is used as a signaling protocol so that the two communica-
tion endpoints can negotiate the session parameters, including
the TP address and ports that each client is waiting to receive
media traffic on. A Spines-enabled VoIP client announces its
capability using the parameter negotiation feature that is part
of SIP, within the initial INVITE SIP message. The VoIP client
includes in the same INVITE message the IP address and the
Virtual Port that its Spines server is waiting to receive media
traffic for the client. If the peering VoIP client is also Spines-
enabled it will reply positively and include in its reply the
address and Virtual Port at its own server. On the other hand,
if the peer is not Spines-enabled it will return an error code
indicating to the session initiator that it will have to revert to a
“legacy” session. If the SIP negotiation was successful using



Spines, each source will send media traffic through its local
Spines server towards the Spines server indicated by the peer
client. As the traffic is forwarded through the overlay network,
the egress Spines node will finally deliver it to the destination
VoIP client.

RTP [22] and RTCP data is sent seamlessly through the
Spines network, offering the end clients information about the
network conditions along the overlay path they use.

While this first solution is architecturally pure, it requires
changes to the end clients which may not be initially possible.
In this case, we propose to use a solution similar to the
NAT-traversal in SIP [23]. Specifically, Spines nodes will be
required to intercept SIP INVITE messages and change the
IP address and ports to point to themselves rather than to the
VoIP clients. This way all the media traffic will flow through
the Spines network which will eventually deliver it to the end-
hosts.

VII. RELATED WORK

Our goal in this work is to reduce the effect of Internet
losses on the quality of VoIP traffic. We do so by using an
overlay network that attempts to quickly recover lost packets
by using limited hop-by-hop retransmissions and an adaptive
routing algorithm to avoid persistently lossy links. In this
respect our work is related with techniques that try to reduce
the loss rate of underlying Internet paths and with other work
in overlay networks.

Multi Protocol Label Switching (MPLS) [24] has been
recently proposed as a way to improve the performance of
underlying network. This is done by pre-allocating resources
across Internet paths (LSPs in MPLS parlance) and forwarding
packets across these paths. Our system is network agnostic and
therefore does not depend on MPLS, but it can leverage any
reduction in loss rate offered by MPLS. At the same time,
MPLS will not eliminate route and link failures or packet
loss. Since it runs at a higher level, our overlay network can
continue to forward packets avoiding failed network paths.
Forward Error Correction (FEC) schemes [25] have also been
proposed as a method of reducing the effective loss rate
of lossy links. These schemes work by adding redundant
information and sending it along with the original data, based
on the feedback estimate of loss rate given by RTCP, such
that in case of a loss, the original information (or part of it)
can be recreated. Most of the VoIP solutions today (including
the G.711 codec we use in this paper) use some form of
FEC to ameliorate the effect of loss. Given the occasional
bursty loss pattern of the Internet, many times the FEC
mechanisms are slow in estimating the current loss rate, and
therefore we believe that localized retransmissions are required
for maintaining voice quality. Moreover, since our approach
increases the packet delivery ratio, FEC mechanisms will
notice a considerable reduction in loss, and therefore reduce
their redundancy overhead.

Overlay networks have emerged as an increasingly growing
field over the last few years, motivated mainly by the need to
implement new services not supported by the current Internet
infrastructure. Some of the pioneers of overlay network sys-
tems are X-Bone [26] and RON [15], which provide robust
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routing around Internet path failures. Other overlay networks
focus on multicast and multimedia conferencing [27][28].
Our work uses the same basic architecture of an overlay
network but it is optimized towards the specific problems
of VoIP traffic. Finally, OverQoS [29] is probably closest to
our work, as it proposes an overlay link protocol that uses
both retransmissions and FEC to provide loss and throughput
guarantees. OverQoS depends on the existence of an external
overlay system (the authors suggest RON as an option) to
provide path selection and overlay forwarding. In this respect,
our system can use OverQos as a plug-in module as an
alternative to our real-time recovery protocol presented in
Section IV-A, probably with the necessary modifications that
take into account the special requirements of voice traffic.

VIII. CONCLUSION

In this paper we have shown that current conditions in-
hibit the deployment of PSTN quality Voice over IP, and
we proposed a deployable solution that can overcome the
bursty loss pattern of the Internet. Our solution uses the open
source Spines overlay network to segment end-to-end paths
into shorter overlay hops and attempts to recover lost packets
using limited hop-by-hop retransmissions. Spines includes an
adaptive routing algorithm that avoids chronically lossy paths
in favor of paths that will deliver the maximum number of
voice packets within the predefined time budget. We evaluated
our algorithms and our system implementation in controlled
networking environments in Emulab, on the Internet using
the Planetlab testbed, and through extensive simulations on
various random topologies. Our results show that Spines can
be very effective in masking the effects of packet loss, thus
offering high quality VoIP even at loss rates higher than those
measured in the Internet today.
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