
Enhancing Distributed Systems with Mechanisms to
Cope with Malicious Clients

Technical Report CNDS-2005-4 - December 2005
http://www.dsn.jhu.edu

Yair Amir, Claudiu Danilov, John Lane
Johns Hopkins University

{yairamir, claudiu, johnlane}@cs.jhu.edu

Michal Miskin-Amir
Spread Concepts LLC

michal@spreadconcepts.com

Cristina Nita-Rotaru
Purdue University

crisn@cs.purdue.edu

Abstract— In this paper we identify a major security vul-
nerability in distributed systems: compromised clients under
adversarial control can use the system within their authorized
access rights and authenticated channels to deliberately insert
incorrect data. A significant problem is that when a malicious
client insider is discovered, it is hard to quickly assess the scope
of the damage, and identify corrupt and suspected updates.

We propose Accountability Graph, a mechanism that can assist
applications in coping and recovering from such attacks. The
tool provides accountability enforcement and causality tracking
of updates and their dependencies. Upon detection of incorrect
data (e.g. by an external intrusion detection mechanism or human
assessment), the Accountability Graph will quickly classify all up-
dates in the system as either corrupted, suspected or not affected.
The practicality and usefulness of the approach is demonstrated
based on the requirements of three different applications: an
open source software development project, a military common
operation picture application, and a national emergency response
system. The Accountability Graph can also be used for risk
assessment and vulnerability analysis with respect to the above
attack.

I. INTRODUCTION

Many distributed services are implemented following a
model where a set of servers replicate the service and coordi-
nate their actions to answer client requests while maintaining
the consistency of the data. The most basic operations per-
formed by clients are querying the servers or updating data
maintained by the servers. Security is a major concern for
such systems that often operate over unsecure networks such
as the Internet. Significant work conducted in the last several
years to develop mechanisms for Byzantine replication [1], [2],
[3], access control [4], [5], [6] and intrusion detection [7], [8],
[9] provides the support for designing secure distributed ser-
vices. Specifically, the servers and their operating system are
protected against intrusions, corrupted servers are tolerated by
running Byzantine replication algorithms, access to resources
is tightly enforced by using access control mechanisms, while
client actions are monitored by intrusion detection systems.

Although such systems may seem difficult to attack, they
overlook that the weakest link is represented by the clients
(often communicating with the servers over wireless channels)
and the most critical asset is the data itself. Thus, very harmful
attacks can come from compromised clients, targeting the data

correctness: One or more compromised clients can use the
system within their authorized parameters to create or inject
incorrect inputs or updates to some servers. The (Byzantine)
replication algorithms will propagate this information among
all servers, corrupting the state of the system so that it will no
longer reflect reality. Several observations are important. First,
the Byzantine replication protocols running on the servers
will replicate data already compromised, so they will not be
able to address the attack. Second, these incorrect updates
may not be detected immediately, impacting other clients
subsequently querying the system and basing their decisions
on the erroneous state. This creates a cascading effect in which
further created updates are also erroneous because they are
based on malicious data. Third, although intrusion detection
mechanisms deployed in the system may eventually detect
the compromised clients, assessing the extent of the damage
and identifying the other components of the system that were
affected, or are suspect and need further investigation is very
challenging and is not provided by the mechanism mentioned
above.

The effect of such an attack can be devastating for appli-
cations that are highly dependent on the correctness of their
data. For example, in collaborative open-source software de-
velopment (e.g. Linux), multiple individuals create or augment
existing source code. The inherent interdependency between
software packages enables a malicious update to one package
to significantly impact other components of the system. It is
important to identify the packages that may be affected by
corrupt code injected into the system, and determine the risk
and vulnerabilities associated with it.

Other examples are command and control information sys-
tems, such as those used by the military [10] or by emergency
response personnel [11]. In such systems, users update the
state of the operational situation and make decisions based
on it. Correctness of the data is critical, and any misleading
information can result in loss of life. A malicious insider can
inject authorized yet incorrect information that may mislead
honest users and cause them, in turn, to make additional
erroneous updates.

Our Focus and Contribution: A major problem with
secure distributed systems is that when a malicious client

insider is discovered, it is hard to quickly assess the scope
of the damage, and identify corrupt and suspected updates.
Therefore, the system is not able to regenerate and recover
to a clean state without the effects of these updates. Based
on our experience building secure reliable systems, we make
the observation that in the best case, this is considered an
application-specific issue, and the system infrastructure pro-
vides no support in addressing it. Most of the time, this
problem is not considered at all. The goal of this work is
to raise awareness to this important problem and to show
how the distributed infrastructure can assist the application
in recovering from such attacks. Our preliminary results based
on the requirements of three different applications demonstrate
the practicality of our solution.

We propose Accountability Graph, a generic mechanism
that provides accountability enforcement and causality track-
ing of updates and their dependencies in a directed acyclic
graph with periodic snapshots. Upon detection of incorrect
data, the system traces the data to the corrupt update that
generated it, and from that, the Accountability Graph enables
us to mark all causally dependent updates as corrupted or sus-
pected. We mark all subsequent updates made by the malicious
client that generated the corrupted update as corrupt, and use a
standard graph traversal to identify and mark as suspicious all
other updates that recursively depend on corrupted updates.
No less important, the system is assured that all unmarked
updates are not affected by the discovered incorrect data. Our
proposed solution can use any intrusion detection mechanism
(or human input) that will provide the initial detection. One
or several servers forming the underlying distributed service
can decide to maintain the graph, the coordination between the
servers, including the ordering of the updates, will ensure that
the graph looks the same at each server. There is no central
authority or point of failure, any server can decide at any time
if it will build the graph for events happening in the system.

The contributions of the paper are:
• We identify a significant attack against distributed ser-

vices mounted by malicious clients that deliberately insert
incorrect data through authorized channels.

• We propose a generic mechanism, Accountability Graph,
that tracks the dependencies between all of the updates
in the system. When notified about compromised clients
or corrupt updates by external mechanisms (such as in-
trusion detection, human assessment, application-specific
knowledge), the Accountability Graph can classify data
as corrupt, suspect, or not affected.

• We demonstrate the usefulness of our solution in three
different applications: an open-source software devel-
opment project, a military common operation picture
application, and a national emergency response system.
We show that the overhead associated with our solution
is reasonable in these cases.

• We present an additional benefit of the Accountability
Graph, namely the ability to conduct risk assessment and
vulnerability analysis with respect to the compromised
client attack.

The rest of the paper is organized as follows. We present a
description of the model considered in this paper in Section II.
Section III presents a detailed description of the Accountability
Graph. We demonstrate the usefulness and feasibility of our
approach for several applications in Section IV. In Section V
we present the performance of the Accountability Graph, and
in Section VI we survey related work. We conclude the paper
in Section VII.

II. SYSTEM MODEL

We assume a general message-passing system where one or
more servers respond to requests from clients. The requests
submitted by clients can be updates (write operations), or
queries (read operations). Communication is asynchronous.

We assume that each client has a public and private key
pair. Servers know the public keys of all clients that connect
to them. Cryptographic techniques such as public-key digital
signatures, message authentication codes, and message digests
produced by collision-resistant hash functions, are used to
provide non-repudiation, message integrity and authentication
of messages. We assume that the adversary is computationally
bounded such that he cannot subvert these cryptographic
techniques.

Clients communicate with the servers using secure channels:
the communication is protected from an external adversary
by using encryption, all messages are authenticated and carry
integrity information which prevents an external adversary
from injecting or modifying packets.

The adversary can compromise any number of clients,
coordinate the attack, delay communication, modify, delete
or replay a message, or simply generate and deliberately
send incorrect data. The adversary cannot delay indefinitely
correct clients. When a client node is compromised, the
adversary has full control over that node, including access to
all cryptographic keys stored on the machine.

We assume that there are external mechanisms that can
detect that clients were compromised or that they submitted
updates containing incorrect data. This can be done by employ-
ing tools such as intrusion detection systems, or by having a
human review the data offline. The intrusion detection is not
instantaneous, i.e. clients can inject several malicious updates
before they are detected. Correct clients may use affected
data in their decisions (and therefore create incorrect updates
themselves) before a malicious update is detected. Thus, the
damage caused by a malicious update can affect future updates
(not necessarily made by the malicious client), as well as
queries that will propagate incorrect information to honest
clients.

III. ACCOUNTABILITY GRAPH: DESIGN,
IMPLEMENTATION AND EXPRESSIVENESS

Based on the observations formulated in Section I, we
believe that there is a need for mechanisms that provide the
following:

• Corrupted data isolation: when notified that an update is
incorrect, the system can identify the data affected by it,

2

and provide fast feedback about all other compromised
updates.

• Automatic regeneration of non-corrupted states: allow
automatic regeneration of a view of the data that includes
non-contaminated data, based on initial information about
problems that occurred and building knowledge about the
extent of the problem.

We address these requirements by building an Account-
ability Graph, a directed acyclic graph that maintains causal
dependency of updates, allowing data classification in the light
of a compromised client or incorrect update, and facilitating
automatic regeneration of a correct state. We note that the
Accountability Graph provides a useful tool to help assess
risk assuming that specific participants were compromised at
known times, or that specific updates were incorrect. Below
we describe our design, with focus on the construction and
traversal of the causality graph.

A. Design Overview

To track client updates, we construct the causality graph
as follows. Every update in the system is uniquely identified,
includes the ID of its client creator, and is signed by that client.
Every update also contains the identifier and digital signature
[12], [13] of every previous update directly responsible for
data on which the new update depends. In addition, we
assume a standard causal relationship where every update
depends on the previous update created by the same client.
The Accountability Graph is maintained such that every update
is a node in the graph and there is a directed link from that
update to all the updates on which it depends. The dependency
information is usually specific to the application. In some
cases, dependencies may be introduced by clients themselves.
In other cases, dependencies occur based on the flow of
the application, while in the most conservative case we may
consider that an update introduced by a client depends on all
the updates previously reported to that client. In this work we
do not make any assumption about the nature of dependencies.

When data is detected as incorrect, it is traced to the
corresponding update. Then, by traversing the graph, corrupted
and suspected updates are marked. For example, in Figure
1(a), an update of client C4 is found to be incorrect, and
the generating client, C4, is presumed malicious. Subsequent
updates from that client are marked as corrupt and all the
updates that depend on them are marked as suspicious, as
shown in Figure 1(b). Notice that the arrows indicate de-
pendency relations (i.e. if update A depends on update B,
there is an arrow from A to B). Therefore, the edges in the
graph are traversed in the opposite direction of the arrows.
The Accountability Graph can now present various views of
the system state based on these markings, and the system can
regenerate its state as needed based on the updates that are
deemed valid. The system can consider only the clean updates,
or it can consider both clean and suspected updates.

To limit the memory required for storing the causality
graph and the processing required for state regeneration, the
system can use periodic posteriori snapshots. Every epoch,

for example 12 hours, a snapshot of the system state as of 12
hours ago is calculated and stored. This limits the processing
required for state regeneration when bad data is discovered,
as calculations are performed from the last valid snapshot
(usually the last one). Of course, the length of the actual epoch
depends on the rate of the updates in the system.

The pseudocode for the operations used to create and tra-
verse the graph is presented in Algorithm 1. The SubmitUpdate
function creates a node containing the client’s identity and
a unique sequence number. It also places the node in an
associative container so that it can be found using its identifier.
The AddDependencies function adds directed edges from all
of the nodes in a specified list to the node specified by its
identifier. Finally, the function GetSuspectedUpdates performs
a standard graph traversal, beginning at the specified corrupt
node, and marks the other nodes as corrupt, suspect, or not
affected.

B. Optimization of the Accountability Graph

In the algorithm described above, when a client submits
an update, the Accountability Graph automatically creates
an edge connecting the update being added to the previous
update submitted by that client. In Figures 1(a) and 1(b),
these automatically generated edges correspond to the vertical
arrows. Note that FIFO edges are always present in standard
network-level causality graphs [14]; they are a conservative
approximation to true, application-level, causality. These edges
are also vital for our Accountability Graph. When a corrupt up-
date is discovered, we assume that the client that generated this
update is malicious and that all subsequent updates submitted
by the malicious client are also corrupt. A single traversal
beginning at the corrupt update can mark every corrupt and
suspected update precisely because of these vertical lines. The
FIFO edges link all of the updates that we assume are corrupt.
Note that the malicious client cannot alter or remove these
edges because it is not responsible for generating them.

The algorithm we have specified is simple and computa-
tionally efficient, but it suffers from an important problem.
Consider what might happen if an honest client’s update does
not depend on its previous update. For example, in a military
Common Operations Picture, a status update, Us, made by
a tank about its fuel, ammunition, and position is actually
independent of the last update submitted by this tank. Suppose
that a prior update submitted by the tank was dependent on an
update made by a malicious client. Then, Us would be marked
as suspect during a graph traversal. In addition, anything with
recursive dependencies on Us would be labeled as suspicious.
The result is a high false positive rate.

Before presenting our solution to this problem, we make
one important observation: If an update of an honest client
is compromised, future updates introduced by that client can
be trusted unless they depend on corrupted data themselves.
Our modified algorithm automatically adds FIFO edges as
described above. However, these edges do not necessarily need
to be used. By default, we disable the FIFO edges in the
directed acyclic graph so that the graph traversal will not

3

Algorithm 1 Accountability Graph Operations

Each node (update) maintains:
Node

Int id // A unique id for this node
Int client id // A unique client id
Node dependents[] // A list of those nodes that are dependent on this node
Int classification // CORRUPT, SUSPECT, or NOT AFFECTED

Global Variables:
Int next id = 0 //this is used to create the id for the Node
Int suspects[] //a list to store the ids of suspect nodes
A Map of all nodes, indexed by the node’s id

Int SubmitUpdate(Int client id)
next id = next id + 1
let n = new Node with id next id
add n to the A-DAG //store the node in a container where it can be accessed via its id
add the last update of this client to n.dependents
return next id

AddDependencies(Int dependent, Int []dependencies)
let n = node having id of dependent
for each i in dependencies

let n d = node having id of i
add n to n d.dependents //this creates a directed edge from n d to d

Int[] GetSuspectedUpdates(Int corrupt node)
clear suspects //remove all suspect updates
set the classification to NOT AFFECTED for all nodes
let next = 0
let n = Node with id equal to corrupt node
add n to suspects
set n.classification = CORRUPT
while suspects.size() > next

let p = Node with id equal to suspects[next]
next = next + 1
for each c in p.dependents

if c.id is not in suspects
add c.id to suspects
if c.client id == n.client id, set c.classification = CORRUPT
else, set c.classification = SUSPECT

return suspects //return the suspects

4

C1 C2 C3 C4 C5 C6 C7 C8

T
im

e

(a)

C1 C2 C3 C4 C5 C6 C7 C8

Corrupt update Suspicious updateClean update

T
im

e

(b)

Fig. 1. Accountability Graph Example

C1 C2 C3 C4 C5 C6 C7 C8

Corrupt update Suspicious updateClean update

T
im

e

Fig. 2. Removing FIFO Edges

A C B

D

1 2

Fig. 3. OR Dependency

use them. When a corrupt update is found, we first enable
only those FIFO edges that connect updates made by the
malicious client (i.e. the client that generated the corrupt
update). Then, a traversal is done as previously described.
Figure 2 shows the same scenario as 1(b) with this optimiza-
tion; now, fewer updates are labeled as suspect. Note that
the improved Accountability Graph can express when a client
submits an update that really does depend on its previous
update. As in the original algorithm, malicious clients are
unable to alter these edges because they do not generate them.
We believe that this change is important not only because it
reduces false positives, but also because it draws attention to
the differences between conservative, network-level causality
graphs and pruned, application-level causality graphs. By
working at the application-level and allowing clients and/or
other dependency sources to specify dependency relations, we
improve the accuracy and utility of the Accountability Graph.

C. Enriching the expressiveness of the Accountability Graph

The Accountability Graph construction algorithm described
above has limited expressiveness; the integrity of an update
depends on the integrity of all of its dependencies. If C
depends on the set {A, B}, then C is suspect if A or B is
suspect. This means that the integrity of C depends on A
AND B. Expressing dependencies with only AND operators
does not always adequately capture a dependency relation. For
example, consider an application where two motion sensors,
Sa and Sb, cover the same area. Suppose that both sensors
make an update stating that there is motion in this area. An
administrator receives these two updates and makes an update,
D, that dispatches a security guard to the area. The integrity
of D depends on the integrity of Sa OR Sb. The administrator
is conservative and therefore would have dispatched the guard
even if only one of the sensors reported motion. The original
algorithm cannot express this dependency.

We increase the expressive power and, thereby, the accuracy
of our dependency graph by introducing an OR operator. The

5

basic idea is shown in Figure 3, which depicts that D depends
on (A OR B) AND C. Note that node D contains two
numbered cells and that dependency arrows originate from
these cells. During a graph traversal, both numbered cells in
D must be visited before D is marked as suspect. If only A is
suspect, then only cell 1 will be visited. Similarly, if only B
is suspect, then only cell 2 will be visited. However, if C is
suspect, then both cell 1 and 2 will be visited. In general, we
can modify our algorithm so that it can express all dependency
relations written using linear combinations of OR and AND
operations.

The OR operator enables the Accountability Graph to
express dependencies on redundant sources of information.
In the above example, the motion sensors provide the same
information. If a client bases an update on both sensors, the
update remains unaffected even if one of the sensors was
corrupt. This is important because fault tolerance is commonly
improved by using redundancy. Therefore, the OR operator
increases the usefulness of the Accountability Graph as an
offline analysis tool. When the Accountability Graph is used
to assess system vulnerabilities, the OR operator can be used
to show the benefits of strategically placed redundancy.

IV. CASE STUDIES

To demonstrate the feasibility of the Accountability Graph
for real applications, we consider three applications for which
we believe our mechanisms can offer great benefits. These
applications are drawn from: open-source software projects,
network-centric warfare applications, and information access
to national emergency systems.

A. Collaborative Open-Source Software Projects

Many applications today rely on open source software
projects, such as Debian [15], Red Hat [16], Apache [17],
and Gnome [18]. Such projects are collaborative, distributed
over several machines, and involve many participants. For
example, the Debian project has over 1000 registered devel-
opers managing about 10000 software packages supporting 12

different platforms. If a critical machine is compromised, all
packages that passed through it during creation are suspect.
If a package is compromised, any other packages that use it
are compromised. If a client is untrustworthy, all packages
that client was involved in are suspect. Unfortunately such
incidents are a reality: in 2001 [19], the public server used
by the Apache Software Foundation to provide the source
code repository, binary distribution, web services, and public
mailing lists was compromised; in 2001 a developer introduced
a Trojan horse in one of the Debian packages, while more
recently in 2003 Debian was again in the news [20] when
four servers were compromised, one of them hosting security
updates; Gnome also was the target of an attack in 2004 [21].

We chose to use Red Hat software packages (RPMs) as
a representative open source software project because RPMs
are widely used and because the Red Hat Package Manager
contains tools for extracting dependency information. Each
RPM package contains a set of capabilities such as programs,

libraries and data, and may require other capabilities to already
be installed on the system. The fifteen Red Hat distributions
using RPMs contain 52,984 software capabilities, spanning 7
years of development. The distributions we considered, the
number of RPMs, and the number of software capabilities in
each distribution are presented in Table I.

Version Number of RPMs Number of Capabilities

RedHat 4.2 458 632
RedHat 5.0 482 693
RedHat 5.1 523 789
RedHat 5.2 573 891
RedHat 6.0 645 1523
RedHat 6.1 718 1691
RedHat 6.2 743 2049
RedHat 7.0 865 2113
RedHat 7.1 1016 2918
RedHat 7.2 1231 3862
RedHat 7.3 1438 5715
RedHat 8.0 1472 6432
RedHat 9 1402 7128
RedHat Fedora 1 1466 7754
RedHat Fedora 2 1619 8804

TOTAL 14651 52984

TABLE I

RED HAT DISTRIBUTIONS

Each package provides one or more software capabilities
such as programs, libraries, or data. Some capabilities have
many thousands of directly or recursively dependent capa-
bilities resulting in very complex dependency relationships.
If one of the capabilities is corrupt, it can potentially affect
all of the capabilities that depend on it. It is very difficult
and time consuming to manually analyze such a system and
determine the set of capabilities that may be affected by a
corrupt capability. The Accountability Graph automates this
task and thus can be extremely useful when corrupt software
is discovered and distribution administrators want to promptly
determine the extent of the possible damage.

The integrity of a software capability in some specific
distribution depends on the integrity of the same software
capability in all older distributions. From one distribution to
the next, capabilities evolve slowly and source code added to
one version is generally present in many subsequent versions.
Suppose that a malicious programmer added a vulnerability
to the source code of the encryption capability libcrypt.so.1
in RedHat 5.0. Clearly, anyone using a capability that directly
or recursively depended on this version of libcrypt.so.1 could
have been affected. It is also possible that the malicious
code has propagated to subsequent versions of libcrypt.so.1 in
RedHat 5.1 through Fedora 2. Therefore, when a compromise
of libcrypt.so.1 in RedHat 5.0 is found, it is important to obtain
a list of all software packages that depend on this version or
on any subsequent version. Note that because libcrypt.so.1 is a
shared library, fixing all versions of libcrypt.so.1 will produce
a properly functioning system assuming that static linking
was not used. However, we are also concerned with finding
any capability that may have been vulnerable during the time

6

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ap

ab
ili

tie
s

(%
)

Number of Dependent Capabilities

(a)

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
ap

ab
ili

tie
s

(%
)

Number of Dependent Capabilities

(b)

Fig. 4. CDFs of the percentage of capabilities (on the Y axis) having less than the specified number of dependent capabilities (on the X axis).

that the encryption library was corrupt. In this example, all
capabilities that depend on libcrypt.so.1 may have stored data
that is insecure and therefore should be examined.

Below, we analyze the dependency graph generated based
on the RPM packages. Each RPM provides a set of software
capabilities. Commonly, the provided set contains only one
capability. Other RPMs provide several capabilities comprised
of applications, shared libraries, and other software related
files. An RPM may also require a set of capabilities. The
capabilities that are provided depend on the capabilities that
are required. Using these sets, we created a mapping from
each capability to its dependencies. More precisely, in the
Accountability Graph, software capabilities represent nodes,
edges are drawn between the provided capabilities and those
that they require, and, even though not specified in the
RPM system, developers who create software packages are
considered clients. For each distribution, we constructed a
list of tuples having the form: (Cn, dependencies of Cn).
Then, we added all of these tuples to one graph. Within
each distribution, there are many dependencies and some of
these reflect recursive relationships. A distribution sometimes
included more than one version of a capability. When this
occurred, we determined a causal order based on version
numbering and made a dependency chain so that the newest
version recursively depended on all prior versions. We linked
the oldest version of a capability in Distribution n to the newest
version in Distribution n-1.

After constructing the dependency graph, we ran a traversal
beginning at each software capability and retrieved a list
of all dependent capabilities. Figures 4(a) and 4(b) show
cumulative distribution function (CDF) plots of the percentage
of capabilities (on the Y axis) having less than the specified
number of dependent capabilities (on the X axis). The figures
differ only in the range shown on the y axis. We see that
about 65% of capabilities have less than 20 other capabilities
that depend on them. However, 20% have over 100 dependent
capabilities, and furthermore, about 10% of the capabilities
have over 15000 dependent capabilities. Capabilities having
the greatest number of dependents include: “libc.so.5” (48288
dependents), “filesystem = 1.3-1” (48901 dependents), “setup

= 1.7-2” (48915 dependents) all from RedHat 4.2, and
“/sbin/ldconfig” (49441 dependents) from RedHat 5.0.

The RPM dependency graph described above shows that,
generally, a corrupt capability affects a relatively small number
of other capabilities. However, some capabilities can affect
many others. Therefore, the Accountability Graph can be used
to identify the capabilities that would cause the most damage if
they were corrupted; these capabilities represent system-wide
vulnerabilities. Also note that the complex recursive depen-
dency relations and sometimes large number of dependents
make it very difficult to manually identify suspect capabilities
when a corrupt capability is discovered. We believe that this
case study illustrates the usefulness of the Accountability
Graph both as an offline analysis tool and as an online damage
assessment tool.

B. A Military Common Operation Picture Application

The military Common Operation Picture (COP) application
provides a current view of the battle space shared by all
friendly forces, and enables planning and coordination of the
forces. The information provided by the COP may include
the location of friendly and enemy units, current level of
available supplies and ammunition in each unit, location of
natural and man made obstacles, currently executed tactical
plans and future possible plans for the different units, etc.
Authentication and access control strictly determines who is
allowed to view or update different parts of the operational
picture. Participants constantly monitor the COP, modify their
plans, and issue commands as the situation progresses.

Such applications depend heavily on the fact that infor-
mation provided to the system is correct. The following
scenario illustrates this problem: An update, coming from a
compromised intelligence officer computer, that updates the
location of an enemy unit to be 3 km south of where it actually
is. This update will be accepted by the system because the
intelligence officer is authenticated and is authorized to make
it. A logistics officer that needs to re-supply a friendly unit,
notices the location of the enemy unit according to the COP,
and plots a path that will avoid the enemy. This path is also
updated into the COP. The unit that is being supplied selects a

7

location to meet with the logistics convoy based on the updated
path. In parallel, a friendly commando unit plans to attack
the enemy unit. Once it is discovered that the enemy unit
location is incorrect, the Accountability Graph can quickly
mark the plans of the logistics convoy, the supplied unit and
the commando unit. These plans were dependent directly or
indirectly on the incorrect update and will have to be re-
evaluated.

In this application, the clients are all the participants autho-
rized to update any part of the common operation picture state.
The nodes of the Accountability Graph are the updates to the
state, and the edges of the graph refer to the past updates that
influenced the decision to make the dependent update.

The Common Operation Picture application is not large
compared with current hardware capabilities, and allows stor-
ing all the updates throughout the duration of a military
engagement (a few months time). To explore the feasibility of
the Accountability Graph to support this kind of application
with adequate performance, we need to estimate the size of
the graph. If we consider tracking about 5000 units, each
causing the generation of about one update per minute, then
over 12 hours this scenario generates about 3,600,000 updates.
A snapshot of the COP state, taken every 12 hours, limits the
required calculation for traversing the Accountability Graph to
this number of nodes. Our experiments provided in Section V
indicate that the Accountability Graph can provide an answer
in matter of seconds for a dependency graph of this size.

C. Information Access for National Emergency Response Sys-
tems

The Clinicians’ Biodefense Network (CBN) [22], [23] is a
nationwide Internet-based information exchange system de-
signed specifically for use by US-based clinicians in the
aftermath of a bioterrorist attack. The network is managed
and operated by the Center for Biosecurity of the University
of Pittsburgh Medical Center. CBN was designed to facilitate
communication and timely exchange of accurate and precise
information among clinicians in the event of bioterrorism,
and provide practitioners around the country with clinically
oriented information quickly enough to guide decision-making

The design of the CBN envisioned communication between
the network editorial staff, network contributors, and many
thousands of network subscribers. The network data con-
tributors are highly trusted clinicians and prominent experts
who provide critical clinical information to the network, and
comment on information provided by other data contributors.
Several hundred clinical experts and leaders were expected
to participate as data providers. The number of information
updates during an emergency situation could reach several
thousand per day.

The Clinicians’ Biodefense Network architecture was de-
signed to employ state of the art security mechanisms. Clinical
leaders, experts, and network administrators need specific
credentials in order to provide information to the network.

The network must provide accurate, correct and timely
information. The potential exists for malicious users who

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
ra

ve
rs

al
 T

im
e

(s
ec

on
ds

)

Number of Updates (millions)

Fig. 5. Traversal time as a function of the number of updates.

impersonate a network content contributor, e.g. by stealing
a password or finding other ways to infiltrate the network,
to provide misleading data that could be dangerous and
potentially life-threatening. For example, during a Biodefense
attack, an update can incorrectly report identified cases in the
wrong locations, in order to create confusion and hamper the
response to legitimate cases. Further updates by other data
providers can be based on this misleading data, and must
also be identified and reevaluated once the malicious update
is detected.

In this application, the clients are the clinical leaders and
experts who provide data to the network. The nodes of the
accountability graph are the messages sent on the network.
The edges of the graph refer to the past messages that this
message is in response to.

The type of scenarios described in the Common Operation
Picture operation exist here, although the size of the CBN
state and overall number of nodes in the graph is considerably
smaller.

V. PERFORMANCE OF THE ACCOUNTABILITY GRAPH

The Accountability Graph keeps track of all updates intro-
duced into the system and their dependency on other updates.
It may appear that this mechanism introduces an unacceptably
high overhead due to storing and processing the updates. The
goal of this section is to analyze the resulted overhead and
to show that for many applications it does not affect the
performance significantly.

Intuitively, there are several factors that can affect the time
it takes to build or traverse the graph: the number of updates
(nodes) in the graph, the number of clients, the depth of the
graph, and the number of dependencies (edges) in the graph.
We implemented a simple data structure in C++ using the
STL library and conducted several experiments to evaluate its
performance as a function of these factors.

Experiment Set-up: In the experiments presented be-
low we make no assumption about the end application, and
consider a random graph with the following structure: The
Accountability Graph is constructed based on time-slices in
which updates are committed. Each update has a correspond-
ing node in the graph. The nodes are organized in a two

8

dimensional matrix having a column for each client and a
row for each time slice. The graph was built and traversed on
a Intel Pentium IV 2.8GHz computer with 1GB RAM.

To initialize the graph, all clients submit one update at time
t0. These updates are not dependent on any other update.
At every subsequent time-slice, all clients submit one more
update. Thus, at t1 and after, a client’s update depends on a
constant number of nodes in prior time-slices. This defines the
number of dependencies of that particular update.

In the experiments below we constrain the number of rows
on which an update can depend. This is because in practice,
only a snapshot of the dependents will be preserved. Note that
the number of rows depended upon is an upper bound. For
example, if this number is 20, an update submitted in time-
slice t100 can depend on any update submitted between t80
and t99, inclusive. Dependencies are selected randomly within
the defined range of time-slices with uniform probability.

Number of updates: Figure 5 shows traversal time as a
function of the number of updates in the graph. The graph
traversal starts at the first time-slice, on the first update of
the client having an identifier equaling N/2, where N is the
number of clients. For this experiment we fixed the number of
clients to 20, the number of dependencies to 5 and the number
of prior time-slices in which nodes can have dependencies to
20. We observe that the traversal time grows linearly with the
number of updates, and that for about 4 million updates, the
traversal time takes less than 3 seconds. We believe that several
seconds response time for marking potentially affected updates
is reasonably fast to serve current applications. For example,
a distributed replicated system that can handle around 80
updates per second, with a snapshot taken every 12 hours
will accumulate about 3.5 million updates between snapshots.
Building a 4 million dependency graph as described above
took less than 20 seconds, and the data structure occupied
about 225 MB of memory.

Number of clients: Figure 6 shows the traversal time and
the number of nodes traversed, as a function of the number
of clients submitting updates, in a scenario where the number
of nodes is 4 million, and there are 5 dependencies per node.
New updates can depend on the updates in previous 100 time-
slices. The number of nodes visited decreases as the number
of clients increases. Note that because the number of updates
is fixed, the number of time-slices decreases as the number
of clients increases. One node is visited in time slice t0.
Approximately 5 nodes in t1 are dependent on this node. In
t2, approximately 52 nodes are dependent, recursively on the
original node in t0. This trend continues (at a decreasing rate
because of overlapping dependents) until all nodes in a time-
slice are marked as suspect. As the number of clients increases,
it takes a larger number of time-slices before all clients in each
subsequent time-slice are marked as suspect, and therefore,
fewer nodes are traversed as the number of clients increases.

The traversal time is initially large because of CPU cache
misses, since dependent nodes are spread across a range of
memory proportional to the number of clients. It then increases
slightly as the number of clients increases to 10, 000 due to

an increase in cache misses. Then it decreases because the
number of nodes traversed decreases.

Number of dependencies: Figure 7 shows the traversal
time and the number of nodes traversed as a function of the
number of dependencies, when the number of nodes, clients,
and dependency time-slices are fixed. We consider a graph
with 4 million nodes, 100, 000 clients, and 20 dependency
time-slices. It can be noted that at 1, 2, 3 and 4 dependencies,
the traversal time and number of nodes traversed are small.
The number of nodes traversed increases rapidly thereafter.
The traversal time is approximately linear with the number of
dependencies.

Summary: Our experiments show that factors that affect
the performance of the Accountability Graph are number
of compromised clients, number of dependencies, and the
number of updates. For all of the scenarios we considered,
and without performing any application-specific optimizations,
the traversal time was less than 8 seconds. The number of
dependencies and the number of dependencies per update
seemed to be the most influential factors in increasing the
traversal time.

VI. RELATED WORK

In this section we summarize related work in several re-
search areas in distributed systems that relate to the problem
we present in this paper. We note that our work is comple-
mentary to the work presented below.

a) Directed Acyclic Graphs in Operating and Distributed
Systems: The core mechanism of our tool is building a
causality graph. Directed acyclic graphs (DAGs) were previ-
ously used in operating systems and distributed systems. For
example, the Time Warp Operating System [24] maintains two
“wave fronts” of computation. The front wave front represents
speculative computation that is hazarded by rollback. The
rear wave front bounds the roll back. Computations on the
rear wave front line depend only on prior computations that
are committed. Computations between the two wave fronts
are tracked using causal dependency tracking (a dependency
DAG), and can be canceled.

In the distributed systems field, the Trans protocol [14] and
the Transis system [25] also use a DAG in order to ensure
reliable delivery of multicast messages using non-reliable
multicast. This DAG is maintained on the fly and updated
accordingly as messages are delivered by all of the members
of the group. Strom and Yemini [26] replace synchronization
by causal dependency tracking in order to overcome benign
process failures in distributed systems.

b) Intrusion Detection Systems: The security community
has developed many mechanisms that can detect malicious
users after they have penetrated a computer system. The large
body of intrusion detection literature [9] testifies to our as-
sertion that malicious intruders will sometimes gain access to
even the best secured systems. We provide a way for to assess
and cope with these penetrations, while intrusion detection
systems provide ways to detect them. When a malicious, yet
authorized, intruder is detected, systems typically alert an

9

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
 0

 1

 2

 3

 4

T
ra

ve
rs

al
 T

im
e

(s
ec

on
ds

)

N
um

be
r

of
 N

od
es

 T
ra

ve
rs

ed
 (

m
ill

io
ns

)

Number of Clients

Traversal Time
Nodes Traversed

Fig. 6. Traversal time as a function of the number of clients.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25 30
 0

 1

 2

 3

 4

T
ra

ve
rs

al
 T

im
e

(s
ec

on
ds

)

N
um

be
r

of
 N

od
es

 T
ra

ve
rs

ed
 (

m
ill

io
ns

)

Number of Dependencies per Update

Traversal Time
Nodes Traversed

Fig. 7. Traversal time as a function of the number dependencies

administrator and may trigger an automated damage mitigation
response. Traditionally, intrusion detection researchers have
taken two main approaches: misuse detection and anomaly
detection. Misuse detection focuses on identifying user be-
havior that matches a specific attack signature [7]. Anomaly
detection [8] focuses on finding user behavior that deviates
from normal system use. We want to emphasize that intrusion
detection strategies are more than merely complementary
to the Accountability Graph. Intrusion detection forms an
important component of our solution since a malicious user
must first be detected before the damage created by that user
can be mitigated.

The BackTracker Tool by King and Chen [27] was de-
signed to help system administrators analyze intrusions to their
operating system. Working backward from a detection point
such as a suspicious file or process, BackTracker identifies
the events and objects that could have affected that detection
point and displays chains of events in a dependency graph.
The system administrator can focus the detective work on
those chains of events in order to understand how the intruder
gained access to the system. Our work, in comparison, assumes
that the malicious clients (insiders) are authorized to access
the system and simply use the application to create or inject
incorrect inputs or updates. We are concerned with quickly
identifying what part of the current application state is corrupt,
suspected, and (no less important) not affected. The use of
dependency graphs in BackTracker, together with our past
directed acyclic graph work in Transis [25] to efficiently track
causality, inspired our Accountability Graph approach to cope
with malicious clients.

c) Byzantine-Resilient Replication: The first practical
work to solve replication while withstanding Byzantine fail-
ures is the work of Castro and Liskov [1]. Their algorithm
requires a number of 3f + 1 servers in order to tolerate
f faults and asks the client to wait for f + 1 identical
answers out of 2f + 1 answers in order to make sure that
it received a correct answer. The work is fundamentally based
on Byzantine Consensus, for which a good overview can be
found in [28]. The Byzantine replication provides protection
against malicious servers, and does not address the malicious
clients problem.

VII. CONCLUSIONS

In this paper we identified a significant attack against
distributed systems, mounted by malicious clients that delib-
erately insert incorrect data into the system using authorized
channels. We proposed a generic mechanism, Accountability
Graph, that tracks the dependencies between all of the updates
in the system, and that can classify data as corrupt, suspect,
or not affected, giving the ability to conduct risk assessment
and vulnerability analysis with respect to the compromised
client attack. We demonstrated the usefulness of our solution in
three different applications, and we showed that the overhead
associated with our solution is reasonable in these cases.

REFERENCES

[1] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, 2002.

[2] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for byzantine fault-tolerant services,”
in SOSP, 2003.

[3] D. Malkhi and M. Reiter, “Byzantine quorum systems,” Journal of
Distributed Computing, vol. 11, no. 4, pp. 203–213, 1998.

[4] S. Osborn, “Database security integration using role-based access con-
trol,” in IFIP WG11.3 Working Conference on Database Security,
August 2000.

[5] S. De, C. Eastman, , and C. Farkas, “Secure access control in a multi-
user database,” in ESRI User Conference, 2002.

[6] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query
rewriting techniques for fine-grained access control,” in SIGMOD 2004,
2004.

[7] “Using decision trees to improve signature-based intrusion detection,”
in RAID 2003, 2003.

[8] Y. Xie, H.-A. Kim, D. R. O’Hallaron, M. K. Reiter, and H. Zhang,
“Seurat: A pointillist approach to anomaly detection.,” in RAID, pp. 238–
257, 2004.

[9] E. Jonsson, A. Valdes, and M. Almgren, eds., Recent Advances in
Intrusion Detection: 7th International Symposium, RAID 2004, Sophia
Antipolis, France, September 15-17, 2004. Proceedings, vol. 3224 of
Lecture Notes in Computer Science, Springer, 2004.

[10] C. Wilson, “Network Centric Warfare: Background and Oversight Issues
for Congress; CRS Report for Congress,” June 2004.

[11] R. Wible, “Update report on alliance for building
regulatory reform in the digital age,” June 2004.
http://www.astronaut3.com/ncsbcs/content/html/update report.htm.

[12] Digital Signature Standard (DSS). No. FIPS 186-2, National
Institute for Standards and Technology (NIST), 2000.
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf.

[13] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, pp. 120–126, Feb. 1978.

10

[14] P. M. Melliar-Smith, L. E. Moser, and V. Agrawala, “Broadcast protocols
for distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 1, pp. 17–25, January 1990.

[15] “The debian linux distribution.” http://www.debian.org/.
[16] “The redhat linux distribution.” http://www.redhat.com/.
[17] “Apache software foundation,” 1999-2004. http://www.apache.org/.
[18] “Gnome foundation,” 2003. http://www.gnome.org/.
[19] “Apache software foundation server compromised, resecured,” May

2001. http://seclists.org/lists/bugtraq/2001/May/0350.html.
[20] “Some debian project machines compromised,” November 2003.

http://www.debian.org/News/2003/20031121.
[21] C. Franklin, “Gnome servers attacked

putting the penguin on guard,” April 2004.
http://www.networkcomputing.com/showitem.jhtml?articleID=18900826.

[22] “Clinicians’ biodefense network,” 2001. http://www.upmc-cbn.org.
[23] L. Randovich, “Hopkins Center to Launch Clinicians’ Biodefense Net-

work,” Biodefense Quarterly, A publication of the Johns Hopkins Center
for Civilian Biodefense Network, vol. 4, no. 2, 2002.

[24] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. Diloreto, “Time
warp operating system,” in Proceedings of the eleventh ACM Symposium
on Operating systems principles, pp. 77–93, ACM Press, 1987.

[25] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A communication
sub-system for high availability,” in In Proceedings of the 22nd Annual
International Symposium on Fault Tolerant Computing, pp. 76–84, July
1992.

[26] R. Strom and S. Yemini, “Optimistic recovery in distributed systems,”
ACM Transactions on Computer Systems (TOCS), vol. 3, August 1985.

[27] S. T. King and P. M. Chen, “Backtracking Intrusions,” in Symposium on
Operationg System Principles (SOSP), pp. 223–236, October 2003.

[28] M. J. Fischer, “The consensus problem in unreliable distributed systems
(a brief survey),” in Fundamentals of Computation Theory, pp. 127–140,
1983.

11

