
1

STEWARD: Scaling Byzantine Fault-Tolerant
Replication to Wide Area Networks

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen,
and David Zage

Technical Report CNDS-2006-2 - November 2006
http://www.dsn.jhu.edu

Abstract— This paper presents the first hierarchical Byzantine
fault-tolerant replication architecture suitable to systems that
span multiple wide area sites. The architecture confines the
effects of any malicious replica to its local site, reduces message
complexity of wide area communication, and allows read-only
queries to be performed locally within a site for the price
of additional standard hardware. We present proofs that our
algorithm provides safety and liveness properties. A prototype
implementation is evaluated over several network topologies
and is compared with a flat Byzantine fault-tolerant approach.
The experimental results show considerable improvement over
flat Byzantine replication algorithms, bringing the performance
of Byzantine replication closer to existing benign fault-tolerant
replication techniques over wide area networks.

Index Terms— Fault-tolerance, scalability, wide-area networks

I. I NTRODUCTION

During the last few years, there has been considerable
progress in the design of Byzantine fault-tolerant replication
systems. Current state of the art protocols perform very well
on small-scale systems that are usually confined to local area
networks, which have small latencies and do not experience
frequent network partitions. However, current solutions em-
ploy flat architectures that suffer from several limitations:
Message complexity limits their ability to scale, and strong
connectivity requirements limit their availability on wide area
networks, which usually have lower bandwidth, higher latency,
and exhibit more frequent network partitions.

This paper presents Steward [1], the first hierarchical Byzan-
tine fault-tolerant replication architecture suitable for systems
that span multiple wide area sites, each consisting of several
server replicas. Steward assumes no trusted component in
the entire system, other than a mechanism to pre-distribute
private/public keys.

Steward uses Byzantine fault-tolerant protocols within each
site and a lightweight, benign fault-tolerant protocol among
wide area sites. Each site, consisting of several potentially
malicious replicas, is converted into a single logical trusted
participant in the wide area fault-tolerant protocol. Servers
within a site run a Byzantine agreement protocol to agree

Yair Amir, Claudiu Danilov, Jonathan Kirsch, and John Lane are with the
Johns Hopkins University.

Danny Dolev is with the Hebrew University of Jerusalem.
Cristina Nita-Rotaru, Josh Olsen, and David Zage are with Purdue Univer-

sity.

upon the content of any message leaving the site for the global
protocol.

Guaranteeing a consistent agreement within a site is not
enough. The protocol needs to eliminate the ability of mali-
cious replicas to misrepresent decisions that took place intheir
site. To that end, messages between servers at different sites
carry a threshold signature attesting that enough servers at the
originating site agreed with the content of the message. This
allows Steward to save the space and computation associated
with sending and verifying multiple individual signatures.
Moreover, it allows for a practical key management scheme
where all servers need to know only a single public key for
each remote site and not the individual public keys of all
remote servers.

Steward’s hierarchical architecture reduces the message
complexity on wide area exchanges fromO(N2) (N being
the total number of replicas in the system) toO(S2) (S
being the number of wide area sites), considerably increasing
the system’s ability to scale. It confines the effects of any
malicious replica to its local site, enabling the use of a
benign fault-tolerant algorithm over the wide area network.
This improves the availability of the system over wide area
networks that are prone to partitions. Only a majority of
connected sites is needed to make progress, compared with
at least2f + 1 servers (out of3f + 1) in flat Byzantine
architectures (f is the upper bound on the number of malicious
servers). Steward allows read-only queries to be performed
locally within a site, enabling the system to continue serving
read-only requests even in sites that are partitioned away.In
addition, it enables a practical key management scheme where
public keys of specific replicas need to be known only within
their own site.

Steward provides these benefits by using an increased
number of servers. More specifically, if the requirement is to
protect againstanyf Byzantine servers in the system, Steward
requires3f +1 servers in each site. However, in return, it can
overcome up tof malicious servers ineachsite. We believe
this requirement is reasonable given the cost associated with
computers today.

Steward’s efficacy depends on using servers within a site
that are unlikely to suffer the same vulnerabilities. Multi-
version programming [2], where independently coded software
implementations are run on each server, can yield the desired
diversity. Newer techniques [3] can automatically and inex-

2

pensively generate variation.
The paper demonstrates that the performance of Steward

with 3f +1 servers ineach siteis much better even compared
with a flat Byzantine architecture with a smaller system of
3f + 1 total servers spread over the same wide area topology.
The paper further demonstrates that Steward exhibits perfor-
mance comparable (though somewhat lower) with common
benign fault-tolerant protocols on wide area networks.

We implemented the Steward system, and a DARPA red-
team experiment has confirmed its practical survivability in the
face of white-box attacks (where the red-team has complete
knowledge of system design, access to its source code, and
control off replicas in each site). According to the rules of en-
gagement, where a red-team attack succeeded only if it stopped
progress or caused inconsistency, no attacks succeeded. We
include a detailed description of the red-team experiment in
Section VII.

While solutions previously existed for Byzantine and benign
fault-tolerant replication and for providing practical threshold
signatures, these concepts have never been used in a provably
correct, hierarchical architecture that scales Byzantinefault-
tolerant replication to large, wide area systems. This paper
presents the design, implementation, and proofs of correctness
for such an architecture.

The main contributions of this paper are:

1) It presents the first hierarchical architecture and algo-
rithm that scales Byzantine fault-tolerant replication to
large, wide area networks.

2) It provides a complete proof of correctness for this algo-
rithm, demonstrating its safety and liveness properties.

3) It presents a software artifact that implements the algo-
rithm completely.

4) It shows the performance evaluation of the implemen-
tation software and compares it with the current state
of the art. The experiments demonstrate that the hier-
archical approach greatly outperforms existing solutions
when deployed on large, wide area networks.

The remainder of the paper is organized as follows. We
discuss previous work in several related research areas in Sec-
tion II. We provide background in Section III. We present our
system model in Section IV and the service properties met by
our protocol in Section V. We describe our protocol, Steward,
in Section VI. We present experimental results demonstrating
the improved scalability of Steward on wide area networks in
Section VII. We include a proof sketch for both safety and
liveness in Section VIII. We summarize our conclusions in
Section IX. Appendix A contains complete pseudocode for
our protocol, and complete correctness proofs can be found in
Appendix B.

II. RELATED WORK

Agreement and Consensus:At the core of many replication
protocols is a more general problem, known as the agreement
or consensus problem. A good overview of significant results
is presented in [4]. The strongest fault model that researchers
consider is the Byzantine model, where some participants
behave in an arbitrary manner. If communication is not authen-
ticated and nodes are directly connected,3f + 1 participants
and f + 1 communication rounds are required to toleratef
Byzantine faults. If authentication is available, the number of
participants can be reduced tof + 2 [5].

Fail Stop Processors:Previous work [6] discusses the
implementation and use of k-fail-stop processors, which are
composed of several potentially Byzantine processors. Benign
fault-tolerant protocols safely run on top of these fail-stop
processors even in the presence of Byzantine faults. Steward
uses a similar strategy to mask Byzantine faults. However,
each trusted entity in Steward continues to function correctly
unlessf + 1 or more computers in a site are faulty, at which
point safety is no longer guaranteed.

Byzantine Group Communication:Related with our work
are group communication systems resilient to Byzantine fail-
ures. Two such systems are Rampart [7] and SecureRing [8].
Although these systems are extremely robust, they have a
severe performance cost and require a large number of un-
compromised nodes to maintain their guarantees. Both systems
rely on failure detectors to determine which replicas are faulty.
An attacker can exploit this to slow correct replicas or the
communication between them until enough are excluded from
the group.

Another intrusion-tolerant group communication system is
ITUA [9], [10]. The ITUA system, developed by BBN and
UIUC, focuses on providing intrusion-tolerant group services.
The approach taken considers all participants as equal and is
able to tolerate up to less than a third of malicious participants.

Replication with Benign Faults:The two-phase commit
(2PC) protocol [11] provides serializability in a distributed
database system when transactions may span several sites. It
is commonly used to synchronize transactions in a replicated
database. Three-phase commit [12] overcomes some of the
availability problems of 2PC, paying the price of an additional
communication round, and therefore, additional latency. Paxos
[13], [14] is a very robust algorithm for benign fault-tolerant
replication and is described in Section III.

Quorum Systems with Byzantine Fault-Tolerance:Quorum
systems obtain Byzantine fault tolerance by applying quo-
rum replication methods. Examples of such systems include
Phalanx [15], [16] and its successor Fleet [17], [18]. Fleet
provides a distributed repository for Java objects. It relies
on an object replication mechanism that tolerates Byzantine
failures of servers, while supporting benign clients. Although
the approach is relatively scalable with the number of servers,
it suffers from the drawbacks of flat Byzantine replication
solutions.

Replication with Byzantine Fault-Tolerance:The first prac-
tical work to solve replication while withstanding Byzantine
failures is the work of Castro and Liskov [19], which is

3

described in Section III. Yin et al. [20] propose separatingthe
agreement component that orders requests from the execution
component that processes requests, which allows utilization of
the same agreement component for many different replication
tasks and reduces the number of processing storage replicasto
2f +1. Martin and Alvisi [21] recently introduced a two-round
Byzantine consensus algorithm, which uses5f + 1 servers
in order to overcomef faults. This approach trades lower
availability for increased performance. The solution is appeal-
ing for local area networks with high connectivity. While we
considered using it within the sites in our architecture, the
overhead of combining larger threshold signatures of4f + 1
shares would greatly overcome the benefits of using one less
intra-site round.

Alternate Architectures:An alternate hierarchical approach
to scale Byzantine replication to wide area networks can be
based on having a few trusted nodes that are assumed to
be working under a weaker adversary model. For example,
these trusted nodes may exhibit crashes and recoveries but
not penetrations. A Byzantine replication algorithm in such
an environment can use this knowledge in order to optimize
performance.

Verissimo et al. propose such a hybrid approach [22],
[23], where synchronous, trusted nodes provide strong global
timing guarantees. This inspired the Survivable Spread [24]
work, where a few trusted nodes (at least one per site) are
assumed impenetrable, but are not synchronous, may crash and
recover, and may experience network partitions and merges.
These trusted nodes were implemented by Boeing Secure
Network Server (SNS) boxes, limited computers designed to
be impenetrable.

Both the hybrid approach and the approach proposed in this
paper can scale Byzantine replication to wide area networks.
The hybrid approach makes stronger assumptions, while our
approach pays more hardware and computational costs.

III. B ACKGROUND

Our work requires concepts from fault tolerance, Byzantine
fault tolerance, and threshold cryptography. To facilitate the
presentation of our protocol, Steward, we first provide an
overview of three representative works in these areas: Paxos,
BFT and RSA threshold signatures.

Paxos:Paxos [13], [14] is a well-known fault-tolerant pro-
tocol that allows a set of distributed servers, exchanging mes-
sages via asynchronous communication, to totally order client
requests in the benign-fault, crash-recovery model. Paxosuses
an electedleader to coordinate the agreement protocol. If
the leader crashes or becomes unreachable, the other servers
elect a new leader; aview changeoccurs, allowing progress
to (safely) resume in the new view under the reign of the new
leader. Paxos requires at least2f + 1 servers to toleratef
faulty servers. Since servers are not Byzantine, only a single
reply needs to be delivered to the client.

In the common case (Fig. 1), in which a single leader exists
and can communicate with a majority of servers, Paxos uses
two asynchronous communication rounds to globally order
client updates. In the first round, the leader assigns a sequence

number to a client update and sends aProposal message
containing this assignment to the rest of the servers. In the
second round, any server receiving the Proposal sends an
Acceptmessage, acknowledging the Proposal, to the rest of
the servers. When a server receives a majority of matching
Accept messages – indicating that a majority of servers have
accepted the Proposal – itorders the corresponding update.

BFT: The BFT [19] protocol addresses the problem of
replication in the Byzantine model where a number of servers
can exhibit arbitrary behavior. Similar to Paxos, BFT uses an
elected leader to coordinate the protocol and proceeds through
a series of views. BFT extends Paxos into the Byzantine
environment by using an additional communication round in
the common case to ensure consistency both in and across
views and by constructing strong majorities in each round
of the protocol. Specifically, BFT uses a flat architecture and
requires acknowledgments from2f + 1 out of 3f + 1 servers
to mask the behavior off Byzantine servers. A client must
wait for f +1 identical responses to be guaranteed that at least
one correct server assented to the returned value.

In the common case (Fig. 2), BFT uses three communication
rounds. In the first round, the leader assigns a sequence number
to a client update and proposes this assignment to the rest
of the servers by broadcasting aPre-preparemessage. In
the second round, a server accepts the proposed assignment
by broadcasting an acknowledgment,Prepare. When a server
collects aPrepare Certificate(i.e., it receives the Pre-Prepare
and 2f Prepare messages with the same view number and
sequence number as the Pre-prepare), it begins the third round
by broadcasting aCommit message. A servercommits the
corresponding update when it receives2f+1 matching commit
messages.

Threshold digital signatures:Threshold cryptography [25]
distributes trust among a group of participants to protect
information (e.g., threshold secret sharing [26]) or computation
(e.g., threshold digital signatures [27]).

A (k, n) threshold digital signature scheme allows a set
of servers to generate a digital signature as a single logical
entity despitek − 1 Byzantine faults. It divides a private key
into n shares, each owned by a server, such that any set of
k servers can pool their shares to generate a valid threshold
signature on a message,m, while any set of fewer thank
servers is unable to do so. Each server uses its key share
to generate a partial signature onm and sends the partial
signature to acombinerserver, which combines the partial
signatures into a threshold signature onm. The threshold
signature is verified using the public key corresponding to the
divided private key. One important property provided by some
threshold signature schemes isverifiable secret sharing[28],
which guarantees the robustness [29] of the threshold signature
generation by allowing participants to verify that the partial
signatures contributed by other participants are valid (i.e., they
were generated with a share from the initial key split).

A representative example of practical threshold digital sig-
nature schemes is the RSA Shoup [27] scheme, which allows
participants to generate threshold signatures based on thestan-
dard RSA [30] digital signature. It provides verifiable secret
sharing, which is critical in achieving signature robustness in

4

Fig. 1. Common case operation of the Paxos algorithm when
f = 1. Server 0 is the current leader.

Fig. 2. Common case operation of the BFT algorithm whenf = 1.
Server 0 is the current leader.

the Byzantine environment we consider.

IV. SYSTEM MODEL

Servers are implemented as deterministic state machines
[31], [32]. All correct servers begin in the same initial state
and transition between states by applying updates as they are
ordered. The next state is completely determined by the current
state and the next update to be applied.

We assume a Byzantine fault model. Servers are eithercor-
rect or faulty. Correct servers do not crash. Faulty servers may
behave arbitrarily. Communication is asynchronous. Messages
can be delayed, lost, or duplicated. Messages that do arrive
are not corrupted.

Servers are organized into wide areasites, each having
a unique identifier. Each server belongs to one site and
has a unique identifier within that site. The network may
partition into multiple disjointcomponents, each containing
one or more sites. During a partition, servers from sites in
different components are unable to communicate with each
other. Components may subsequently re-merge. Each siteSi

has at least3 ∗ (fi) + 1 servers, wherefi is the maximum
number of servers that may be faulty withinSi. For simplicity,
we assume in what follows that all sites may have at mostf
faulty servers.

Clients are distinguished by unique identifiers. Clients send
updates to servers within their local site and receive responses
from these servers. Each update is uniquely identified by a
pair consisting of the identifier of the client that generated
the update and a unique, monotonically increasing logical
timestamp. Clients propose updates sequentially: a clientmay
propose an update with timestampi + 1 only after it receives
a reply for an update with timestampi.

We employ digital signatures, and we make use of a
cryptographic hash function to compute message digests.
Client updates are properly authenticated and protected against
modifications. We assume that all adversaries, including faulty
servers, are computationally bounded such that they can-
not subvert these cryptographic mechanisms. We also use a
(2f + 1, 3f + 1) threshold digital signature scheme. Each
site has a public key, and each server receives a share with
the corresponding proof that can be used to demonstrate the
validity of the server’s partial signatures. We assume that
threshold signatures are unforgeable without knowing2f + 1
or more shares.

V. SERVICE PROPERTIES

Our protocol assigns global, monotonically increasing se-
quence numbers to updates, to establish a global, total order.
Below we define the safety and liveness properties of the
Steward protocol.

We say that:
• a client proposesan update when the client sends the

update to a correct server in the local site, and the correct
server receives it.

• a server executesan update with sequence numberi
when it applies the update to its state machine. A server
executes updatei only after having executed all updates
with a lower sequence number in the global total order.

• two servers are connectedor a client and server are
connectedif any message that is sent between them will
arrive in a bounded time. The protocol participants need
not know this bound beforehand.

• two sites are connectedif every correct server in one site
is connected to every correct server in the other site.

• a client is connected to a siteif it can communicate with
all servers in that site.

We define the following two safety conditions:
DEFINITION 5.1: S1 - SAFETY: If two correct servers

execute theith update, then these updates are identical.
DEFINITION 5.2: S2 - VALIDITY : Only an update that was

proposed by a client may be executed.
Since no asynchronous Byzantine replication protocol can

always be both safe and live [33], we provide liveness under
certain synchrony conditions. We introduce the following
terminology to encapsulate these synchrony conditions andour
progress metric:

1) A site is stablewith respect to timeT if there exists a
set,S, of 2f + 1 servers within the site, where, for all
timesT ′ > T , the members ofS are (1) correct and (2)
connected. We call the members ofS stable servers.

2) Thesystem is stablewith respect to timeT if there exists
a set,S, of a majority of sites, where, for all timesT ′

> T , the sites inS are (1) stable with respect toT and
(2) connected. We call the sites inS the stable sites.

3) Global progressoccurs when some stable server exe-
cutes an update.

We now define our liveness property:
DEFINITION 5.3: L1 - GLOBAL L IVENESS: If the system

is stable with respect to timeT , then if, after timeT , a stable
server receives an update which it has not executed, then global
progress eventually occurs.

5

VI. PROTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale Byzan-
tine replication to the high-latency, low-bandwidth linkschar-
acteristic of wide area networks. Instead of running a single,
relatively costly Byzantine fault-tolerant protocol (e.g., BFT)
among allserversin the system, Steward runs a Paxos-like
benign fault-tolerant protocol among allsites in the system,
which reduces the number of messages and communication
rounds on the wide area network compared to a flat Byzantine
solution.

Steward’s hierarchical architecture results in two levelsof
protocols: global and local. The global, Paxos-like protocol
is run among wide area sites. Since each site consists of a
set of potentially malicious servers (instead of a single trusted
participant, as Paxos assumes), Steward employs several local
(i.e., intra-site) Byzantine fault-tolerant protocols tomask the
effects of malicious behavior at the local level. Servers within
a site agree upon the contents of messages to be used by the
global protocol and generate a threshold signature for each
message, preventing a malicious server from misrepresenting
the site’s decision and confining malicious behavior to the
local site. In this way, the local protocols allow each site
to emulate the behavior of a correct Paxos participant in the
global protocol.

Similar to the rotating coordinator scheme used in BFT, the
local, intra-site protocols in Steward are run in the context of a
local view, with one server, thesite representative, serving as
the coordinator of a given view. Besides coordinating the local
agreement and threshold-signing protocols, the representative
is responsible for (1) disseminating messages in the global
protocol originating from the local site to the other site repre-
sentatives and (2) receiving global messages and distributing
them to the local servers. If the site representative is suspected
to be Byzantine, the other servers in the site run a local view
change protocol to replace the representative and install anew
view.

While Paxos uses a rotating leader server to coordinate the
protocol, Steward uses a rotatingleader siteto coordinate the
global protocol; the global protocol runs in the context of a
global view, with one leader site in charge of each view. If
the leader site is partitioned away, the non-leader sites run a
global view change protocol to elect a new one and install
a new global view. As described below, the representative of
the leader site drives the global protocol by invoking the local
protocols needed to construct the messages sent over the wide
area network.

Fig. 3 depicts a Steward system with five sites. As described
above, the coordinators of the local and global protocols
(i.e., site representatives and the leader site, respectively) are
replaced when failures occur. Intuitively, the system proceeds
through different configurations of representatives and leader
sites via two levels of rotating “configuration wheels,” onefor
each level of the hierarchy. At the local level, an intra-site
wheel rotates when the representative of a site is suspectedof
being faulty. At the global level, an inter-site wheel rotates
when enough sites decide that the current leader site has
partitioned away. Servers within a site use the absence of

global progress (as detected by timeout mechanisms) to trigger
the appropriate view changes.

In the remainder of this section, we present the local and
global protocols that Steward uses to totally order client
updates. We first present the data structures and messages
used by our protocols. We then present the common case
operation of Steward, followed by the view change protocols,
which are run when failures occur. We then present the timeout
mechanisms that Steward uses to ensure liveness. Due to space
limitations, we include selected pseudocode where relevant.
Complete pseudocode can be found in Appendix A.

A. Data Structures and Message Types

To facilitate the presentation of Steward, we first present
the message types used by the protocols (Fig. 4) and the data
structures maintained by each server (Fig. 5).

As listed in Fig. 5, each server maintains variables for the
global, Paxos-like protocol and the local, intra-site, Byzantine
fault-tolerant protocols; we say that a server’s state is divided
into the global contextand the local context, respectively,
reflecting our hierarchical architecture. Within the global con-
text, a server maintains (1) the state of its current global
view and (2) aGlobal History, reflecting the status of those
updates it has globally ordered or is attempting to globally
order. Within the local context, a server maintains the state of
its current local view. In addition, each server at the leader
site maintains aLocal History, reflecting the status of those
updates for which it has constructed, or is attempting to
construct, a Proposal.

Each server updates its data structures according to a set
of rules. These rules are designed to maintain the consistency
of the server’s data structures despite the behavior of faulty
servers. Upon receiving a message, a server first runs a validity
check on the message to ensure that it contains a valid RSA
signature and does not originate from a server known to be
faulty. If a message is valid, it can be applied to the server’s
data structures provided it does not conflict with any data
contained therein. Pseudocode for the update rules, validity
checks, conflict checks, and several utility predicates canbe
found in Fig. A-1 through Fig. A-6.

B. The Common Case

In this section, we trace the flow of an update through the
system as it is globally ordered during common case operation
(i.e., when no leader site or site representative election occurs).
The common case makes use of two local, intra-site protocols:
THRESHOLD-SIGN and ASSIGN-SEQUENCE (Fig. 6), which
we describe below. Pseudocode for the global ordering proto-
col (ASSIGN-GLOBAL-ORDER) is listed in Fig. 7.

The common case works as follows:

1) A client sends an update to a server in its local site. This
server forwards the update to the local representative,
which forwards the update to the representative of the
leader site. If the client does not receive a reply within
its timeout period, it broadcasts the update to all servers
in its site.

6

Leader-site replica

Non-leader-site replica

Local representative

Fig. 3. A Steward system having five sites, each with seven servers. Each smaller, local wheel rotates when its representative is suspected of being faulty.
The larger, global wheel rotates when the leader site is suspected to have partitioned away.

Standard Abbreviations: lv = local view; gv = global view; u = update; seq = sequence number;
ctx = context; sig = signature; partial sig = partial signature; t sig = threshold signature

// Message from client
Update = (client id, timestamp, client update, sig)

// Messages used by THRESHOLD-SIGN
Partial Sig = (server id, data, partial sig, verification proof, sig)
Corrupted Server = (server id, data, Partial sig, sig)

// Messages used by ASSIGN-SEQUENCE
Pre-Prepare = (server id, gv, lv, seq, Update, sig)
Prepare = (server id, gv, lv, seq, Digest(Update), sig)
Prepare Certificate(gv, lv, seq, u) = a set containing a Pre-Prepare(server id, gv, lv, seq, u,
sig) message and a list of 2f distinct Prepare(*, gv, lv, seq, Digest(u), sig) messages

// Messages used by ASSIGN-GLOBAL-ORDER
Proposal = (site id, gv, lv, seq, Update, t sig)
Accept = (site id, gv, lv, seq, Digest(Update), t sig)
Globally Ordered Update(gv, seq, u) = a set containing a Proposal(site id, gv, lv, seq, u, t sig)
message and a list of distinct Accept(*, seq, gv, *, Digest(u), t sig) messages from a majority-1
of sites

// Messages used by LOCAL-VIEW-CHANGE
New Rep = (server id, suggested lv, sig)
Local Preinstall Proof = a set of 2f+1 distinct New Rep messages

// Messages used by GLOBAL-VIEW-CHANGE
Global VC = (site id, gv, t sig)
Global Preinstall Proof = a set of distinct Global VC messages from a majority of sites

// Messages used by CONSTRUCT-ARU, CONSTRUCT-LOCAL-CONSTRAINT, and CONSTRUCT-GLOBAL-CONSTRAINT
Request Local State = (server id, gv, lv, seq)
Request Global State = (server id, gv, lv, seq)
Local Server State = (server id, gv, lv, invocation aru, a set of Prepare Certificates, a set of
Proposals, sig)
Global Server State = (server id, gv, lv, invocation aru, a set of Prepare Certificates, a set of
Proposals, a set Globally Ordered Updates, sig)
Local Collected Server State = (server id, gv, lv, a set of 2f+1 Local Server State messages, sig)
Global Collected Server State = (server id, gv, lv, a set of 2f+1 Global Server State messages, sig)

//Messages used by GLOBAL-VIEW-CHANGE
Aru Message = (site id, gv, site aru)
Global Constraint = (site id, gv, invocation aru, a set of Proposals and/or
Globally Ordered Updates with seq ≥ invocation aru)
Collected Global Constraints(server id, gv, lv, a set of majority Global Constraint messages, sig)

//Messages used by GLOBAL-RECONCILIATION and LOCAL-RECONCILIATION
Global Recon Request = (server id, global session seq, requested aru, globally ordered update)
Local Recon Request = (server id, local session seq, requested aru)
Global Recon = (site id, server id, global session seq, requested aru)

Fig. 4. Message types used in the global and local protocols.

2) When the representative of the leader site receives an
update, it invokes theASSIGN-SEQUENCE protocol to
assign a global sequence number to the update; this as-

signment is encapsulated in aProposalmessage. The site
then generates a threshold signature on the constructed
Proposal usingTHRESHOLD-SIGN, and the representa-

7

int Server id: unique id of this server within the site
int Site id: unique id of this server’s site

A. Global Context (Global Protocol) Data Structure
int Global seq: next global sequence number to assign.
int Global view: current global view of this server, initialized to 0.
int Global preinstalled view: last global view this server preinstalled, initialized to 0.
bool Installed global view: If it is 0, then Global view is the new view to be installed.
Global VC Latest Global VC[]: latest Global VC message received from each site.
struct globally proposed item {

Proposal struct Proposal
Accept struct List Accept List
Global Ordered Update struct Globally Ordered Update

} Global History[] // indexed by Global seq
int Global aru: global seq up to which this server has globally ordered all updates.
bool globally constrained: set to true when constrained in global context.
int Last Global Session Seq[]: latest session seq from each server (local) or site (global)
int Last Global Requested Aru[]: latest requested aru from each server (local) or site (global)
int Last Global Request Time[]: time of last global reconciliation request from each local server
int Max Global Requested Aru[]: maximum requested aru seen from each site

B. Local Context (Intra-site Protocols) Data Structure
int Local view: local view number this server is in
int Local preinstalled vew: last local view this server preinstalled, initialized to 0.
bool Installed local view: If it is 0, then Global view is the new one to be installed.
New Rep Latest New Rep[]: latest New Rep message received from each site.
struct pending proposal item {

Pre-Prepare struct Pre-Prepare
Prepare struct List Prepare List
Prepare Cert struct Prepare Certificate
Proposal struct Proposal

} Local History[] //indexed by Global seq
int Pending proposal aru: global seq up to which this server has constructed proposals
bool locally constrained: set to true when constrained in the local context.
Partial Sigs: associative container keyed by data. Each slot in the container holds an array,
indexed by server id. To access data d from server s id, we write Partial Sigs{d}[s id].
Update Pool: pool of client updates, both unconstrained and constrained
int Last Local Session Seq[]: latest session seq from each local server
int Last Local Requested Aru[]: latest requested aru from each local server
int Last Local Request Time[]: time of last local reconciliation request from each local server

Fig. 5. Global and Local data structures maintained by each server.

ASSIGN-SEQUENCE(Update u):
A1. Upon invoking:
A2. SEND to all local servers: Pre-Prepare(gv, lv, Global seq, u)
A3. Global seq++

B1. Upon receiving Pre-Prepare(gv, lv, seq, u):
B2. Apply Pre-Prepare to Local History
B3. SEND to all local servers: Prepare(gv, lv, seq, Digest(u))

C1. Upon receiving Prepare(gv, lv, seq, digest):
C2. Apply Prepare to Local History
C3. if Prepare Certificate Ready(seq)
C4. prepare certificate ← Local History[seq].Prepare Certificate
C5. pre-prepare ← prepare certificate.Pre-Prepare
C6. unsigned proposal ← ConstructProposal(pre-prepare)
C7. invoke THRESHOLD SIGN(unsigned proposal) //returns signed proposal

D1. Upon THRESHOLD SIGN returning signed proposal:
D2. Apply signed proposal to Global History
D3. Apply signed proposal to Local History
D4. return signed proposal

Fig. 6. ASSIGN-SEQUENCE Protocol, used to bind an update to asequence number and produce a threshold-signed Proposal message.

tive sends the signed Proposal to the representatives of
all other sites for global ordering.

3) When a representative receives a signed Proposal, it
forwards this Proposal to the servers in its site. Upon
receiving a Proposal, a server constructs a site ac-
knowledgment (i.e., anAccept message) and invokes
THRESHOLD-SIGN on this message. The representa-
tive combines the partial signatures and then sends
the resulting threshold-signed Accept message to the
representatives of the other sites.

4) The representative of a site forwards the incoming
Accept messages to the local servers. A server glob-
ally orders the update when it receives⌊N/2⌋ Accept
messages from distinct sites (whereN is the number
of sites) and the corresponding Proposal. The server at
the client’s local site that originally received the update
sends a reply back to the client.

We now highlight the details of theTHRESHOLD-SIGN and
ASSIGN-SEQUENCEprotocols.

Threshold-Sign: The THRESHOLD-SIGN intra-site protocol

8

ASSIGN-GLOBAL-ORDER():
A1. Upon receiving or executing an update, or becoming globally or locally constrained:
A2. if representative of leader site
A3. if (globally constrained and locally constrained and In Window(Global seq))
A4. u ← Get Next To Propose()
A5. if (u 6= NULL)
A6. invoke ASSIGN-SEQUENCE(u) //returns Proposal

B1. Upon ASSIGN-SEQUENCE returning Proposal:
B2. SEND to all sites: Proposal

C1. Upon receiving Proposal(site id, gv, lv, seq, u):
C2. Apply Proposal to Global History
C3. if representative
C4. SEND to all local servers: Proposal
C5. invoke THRESHOLD SIGN(Proposal, Server id) //returns Accept

D1. Upon THRESHOLD SIGN return Accept:
D2. Apply Accept to Global History
D3. if representative
D4. SEND to all sites: Accept

E1. Upon receiving Accept(site id, gv, lv, seq, Digest(u)):
E2. Apply Accept to Global History
E3. if representative
E4. SEND to all local servers: Accept
E5. if Globally Ordered Ready(seq)
E6. globally ordered update ← ConstructOrderedUpdate(seq)
E7. Apply globally ordered update to Global History

Fig. 7. ASSIGN-GLOBAL-ORDER Protocol. The protocol runs among all sites and is similar to Paxos. It invokes the ASSIGN-SEQUENCE and
THRESHOLD-SIGN intra-site protocols to allow a site to emulate the behavior of a Paxos participant.

generates a (2f + 1, 3f + 1) threshold signature on a given
message.1 Upon invoking the protocol, a server generates a
PartialSignature message, containing a partial signature on the
message to be signed and a verification proof that other servers
can use to confirm that the partial signature was created using a
valid share. The PartialSignature message is broadcast within
the site. Upon receiving 2f+1 partial signatures on a message,
a server combines the partial signatures into a threshold
signature on that message, which is then verified using the
site’s public key. If the signature verification fails, one or
more partial signatures used in the combination were invalid,
in which case the verification proofs provided with the partial
signatures are used to identify incorrect shares, and the servers
that sent these incorrect shares are classified as malicious.
Further messages from the corrupted servers are ignored, and
the proof of corruption (the invalid PartialSig message) is
broadcast to the other servers in the site. Pseudocode for the
THRESHOLD-SIGN protocol can be found in Fig. A-7.

Assign-Sequence:The ASSIGN-SEQUENCE local protocol
(Fig. 6) is used in the leader site to construct a Proposal mes-
sage. The protocol takes as input an update that was returned
by the GetNext To Propose procedure, which is invoked by
the representative of the leader site duringASSIGN-GLOBAL-
ORDER (Fig. 7, line A4). GetNext To Propose considers the
next sequence number for which an update should be ordered
and returns either (1) an update that has already been bound to
that sequence number, or (2) an update that is not bound to any
sequence number. This ensures that the constructed Proposal
cannot be used to violate safety and, if globally ordered, will
result in global progress. GetNext To Propose is listed in Fig.
A-8.

1We could use an (f + 1, 3f + 1) threshold signature at the cost of an
additional intra-site protocol round.

ASSIGN-SEQUENCE consists of three rounds. The first
two are similar to the corresponding rounds of BFT, and
the third round consists of an invocation ofTHRESHOLD-
SIGN. During the first round, the representative binds an
update to a sequence number by creating and sending a
Pre-Prepare(sequence number, update) message. A Pre-
Prepare(seq, u) causes a conflict if either a binding (seq, u′)
or (seq′, u) exists in a server’s data structures. When a non-
representative receives a Pre-Prepare that does not cause a
conflict, it broadcasts a matching Prepare(seq, u) message.
At the end of the second round, when a server receives a
Pre-Prepare(seq, u) and 2f matching Prepare messages for
the same views, sequence number, and update (i.e., when it
collects aPrepareCertificate), it invokes THRESHOLD-SIGN

on a Proposal(seq, u). If there are2f + 1 correct, connected
servers in the site,THRESHOLD-SIGN returns a threshold-
signed Proposal(seq, u) to all servers.

C. View Changes

Several types of failure may occur during system execution,
such as the corruption of a site representative or the parti-
tioning away of the leader site. Such failures require delicate
handling to preserve safety and liveness.

To ensure that the system can continue to make progress
despite server or network failures, Steward uses timeout-
triggeredleader electionprotocols at both the local and global
levels of the hierarchy to select new protocol coordinators.
Each server maintains two timers, LocalT and GlobalT,
which expire if the server does not execute a new update
(i.e., make global progress) within the local or global timeout
period. When the LocalT timers of 2f + 1 servers within
a site expire, the servers replace the current representative.
Similarly, when the GlobalT timers of 2f + 1 servers in a

9

majority of sites expire, the sites replace the current leader
site. Our timeout mechanism is described in more detail in
Section VI-D.

While the leader election protocols guarantee progress if
sufficient synchrony and connectivity exist, Steward usesview
changeprotocols at both levels of the hierarchy to ensure
safe progress. The presence of benign or malicious failures
introduces a window of uncertainty with respect to pending
decisions that may (or may not) have been made in previous
views. For example, the new coordinator may not be able
to definitively determine if some server globally ordered an
update for a given sequence number. However, our view
change protocols guarantee thatif any server globally ordered
an update for that sequence number in a previous view, the
new coordinator will collect sufficient information to ensure
that it acts conservatively and respects the established binding
in the new view. This guarantee also applies to those Proposals
that may have been constructed in a previous local view within
the current global view.

Steward uses aconstraining mechanism to enforce this
conservative behavior. Before participating in the globalorder-
ing protocol, a correct server must become bothlocally con-
strainedandglobally constrainedby completing theLOCAL-
VIEW-CHANGE andGLOBAL-VIEW-CHANGE protocols (Fig. 8
and Fig. 11, respectively). The local constraint mechanism
ensures continuity across local views (when the site represen-
tative changes), and the global constraint mechanism ensures
continuity across global views (when the leader site changes).
Since the site representative coordinating the global ordering
protocol may ignore the constraints imposed by previous views
if it is faulty, all servers in the leader site become constrained,
allowing them to monitor the representative’s behavior and
preventing a faulty server from causing them to act in an
inconsistent way.

We now provide relevant details of our leader election and
view change protocols.

Leader Election: Steward uses two Byzantine fault-tolerant
leader election protocols. Each site runs theLOCAL-VIEW-
CHANGE protocol (Fig. 8) to elect its representative, and
the system runs theGLOBAL-LEADER-ELECTION protocol
(Fig. 9) to elect the leader site. Both leader election proto-
cols provide two important properties necessary for liveness.
Specifically, if the system is stable and does not make global
progress, (1) views are incremented consecutively, and (2)
stable servers remain in each view for approximately one
timeout period. We make use of these properties in our liveness
proof. We now describe the protocols in detail.

LOCAL-VIEW-CHANGE: When a server’s local timer, Lo-
cal T, expires, it increments its local view tolv and suggests
this view to the servers in its site by invokingTHRESHOLD-
SIGN on a NewRep(lv) message. When2f +1 stable servers
move to local viewlv, THRESHOLD-SIGN returns a signed
New Rep(lv) message to all stable servers in the site. Since
a signed NewRep(lv) message cannot be generated unless
2f + 1 servers suggest local viewlv, such a message is proof
that f + 1 correct servers within a site are in at least local
view lv. We say a server haspreinstalled local view lv if it
has a NewRep(lv) message. Servers send their latest NewRep
message to all other servers in the site, and, therefore, allstable
servers immediately move to the highest preinstalled view.A
server starts its LocalT timer only when its preinstalled view
equals its local view (i.e., it has a NewRep(lv) message where
its Local view = lv). Since at leastf +1 correct servers must
timeout (i.e., LocalT must expire) before a NewRep message
can be created for the next local view, the servers in the site
increment their views consecutively and remain in each local
view for at least a local timeout period. Moreover, if global
progress does not occur, then stable servers will remain in a
local view for one local timeout period.

10

Initial State:
Local view = 0
my preinstall proof = a priori proof that view 0 was preinstalled
RESET-LOCAL-TIMER()

LOCAL-VIEW-CHANGE()
A1. Upon Local T expiration:
A2. Local view++
A3. locally constrained ← False
A4. unsigned new rep ← Construct New Rep(Local view)
A5. invoke THRESHOLD-SIGN(unsigned new rep) //returns New Rep

B1. Upon THRESHOLD-SIGN returning New Rep(lv):
B2. Apply New Rep()
B3. SEND to all servers in site: New Rep

C1. Upon receiving New Rep(lv):
C2. Apply New Rep()

D1. Upon increasing Local preinstalled view:
D2. RELIABLE-SEND-TO-ALL-SITES(New Rep)
D3. SEND to all servers in site: New Rep
D4. RESET-LOCAL-TIMER(); Start Local T
D5. if representative of leader site
D6. invoke CONSTRUCT-LOCAL-CONSTRAINT(Pending proposal aru)
D7. if NOT globally constrained
D8. invoke GLOBAL VIEW CHANGE
D9. else
D10. my global constraints ← Construct Collected Global Constraints()
D11. SEND to all servers in site: My global constraints

Fig. 8. LOCAL-VIEW-CHANGE Protocol, used to elect a new siterepresentative when the current one is suspected to have failed. The protocol also ensures
that the servers in the leader site have enough knowledge of pending decisions to preserve safety in the new local view.

GLOBAL-LEADER-ELECTION:
A1. Upon Global T expiration:
A2. Global view++
A3. globally constrained ← False
A4. unsigned global vc ← Construct Global VC()
A5. invoke THRESHOLD-SIGN(unsigned global vc)

B1. Upon THRESHOLD-SIGN returning Global VC(gv):
B2. Apply Global VC to data structures
B3. ReliableSendToAllSites(Global VC)

C1. Upon receiving Global VC(gv):
C2. Apply Global VC to data structures

D1. Upon receiving Global Preinstall Proof(gv):
D2. Apply Global Preinstall Proof()

E1. Upon increasing Global preinstalled view:
E2. sorted vc messages ← sort Latest Global VC by gv
E3. proof ← last ⌊N/2⌋ + 1 Global VC messages in sorted vc messages
E4. ReliableSendToAllSites(proof)
E5. SEND to all local servers: proof
E6. RESET-GLOBAL-TIMER(); Start Global T
E7. if representative of leader site
E8. invoke GLOBAL-VIEW-CHANGE

Fig. 9. GLOBAL-LEADER-ELECTION Protocol. When the GlobalT timers of at least2f +1 servers in a majority of sites expire, the sites run a distributed,
global protocol to elect a new leader site by exchanging threshold-signed GlobalVC messages.

GLOBAL-LEADER-ELECTION: When a server’s GlobalT
timer, expires, it increments its global view togv and suggests
this global view to other servers in its site,S, by invok-
ing THRESHOLD-SIGN on a GlobalVC(S, gv) message. A
threshold-signed GlobalVC(S, gv) message proves that at
leastf+1 servers in siteS are in global viewgv or above. Site
S attempts to preinstall global viewgv by sending this mes-
sage to all other sites. A set of a majority of GlobalVC(gv)
messages (i.e.,global preinstall proof) proves that at leastf+1
correct servers in a majority of sites have moved to at least
global viewgv. If a server collects a global preinstall proof for
gv, we say it has preinstalled global viewgv. When a server
preinstalls a new global view, it sends the corresponding global

preinstall proof to all connected servers using theRELIABLE-
SEND-TO-ALL -SITES procedure (Fig. A-15), which ensures
that the message will arrive at all correct connected servers
despite the behavior of faulty site representatives. Therefore,
as soon as any stable server preinstalls a new global view,
all stable servers will preinstall this view. As in the local
representative election protocol, a server starts its Global T
timer only when its preinstalled view equals its global view.
Since the GlobalT timer of at leastf +1 correct servers must
timeout in a site before the site can construct a GlobalVC
message for the next global view, stable servers increment
their global views consecutively and remain in each global
view for at least one global timeout period.

11

CONSTRUCT-LOCAL-CONSTRAINT(int seq):
A1. if representative
A2. Request Local State ← ConstructRequestState(Global view, Local view, seq)
A3. SEND to all local servers: Request Local State

B1. Upon receiving Request Local State(gv, lv, s):
B2. invocation aru ← s
B3. if (Pending Proposal Aru < s)
B4. Request missing Proposals or Globally Ordered Update messages from representative
B5. if (Pending Proposal Aru ≥ s)
B6. Local Server State ← Construct Local Server State(s)
B7. SEND to the representative: Local Server State

C1. Upon collecting LSS Set with 2f+1 distinct Local Server State(invocation aru) messages:
C2. Local Collected Servers State ← Construct Bundle(LSS Set)
C3. SEND to all local servers: Local Collected Servers State

D1. Upon receiving Local Collected Servers State:
D2. if (all Local Server State messages in bundle contain invocation aru)
D3. if (Pending Proposal Aru ≥ invocation aru)
D4. Apply Local Collected Servers State to Local History
D5. locally constrained ← True
D6. return Local Collected Servers State

Fig. 10. CONSTRUCT-LOCAL-CONSTRAINT Protocol. The protocol is invoked by a newly-elected leader site representativeand involves the participation
of all servers in the leader site. Upon completing the protocol, a server becomes locally constrained and will act in a waythat enforces decisions made in
previous local views.

GLOBAL-VIEW-CHANGE:
A1. Upon invoking:
A2. Invoke CONSTRUCT-ARU(Global aru)// returns (Global Constraint, Aru Message)

B1. Upon CONSTRUCT-ARU returning (Global Constraint, Aru Message):
B2. Store Global Constraint
B3. if representative of leader site
B4. SEND to all sites: Aru Message

C1. Upon receiving Aru Message(site id, gv, site aru):
C2. if representative site
C3. SEND to all servers in site: Aru Message
C4. invoke CONSTRUCT-GLOBAL-CONSTRAINT(Aru Message) //returns Global Constraint

D1. Upon CONSTRUCT-GLOBAL-CONSTRAINT returning Global Constraint:
D2. if representative of non-leader site
D3. SEND to representative of leader site: Global Constraint

E1. Upon collecting GC SET with majority distinct Global Constraint messages:
E2. if representative
E3. Collected Global Constraints ← ConstructBundle(GC SET)
E4. SEND to all in site: Collected Global Constraints
E5. Apply Collected Global Constraints to Global History
E6. globally constrained ← True

F1. Upon receiving Collected Global Constraints:
F2. Apply Collected Global Constraints to Global History
F3. globally constrained ← True
F4. Pending proposal aru ← Global aru

Fig. 11. GLOBAL-VIEW-CHANGE Protocol, used to globally constrain the servers in a new leader site. These servers obtaininformation from a majority
of sites, ensuring that they will respect the bindings established by any updates that were globally ordered in a previous view.

Local View Changes: When a server is elected as the
representative of the leader site, it invokes theCONSTRUCT-
LOCAL-CONSTRAINT protocol (Fig. 10). The protocol guar-
antees sufficient intra-site reconciliation to safely make
progress after changing the site representative. As a result
of the protocol, servers becomelocally constrained, meaning
their LocalHistory data structures have enough information
about pending Proposals to preserve safety in the new lo-
cal view. Specifically, it prevents two conflicting Proposals,
P1(gv, lv, seq, u) and P2(gv, lv, seq, u′), with u 6= u′, from
being constructed in the same global view.

A site representative invokesCONSTRUCT-LOCAL-
CONSTRAINT by sending a sequence number,seq, to all
servers within the site. A server responds with a message

containing all PrepareCertificates and Proposals with a higher
sequence number thanseq. The representative computes the
union of 2f + 1 responses, eliminating duplicates and using
the entry from the latest view if multiple updates have
the same sequence number; it then broadcasts the union
within the site in the form of a LocalCollectedServersState
message. When a server receives this message, it applies
it to its Local History, adopting the bindings contained
within the union. Pseudocode for the procedures used within
CONSTRUCT-LOCAL-CONSTRAINT is contained in Fig. A-11
and Fig. A-12.

12

Global View Changes:A global view change is triggered
after a leader site election. In addition toTHRESHOLD-
SIGN, the global view change makes use of two other intra-
site protocols,CONSTRUCT-ARU and CONSTRUCT-GLOBAL-
CONSTRAINT, which we describe below. We then describe the
GLOBAL-VIEW-CHANGE protocol, which is listed in Fig. 11.

CONSTRUCT-ARU: The CONSTRUCT-ARU protocol is used
by the leader site during a global view change. It is similar to
CONSTRUCT-LOCAL-CONSTRAINT in that it provides intra-
site reconciliation, but it functions in the global context.
The protocol generates an AruMessage, which contains the
sequence number up to which at leastf + 1 correct servers
in the leader site have globally ordered all previous updates.
Pseudocode forCONSTRUCT-ARU is contained in Fig. A-9.

CONSTRUCT-GLOBAL-CONSTRAINT: The CONSTRUCT-
GLOBAL-CONSTRAINTprotocol is used by the non-leader sites
during a global view change. It generates a message reflecting
the state of the site’s knowledge above the sequence number
contained in the result ofCONSTRUCT-ARU. The leader site
collects these GlobalConstraint messages from a majority of
sites. Pseudocode forCONSTRUCT-GLOBAL-CONSTRAINT is
listed in Fig. A-10.

GLOBAL-VIEW-CHANGE: After completing theGLOBAL-
LEADER-ELECTION protocol, the representative of the new
leader site invokesCONSTRUCT-ARU with its Globalaru (i.e.,
the sequence number up to which it has globally ordered all
updates). The resulting threshold-signed AruMessage con-
tains the sequence number up to which at leastf + 1
correct servers within the leader site have globally ordered
all updates. The representative sends the AruMessage to all
other site representatives. Upon receiving this message, a
non-leader site representative invokesCONSTRUCT-GLOBAL-
CONSTRAINT and sends the resultant GlobalConstraint mes-
sage to the representative of the new leader site. Servers inthe
leader site use the GlobalConstraint messages from a majority
of sites to becomeglobally constrained, which restricts the
Proposals they will generate in the new view to preserve safety.

D. Timeouts

Steward uses timeouts to detect failures. If a server does not
execute updates, a local and, eventually, a global timeout will
occur. These timeouts cause the server to ”assume” that the
current local and/or global coordinator has failed. Accordingly,
the server attempts to elect a new local/global coordinatorby
suggesting new views. In this section, we describe the timeouts
that we use and how their relative values ensure liveness. The
timeouts in the servers have been carefully engineered to allow
a correct representative of the leader site to eventually order
an update.

Steward uses timeout-triggered protocols to elect new co-
ordinators. Intuitively, coordinators are elected for areign,
during which each server expects to make progress. If a
server does not make progress, its LocalT timer expires,
and it attempts to elect a new representative. Similarly, ifa
server’s GlobalT timer expires, it attempts to elect a new
leader site. In order to provide liveness, Steward changes
coordinators using three timeout values. These values cause

the coordinators of the global and local protocols to be elected
at different rates, guaranteeing that, during each global view,
correct representatives at the leader site can communicatewith
correct representatives at all stable non-leader sites. Wenow
describe the three timeouts.

Non-Leader Site Local Timeout (T1):Local T is set to this
timeout at servers in non-leader sites. When LocalT expires
at all stable servers in a site, they preinstall a new local view.
T1 must be long enough for servers in the non-leader site to
construct GlobalConstraint messages, which requires at least
enough time to completeTHRESHOLD-SIGN.

Leader Site Local Timeout (T2):Local T is set to this
timeout at servers in the leader site. T2 must be long enough to
allow the representative to communicate with all stable sites.
Observe that all non-leader sites do not need to have correct
representatives at the same time; Steward makes progress
as long as each leader site representative can communicate
with at least one correct server at each stable non-leader
site. We accomplish this by choosing T1 and T2 so that,
during the reign of a representative at the leader site,f + 1
servers reign for complete terms at each non-leader site. The
reader can think of the relationship between the timeouts as
follows: The time during which a server is representative at
the leader siteoverlapswith the time thatf + 1 servers are
representatives at the non-leader sites. Therefore, we require
that T 2 ≥ (f + 2) ∗ T 1. The factor f + 2 accounts for
the possibility that LocalT is already running at some of
the non-leader-site servers when the leader site elects a new
representative.

Global Timeout (T3):Global T is set to this timeout at
all servers, regardless of whether the server is in the leader
site. At least two correct representatives in the leader site
must serve complete terms during each global view. From the
relationship between T1 and T2, each of these representatives
will be able to communicate with a correct representative
at each stable site. If the timeouts are sufficiently long and
the system is stable, then the first correct server to serve a
full reign as representative at the leader site will complete
GLOBAL-VIEW-CHANGE. The second correct server will be
able to globally order and execute a new update, thereby
making global progress.

Our protocols do not assume synchronized clocks; however,
we do assume that the drift of the clocks at different serversis
small. This assumption is valid considering today’s technology.
In order to tolerate different clock rates at different correct
servers, each of the relationships given above can be multiplied
by the ratio of the fastest clock to the slowest.

Timeout management: We compute our timeout values
based on the global view as shown in Fig. 12. If the system
is stable, all stable servers will move to the same global view
(Fig. 9). Timeouts T1, T2, and T3 are deterministic functions
of the global view, guaranteeing that the timeout relationships
described above are met atevery stable server. Timeouts
double everyN global views, whereN is the number of
sites. Thus, if there is a time after which message delays do
not increase, then our timeouts eventually grow long enough
so that global progress can be made. Our protocol can be
modified so that our timeouts decrease if global progress is

13

RESET-GLOBAL-PROGRESS-TIMER():
A1. Global T ← GLOBAL-TIMEOUT()

RESET-LOCAL-TIMER():
B1. if in leader site
B2. Local T ← GLOBAL-TIMEOUT()/(f + 3)
B3. else
B4. Local T ← GLOBAL-TIMEOUT()/(f + 3)(f + 2)

GLOBAL TIMEOUT():
C1. return K ∗ 2⌈Global view/N⌉

Fig. 12. RESET-GLOBAL-TIMER and RESET-LOCAL-TIMER procedures. These procedures establish the relationships between Steward’s timeout values
at both the local and global levels of the hierarchy. Note that the local timeout at the leader site is longer than at the non-leader sites to ensure a correct
representative of the leader site has enough time to communicate with correct representatives at the non-leader sites.The values increase as a function of the
global view.

made.

VII. PERFORMANCEEVALUATION

To evaluate the performance of our hierarchical architecture,
we implemented a complete prototype of our protocol in-
cluding all necessary communication and cryptographic func-
tionality. In this paper we focus only on the networking and
cryptographic aspects of our protocols and do not consider
disk writes.

Testbed and Network Setup: We selected a network
topology consisting of 5 wide area sites and assumed at
most 5 Byzantine faults in each site, in order to quantify the
performance of our system in a realistic scenario. This requires
16 replicated servers in each site.

Our experimental testbed consists of a cluster with twenty
3.2 GHz, 64-bit Intel Xeon computers. Each computer can
compute a 1024-bit RSA signature in 1.3 ms and verify it
in 0.07 ms. For n=16, k=11, 1024-bit threshold cryptography
which we use for these experiments, a computer can compute a
partial signature and verification proof in 3.9 ms and combine
the partial signatures in 5.6 ms. The leader site was deployed
on 16 machines, and the other 4 sites were emulated by one
computer each. An emulating computer performed the role
of a representative of a complete 16 server site. Thus, our
testbed was equivalent to an 80 node system distributed across
5 sites. Upon receiving a message, the emulating computers
busy-waited for the time it took a 16 server site to handle that
packet and reply to it, including intra-site communicationand
computation. We determined busy-wait times for each type
of packet by benchmarking individual protocols on a fully
deployed, 16 server site. We used the Spines [34] messaging
system to emulate latency and throughput constraints on the
wide area links.

We compared the performance results of the above system
with those of BFT [19] on the same network setup with five
sites, run on the same cluster. Instead of using 16 servers in
each site, for BFT we used atotal of 16 servers across the
entire network. This allows for up to 5 Byzantine failures inthe
entire network for BFT, instead of up to 5 Byzantine failuresin
each site for Steward. Since BFT is a flat solution where there
is no correlation between faults and the sites in which they
can occur, we believe this comparison is fair. We distributed
the BFT servers such that four sites contain 3 servers each,
and one site contains 4 servers. All the write updates and read-

only queries in our experiments carried a payload of 200 bytes,
representing a common SQL statement.

We compared BFT to our similar intra-site agreement
protocol, ASSIGN-SEQUENCE. BFT performed slightly bet-
ter than ourASSIGN-SEQUENCE implementation because we
use somewhat larger messages. This supports our claim that
Steward’s performance advantage over BFT is due to its
hierarchical architecture and resultant wide area message
savings. Note that in our five-site test configuration, BFT
sends over twenty times more wide area messages per update
than Steward. This message savings is consistent with the
difference in performance between Steward and BFT shown
in the experiments that follow.

Bandwidth Limitation: We first investigate the benefits
of the hierarchical architecture in a symmetric configuration
with 5 sites, where all sites are connected to each other with
50 ms latency links (emulating crossing the continental US).

In the first experiment, clients inject write updates. Fig. 13
shows how limiting the capacity of wide area links affects
update throughput. As we increase the number of clients,
BFT’s throughput increases at a lower slope than Steward’s,
mainly due to the additional wide area crossing for each
update. Steward can process up to 84 updates/sec in all
bandwidth cases, at which point it is limited by CPU used to
compute threshold signatures. At 10, 5, and 2.5 Mbps, BFT
achieves about 58, 26, and 6 updates/sec, respectively. In each
of these cases, BFT’s throughput is bandwidth limited. We also
notice a reduction in the throughput of BFT as the number of
clients increases. We attribute this to a cascading increase in
message loss, caused by the lack of flow control in BFT. For
the same reason, we were not able to run BFT with more than
24 clients at 5 Mbps, and 15 clients at 2.5 Mbps. We believe
that adding a client queuing mechanism would stabilize the
performance of BFT to its maximum achieved throughput.

Fig. 14 shows that Steward’s average update latency slightly
increases with the addition of clients, reaching 190 ms at 15
clients in all bandwidth cases. As client updates start to be
queued, latency increases linearly. BFT exhibits a similartrend
at 10 Mbps, where the average update latency is 336 ms at
15 clients. As the bandwidth decreases, the update latency
increases heavily, reaching 600 ms at 5 Mbps and 5 seconds
at 2.5 Mbps, at 15 clients.

Adding Read-only Queries: Our hierarchical architec-
ture enables read-only queries to be answered locally. To
demonstrate this benefit, we conducted an experiment where

14

10 clients send random mixes of read-only queries and write
updates. We compared the performance of Steward and BFT
with 50 ms, 10 Mbps links, where neither was bandwidth
limited. Fig. 15 and Fig. 16 show the average throughput and
latency, respectively, of different mixes of queries and updates.
When clients send only queries, Steward achieves about 2.9 ms
per query, with a throughput of over 3,400 queries/sec. Since
queries are answered locally, their latency is dominated by
two RSA signatures, one at the originating client and one at
the servers answering the query. Depending on the mix ratio,
Steward performs 2 to 30 times better than BFT.

BFT’s read-only query latency is about 105 ms, and its
throughput is 95 queries/sec. This is expected, as read-only
queries in BFT need to be answered by at leastf +1 servers,
some of which are located across wide area links. BFT requires
at least 2f + 1 servers in each site to guarantee that it
can answer queries locally. Such a deployment, for 5 faults
and 5 sites, would require at least 55 servers, which would
dramatically increase communication for updates and reduce
BFT’s performance.

Wide Area Scalability: To demonstrate Steward’s scal-
ability on real networks, we conducted an experiment that
emulated a wide area network spanning several continents. We
selected five sites on the Planetlab network [35], measured
the latency and available bandwidth between all sites, and
emulated the network topology on our cluster. We ran the
experiment on our cluster because Planetlab machines lack
sufficient computational power. The five sites are located in
the US (University of Washington), Brazil (Rio Grande do
Sul), Sweden (Swedish Institute of Computer Science), Korea
(KAIST) and Australia (Monash University). The network
latency varied between 59 ms (US - Korea) and 289 ms (Brazil
- Korea). Available bandwidth varied between 405 Kbps(Brazil
- Korea) and 1.3 Mbps (US - Australia).

Fig. 17 shows the average write update throughput as we
increased the number of clients in the system, while Fig. 18
shows the average update latency. Steward is able to achieve
its maximum throughput of 84 updates/sec with 27 clients. The
latency increases from about 200 ms for one client to about
360 ms for 30 clients. BFT is bandwidth limited to about 9
updates/sec. The update latency is 631 ms for one client and
several seconds with more than 6 clients.

Comparison with Non-Byzantine Protocols: Since Stew-
ard deploys a lightweight fault-tolerant protocol betweenthe
wide area sites, we expect it to achieve performance com-
parable to existing benign fault-tolerant replication protocols.
We compare the performance of our hierarchical Byzantine
architecture with that of two-phase commit protocols. In [36]
we evaluated the performance of two-phase commit protocols
[11] using a WAN setup across the US, called CAIRN [37].
We emulated the topology of the CAIRN network using the
Spines messaging system, and we ran Steward and BFT on top
of it. The main characteristic of CAIRN is that East and West
Coast sites were connected through a single 38 ms, 1.86 Mbps
link.

Fig. 19 and Fig. 20 show the average throughput and
latency of write updates, respectively, of Steward and BFT
on the CAIRN network topology. Steward achieved about 51

updates/sec in our tests, limited mainly by the bandwidth of
the link between the East and West Coasts in CAIRN. In
comparison, an upper bound of two-phase commit protocols
presented in [36] was able to achieve 76 updates/sec. We
believe that the difference in performance is caused by the
presence of additional digital signatures in the message head-
ers of Steward, adding 128 bytes to the 200 byte payload
of each update. BFT achieved a maximum throughput of2.7
updates/sec and an update latency of over a second, except
when there was a single client.

Red-Team Results: In December 2005, DARPA conducted
a red-team experiment on our Steward implementation to
determine its practical survivability in the face of white-
box attacks. We provided the red team with system design
documents and gave them access to our source code; we also
worked closely with them to explain some of the delicate
issues in our protocol concerning safety and liveness. Per
the rules of engagement, the red team had complete control
over f replicas in each site and could declare success if it
(1) stopped progress or (2) caused consistency errors among
the replicas. The red team used both benign attacks, such
as packet reordering, packet duplication, and packet delay,
and Byzantine attacks, in which the red team ran its own
malicious server code. While progress was slowed down in
several of the tests, such as when all messages sent by the
representative of the leader site were delayed, the red team
was unable to block progress indefinitely and never caused
inconsistency. Thus, according to the rules of engagement,
none of the attacks succeeded. We plan to investigate ways to
ensure high performance under attack (which is stronger than
the eventual progress afforded by system liveness) in future
work.

VIII. P ROOF SKETCH

Appendix B contains a complete proof of correctness for
the safety and liveness properties listed in Section V. In this
section, we provide an outline of the proof.

A. Safety

We prove Safety by showing that two servers cannot glob-
ally order conflicting updates for the same sequence number.
The proof is divided into two main claims. In the first claim,
we show that any two servers which globally order an update
in the same global view for the same sequence number will
globally order the same update. To prove this claim, we
show that a leader site cannot construct conflicting Proposal
messages in the same global view. A conflicting Proposal has
the same sequence number as another Proposal, but it has a
differentupdate. Since globally ordering two different updates
for the same sequence number in the same global view would
require two different Proposals from the same global view, and
since only one Proposal can be constructed within a global
view, all servers that globally order an update for a given
sequence number in the same global view must order the same
update.

In the second claim, we show that any two servers which
globally order an update indifferentglobal views for the same

15

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward 10 Mbps
Steward 5 Mbps
Steward 2.5 Mbps

BFT 10 Mbps
BFT 5 Mbps

BFT 2.5 Mbps

Fig. 13. Write Update Throughput

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward 10 Mbps
Steward 5 Mbps
Steward 2.5 Mbps

BFT 10 Mbps
BFT 5 Mbps
BFT 2.5 Mbps

Fig. 14. Write Update Latency

 0

 100

 200

 300

 400

 500

 100 90 80 70 60 50 40 30 20 10 0

T
hr

ou
gh

pu
t (

ac
tio

ns
/s

ec
)

Write Updates (%)

Steward
BFT

Fig. 15. Update Mix Throughput - 10 Clients

 0

 50

 100

 150

 200

 250

 300

 350

 100 90 80 70 60 50 40 30 20 10 0

La
te

nc
y

(m
s)

Write Updates (%)

Steward
BFT

Fig. 16. Update Mix Latency - 10 Clients

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward
BFT

Fig. 17. WAN Emulation - Write Update Throughput

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
BFT

Fig. 18. WAN Emulation - Write Update Latency

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 5 10 15 20 25 30

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward
BFT

Fig. 19. CAIRN Emulation - Write Update Throughput

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
BFT

Fig. 20. CAIRN Emulation - Write Update Latency

16

sequence number must order the same update. To prove this
claim, we show that a leader site from a later global view
cannot construct a Proposal conflicting with one used by a
server in an earlier global view to globally order an update
for that sequence number. The value that may be contained
in a Proposal for this sequence number is thusanchored.
Since no Proposals can be created that conflict with the one
that has been globally ordered, no correct server can globally
order a different update with the same sequence number.
Since a server only executes an update once it has globally
ordered an update for all previous sequence numbers, two
servers executing theith update will therefore execute the
same update.

B. Liveness

We prove Global Liveness by contradiction. We assume that
global progress does not occur and show that, if the system
is stable and a stable server receives an update which it has
not executed, then the system will reach a state in which some
stable serverwill execute an update and make global progress.
The proof is divided into three main claims, which we outline
below.

In the first claim, we show that, if no global progress occurs,
then all stable servers eventually reconcile their GlobalHistory
data structures to the maximum sequence number through
which any stable server has executed all updates. By definition,
if any stable server executes an update beyond this point,
global progress will have been made, and we will have reached
a contradiction.

The second claim shows that, once the above reconciliation
has completed, the system eventually reaches a state in which
a stable representative of a stable leader site remains in power
for sufficiently long to be able to complete the global view
change protocol; this is a precondition for globally ordering
a new update (which would imply global progress). To prove
the second claim, we first prove three subclaims. The first two
subclaims show that, eventually, the stable sites will move
through global views together, and within each stable site,
the stable servers will move through local views together. The
third subclaim establishes relationships between the global and
local timeouts, which we use to show that the stable servers
will eventually remain in their views long enough for global
progress to be made.

Finally, in the third claim, we show that a stable represen-
tative of a stable leader site will eventually be able to globally
order (and execute) an update which it has not previously
executed. To prove this claim, we first show that the same
update cannot be globally ordered on two different sequence
numbers. This implies that when the representative executes
an update, global progress will occur: no correct server has
previously executed the update, since otherwise, by our rec-
onciliation claim, all stable servers would have eventually
executed the update and global progress would have occurred
(which contradicts our assumption). We then show that each of
the local protocols invoked during the global ordering protocol
(i.e., CONSTRUCT-LOCAL-CONSTRAINT, THRESHOLD-SIGN,
andASSIGN-SEQUENCE) will complete in bounded finite time.

Since the duration of our timeouts are a function of the global
view, and stable servers preinstall consecutive global views,
the stable servers will eventually reach a global view in which
a new update can be globally ordered and executed, which
implies global progress.

IX. CONCLUSION

This paper presented a hierarchical architecture that enables
efficient scaling of Byzantine replication to systems that span
multiple wide area sites, each consisting of several poten-
tially malicious replicas. The architecture reduces the message
complexity on wide area updates, increasing the system’s
scalability. By confining the effect of any malicious replica
to its local site, the architecture enables the use of a benign
fault-tolerant algorithm over the WAN, increasing system
availability. Further increase in availability and performance
is achieved by the ability to process read-only queries within
a site.

We implemented Steward, a fully functional prototype that
realizes our architecture, and evaluated its performance over
several network topologies. The experimental results show
considerable improvement over flat Byzantine replication al-
gorithms, bringing the performance of Byzantine replication
closer to existing benign fault-tolerant replication techniques
over WANs.

ACKNOWLEDGMENT

Yair Amir thanks his friend Dan Schnackenberg for intro-
ducing him to this problem area and for conversations on this
type of solution. He will be greatly missed.

This work was partially funded by DARPA grant FA8750-
04-2-0232, and by NSF grants 0430271 and 0430276.

REFERENCES

[1] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Scaling byzantine fault-tolerant replication to
wide area networks,” inDSN ’06: Proceedings of the International Con-
ference on Dependable Systems and Networks (DSN’06). Washington,
DC, USA: IEEE Computer Society, 2006, pp. 105–114.

[2] A. Avizeinis, “The n-version approach to fault-tolerant software,” IEEE
Transactions of Software Engineering, vol. SE-11, no. 12, pp. 1491–
1501, December 1985.

[3] “Genesis: A framework for achieving component diversity,
http://www.cs.virginia.edu/genesis/.”

[4] M. J. Fischer, “The consensus problem in unreliable distributed systems
(a brief survey),” inFundamentals of Computation Theory, 1983, pp.
127–140.

[5] D. Dolev and H. R. Strong, “Authenticated algorithms forbyzantine
agreement,”SIAM Journal of Computing, vol. 12, no. 4, pp. 656–666,
1983.

[6] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An
approach to designing fault-tolerant computing systems,”Computer
Systems, vol. 1, no. 3, pp. 222–238, 1983.

[7] M. K. Reiter, “The Rampart Toolkit for building high-integrity services,”
in Selected Papers from the International Workshop on Theory and
Practice in Distributed Systems. London, UK: Springer-Verlag, 1995,
pp. 99–110.

[8] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing
protocols for securing group communication,” inProceedings of the
IEEE 31st Hawaii International Conference on System Sciences, vol. 3,
Kona, Hawaii, January 1998, pp. 317–326.

17

[9] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders,
M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber, P. Pal,R. Watro,
and J. Gossett, “Providing intrusion tolerance with itua,”in Supplement
of the 2002 International Conference on Dependable Systemsand
Networks, June 2002.

[10] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders,
“Quantifying the cost of providing intrusion tolerance in group commu-
nication systems,” inThe 2002 International Conference on Dependable
Systems and Networks (DSN-2002), June 2002.

[11] K. Eswaran, J. Gray, R. Lorie, and I. Taiger, “The notions of consistency
and predicate locks in a database system,”Communication of the ACM,
vol. 19, no. 11, pp. 624–633, 1976.

[12] D. Skeen, “A quorum-based commit protocol,” in6th Berkeley Workshop
on Distributed Data Management and Computer Networks, 1982, pp.
69–80.

[13] L. Lamport, “The part-time parliament,”ACM Transactions on
Computer Systems, vol. 16, no. 2, pp. 133–169, May 1998. [Online].
Available: http://www.acm.org:80/pubs/citations/journals/tocs/1998-16-
2/p133-lamport/

[14] Lamport, “Paxos made simple,”SIGACTN: SIGACT News (ACM Special
Interest Group on Automata and Computability Theory), vol. 32, 2001.

[15] D. Malkhi and M. K. Reiter, “Secure and scalable replication in
phalanx,” inSRDS ’98: Proceedings of the The 17th IEEE Symposium on
Reliable Distributed Systems. Washington, DC, USA: IEEE Computer
Society, 1998, p. 51.

[16] D. Malkhi and M. Reiter, “Byzantine quorum systems,”Journal of
Distributed Computing, vol. 11, no. 4, pp. 203–213, 1998.

[17] ——, “An architecture for survivable coordination in large distributed
systems,” IEEE Transactions on Knowledge and Data Engineering,
vol. 12, no. 2, pp. 187–202, 2000.

[18] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind, “Persistent objects
in the fleet system,” inThe 2nd DARPA Information Survivability
Conference and Exposition (DISCEX II). (2001), June 2001.

[19] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,”ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, 2002.

[20] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for byzantine fault-tolerant services,”
in SOSP, 2003.

[21] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Trans.
Dependable Secur. Comput., vol. 3, no. 3, pp. 202–215, 2006.

[22] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo, “Efficient
byzantine-resilient reliable multicast on a hybrid failure model,” inProc.
of the 21st Symposium on Reliable Distributed Systems, Suita, Japan,
Oct. 2002.

[23] P. Verissimo, “Uncertainty and predictability: Can they be reconciled,”
in Future Directions in Distributed Computing, ser. LNCS, no. 2584.
Springer-Verlag, 2003.

[24] “Survivable spread: Algorithms and assurance argument,” The Boeing
Company, Tech. Rep. Technical Information Report Number D950-
10757-1, July 2003.

[25] Y. G. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO
’89: Proceedings on Advances in cryptology. New York, NY, USA:
Springer-Verlag New York, Inc., 1989, pp. 307–315.

[26] A. Shamir, “How to share a secret,”Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[27] V. Shoup, “Practical threshold signatures,”Lecture Notes in
Computer Science, vol. 1807, pp. 207–223, 2000. [Online]. Available:
citeseer.ist.psu.edu/shoup99practical.html

[28] P. Feldman, “A Practical Scheme for Non-Interactive Verifiable Secret
Sharing,” inProceedings of the 28th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society. Los Angeles, CA, USA:
IEEE, October 1987, pp. 427–437.

[29] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold
dss signatures,”Inf. Comput., vol. 164, no. 1, pp. 54–84, 2001.

[30] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,”Communications of the
ACM, vol. 21, no. 2, pp. 120–126, Feb. 1978.

[31] L. Lamport, “Time, clocks, and the ordering of events ina distributed
system,”Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[32] F. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,”ACM Computing Surveys,
vol. 22, no. 4, pp. 299–319, 1990. [Online]. Available:
citeseer.ist.psu.edu/schneider90implementing.html

[33] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,”J. ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[34] “The spines project, http://www.spines.org/.”
[35] “Planetlab,” http://www.planet-lab.org/.
[36] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, “On the

performance of consistent wide-area database replication, Tech. Rep.
CNDS-2003-3, December 2003.

[37] “The CAIRN Network,” http://www.isi.edu/div7/CAIRN/.

18

APPENDIX A
COMPLETE PSEUDOCODE

In this section we provide complete pseudocode for Stew-
ard. We then use this pseudocode in Appendix B to prove the
safety and liveness of our protocol.

19

/* Notation: <== means append */
UPDATE-LOCAL-DATA-STRUCTURES:

case message:
A1. Pre-Prepare(server id, *, lv, seq, u):
A2. if Local History[seq].Pre-Prepare is empty
A3. Local History[seq].Pre-Prepare ← Pre-Prepare
A4. else
A5. ignore Pre-Prepare

B1. Prepare(server id, *, lv, seq, digest):
B2. if Local History[seq].Pre-Prepare is empty
B3. ignore Prepare
B4. if Local History[seq].Prepare List contains a Prepare with server id
B5. ignore Prepare
B6. Local History[seq].Prepare List <== Prepare
B7. if Prepare Certificate Ready(seq)
B8. pre-prepare ← Local History[seq].Pre-Prepare
B9. PC ← Construct Prepare Certificate(pre-prepare, Local History[seq].Prepare List)
B10. Local History[seq].Prepare Certificate ← PC

C1. Partial Sig(server id, data, partial sig, verification proof, sig):
C2. if Local History.Partial Sigs{ data }[Server id] is empty
C3. ignore Partial Sig
C4. Local History.Partial Sigs{ data }[server id] ← Partial Sig

D1. Local Collected Server State(gv, lv, Local Server State[]):
D2. union ← Compute Local Union(Local Collected Server State)
D3. invocation aru ← Extract Invocation Aru(Local Server State[])
D4. max local entry ← Extract Max Local Entry(Local History[])
D5. for each seq from (invocation aru+1) to max local entry
D6. if Local History[seq].Prepare Certificate(*, lv’, seq, *) exists and lv’ < lv
D7. clear Local History[seq].Prepare Certificate
D8. if Local History[seq].Proposal(*, lv’, seq, *) exists and lv’ < lv
D9. clear Local History[seq].Proposal
D10. if Local History[seq].Pre-Prepare(*, lv’, seq, *) exists and lv’ < lv
D11. clear Local History[seq].Pre-Prepare
D12. for each Prepare Certificate(*, *, seq, *), PC, in union
D13. if Local History[seq].Prepare Certificate is empty
D14. Local History[seq].Prepare Certificate ← PC
D15. for each Proposal(*, *, seq, *), P, in union
D16. if Local History[seq].Proposal is empty
D17. Local History[seq].Proposal ← P

E1. New Rep(site id,lv):
E2. if (lv > Latest New Rep[site id])
E3. Latest New Rep[site id] ← New Rep
E4. Local preinstalled view ← Latest New Rep[Site id]

F1. Update(u):
F2. SEND to all servers in site: Update(u)
F3. if representative of non-leader site
F4. SEND to representative of leader site: Update(u)
F5. Add Update(u) to Update Pool

Fig. A-1. Rules for applying a message to the LocalHistory data structure. The rules assume that there is no conflict, i.e., Conflict(message) == FALSE

20

/* Notation: <== means append */
UPDATE-GLOBAL-DATA-STRUCTURES:

case message:
A1. Proposal P(site id, gv, *, seq, u):
A2. if Global History[seq].Proposal is empty
A3. Global History[seq].Proposal ← P
A4. if server in leader site
A5. Recompute Pending proposal aru
A6. if Global History[seq].Prepare Certificate is not empty
A7. remove Prepare Certificate from Global History[seq].Prepare Certificate
A8. if Global History[seq].Proposal contains Proposal(site id’, gv’, *, seq, u’)
A9. if gv > gv’
A10. Global History[seq].Proposal ← P
A11. if server in leader site
A12. Recompute Pending proposal aru
A13. if Global History[seq].Prepare Certificate is not empty
A14. remove Prepare Certificate from Global History[seq].Prepare Certificate

B1. Accept A(site id, gv, *, seq, digest):
B2. if Global History[seq].Proposal is empty
B3. ignore A
B4. if Global History[seq].Accept List is empty
B5. Global History[seq].Accept List <== A
B6. if Global History[seq].Accept List has any Accept(site id, gv’, *, seq, digest’)
B7. if gv > gv’
B8. discard all Accepts in Global History[seq]
B9. Global History[seq].Accept List <== A
B10. if gv == gv’ and Global History[seq] does not have Accept from site id
B11. Global History[seq].Accept List <== A
B12. if gv < gv’
B13. ignore A
B14. if Globally Ordered Ready(seq)
B15. Construct globally ordered update from Proposal and list of Accepts
B16. Apply globally ordered update to Global History

C1. Globally Ordered Update G(gv, seq, u):
C2. if not Globally Ordered(seq) and Is Contiguous(seq)
C3. Global History[seq].Globally Ordered Update ← G
C4. Recompute Global aru
C5. exec set ← all unexecuted globally ordered updates with seq ≤ Global aru
C6. execute the updates in exec set
C7. if there exists at least one Globally Ordered Update(*, *, *) in exec set
C8. RESET-GLOBAL-TIMER()
C9. RESET-LOCAL-TIMER()
C10. if server in leader site
C11. Recompute Pending proposal aru

D1. Collected Global Constraints(gv, Global Constraint[]):
D2. union ← Compute Constraint Union(Collected Global Constraints)
D3. invocation aru ← Extract Invocation Aru(Global Constraint[])
D4. max global entry ← Extract Max Global Entry(Global History[])
D5. for each seq from (invocation aru+1) to max global entry
D6. if Global History[seq].Prepare Certificate(gv’, *, seq, *) exists and gv’ < gv
D7. clear Global History[seq].Prepare Certificate
D8. if Global History[seq].Proposal(gv’, *, seq, *) exists and gv’ < gv
D9. clear Global History[seq].Proposal
D10. for each Globally Ordered Update(*, *, seq, *), G, in union
D11. Global History[seq].Globally Ordered Update ← G
D12. for each Proposal(*, *, seq, *), P, in union
D13. if Global History[seq].Proposal is empty
D14. Global History[seq].Proposal ← P

E1. Global VC(site id, gv):
E2. if (gv > Latest Global VC[site id].gv)
E3. Latest Global VC[site id] ← Global VC
E4. sorted vc messages ← sort Latest Global VC by gv
E5. Global preinstalled view ← sorted vc messages[⌊N/2⌋ + 1].gv
E6. if (Global preinstalled view > Global view)
E7. Global view ← Global preinstalled view
E8. globally constrained ← False

F1. Global Preinstall Proof(global vc messages[]):
F2. for each Global VC(gv) in global vc messsages[]
F3. Apply Global VC

Fig. A-2. Rules for applying a message to the GlobalHistory data structure. The rules assume that there is no conflict, i.e., Conflict(message) == FALSE

21

A1. boolean Globally Ordered(seq):
A2. if Global History[seq].Globally Ordered Update is not empty
A3. return TRUE
A4. return FALSE

B1. boolean Globally Ordered Ready(seq):
B2. if Global History.Proposal[seq] contains a Proposal(site id, gv, lv, seq, u)
B3. if Global History[seq].Accept List contains (majority-1) of distinct

Accept(site id(i), gv, lv, seq, Digest(u)) with site id(i) 6= site id
B4. return TRUE
B5. if Global History[seq].Accept List contains a majority of distinct
B6. Accept(site id(i), gv’, lv, seq, Digest(u)) with gv >= gv’
B7. return TRUE
B8. return FALSE

C1. boolean Prepare Certificate Ready(seq):
C2. if Local History.Proposal[seq] contains a Pre-Prepare(server id, gv, lv, seq, u)
C3. if Local History[seq].Prepare List contains 2f distinct

Prepare(server id(i), gv, lv, seq, d) with server id 6= server id(i) and d == Digest(u)
C4. return TRUE
C5. return FALSE

D1. boolean In Window(seq):
D2. if Global aru < seq ≤ Global aru + W
D3. return TRUE
D4. else
D5. return FALSE

E1. boolean Is Contiguous(seq):
E2. for i from Global aru+1 to seq-1
E3. if Global History[seq].Prepare-Certificate == NULL and
E4. Global History[seq].Proposal == NULL and
E5. Global History[seq].Globally Ordered Update == NULL and
E6. Local History[seq].Prepare-Certificate == NULL and
E7. Local History[seq].Proposal == NULL
E8. return FALSE
E9. return TRUE

Fig. A-3. Predicate functions used by the global and local protocols to determine if and how a message should be applied toa server’s data structures.

boolean Valid(message):
A1. if message has threshold RSA signature S
A2. if NOT VERIFY(S)
A3. return FALSE
A4. if message has RSA-signature S
A5. if NOT VERIFY(S)
A6. return FALSE
A7. if message contains update with client signature C
A8. if NOT VERIFY(C)
A9. return FALSE
A10. if message.sender is in Corrupted Server List
A11. return FALSE
A12. return TRUE

Fig. A-4. Validity checks run on each incoming message. Invalid messages are discarded.

22

boolean Conflict(message):
case message

A1. Proposal((site id, gv, lv, seq, u):
A2. if gv 6= Global view
A3. return TRUE
A4. if server in leader site
A5. return TRUE
A6. if Global History[seq].Global Ordered Update(gv’, seq, u’) exists
A7. if (u’ 6= u) or (gv’ > gv)
A8. return TRUE
A9. if not Is Contiguous(seq)
A10. return TRUE
A11. if not In Window(seq)
A12. return TRUE
A13. return FALSE

B1. Accept(site id, gv, lv, seq, digest):
B2. if gv 6= Global view
B3. return TRUE
B4. if (Global History[seq].Proposal(*, *, *, seq, u’) exists) and (Digest(u’) 6= digest)
B5. return TRUE
B6. if Global History[seq].Global Ordered Update(gv’, seq, u’) exists
B7. if (Digest(u’) 6= digest) or (gv’ > gv)
B8. return TRUE
B9. return FALSE

C1. Aru Message(site id, gv, site aru):
C2. if gv 6= Global view
C3. return TRUE
C4. if server in leader site
C5. return TRUE
C6. return FALSE

D1. Request Global State(server id, gv, lv, aru):
D2. if (gv 6= Global view) or (lv 6= Local view)
D3. return TRUE
D4. if server id 6= lv mod num servers in site
D5. return TRUE
D6. return FALSE

E1. Global Server State(server id, gv, lv, seq, state set):
E2. if (gv 6= Global view) or (lv 6= Local view)
E3. return TRUE
E4. if not representative
E5. return TRUE
E6. if entries in state set are not contiguous above seq
E7. return TRUE
E8. return FALSE

F1. Global Collected Servers State(server id, gv, lv, gss set):
F2. if (gv 6= Global view) or (lv 6= Local view)
F3. return TRUE
F4. if each message in gss set is not contiguous above invocation seq
F5. return TRUE

G1. Global Constraint(site id, gv, seq, state set):
G2. if gv 6= Global view
G3. return TRUE
G4. if server not in leader site
G5. return TRUE
G6. return FALSE

H1. Collected Global Constraints(server id, gv, lv, gc set):
H2. if gv 6= Global view
H3. return TRUE
H4. aru ← Extract Aru(gc set)
H5. if Global aru < aru
H6. return TRUE
H7. return FALSE

Fig. A-5. Conflict checks run on incoming messages used in theglobal context. Messages that conflict with a server’s current global state are discarded.

23

boolean Conflict(message):
case message

A1. Pre-Prepare(server id, gv, lv, seq, u):
A2. if not (globally constrained && locally constrained)
A3. return TRUE
A4. if server id 6= lv mod num servers in site
A5. return TRUE
A6. if (gv 6= Global view) or (lv 6= Local view)
A7. return TRUE
A8. if Local History[seq].Pre-Prepare(server id, gv, lv, seq, u’) exists and u’ 6= u
A9. return TRUE
A10 if Local History[seq].Prepare Certificate.Pre-Prepare(gv, lv’, seq, u’) exists and u’ 6= u
A11. return TRUE
A12. if Local History[seq].Proposal(site id, gv, lv’, u’) exists
A13. if (u’ 6= u) or (lv’ > lv)
A14. return TRUE
A15. if Global History[seq].Proposal(site id, gv’, lv’, seq, u’) exists
A16. if (u’ 6= u) or (gv’ > gv)
A17. return TRUE
A18. if Global History[seq].Globally Ordered Update(*, seq, u’) exists
A19. if (u’ 6= u)
A20. return TRUE
A21. if not Is Contiguous(seq)
A22. return TRUE
A23. if not In Window(seq)
A24. return TRUE
A25. if u is bound to seq’ in Local History or Global History
A26. return TRUE
A27. return FALSE

B1. Prepare(server id, gv, lv, seq, digest):
B2. if not (globally constrained && locally constrained)
B3. return TRUE
B4. if (gv 6= Global view) or (lv 6= Local view)
B5. return TRUE
B6. if Local History[seq].Pre-Prepare(server id’, gv, lv, seq, u) exists
B7. if digest 6= Digest(u)
B8. return TRUE
B9. if Local History[seq].Prepare Certificate.Pre-Prepare(gv, lv’, seq, u) exists
B10. if (digest 6= Digest(u)) or (lv’ > lv)
B11. return TRUE
B12. if Local History[seq].Proposal(gv, lv’, seq, u) exists
B13. if (digest 6= Digest(u)) or (lv’ > lv)
B14. return TRUE
B15. return FALSE

C1. Request Local State(server id, gv, lv, aru):
C2. if (gv 6= Global view) or (lv 6= Local view)
C3. return TRUE
C4. if server id 6= lv mod num servers in site
C5. return TRUE
C6. return FALSE

D1. Local Server State(server id, gv, lv, seq, state set):
D2. if (gv 6= Global view) or (lv 6= Local view)
D3. return TRUE
D4. if not representative
D5. return TRUE
D6. if entries in state set are not contiguous above seq
D7. return TRUE
D8. return FALSE

E1. Local Collected Servers State(server id, gv, lv, lss set):
E2. if (gv 6= Global view) or (lv 6= Local view)
E3. return TRUE
E4. if each message in lss set is not contiguous above invocation seq
E5. return TRUE
E6. return FALSE

Fig. A-6. Conflict checks run on incoming messages used in thelocal context. Messages that conflict with a server’s current local state are discarded.

24

THRESHOLD SIGN(Data s data, int server id):
A1. Sig Share ← GENERATE SIGNATURE SHARE(data, server id)
A2. SEND to all local servers: Sig Share

B1. Upon receiving a set, Sig Share Set, of 2f+1 Sig Share from distinct servers:
B2. signature ← COMBINE(Sig Share Set)
B3. if VERIFY(signature)
B4. return signature
B5. else
B6. for each S in Sig Share Set
B7. if NOT VERIFY(S)
B8. REMOVE(S, Sig Share Set)
B9. ADD(S.server id, Corrupted Servers List)
B9. Corrupted Server ← CORRUPTED(S)
B10. SEND to all local servers: Corrupted Server
B11. continue to wait for more Sig Share messages

Fig. A-7. THRESHOLD-SIGN Protocol, used to generate a threshold signature on a message. The message can then be used in a global protocol.

Get Next To Propose():
A1. u ← NULL
A2. if(Global History[Global seq].Proposal is not empty)
A3. u ← Global History[Global seq].Proposal.Update
A4. else if(Local History[Global seq].Prepare Certificate is not empty)
A5. u ← Local History[Global seq].Prepare Certificate.Update
A6. else if(Unconstrained Updates is not empty)
A7. u ← Unconstrained Updates.Pop Front()
A8. return u

Fig. A-8. GetNext To Propose Procedure. For a given sequence number, the procedure returns (1) the update currently bound to that sequence number, (2)
some update not currently bound to any sequence number, or (3) NULL if the server does not have any unbound updates.

25

CONSTRUCT-ARU(int seq):
A1. if representative
A2. Request Global State ← ConstructRequestState(Global view, Local view, seq)
A3. SEND to all local servers: Request Global State

B1. Upon receiving Request Global State(gv, lv, s):
B2. invocation aru ← s
B3. if (Global aru < s)
B4. Request missing Globally Ordered Updates from representative
B5. if (Global aru ≥ s)
B6. Global Server State ← Construct Global Server State(s)
B7. SEND to the representative: Global Server State

C1. Upon collecting GSS Set with 2f+1 distinct Global Server State(invocation aru) messages:
C2. Global Collected Servers State ← Construct Bundle(GSS Set)
C3. SEND to all local servers: Global Collected Servers State

D1. Upon receiving Global Collected Servers State:
D2. if (all Global Server State message in bundle contain invocation aru)
D3. if(Global aru ≥ invocation aru)
D4. union ← Compute Global Union(Global Collected Servers State)
D5. for each Prepare Certificate, PC(gv, lv, seq, u), in union
D6. Invoke THRESHOLD SIGN(PC) //Returns Proposal

E1. Upon THRESHOLD SIGN returning Proposal P(gv, lv, seq, u):
E2. Global History[seq].Proposal ← P

F1. Upon completing THRESHOLD SIGN on all Prepare Certificates in union:
F2. Invoke THRESHOLD SIGN(union) //Returns Global Constraint

G1. Upon THRESHOLD SIGN returning Global Constraint:
G2. Apply each Globally Ordered Update in ConstraintMessage to Global History
G3. union aru ← Extract Aru(union)
G4. Invoke THRESHOLD SIGN(union aru) //Returns Aru Message

H1. Upon THRESHOLD SIGN returning Aru Message:
H2. return (Global Constraint, Aru Message)

Fig. A-9. CONSTRUCT-ARU Protocol, used by the leader site togenerate an AruMessage during a global view change. The AruMessage contains a
sequence number through which at leastf + 1 correct servers in the leader site have globally ordered allupdates.

CONSTRUCT-GLOBAL-CONSTRAINT(Aru Message A):
A1. invocation aru ← A.seq
A2. Global Server State ← Construct Global Server State(global context, A.seq)
A3. SEND to the representative: Global Server State

B1. Upon collecting GSS Set with 2f+1 distinct Global Server State(invocation aru) messages:
B2. Global Collected Servers State ← Construct Bundle(GSS Set)
B3. SEND to all local servers: Global Collected Servers State

C1. Upon receiving Global Collected Servers State:
C2. if (all Global Server State messages in bundle contain invocation aru)
C3. union ← Compute Global Union(Global Collected Servers State)
C4. for each Prepare Certificate, PC(gv, lv, seq, u), in union
C5. Invoke THRESHOLD SIGN(PC) //Returns Proposal

D1. Upon THRESHOLD SIGN returning Proposal P(gv, lv, seq, u):
D2. Global History[seq].Proposal ← P

E1. Upon completing THRESHOLD SIGN on all Prepare Certificates in union:
E2. Invoke THRESHOLD SIGN(union) //Returns Global Constraint

F1. Upon THRESHOLD SIGN returning Global Constraint:
F2. return Global Constraint

Fig. A-10. CONSTRUCT-GLOBAL-CONSTRAINT Protocol, used bythe non-leader sites during a global view change to generatea GlobalConstraint
message. The GlobalConstraint contains Proposals and GloballyOrderedUpdates for all sequence numbers greater than the sequence number contained in
the Aru Message, allowing the servers in the leader site to enforce decisions made in previous global views.

26

Construct Local Server State(seq):
A1. state set ← ∅
A2. For each sequence number i from (seq + 1) to (Global Aru + W):
A3. if Local History[i].Proposal, P, exists
A4. state set ← state set ∪ P
A5. else if Local History[i].Prepare Certificate, PC, exists:
A6. state set ← state set ∪ PC
A7. return Local Server State(Server id, gv, lv, seq, state set)

Construct Global Server State(seq):
B1. state set ← ∅
B2. For each sequence number i from (seq + 1) to (Global aru + W):
B3. if Global History[i].Globally Ordered Update, G, exists
B4. state set ← state set ∪ G
B5. else if Global History[i].Proposal, P, exists:
B6. state set ← state set ∪ P
B7. else if Global History[i].Prepare Certificate, PC, exists:
B8. state set ← state set ∪ PC
B9. return Global Server State(Server id, gv, lv, seq, state set)

Fig. A-11. Construct Server State Procedures. During localand global view changes, individual servers use these procedures to generate LocalServerState
and GlobalServerState messages. These messages contain entries for each sequence number, above some invocation sequence number, to which a server
currently has an update bound.

// Assumption: all entries in css are from Global view
Compute Local Union(Local Collected Servers State css):
A1. union ← ∅
A2. css unique ← Remove duplicate entries from css
A3. seq list ← Sort entries in css unique by increasing (seq, lv)

B1. For each item in seq list
B2. if any Proposal P
B3. P ∗ ← Proposal from latest local view
B4. union ← union ∪ P ∗

B5. else if any Prepare Certificate PC
B6. PC∗ ← PC from latest local view
B7. union ← union ∪ PC∗

B8. return union

Compute Global Union(Global Collected Servers State css):
C1. union ← ∅
C2. css unique ← Remove duplicate entries from css
C3. seq list ← Sort entries in css unique by increasing (seq, gv, lv)

D1. For each item in seq list
D2. if any Globally Ordered Update
D3. G∗ ← Globally Ordered Update with Proposal from latest view (gv, lv)
D4. union ← union ∪ G∗

D5. else
D6. MAX GV ← global view of entry with latest global view
D7. if any Proposal from MAX GV
D8. P ∗ ← Proposal from MAX GV and latest local view
D9. union ← union ∪ P ∗

D10. else if any Prepare Certificate PC from MAX GV
D11. PC∗ ← PC from MAX GV and latest local view
D12. union ← union ∪ PC∗

D13. return union

Compute Constraint Union(Collected Global Constraints cgc):
E1. union ← ∅
E2. css unique ← Remove duplicate entries from cgc
E3. seq list ← Sort entries in css unique by increasing (seq, gv)

F1. For each item in seq list
F2. if any Globally Ordered Update
F3. G∗ ← Globally Ordered Update with Proposal from latest view (gv, lv)
F4. union ← union ∪ G∗

F5. else
F6. MAX GV ← global view of entry with latest global view
F7. if any Proposal from MAX GV
F8. P ∗ ← Proposal from MAX GV and latest local view
F9. union ← union ∪ P ∗

F10. return union

Fig. A-12. ComputeUnion Procedures. The procedures are used during local and global view changes. For each entry in the input set, the procedures remove
duplicates (based on sequence number) and, for each sequence number, take the appropriate entry from the latest view.

27

LOCAL-RECONCILIATION:
A1. Upon expiration of LOCAL RECON TIMER:
A2. local session seq++
A3. requested aru ← Global aru
A4. Local Recon Request ← ConstructRequest(server id, local session seq, requested aru)
A5. SEND to all local servers: Local Recon Request
A6. Set LOCAL RECON TIMER

B1. Upon receiving Local Recon Request(server id, local session seq, requested aru):
B2. if local session seq ≤ last session seq[server id]
B3. ignore Local Recon Request
B4. if (current time - last local request time[server id]) < LOCAL RECON THROTTLE PERIOD
B5. ignore Local Recon Request
B6. if requested aru < last local requested aru[server id]
B7. ignore Local Recon Request
B8. last local session seq[server id] ← local session seq
B9. last local request time[server id] ← current time
B10. last local requested aru[server id] ← requested aru
B11. if Global aru > requested aru
B12. THROTTLE-SEND(requested aru, Global aru, LOCAL RATE, W) to server id

Fig. A-13. LOCAL-RECONCIILIATION Protocol, used to recover missing GloballyOrderedUpdates within a site. Servers limit both the rate at which
they will respond to requests and the rate at which they will send requested messages.

GLOBAL-RECONCILIATION:
A1. Upon expiration of GLOBAL RECON TIMER:
A2. global session seq++
A3. requested aru ← Global aru
A4. g ← Global History[requested aru].Globally Ordered Update
A5. Global Recon Request ← ConstructRequest(server id,global session seq,requested aru,g)
A6. SEND to all local servers: Global Recon Request
A7. Set GLOBAL RECON TIMER

B1. Upon receiving Global Recon Request(server id, global session seq, requested aru, g):
B2. if global session seq ≤ last global session seq[server id]
B3. ignore Global Recon Request
B4. if (current time - last global request time[server id]) < GLOBAL RECON THROTTLE PERIOD
B5. ignore Global Recon Request
B6. if requested aru < last global requested aru[server id]
B7. ignore Global Recon Request
B8. if g is not a valid Globally Ordered Update for requested aru
B9. ignore Global Recon Request
B10. last global session seq[server id] ← global session seq
B11. last global request time[server id] ← current time
B12. last global requested aru[server id] ← requested aru
B13. if Global aru ≥ requested aru
B14. sig share ← GENERATE SIGNATURE SHARE()
B15. SEND to server id: sig share
B16. if Global aru < requested aru
B17. when Global aru ≥ requested aru:
B18. sig share ← GENERATE SIGNATURE SHARE()
B19. SEND sig share to server id

C1. Upon collecting 2f + 1 Partial sig messages for global session seq:
C2. GLOBAL RECON ← COMBINE(partial sigs)
C3. SEND to peer server in each site: GLOBAL RECON

D1. Upon receiving GLOBAL RECON(site id, server id, global session seq, requested aru):
D2. if max global requested aru[site id] ≤ requested aru
D3. max global requested aru[site id] ← requested aru
D4. else
D5. ignore GLOBAL RECON
D6. if (site id == Site id) or (server id 6= Server id)
D7. ignore GLOBAL RECON
D8. if global session seq ≤ last global session seq[site id]
D9. ignore GLOBAL RECON
D10. if (current time - last global request time[site id]) < GLOBAL RECON THROTTLE PERIOD
D11. ignore GLOBAL RECON
D12. SEND to all local servers: GLOBAL RECON
D13. last global session seq[site id] ← global session seq
D14. last global request time[site id] ← current time
D15. if Global aru > requested aru
D16. THROTTLE-SEND(requested aru, Global aru, GLOBAL RATE, W) to server id

Fig. A-14. GLOBAL-RECONCIILIATION Protocol, used by a siteto recover missing GloballyOrderedUpdates from other wide area sites. Each server
generates threshold-signed reconciliation requests and communicates with a single server at each other site.

28

RELIABLE-SEND-TO-ALL-SITES(message m):
A1. Upon invoking:
A2. rel message ← ConstructReliableMessage(m)
A3. SEND to all servers in site: rel message
A4. SendToPeers(m)

B1. Upon receiving message Reliable Message(m):
B2. SendToPeers(m)

C1. Upon receiving message m from a server with my id:
C2. SEND to all servers in site: m

SendToPeers(m):
D1. if m is a threshold signed message from my site and my Server id ≤ 2f + 1:
D2. my server id ← Server id
D3. for each site S:
D4. SEND to server in site S with Server id = my server id: m

Fig. A-15. RELIABLE-SEND-TO-ALL -SITESProtocol. Each of2f + 1 servers within a site sends a given message to a peer server ineach other site. When
sufficient connectivity exists, the protocol reliably sends a message from one site to all other servers in all other sites sites despite the behavior of faulty
servers.

29

APPENDIX B
PROOFS OFCORRECTNESS

In this section we show that Steward provides the service
properties specified in Section V. We begin with a proof of
safety and then consider liveness.

A. Proof of Safety

Our goal in this section is to prove that Steward meets the
following safety property:

S1 - SAFETY If two correct servers execute theith update,
then these updates are identical.

Proof Strategy: We prove Safety by showing that two
servers cannot globally order conflicting updates for the same
sequence number. We show this using two main claims. In
the first claim, we show that any two servers which globally
order an update in the same global view for the same sequence
number will globally order the same update. To prove this
claim, we show that a leader site cannot construct conflicting
Proposal messages in the same global view. A conflicting Pro-
posal has the same sequence number as another Proposal, but
it has adifferentupdate. Since globally ordering two different
updates for the same sequence number in the same global
view would require two different Proposals from the same
global view, and since only one Proposal can be constructed
within a global view, all servers that globally order an update
for a given sequence number in the same global view must
order the same update. In the second claim, we show that any
two servers which globally order an update in different global
views for the same sequence number must order the same
update. To prove this claim, we show that a leader site from a
later global view cannot construct a Proposal conflicting with
one used by a server in an earlier global view to globally
order an update for that sequence number. The value that
may be contained in a Proposal for this sequence number is
thusanchored. Since no Proposals can be created that conflict
with the one that has been globally ordered, no correct server
can globally order a different update with the same sequence
number. Since a server only executes an update once it has
globally ordered an update for all previous sequence numbers,
two servers executing theith update will therefore execute the
same update.

We now proceed to prove the first main claim:

Claim A.1: Let u be the first update globally ordered by
any server for sequence numberseq, and letgv be the global
view in which u was globally ordered. Then if any other
server globally orders an update for sequence numberseq in
global viewgv, it will globally order u.

To prove this claim, we use the following lemma,
which shows that conflicting Proposal messages cannot be
constructed in the same global view:

Lemma A.1: Let P1(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in leader

site S for sequence numberseq. Then no other Proposal
message P2(gv, lv′, seq, u′) for lv′ ≥ lv, with u′ 6= u, can
be constructed.

We prove Lemma A.1 with a series of lemmas. We begin
with two preliminary lemmas, proving that two servers cannot
collect conflicting Prepare Certificates or construct conflicting
Proposals in the same global and local view.

Lemma A.2: Let PC1(gv, lv, seq, u) be a Prepare
Certificate collected by some server in leader siteS. Then no
server in S can collect a different Prepare Certificate, PC2(gv,
lv, seq, u′), with (u 6= u′).

Proof: We assume that both Prepare Certificates
were collected and show that this leads to a contradic-
tion. PC1 contains a Pre-Prepare(gv, lv, seq, u) and 2f
Prepare(gv, lv, seq, Digest(u)) messages from distinct servers.
Since there are at mostf faulty servers inS, at leastf +1 of
the messages in PC1 were from correct servers. PC2 contains
similar messages, but withu′ instead ofu. Since any two sets
of 2f+1 messages intersect on at least one correct server, there
exists a correct server that contributed to both PC1 and PC2.
Assume, without loss of generality, that this server contributed
to PC1 first (either by sending the Pre-Prepare message or by
responding to it). If this server was the representative, itwould
not have sent the second Pre-Prepare message, because, from
Figure 6 line A3, it increments Globalseq and does not return
to seq in this local view. If this server was a non-representative,
it would not have contributed a Prepare in response to the
second Pre-Prepare, since this would have generated a conflict
(Figure A-6, line A8). Thus, this server did not contribute to
PC2, a contradiction.

Lemma A.3: Let P1(gv, lv, seq, u) be a Proposal message
constructed by some server in leader siteS. Then no other
Proposal message P2(gv, lv, seq, u′) with (u 6= u′) can be
constructed by any server inS.

Proof: By Lemma A.2, only one Prepare Certificate can
be constructed in each view (gv, lv) for a given sequence
numberseq. For P2 to be constructed, at leastf + 1 correct
servers would have had to send partial signatures on P2, after
obtaining a Prepare Certificate PC2 reflecting the binding of
seq to u′ (Figure 6, line C7). Since P1 was constructed, there
must have been a Prepare Certificate PC1 reflecting the binding
of seq to u. Thus, thef + 1 correct servers cannot have
obtained PC2, since this would contradict Lemma A.2.

We now show that two conflicting Proposal messages
cannot be constructed in the same global view, even across
local view changes. In proving this, we use the following
invariant:

INVARIANT A.1: Let P(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any server
in leader siteS for sequence numberseq in global viewgv. We
say that Invariant A.1 holds with respect to P if the following

30

conditions hold in leader siteS in global viewgv:
1) There exists a set of at leastf + 1 correct servers

with a Prepare Certificate PC(gv, lv′, seq, u) or
a Proposal(gv, lv′, seq, u), for lv′ ≥ lv, in
their LocalHistory[seq] data structure, or a Glob-
ally OrderedUpdate(gv′, seq, u), for gv′ ≥ gv, in their
Global History[seq] data structure.

2) There does not exist a server with any conflicting
Prepare Certificate or Proposal from any view (gv, lv′),
with lv′ ≥ lv, or a conflicting GloballyOrderedUpdate
from any global viewgv′ ≥ gv.

We first show that the invariant holds in the first global and
local view in which any Proposal might have been constructed
for a given sequence number. We then show that the invariant
holds throughout the remainder of the global view. Finally,
we show that if the invariant holds, no Proposal message
conflicting with the first Proposal that was constructed can be
created. In other words, once a Proposal has been constructed
for sequence numberseq, there will always exist a set of at
least f + 1 correct servers which maintain and enforce the
binding reflected in the Proposal.

Lemma A.4: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in leader
site S for sequence numberseq in global view gv. Then
when P is constructed, Invariant A.1 holds with respect to P,
and it holds for the remainder of (gv, lv).

Proof: Since P is constructed, there exists a set of at
leastf + 1 correct servers which sent a partial signature on
P (Figure 6, line C7). These servers do so after collecting a
Prepare Certificate(gv, lv, seq, u) bindingseq to u (Figure 6,
line C3). By Lemmas A.2 and A.3, any server that collects a
Prepare Certificate or a Proposal in (gv, lv) collects the same
one. Since this is the first Proposal that was constructed, and
a Proposal is required to globally order an update, the only
Globally OrderedUpdate that can exist bindsseq to u. Thus,
the invariant is met when the Proposal is constructed.

According to the rules for updating the LocalHistory data
structure, a correct server with a Prepare Certificate from
(gv, lv) will not replace it and may only add a Proposal
message from the same view (Figure 6, line D3). By Lemma
A.3, this Proposal is unique, and since it contains the same
update and sequence number as the unique Prepare Certificate,
it will not conflict with the Prepare Certificate.

A correct server with a Proposal will not replace it with any
other message while in global viewgv. A correct server with a
Globally OrderedUpdate will never replace it. Thus, Invariant
A.1 holds with respect to P for the remainder of (gv, lv).

We now proceed to show that Invariant A.1 holds across
local view changes. Before proceeding, we introduce the
following terminology:

DEFINITION A.1: We say that an execution of the
CONSTRUCT-LOCAL-CONSTRAINT protocol completes
at a server within the site in a view (gv, lv) if

that server successfully generates and applies a
Local CollectedServersState message for (gv, lv).

We first prove the following property ofCONSTRUCT-
LOCAL-CONSTRAINT:

Lemma A.5: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in leader
siteS for sequence numberseq in global viewgv. If Invariant
A.1 holds with respect to P at the beginning of a run of
CONSTRUCT-LOCAL-CONSTRAINT, then it is never violated
during the run.

Proof: During the run of CONSTRUCT-LOCAL-
CONSTRAINT, a server only alters its LocalHistory[seq] data
structure during the reconciliation phase (which occurs before
sending a LocalServerState message, Figure 10 line B7) or
when processing the resultant
Local CollectedServersState message. During the reconcil-
iation phase, a correct server will only replace a Prepare
Certificate with a Proposal (either independently or in a
Globally OrderedUpdate), since the server and the rep-
resentative are only exchanging Proposals and Glob-
ally OrderedUpdates. Since Invariant A.1 holds at the be-
ginning of the run, any Proposal from a later local view
than the Prepare Certificate held by some correct server will
not conflict with the Prepare Certificate. A server with a
Globally OrderedUpdate in its GlobalHistory data structure
does not remove it. Thus, the invariant is not violated by this
reconciliation.

If one or more correct servers processes the resultant
Local CollectedServersState message, we must show that the
invariant still holds.

When a correct server processes the Lo-
cal CollectedServersState message (Figure A-1, block
D), there are two cases to consider. First, if the message
contains an entry forseq (i.e., it contains either a Prepare
Certificate or a Proposal bindingseq to an update), then the
correct server adopts the binding. In the second case, the
Local CollectedServersState message does not contain an
entry for seq, and the correct server clears out its Prepare
Certificate forseq, if it has one. We need to show that in
both cases, Invariant A.1 is not violated.

The LocalServerState message from at least one correct
server from the set of at leastf +1 correct servers maintained
by the invariant appears in any LocalCollectedServersState
message, since any two sets of2f + 1 servers intersect on
at least one correct server. We consider the contents of this
server’s LocalServerState message. If this server received
a RequestLocal State message with an invocation sequence
number lower thanseq, then the server includes its entry
binding seq to u in the LocalServerState message (Figure
A-11, Block A), after bringing its PendingProposalAru up to
the invocation sequence number (if necessary). Invariant A.1
guarantees that the Prepare Certificate or Proposal from this
server is the latest entry for sequence numberseq. Thus, the
entry bindingseq to u in any LocalCollectedServersState
bundle will not be removed by the ComputeLocal Union

31

function (Figure A-12 line B3 or B6).
If this server received a RequestLocal State message with

an invocation sequence number greater than or equal toseq,
then the server will not report a binding forseq, since it will
obtain either a Proposal or a GloballyOrderedUpdate via rec-
onciliation before sending its LocalServerState message. In
turn, the server only applies the LocalCollectedServersState
if the 2f + 1 Local ServerState messages contained therein
contain the same invocation sequence number, which was
greater than or equal toseq (Figure 10, line D2). Since
a correct server only sends a LocalServerState message
if its PendingProposalAru is greater than or equal to the
invocation sequence number it received (Figure 10, line B5),
this implies that at leastf + 1 correct servers have a Pend-
ing ProposalAru greater than or equal toseq. The invariant
ensures that all such Proposals or GloballyOrderedUpdates
bind seq to u. Since only Proposals with a sequence number
greater than the invocation sequence number may be removed
by applying the LocalCollectedServersState message, and
since GloballyOrderedUpdate messages are never removed,
applying the message will not violate Invariant A.1.

Our next goal is to show that if Invariant A.1 holds at the
beginning of a view after the view in which a Proposal has
been constructed, then it holds throughout the view.

Lemma A.6: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in leader
site S for sequence numberseq in global view gv. If
Invariant A.1 holds with respect to P at the beginning of a
view (gv, lv′), with lv′ ≥ lv, then it holds throughout the view.

Proof: To show that the invariant will not be violated
during the view, we show that no server can collect a Prepare
Certificate(gv, lv′, seq, u′), Proposal(gv, lv′, seq, u′), or
Globally OrderedUpdate(gv, seq,u′), for u 6= u′, that would
cause the invariant to be violated.

Since Invariant A.1 holds at the beginning of the view,
there exists a set of at leastf + 1 correct servers with a
Prepare Certificate or a Proposal in their LocalHistory[seq]
data structure bindingseq to u, or a GloballyOrderedUpdate
in their GlobalHistory[seq] data structure bindingseq to u.
If a conflicting Prepare Certificate is constructed, then some
server collected a Pre-Prepare(gv, lv′, seq, u′) message and
2f Prepare(gv, lv′, seq, Digest(u′)) messages. At leastf + 1
of these messages were from correct servers. This implies
that at least one correct server from the set maintained by
the invariant contributed to the conflicting Prepare Certificate
(either by sending a Pre-Prepare or a Prepare). This cannot
occur because the server would have seen a conflict in its
Local History[seq] data structure (Figure A-6, A8) or in its
Global History[seq] data structure (Figure A-6, A18). Thus,
the conflicting Prepare Certificate cannot be constructed.

Since no server can collect a conflicting Prepare Certificate,
no server can construct a conflicting Proposal. Thus, by the
rules of updating the LocalHistory data structure, a correct
server only replaces its Prepare Certificate (if any) with a
Prepare Certificate or Proposal from (gv, lv′), which cannot

conflict. Since a Proposal is needed to construct a Glob-
ally OrderedUpdate, no conflicting GloballyOrderedUpdate
can be constructed, and no GloballyOrderedUpdate is ever
removed from the GlobalHistory data structure. Thus, Invari-
ant A.1 holds throughout (gv, lv′).

We can now prove Lemma A.1:

Proof: By Lemma A.4, Invariant A.1 holds with respect
to P throughout (gv, lv). By Lemma A.5, the invariant
holds with respect to P during and afterCONSTRUCT-LOCAL-
CONSTRAINT. By Lemma A.6, the invariant holds at the
beginning and end of view (gv, lv+1). Repeated applications
of Lemma A.5 and Lemma A.6 shows that the invariant always
holds in global viewgv.

In order for P2 to be constructed, at leastf + 1 correct
servers must send a partial signature on P2 after collecting
a corresponding Prepare Certificate (Figure 6, line C3). Since
the invariant holds throughoutgv, at leastf +1 correct servers
do not collect such a Prepare Certificate and do not send such a
partial signature. This leaves only2f servers remaining, which
is insufficient to construct the Proposal. Since a Proposal is
needed to construct a GloballyOrderedUpdate, no conflicting
Globally OrderedUpdate can be constructed.

Finally, we can prove Claim A.1:

Proof: To globally order an updateu in global
view gv for sequence numberseq, a server needs a
Proposal(gv, *, seq, u) message and⌊N/2⌋ Accept cor-
responding Accept messages. By Lemma A.1, all Proposal
messages constructed in global viewgv are for the same
update, which implies that all servers which globally orderan
update in global viewgv for sequence numberseq globally
order the same update.

We now prove the second main claim:

Claim A.2: Let u be the first update globally ordered by
any server for sequence numberseq, and letgv be the global
view in which u was globally ordered. Then if any other
server globally orders an update for sequence numberseq in
a global viewgv′, with gv′ > gv, it will globally order u.

We prove Claim A.2 using the following lemma, which
shows that, once an update has been globally ordered for a
given sequence number, no conflicting Proposal messages can
be generated for that sequence number in any future global
view.

Lemma A.7: Let u be the first update globally ordered
by any server for sequence numberseq with corresponding
Proposal P1(gv, lv, seq, u). Then no other Proposal message
P2(gv′, *, seq, u′) for gv′ > gv, with u′ 6= u, can be
constructed.

We prove Lemma A.7 using a series of lemmas. We use
a strategy similar to the one used in proving Lemma A.1

32

above, and we maintain the following invariant:

INVARIANT A.2: Let u be the first update globally or-
dered by any server for sequence numberseq, and let gv
be the global view in whichu was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site ingv for sequence number
seq. We say that Invariant A.2 holds with respect to P if the
following conditions hold:

1) There exists a majority of sites, each with at leastf +1
correct servers with a Prepare Certificate(gv, lv′, seq, u),
a Proposal(gv′, *, seq, u), or a
Globally OrderedUpdate(gv′, seq, u), with gv′ ≥ gv
and lv′ ≥ lv, in its GlobalHistory[seq] data structure.

2) There does not exist a server with any
conflicting Prepare Certificate(gv′, lv′, seq, u′),
Proposal(gv′, *, seq, u′), or Glob-
ally OrderedUpdate(gv′, seq, u′), with gv′ ≥ gv,
lv′ ≥ lv, andu′ 6= u.

We first show that Invariant A.2 holds when the first update
is globally ordered for sequence numberseq and that it holds
throughout the view in which it is ordered.

Lemma A.8: Let u be the first update globally ordered by
any server for sequence numberseq, and letgv be the global
view in which u was globally ordered. Let P(gv, lv, seq, u)
be the first Proposal message constructed by any server in
the leader site ingv for sequence numberseq. Then whenu
is globally ordered, Invariant A.2 holds with respect to P, and
it holds for the remainder of global viewgv.

Proof: Since u was globally ordered ingv, some
server collected a Proposal(gv, *, seq, u) message and⌊N/2⌋
Accept(gv, *, seq, Digest(u)) messages. Each of the⌊N/2⌋
sites that generated a threshold-signed Accept message has
at leastf + 1 correct servers that contributed to the Accept,
since2f + 1 partial signatures are required to construct the
Accept and at mostf are faulty. These servers store P in
Global History[seq].Proposal when they apply it (Figure A-
2, block A). Since the leader site constructed P and P is
threshold-signed, at leastf + 1 correct servers in the leader
site have either a Prepare Certificate corresponding to P in
Global History[seq].PrepareCertificate or the Proposal P in
Global History[seq].Proposal. Thus, Condition 1 is met.

By Lemma A.1, all Proposals generated by the leader site
for sequence numberseq in gv contain the same update.
Thus, no server can have a conflicting Proposal or Glob-
ally OrderedUpdate, sincegv is the first view in which an
update has been globally ordered for sequence numberseq.
Since Invariant A.1 holds ingv, no server has a conflicting
Prepare Certificate from (gv, lv′), with lv′ ≥ lv. Thus,
Condition 2 is met.

We now show that Condition 1 is not violated throughout
the rest of global viewgv. By the rules of updating the
Global History data structure ingv, a correct server with an
entry in GlobalHistory[seq].PrepareCertificate only removes
it if it generates a Proposal message from the same global

view (Figure A-2, lines A7 and A14), which does not conflict
with the PrepareCertificate because it containsu, and thus it
does not violate Condition 1. Similarly, a correct server ingv
only replaces an entry in GlobalHistory[seq].Proposal with
a GloballyOrderedUpdate. Since a GloballyOrderedUpdate
contains a Proposal fromgv, and all Proposals from
gv for sequence numberseq contain u, Condition 1 is
still met. No correct server ever replaces an entry in
Global History[seq].Globally OrderedUpdate.

We now show that Invariant A.2 holds across global view
changes. We start by showing that theCONSTRUCT-ARU and
CONSTRUCT-GLOBAL-CONSTRAINT protocols, used during
a global view change in the leader site and non-leader sites,
respectively, will not cause the invariant to be violated.
We then show that if any correct server in the leader site
becomes globally constrained by completing the global view
change protocol, the invariant will still hold after applying
the CollectedGlobal Constraints message to its data structure.

Lemma A.9: Let u be the first update globally ordered
by any server for sequence numberseq, and let gv be
the global view in which u was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site ingv for sequence number
seq. Assume Invariant A.2 holds with respect to P, and let
S be one of the (majority) sites maintained by the first
condition of the invariant. Then if a run ofCONSTRUCT-
ARU begins atS, the invariant is never violated during the run.

Proof: During a run of CONSTRUCT-ARU, a correct
server only modifies its
Global History[seq] data structure in three cases. We show
that, in each case, Invariant A.2 will not be violated if it is
already met.

The first case occurs during the reconciliation phase of the
protocol. In this phase, a correct server with either a Prepare
Certificate or Proposal in GlobalHistory[seq] may replace it
with a GloballyOrderedUpdate, since the server and the rep-
resentative only exchange GloballyOrderedUpdate messages.
Since Invariant A.2 holds at the beginning of the run, no server
has a GloballyOrderedUpdate from any viewgv′ ≥ gv that
conflicts with the binding ofseq to u. Sinceu could only have
been globally ordered in a global viewgv′ ≥ gv, no conflicting
Globally OrderedUpdate exists from a previous global view.
Thus, Invariant A.2 is not violated during the reconciliation
phase.

In the second case, a correct server with a Prepare Cer-
tificate in GlobalHistory[seq] tries to construct correspond-
ing Proposals (replacing the Prepare Certificate) by invoking
THRESHOLD-SIGN (Figure A-9, line D6). Since the Proposal
is for the same binding as the Prepare Certificate, the invariant
is not violated.

In the third case, a correct server applies any Glob-
ally OrderedUpdates appearing in the GlobalConstraint mes-
sage to its GlobalHistory data structure (Figure A-9, line
G2). Since Invariant A.2 holds at the beginning of the run,
no GloballyOrderedUpdate exists from any viewgv′ ≥ gv

33

that conflicts with the binding ofseq to u. Sinceu could only
have been globally ordered in a global viewgv′ ≥ gv, no
conflicting GloballyOrderedUpdate exists from a previous
global view.

Since these are the only cases in which GlobalHistory[seq]
is modified during the protocol, the invariant holds throughout
the run.

Lemma A.10: Let u be the first update globally ordered by
any server for sequence numberseq, and letgv be the global
view in which u was globally ordered. Let P(gv, lv, seq, u)
be the first Proposal message constructed by any server in the
leader site ingv for sequence numberseq. Assume Invariant
A.2 holds with respect to P, and letS be one of the (majority)
sites maintained by the first condition of the invariant. Then
if a run of CONSTRUCT-GLOBAL-CONSTRAINT begins atS,
the invariant is never violated during the run.

Proof: During a run of CONSTRUCT-GLOBAL-
CONSTRAINT, a correct server only modifies its
Global History[seq] data structure when trying to construct
Proposals corresponding to any Prepare Certificates appearing
in the union (Figure A-10, line C5). Since the Proposal
resulting fromTHRESHOLD-SIGN is for the same binding as
the Prepare Certificate, the invariant is not violated.

We now show that if Invariant A.2 holds at the beginning
of a run of theGLOBAL-VIEW-CHANGE protocol after the
global view in which an update was globally ordered, then
the invariant is never violated during the run.

Lemma A.11: Let u be the first update globally ordered by
any server for sequence numberseq, and letgv be the global
view in which u was globally ordered. Let P(gv, lv, seq, u)
be the first Proposal message constructed by any server in the
leader site ingv for sequence numberseq. Then if Invariant
A.2 holds with respect to P at the beginning of a run of the
Global View Change protocol, then it is never violated during
the run.

Proof: During a run of GLOBAL-VIEW-CHANGE, a
correct server may only modify its GlobalHistory[seq] data
structure in three cases. The first occurs in the leader site,
during a run ofCONSTRUCT-ARU (Figure 11, line A2). By
Lemma A.9, Invariant A.2 is not violated during this protocol.
The second case occurs at the non-leader sites, during a run of
CONSTRUCT-GLOBAL-CONSTRAINT (Figure 11, line C4). By
Lemma A.10, Invariant A.2 is not violated during this protocol.

The final case occurs at the leader site when a correct
server becomes globally constrained by applying a Col-
lectedGlobal Constraints message to its GlobalHistory data
structure (Figure 11, lines E5 and F2). We must now show
that Invariant A.2 is not violated in this case.

Any CollectedGlobal Constraints message received by a
correct server contains a
Global Constraint message from at least one site maintained
by Invariant A.2, since any two majorities intersect on at least
one site. We consider the GlobalConstraint message sent by

this site,S. The same logic will apply when GlobalConstraint
messages from more than one site in the set maintained by the
invariant appear in the CollectedGlobal Constraints message.

We first consider the case whereS is a non-leader site.
There are two sub-cases to consider.

Case 1a:In the first sub-case, the AruMessage generated
by the leader site inCONSTRUCT-ARU contains a sequence
number less thanseq. In this case, each of thef + 1 correct
servers inS maintained by Invariant A.2 reports a Proposal
message bindingseq to u in its GlobalServerState message
(Figure A-11, Block B). At least one such message will appear
in the
Global CollectedServersState bundle, since any two sets of
2f + 1 intersect on at least one correct server. Invariant A.2
maintains that the entry bindingseq to u is the latest, and
thus it will not be removed by the ComputeGlobal Union
procedure (Figure A-12, Blocks C and D). The resultant
Global Constraint message therefore bindsseq to u. Invariant
A.2 also guarantees that this entry or one with the same
binding will be the latest among those contained in the
CollectedGlobal Constraints message, and thus it will not
be removed by the ComputeConstraintUnion function run
when applying the message to GlobalHistory (Figure A-
12, Blocks E and F) By the rules of applying the Col-
lectedGlobal Constraints message (Figure A-2, Block D), the
binding of seq to u will be adopted by the correct servers
in the leader site that become globally constrained, and thus
Invariant A.2 is not violated.

Case 1b: In the second sub-case, the AruMessage gen-
erated by the leader site inCONSTRUCT-ARU contains a se-
quence number greater than or equal toseq. In this case, no en-
try bindingseq to u will be reported in the GlobalConstraint
message. In this case, we show that at leastf + 1 correct
servers in the leader site have already globally orderedseq.
The invariant guarantees that those servers which have already
globally ordered an update forseq have globally ordered
u. To construct the AruMessage, at leastf + 1 correct
servers contributed partial signatures to the result of calling
ExtractAru (Figure A-9, line G3) on the union derived from
the GlobalCollectedServersState bundle. Thus, at leastf +1
correct servers accepted the GlobalCollectedServersState
message as valid, and, at Figure A-9, line D3, enforced that
their Globalaru was at least as high as the invocation sequence
number (which was greater than or equal toseq). Thus, these
servers have GloballyOrderedUpdate messages forseq, and
the invariant holds in this case.

We must now consider the case whereS is the leader
site. As before, there are two sub-cases to consider. We
must show that Invariant A.2 is not violated in each case.
During CONSTRUCT-ARU, the GlobalServerState message
from at least one correct server from the set of at leastf + 1
correct servers maintained by the invariant appears in any
CollectedGlobal ServersState message, since any two sets
of 2f + 1 servers intersect on at least one correct server.
We consider the contents of this server’s GlobalServerState
message.

Case 2a: In the first sub-case, if this server received a
RequestGlobal State message with an invocation sequence

34

number lower thanseq, then the server includes its entry
binding seq to u in the GlobalServerState message, after
bringing its GlobalAru up to the invocation sequence number
(if necessary) (Figure A-9, lines B5 and B7). Invariant A.2
guarantees that the Prepare Certificate, Proposal, or Glob-
ally OrderedUpdate bindingseq to u is the latest entry for
sequence numberseq. Thus, the entry bindingseq to u in any
Global CollectedServersState bundle will not be removed
by the ComputeGlobal Union function (Figure A-12, Blocks
C and D) and will appear in the resultant GlobalConstraint
message. Thus, the CollectedGlobal Constraints message will
bind seq to u, and by the rules of applying this message to
the GlobalHistory[seq] data structure, Invariant A.2 is not
violated when the correct servers in the leader site become
globally constrained by applying the mesasge (Figure A-2,
block D).

Case 2b: If this server received a RequestGlobal State
message with an invocation sequence number greater than
or equal toseq, then the server will not report a binding
for seq, since it will obtain a GloballyOrderedUpdate via
reconciliation before sending its GlobalServerState mes-
sage (Figure A-9, lines B4). In turn, the server only con-
tributes a partial signature on the AruMessage if it received
a valid GlobalCollectedServersState message, which im-
plies that the2f + 1 Global ServerState messages in the
Global CollectedServersState bundle contained the same in-
vocation sequence number, which was greater than or equal to
seq (Figure A-9, line D2). Since a correct server only sends a
Global ServerState message if its GlobalAru is greater than
or equal to the invocation sequence number it received (Figure
A-9, line D3), this implies that at leastf + 1 correct servers
have a GlobalAru greater than or equal toseq. The invariant
ensures that all such GloballyOrderedUpdates bindseq to u.
Thus, even if the CollectedGlobal Constraints message does
not contain an entry bindingseq to u, the leader site and
⌊N/2⌋ non-leader sites will maintain Invariant A.2.

Corollary A.12: Let u be the first update globally ordered
by any server for sequence numberseq, and let gv be
the global view in which u was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed by
any server in the leader site ingv for sequence numberseq.
Then if Invariant A.2 holds with respect to P at the beginning
of a run of theGLOBAL-VIEW-CHANGE protocol, then if at
leastf + 1 correct servers in the leader site become globally
constrained by completing theGLOBAL-VIEW-CHANGE

protocol, the leader site will be in the set maintained by
Condition 1 of Invariant A.2.

Proof: We consider each of the four sub-cases described
in Lemma A.11. In Cases 1a and 2a, any correct server that
becomes globally constrained bindsseq to u. In Cases 1b and
2b, there exists a set of at leastf + 1 correct servers that
have globally orderedu for sequence numberseq. Thus, in
all four cases, if at leastf +1 correct servers become globally
constrained, the leader site meets the data structure condition
of of Condition 1 of Invariant A.2.

Our next goal is to show that if Invariant A.2 holds at the
beginning of a global view after which an update has been
globally ordered, then it holds throughout the view.

Lemma A.13: Let u be the first update globally ordered by
any server for sequence numberseq, and letgv be the global
view in which gv was globally ordered. Let P(gv, lv, seq, u)
be the first Proposal message constructed by any server in the
leader site ingv for sequence numberseq. Then if Invariant
A.2 holds with respect to P at the beginning of a global
view (gv′, *), with gv′ > gv, then it holds throughout the view.

Proof: To show that the invariant will not be violated
during global viewgv′, we show that no conflicting Prepare
Certificate, Proposal, or GloballyOrderedUpdate can be con-
structed during the view that would cause the invariant to be
violated.

We assume that a conflicting Prepare Certificate PC
is collected and show that this leads to a contradiction.
This then implies that no conflicting Proposals or Glob-
ally OrderedUpdates can be constructed.

If PC is collected, then some server collected a Pre-
Prepare(gv′, lv, seq, u′) and2f
Prepare(gv′, lv, seq, Digest(u′)) for some local viewlv and
u′ 6= u. At leastf + 1 of these messages were from correct,
servers. Moreover, this implies that at leastf+1 correct servers
were globally constrained.

By Corollary A.12, since at leastf + 1 correct servers
became globally constrained ingv′, the leader site meets
Condition 1 of Invariant A.2, and it thus has at leastf + 1
correct servers with a Prepare Certificate, Proposal, or Glob-
ally OrderedUpdate bindingseq to u. At least one server
from the set of at leastf + 1 correct servers bindingseq to u
contributed to the construction of PC. A correct representative
would not send such a Pre-Prepare message because the
Get Next To Propose() routine would return the constrained
updateu (Figure A-8, line A3 or A5). Similarly, a correct
server would see a conflict (Figure A-6, line A10 or A13).

Since no server can collect a conflicting Prepare Certificate,
no server can construct a conflicting Proposal. Thus, no server
can collect a conflicting GloballyOrderedUpdate, since this
would require a conflicting Proposal.

Thus, Invariant A.2 holds throughout global viewgv′.

We can now prove Lemma A.7:

Proof: By Lemma A.8, Invariant A.2 holds with respect
to P1 throughout global viewgv. By Lemma A.11, the invari-
ant holds with respect to P1 during and after theGLOBAL-
VIEW-CHANGE protocol. By Lemma A.13, the invariant holds
at the beginning and end of global viewgv + 1. Repeated
application of Lemma A.11 and Lemma A.13 shows that the
invariant always holds for all global viewsgv′ > gv.

In order for P2 to be constructed, at leastf + 1 correct
servers must send a partial signature on P2 after collectinga
corresponding Prepare Certificate (Figure 6, line C3). Since the
invariant holds, at leastf+1 correct servers do not collect such
a Prepare Certificate and do not send such a partial signature.

35

This leaves only2f servers remaining, which is insufficient
to construct the Proposal.

Finally, we can prove Claim A.2:

Proof: We assume that two servers globally order con-
flicting updates with the same sequence number in two global
views gv andgv′ and show that this leads to a contradiction.

Without loss of generality, assume that a server globally
orders updateu in gv, with gv < gv′. This server collected a
a Proposal(gv, *, seq, u) message and⌊N/2⌋ corresponding
Accept messages. By Lemma A.7, any future Proposal mes-
sage for sequence numberseq contains updateu, including
the Proposal fromgv′. This implies that another server that
globally orders an update ingv′ for sequence numberseq must
do so using the Proposal containingu, which contradicts the
fact that it globally orderedu′ for sequence numberseq.

We can now prove SAFETY - S1.

Proof: By Claims A.1 and A.2, if two servers globally
order an update for the same sequence number in any two
global views, then they globally order the same update. Thus,
if two servers execute an update for any sequence number,
they execute the same update, completing the proof.

We now prove that Steward meets the following validity
property:

S2 - VALIDITY Only an update that was proposed by a
client may be executed.

Proof: A server executes an update when it has been
globally ordered. To globally order an update, a server obtains
a Proposal and⌊N/2⌋ corresponding Accept messages. To
construct a Proposal, at leastf + 1 correct servers collect a
Prepare Certificate and invokeTHRESHOLD-SIGN. To collect a
Prepare Certificate, at leastf+1 correct servers must have sent
either a Pre-Prepare or a Prepare in response to a Pre-Prepare.
From the validity check run on each incoming message (Figure
A-4, lines A7 - A9), a Pre-Prepare message is only processed
if the update contained within has a valid client signature.
Since we assume that client signatures cannot be forged, only
a valid update, proposed by a client, may be globally ordered.

B. Liveness Proof

We now prove that Steward meets the following liveness
property:

L1 - GLOBAL L IVENESS If the system is stable with
respect to timeT , then if, after timeT , a stable server
receives an update which it has not executed, then global
progress eventually occurs.

Proof Strategy: We prove Global Liveness by contradic-
tion. We assume that global progress does not occur and

show that, if the system is stable and a stable server receives
an update which it has not executed, then the system will
reach a state in which some stable serverwill execute an
update, a contradiction. We prove Global Liveness using
three main claims. In the first claim, we show that if no
global progress occurs, then all stable servers eventuallyrecon-
cile their GlobalHistory data structures to a common point.
Specifically, the stable servers set their Globalaru variables
to the maximum sequence number through which any stable
server has executed all updates. By definition, if any stable
server executes an update beyond this point, global progress
will have been made, and we will have reached a contradiction.
In the second claim, we show that, once this reconciliation
has occurred, the system eventually reaches a state in whicha
stable representative of a stable leader site remains in power
for sufficiently long to be able to complete the global view
change protocol, which is a precondition for globally ordering
an update that would cause progress to occur. To prove the
second claim, we first prove three subclaims. The first two
subclaims show that, eventually, the stable sites will move
through global views together, and within each stable site,
the stable servers will move through local views together. The
third subclaim establishes relationships between the global and
local timeouts, which we use to show that the stable servers
will eventually remain in their views long enough for global
progress to be made. Finally, in the third claim, we show that
a stable representative of a stable leader site will eventually
be able to globally order (and execute) an update which it has
not previously executed, which contradicts our assumption.

In the claims and proofs that follow, we assume that the
system has already reached a stabilization time,T , at which
the system became stable. Since we assume that no global
progress occurs, we use the following definition:

DEFINITION B.1: We say that a sequence number is the
max stable seq if, assuming no further global progress is
made, it is the last sequence number for which any stable
server has executed an update.

We now proceed to prove the first main claim:

Claim B.1: If no global progress occurs, then all stable
servers in all stable sites eventually set their Globalaru
variables tomax stable seq.

To prove Claim B.1, we first prove two lemmas relating
to LOCAL-RECONCILIATION andGLOBAL-RECONCILIATION.

Lemma B.1: Let aru by the Globalaru of some stable
server,s, in stable SiteS at time T . Then all stable servers
in S eventually have a Globalaru of at leastaru.

Proof: The stable servers inS run LOCAL-
RECONCILIATION by sending a
Local ReconRequest message everyLOCAL-RECON-
THROTTLE-PERIOD time units (Figure A-13, line A1). Since
S is stable,s will receive a LocalReconRequest message
from each stable server within one local message delay. If

36

the requesting server,r, has a Globalaru less thanaru, s
will send to r Globally OrderedUpdate messages for each
sequence number in the difference. These messages will
arrive in bounded time. Thus, each stable server inS sets it
Global aru to at leastaru.

Lemma B.2: Let S be a stable site in which all stable
servers have a Globalaru of at leastaru at timeT . Then if
no global progress occurs, at least one stable server in all
stable sites eventually has a Globalaru of at leastaru.

Proof: Since no global progress occurs, there exists
some sequence numberaru′, for each stable site,R, that
is the last sequence number for which a stable server inR
globally ordered an update. By Lemma B.1, all stable servers
in R eventually reacharu′ via the LOCAL-RECONCILIATION

protocol.
The stable servers inR run GLOBAL-RECONCILIATION

by sending a GlobalReconRequest message everyGLOBAL-
RECON-THROTTLE-PERIOD time units (Figure A-14, line A1).
SinceR is stable, each stable server inR receives the request
of all other stable servers inR within a local message delay.
Upon receiving a request, a stable server will send a PartialSig
message to the requester, since they have the same Globalaru,
aru′. Each stable server can thus construct a threshold-signed
GLOBAL-RECON message containingaru′. Since there are
2f +1 stable servers, the pigeonhole principle guarantees that
at least one of them sends aGLOBAL-RECON message to a
stable peer in each other stable site. The message arrives in
one wide area message delay.

If all stable sites send aGLOBAL-RECON message contain-
ing a requestedaru value of at leastaru, then the lemma holds,
since at leastf +1 correct servers contributed a Partialsig on
such a message, and at least one of them is stable. If there
exists any stable siteR that sends aGLOBAL-RECON message
with a requestedaru value lower thanaru, we must show
that R will eventually have at least one stable server with a
Global aru of at leastaru.

Each stable server inS has a Globalaru of aru′, with
aru′ ≥ aru. Upon receiving theGLOBAL-RECON message
from R, a stable server uses theTHROTTLE-SEND procedure to
send all GloballyOrderedUpdate messages in the difference
to the requester (Figure A-14, line D16). Since the system
is stable, each GloballyOrderedUpdate will arrive at the
requester in bounded time, and the requester will increase its
Global aru to at leastaru.

We now prove Claim B.1:

Proof: Assume, without loss of generality, that stable site
S has a stable server with a Globalaru of max stable seq.
By Lemma B.1, all stable servers inS eventually set their
Global aru to at leastmax stable seq. Since no stable server
sets its Globalaru beyond this sequence number (by the
definition ofmax stable seq), the stable servers inS set their
Global aru to exactlymax stable seq. By Lemma B.2, at
least one stable server in each stable site eventually sets its
Global aru to at leastmax stable seq. Using similar logic

as above, these stable servers set their Globalaru variables
to exactlymax stable seq. By applying Lemma B.1 in each
stable site and using the same logic as above, all stable
servers in all stable sites eventually set their Globalaru to
max stable seq.

We now proceed to prove the second main claim, which
shows that, once the above reconciliation has taken place, the
system will reach a state in which a stable representative ofa
stable leader site can complete theGLOBAL-VIEW-CHANGE

protocol, which is a precondition for globally ordering a
new update. This notion is encapsulated in the following claim:

Claim B.2: If no global progress occurs, and the system is
stable with respect to timeT , then there exists an infinite set
of global viewsgvi, each with stable leader siteSi, in which
the first stable representative inSi serving for at least a local
timeout period can completeGLOBAL-VIEW-CHANGE.

Since completing GLOBAL-VIEW-CHANGE requires all
stable servers to be in the same global view for some
amount of time, we begin by proving several claims about the
GLOBAL-LEADER-ELECTION protocol. Before proceeding, we
prove the following claim relating to theTHRESHOLD-SIGN

protocol, which is used byGLOBAL-LEADER-ELECTION:

Claim B.3: If all stable servers in a stable site invoke
THRESHOLD-SIGN on the same message,m, then
THRESHOLD-SIGN returns a correctly threshold-signed
messagem at all stable servers in the site within some finite
time, ∆sign.

To prove Claim B.3, we use the following lemma:

Lemma B.3: If all stable servers in a stable site invoke
THRESHOLD-SIGN on the same message,m, then all stable
servers will receive at least2f + 1 correct partial signature
shares form within a bounded time.

Proof: When a correct server invokesTHRESHOLD-
SIGN on a message,m, it generates a partial signature for
m and sends this to all servers in its site (Figure A-7, Block
A). A correct server uses only its threshold key share and
a deterministic algorithm to generate a partial signature on
m. The algorithm is guaranteed to complete in a bounded
time. Since the site is stable, there are at least2f + 1 correct
servers that are connected to each other in the site. Therefore,
if the stable servers invokeTHRESHOLD-SIGN onm, then each
stable server will receive at least2f + 1 partial signatures on
m from correct servers.

We can now prove Claim B.3.

Proof: A correct server combines2f + 1 correct partial
signatures to generate a threshold signature onm. From
Lemma B.3, a correct server will receive2f +1 correct partial
signatures onm.

We now need to show that a correct server will eventually

37

combine the correct signature shares. Malicious servers can
contribute an incorrect signature share. If the correct server
combines a set of2f + 1 signature shares, and one or more
of the signature shares are incorrect, the resulting threshold
signature is also incorrect.

When a correct server receives a set of2f + 1 signature
shares, it will combine this set and test to see if the resulting
signature verifies (Figure A-7, Block B). If the signature
verifies, the server will return messagem with a correct
threshold signature (line B4). If the signature does not verify,
then THRESHOLD-SIGN does not return messagem with a
threshold signature. On lines B6-B11, the correct server checks
each partial signature that it has received from other servers. If
any partial signature does not verify, it removes the incorrect
partial signature from its data structure and adds the server
that sent the partial signature to a list of corrupted servers. A
correct server will drop any message sent by a server in the
corrupted server list (Figure A-4, lines A10-A11). Since there
are at mostf malicious servers in the site, these servers can
prevent a correct server from correctly combining the2f + 1
correct partial signatures onm at mostf times. Therefore,
after a maximum off verification failures on line B3, there
will be a verification success andTHRESHOLD-SIGN will
return a correctly threshold signed messagem at all correct
servers, proving the claim.

We now can prove claims aboutGLOBAL-LEADER-
ELECTION. We first introduce the following terminology used
in the proof:

DEFINITION B.2: We say that a serverpreinstalls global
view gv when it collects a set of GlobalVC(gvi) messages
from a majority of sites, wheregvi ≥ gv.

DEFINITION B.3: A global preinstall proof for global
view gv is a set of GlobalVC(gvi) messages from a majority
of sites wheregvi ≥ gv. The set of messages is proof thatgv
preinstalled.

Our goal is to prove the following claim:

Claim B.4: If global progress does not occur, and the
system is stable with respect to timeT , then all stable
servers will preinstall the same global view,gv, in a finite
time. Subsequently, all stable servers will: (1) preinstall all
consecutive global views abovegv within one wide area
message delay of each other and (2) remain in each global
view for at least one global timeout period.

To prove Claim B.4, we maintain the following invariant
and show that it always holds:

INVARIANT B.1: If a correct server,s, has Globalview gv,
then it is in one of the two following states:

1) GlobalT is running ands has global preinstall proof for
gv.

2) GlobalT is not running ands has global preinstall
proof for gv − 1.

Lemma B.4: Invariant B.1 always holds.

Proof: We show that Invariant B.1 holds using an
argument based on a state machine,SM . SM has the two
states listed in Invariant B.1.

We first show that a correct server starts in state (1). When
a correct server starts, its Globalview is initialized to 0, it
has ana priori global preinstall proof for 0, and its GlobalT
timer is running. Therefore, Invariant B.1 holds immediately
after the system is initialized, and the server is in state (1).

We now show that a correct server can only transition
between these two states.SM has the following two types of
state transitions. These transitions are the only events where
(1) the state of GlobalT can change (from running to stopped
or from stopped to running), (2) the value of GlobalT changes,
or (3) the value of global preinstall proof changes. In our
pseudocode, the state transitions occur across multiple lines
and functions. However, they are atomic events that always
occur together, and we treat them as such.

• Transition (1): A server can transition from state (1) to
state (2) only when GlobalT expires and it increments
its global view by one.

• Transition (2): A server can transition from state (2) to
state (1) or from state (1) to state (1) when it increases
its global preinstall proof and starts GlobalT.

We now show that if Invariant B.1 holds before a state
transition, it will hold after a state transition.

We first consider transition (1). We assume that Invariant
B.1 holds immediately before the transition. Before transition
(1), SM is in state (1) and Globalview is equal to
Global preinstalledview, and GlobalT is running. After tran-
sition (1), SM is in state (2) and Globalview is equal
to Globalpreinstalledview + 1, and GlobalT is stopped.
Therefore, after the state transition, Invariant B.1 holds. This
transition corresponds to Figure 9, lines A1 and A2. On line
A1, Global T expires and stops. On line A2, Globalview is
incremented by one.SM cannot transition back to state (1)
until a transition (2) occurs.

We next consider transition (2). We assume that Invariant
B.1 holds immediately before the transition. Before transition
(2) SM can be in either state (1) or state (2). We now prove
that the invariant holds immediately after transition (2) if it
occurs from either state (1) or state (2).

Let gv be the value of Globalview before the transition. If
SM is in state (1) before transition (2), then global preinstall
proof is gv, and GlobalT is running. If SM is in state (2)
before transition (2), then global preinstall proof isgv−1, and
Global T is stopped. In either case, the following is true before
the transition: global preinstalled proof≥ gv − 1. Transition
(2) occurs only when global preinstall proof increases (Figure
9, block E). Line E6 of Figure 9 is the only line in the
pseudocode where GlobalT is started after initialization, and
this line is triggered upon increasing global preinstall proof.
Let global preinstall proof equalgp after transition (2) and
Global view begv′. Since the global preinstall proof must be
greater than what it was before the transition,gp ≥ gv. On
lines E5 - E7 of Figure A-2, when global preinstall proof is

38

increased, Globalview is increased to global preinstall proof
if Global view < global preinstall proof. Thus,gv′ ≥ gp.
Finally, gv′ ≥ gv, because Globalview either remained the
same or increase.

We now must examine two different cases. First, when
gv′ > gv, the Globalview was increased togp, and, therefore,
gv′ = gp. Second, whengv′ = gv (i.e., Globalview was not
increased), then, fromgp ≥ gv and gv′ ≥ gp, gv′ = gp. In
either case, therefore, Invariant B.1 holds after transition (2).

We have shown that Invariant B.1 holds when a server starts
and that it holds after each state transition.

We now prove a claim aboutRELIABLE-SEND-TO-ALL -
SITES that we use to prove Claim B.4:

Claim B.5: If the system is stable with respect to time
T , then if a stable server invokesRELIABLE-SEND-TO-ALL -
SITES on messagem, then all stable servers will receivem.

Proof: When a stable server invokesRELIABLE-
SEND-TO-ALL -SITES on messagem, it first creates a Reli-
ableMessage(m) message and sends it to all of the servers
in its site,S, (Figure A-15, lines A2 and A3). Therefore, all
stable servers inS will receive messagem embedded within
the ReliableMessage.

The server that invokedRELIABLE-SEND-TO-ALL -SITES

calls SendToPeers onm (line A4). All other servers call
SendToPeers(m) when they receive ReliableMessage(m)
(line B2). Therefore, all stable servers inS will call
SendToPeers(m). This function first checks to see if the server
that called it has a Serverid between 1 and2f + 1 (line D1).
Recall that servers in each site are uniquely numbered with
integers from 1 to3f + 1. If a server is one of the2f + 1
servers with the lowest values, it will send its message to all
servers in all other sites that have a Serverid equal to its server
id (lines D2-D4).

Therefore, if we considerS and any other stable siteS′,
then messagem is sent across2f + 1 links, where the4f +
2 servers serving as endpoints on these links are unique. A
link passesm from site S to S′ if both endpoints are stable
servers. There are at most2f servers that are not stable in the
two sites. Therefore, if each of these non-stable servers blocks
one link, there is still one link with stable servers at both
endpoints. Thus, messagem will pass fromS to at least one
stable server in all other sites. When a server on the receiving
endpoint receivesm (lines C1-C2), it sendsm to all servers in
its site. Therefore, we have proved that if any stable serverin
a stable system invokesRELIABLE-SEND-TO-ALL -SITES on
m, all stable servers in all stable sites will receivem.

We now show that if all stable servers increase their
Global view to gv, then all stable servers will preinstall
global viewgv.

Lemma B.5: If the system is stable with respect to time
T , then if, at a time afterT , all stable servers increase their
Global view variables togv, all stable servers will preinstall
global viewgv.

Proof: We first show that if any stable server increases
its global view togv because it receives global preinstall proof
for gv, then all stable servers will preinstallgv. When a stable
server increases its global preinstall proof togv, it reliably
sends this proof to all servers (Figure 9, lines E4 and E5) By
Claim B.5, all stable servers receive this proof, apply it, and
preinstall global viewgv.

We now show that if all stable servers increase their global
views togv without first receiving global preinstall proof for
gv, all stable servers will preinstallgv. A correct server can
increase its Globalview to gv without having preinstall proof
for gv in only one place in the pseudocode (Figure 9, line A2).
If a stable server executes this line, then it also constructs an
unsigned GlobalVC(gv) message and invokesTHRESHOLD-
SIGN on this message (lines A4-A5).

From Claim B.3, if all stable servers in a stable site invoke
THRESHOLD-SIGN on
Global VC(gv), then a correctly threshold signed
Global VC(gv) message will be returned to all stable
servers in this site. WhenTHRESHOLD-SIGN returns a
Global VC message to a stable server, this server reliably
sends it to all other sites. By Claim B.5, all stable servers
will receive the GlobalVC(gv) message. Since we assume
all stable servers in all sites increase their global views to gv,
all stable servers will receive a GlobalVC(gv) message from
a majority of sites.

We next prove that soon after the system becomes stable,
all stable servers preinstall the same global viewgv. We also
show that there can be no global preinstall proof for a global
view abovegv:

Lemma B.6: If global progress does not occur, and the
system is stable with respect to timeT , then all stable servers
will preinstall the same global viewgv before timeT + ∆,
wheregv is equal to the the maximum global preinstall proof
in the system when the stable servers first preinstallgv.

Proof: Let smax be the stable server with the highest
preinstalled global view,gpmax, at timeT , and letgpsysmax

be the highest preinstalled view in the system at timeT . We
first show thatgpmax +1 ≥ gpsysmax. Second, we show that
all stable servers will preinstallgpmax. Then we show that the
Global T timers will expire at all stable servers, and they will
increase their global view togpmax + 1. Next, we show that
when all stable servers move to global viewgpmax + 1, each
site will create a threshold signed GlobalVC(gpmax+1) mes-
sage, and all stables servers will receive enough GlobalVC
messages to preinstallgpmax + 1.

In order for gpsysmax to have been preinstalled,
some server in the system must have collected
Global VC(gpsysmax) messages from a majority of
sites. Therefore, at leastf + 1 stable servers must have
had global views forgpsysmax, because they must have
invoked THRESHOLD-SIGN on GlobalVC(gpsysmax). From
Invariant B.1, if a correct server is ingpsysmax, it must have
global preinstall proof for at leastgpsysmax − 1. Therefore,

39

gpmax + 1 ≥ gpsysmax.
Whensmax preinstallsgpmax, it reliably sends global pre-

install proof forgpmax to all stable sites (via theRELIABLE-
SEND-TO-ALL -SITES protocol). By Claim B.5, all stable
servers will receive and apply GlobalPreinstallProof(gpmax)
and increase their Globalview variables togpmax. Therefore,
within approximately one widea-area message delay ofT , all
stable servers will preinstallgpmax. By Invariant B.1, all stable
servers must have global viewgpmax or gpmax+1. Any stable
server with Globalview gpmax + 1 did not yet preinstall this
global view. Therefore, its timer is stopped as described inthe
proof of Lemma B.4, and it will not increase its view again
until it receives proof for a view higher thangpmax.

We now need to show that all stable servers with
Global view gpmax will move to Globalview gpmax +1. All
of the servers ingpmax have running timers because their
global preinstall proof= Global view. The GlobalT timer is
reset in only two places in the pseudocode. The first is on
line E6 of Figure 9. This code is not called unless a server
increases its global preinstall proof, in which case it would also
increase its Globalview to gpmax+1. The second case occurs
when a server executes a GloballyOrderedUpdate (Figure
A-2, line C8), which cannot happen because we assume that
global progress does not occur. Therefore, if a stable server
that has viewgpmax does not increase its view because it
receives preinstall proof forgpmax + 1, its GlobalT timer
will expire and it will increment its global view togpmax +1.

We have shown that if global progress does not occur, and
the system is stable with respect to timeT , then all stable
servers will move to the same global view,gpmax+1. A server
either moves to this view because it has preinstall proof for
gpmax+1 or it increments its global view togpmax+1. If any
server has preinstall proof forgpmax, it sends this proof to all
stable servers usingRELIABLE-SEND-TO-ALL -SITES and all
stable servers will preinstallgpmax + 1. By Lemma B.5, if
none of the stable servers have preinstall proof forgpmax + 1
and they have incremented their global view togpmax + 1,
then all stable servers will preinstallgpmax + 1.

We conclude by showing that time∆ is finite. As soon
as the system becomes stable, the server with the highest
global preinstall proof,gpmax, sends this proof to all stable
servers as described above. It reaches them in one wide
area message delay. After at most one global timeout, the
stable servers will increment their global views because their
Global T timeout will expire. At this point, the stable servers
will invoke THRESHOLD-SIGN, Global VC messages will be
returned at each stable site, and the stable servers in each
site will reliably send their GlobalVC messages to all stable
servers. These messages will arrive in approximately one wide
area delay, and all servers will install the same view,gpmax+1.

We now prove the last lemma necessary to prove Claim B.4:

Lemma B.7: If the system is stable with respect to timeT ,
then if all stable servers are in global viewgv, the GlobalT
timers of at leastf + 1 stable servers must timeout before
the global preinstall proof forgv + 1 can be generated.

Proof: A stable system has a majority of sites each
with at least2f + 1 stable servers. If all of the servers in
all non-stable sites generate GlobalVC(gv +1) messages, the
set of existing messages does not constitute global preinstall
proof for gv + 1. One of the stable sites must contribute a
Global VC(gv+1) message. In order for this to occur,2f +1
servers at one of the stable sites must invokeTHRESHOLD-
SIGN on GlobalVC(gv+1), which impliesf+1 stable servers
had global viewgv + 1. Since global preinstall proof could
not have been generated without the GlobalVC message from
their site, GlobalT at these servers must have expired.

We now use Lemmas B.5, B.6, and B.7 to prove Claim B.4:

Proof: By Lemma B.6, all servers will preinstall the same
view, gv, and the highest global preinstall proof in the system
is gv. If global progress does not occur, then the GlobalT
timer at all stable servers will eventually expire. When this
occurs, all stable servers will increase their global view to
gv+1. By Lemma B.5, all stable servers will preinstallgv+1.
By Lemma B.5, GlobalT must have expired at at leastf + 1
stable servers. We have shown that if all stable servers are
in the same global view, they will remain in this view until
at leastf + 1 stable servers GlobalT timer expires, and they
will definitely preinstall the next view when all stable servers’
Global T timer expires.

When the first stable server preinstalls global viewgv + 1,
it reliably sends global preinstall proofgv + 1 to all stable
servers (Figure 9, line E4). Therefore, all stable servers will
receive global preinstall proof forgv + 1 at approximately
the same time (within approximately one wide area message
delay). The stable servers will reset their GlobalT timers and
start them when they preinstall. At this point, no server can
preinstall the next global view until there is a global timeout
at at leastf + 1 stable servers. If the servers don’t preinstall
the next global view before, they will do so when there is a
global timeout at all stable servers. Then the process repeats.
The stable servers preinstall all consecutive global viewsand
remain in them for a global timeout period.

We now prove a similar claim about the local representative
election protocol. The protocol is embedded within the
LOCAL-VIEW-CHANGE protocol, and it is responsible for the
way in which stable servers within a site synchronize their
Local view variable.

Claim B.6: If global progress does not occur, and the
system is stable with respect to timeT , then all stable
servers in a stable site will preinstall the same local view,
lv, in a finite time. Subsequently, all stable servers in the
site will: (1) preinstall all consecutive local views abovelv
within one local area message delay of each other and (2)
remain in each local view for at least one local timeout period.

To prove Claim B.6, we use a state machine based
argument to show that the following invariant holds:

40

INVARIANT B.2: If a correct server,s, has Localview lv,
then it is in one of the following two states:

1) Local T is running ands has local preinstall prooflv
2) Local T is not running ands has local preinstall proof

lv − 1.

Lemma B.8: Invariant B.2 always holds.

Proof: When a correct server starts, LocalT is started,
Local view is set to 0, and the server has ana priori proof
(New Rep message) for local view 0. Therefore, it is in state
(1).

A server can transition from one state to another only in the
following two cases. These transitions are the only times where
a server (1) increases its local preinstall proof, (2) increases
its Local view, or (3) starts or stops LocalT.

• Transition (1): A server can transition from state (1) to
state (2) only when LocalT expires and it increments its
local view by one.

• Transition (2): A server can transition from state (2) to
state (1) or from state (1) to state (1) when it increases
its local preinstall proof and starts LocalT.

We now show that if Invariant B.2 holds before a state
transition, it will hold after a state transition.

We first consider transition (1). We assume that Invariant
B.2 holds immediately before the transition. Before transition
(1), the server is in state (1) and Localview is equal to local
preinstalled view, and LocalT is running. After transition (1),
the server is in state (2) and Localview is equal to local
preinstalled view + 1, and LocalT is stopped. Therefore, after
the state transition, Invariant B.2 holds. This transitioncorre-
sponds to lines A1 and A2 in Figure 8. On line A1, LocalT
expires and stops. On line A2, Localview is incremented by
one. The server cannot transition back to state (1) until there
is a transition (2).

We next consider transition (2). We assume that Invariant
B.2 holds immediately before the transition. Before transition
(2) the server can be in either state (1) or state (2). We now
prove that the invariant holds immediately after transition (2)
if it occurs from either state (1) or state (2).

Let lv be the value of Localview before transition. If the
server is in state (1) before transition (2), then local preinstall
proof is lv, and LocalT is running. If the server is in state (2)
before transition (2), then local preinstall proof islv − 1, and
Local T is stopped. In either case, the following is true before
the transition: local preinstall proof≥ gv − 1. Transition (2)
occurs only when local preinstall proof increases (Figure 8,
block D). Line D4 of theLOCAL-VIEW-CHANGE protocol is
the only line in the pseudocode where LocalT is started after
initialization, and this line is triggered only upon increasing
local preinstall proof. Let local preinstall proof equallp after
transition (2) and Localview be lv′. Since the local preinstall
proof must be greater than what it was before the transition,
lp ≥ lv. On lines E2-E4 of Figure A-1, when local preinstall
proof is increased, Localview is increased to local preinstall
proof if Local view < local preinstall proof. Thus,lv′ ≥ lp.
Finally, lv′ ≥ lv, because Localview either remained the same
or increased.

We now must examine two different cases. First, whenlv′ >
lv, Local view was increased tolp, and, therefore,lv′ = lp.
Second, whenlv′ = lv (i.e., Localview was not increased),
then, from lp ≥ lv and lv′ ≥ lp and simple substituition,
lv′ = lp′. In either case, therefore, Invariant B.2 holds after
transition (2).

We have shown that Invariant B.2 holds when a server starts
and that it holds after each state transition, completing the
proof.

We can now prove Claim B.6.

Proof: Let smax be the stable server with the highest
local preinstalled view,lpmax, in stable siteS. Let lvmax

be serversmax’s local view. The local preinstall proof is a
New Rep(lpmax) message threshold signed by siteS. Server
smax sends its local preinstall proof to all other servers in site
S when it increases its local preinstall proof (Figure 8, line
D3). Therefore, all stable servers in siteS will receive the
New Rep message and preinstalllpmax.

From Invariant B.2,lpmax = lvmax − 1 or lpmax = lvmax.
Therefore, all stable servers are within one local view of each
other. If lpmax = lvmax, then all servers have the same local
view and their LocalT timers are running. If not, then there
are two cases we must consider.

1) Local T will expire at the servers with local viewlpmax

and they will increment their local view tolvmax (Figure
8, line D3). Therefore, all stable servers will increment
their local views tolvmax, and invokeTHRESHOLD-
SIGN on NewRep(lvmax) (Figure 8, line A5). By Claim
B.3, a correctly threshold signed NewRep(lvmax) mes-
sage will be returned to all stable servers. They will
increase their local preinstall proof tolvmax, send the
New Rep message to all other servers, and start their
Local T timers.

2) The servers with local viewlpmax will receive a local
preinstall proof higher thanlpmax. In this case, the
servers increase their local view to the value of the
preinstall proof they received, send the preinstall proof,
and start their LocalT timers.

We have shown that, in all cases, all stable servers will
preinstall the same local view and that their local timers will
be running. Now, we need to show that these stable servers
will remain in the same local view for one local timeout, and
then all preinstall the next local view.

At least 2f + 1 servers must first be in a local view
before a NewRep message will be created for that view.
Therefore, thef malicious servers cannot create a preinstall
proof by themselves. When any stable server increases its local
preinstall proof to the highest in the system, it will send this
proof to all other stable servers. These servers will adopt this
preinstall proof and start their timers. Thus, all of their Local T
timers will start at approximately the same time. At leastf +1
stable servers must timeout before a higher preinstall proof
can be created. Therefore, the stable servers will stay in the
same local view for a local timeout period. Since all stable
servers start LocalT at about the same time (within a local
area message delay), they will all timeout at about the same

41

time. At that time, they all invokeTHRESHOLD-SIGN and a
New Rep message will be created for the next view. At this
point, the first server to increase its preinstall proof sends this
proof to all stable servers. They start their LocalT timers, and
the process repeats. Each consecutive local view is guaranteed
to preinstall, and the stable servers will remain in the same
view for a local timeout.

We now establish relationships between our timeouts.
Each server has two timers, GlobalT and LocalT, and a
corresponding global and local timeout period for each timer.
The servers in the leader site have a longer local timeout
than the servers in the non-leader site so that a correct
representative in the leader site can communicate with at least
one correct representative in all stable non-leader sites.The
following claim specifies the values of the timeouts relative
to each other.

Claim B.7: All correct servers with the same global view,
gv, have the following timeouts:

1) The local timeout at servers in the non-leader sites is
local to nls

2) The local timeout at the servers in the leader site is
local to ls = (f + 2)local to nls

3) The global timeout isglobal to = (f + 3)local to ls =
K ∗ 2⌈Global view/N⌉

Proof: The timeouts are set by functions specified in
Figure 12. The global timeoutglobal to is a deterministic
function of the global view,global to = K ∗2⌈Global view/N⌉,
where K is the minimum global timeout andN is the
number of sites. Therefore, all servers in the same global
view will compute the same global timeout (line C1). The
RESET-GLOBAL-TIMER function sets the value of GlobalT to
global to. The RESET-LOCAL-TIMER function sets the value
of Local T depending on whether the server is in the leader
site. If the server is in the leader site, the LocalT timer
is set to local to ls = (global to/(f + 3)) (line B2). If
the server is not in the leader site, the LocalT timer is set
local to nls = local to ls/(f + 2) (line B4). Therefore, the
above ratios hold for all servers in the same global view.

We now prove that each time a site becomes the leader
site in a new global view, correct representatives in this
site will be able to communicate with at least one correct
representative in all other sites. This follows from the timeout
relationships in Claim B.7. Moreover, we show that each
time a site becomes the leader, it will have more time to
communicate with each correct representative. Intuitively, this
claim follows from the relative rates at which the coordinators
rotate at the leader and non-leader sites.

Claim B.8: If LS is the leader site in global viewsgv and
gv′ with gv > gv′, then any stable representative elected in
gv can communicate with a stable representative at all stable
non-leader sites for time∆gv, and any stable representative
elected ingv′ can communicate with a stable representative
at all stable non-leader sites for time∆gv′ and∆gv ≥ 2∗∆gv′ .

Proof: From Claim B.6, if no global progress occurs, (1)
local views will be installed consecutively, and (2) the servers
will remain in the same local view for one local timeout.
Therefore, any correct representative at the leader site will
reign for one local timeout at the leader site,local to ls.
Similarly, any correct representative at a non-leader sitewill
reign for approximately one local timeout at a non-leader site,
local to nls.

From Claim B.7, the local timeout at the leader site isf +2
times the local timeout at the non-leader site (local to ls =
(f + 2)local to nls). If stable serverr is representative for
local to ls, then, at each leader site, there will be at leastf +1
servers that are representative for timelocal to nls during
the time thatr is representative. Since the representative has
a Serverid equal to Localview mod(3f + 1), a server can
never be elected representative twice duringf +1 consecutive
local views. It follows that a stable representative in the leader
site can communicate withf + 1 different servers for time
period local to ls. Since there are at mostf servers that are
not stable, at least one of thef + 1 servers must be stable.

From Claim B.7, the global timeout doubles everyN
consecutive global views, whereN is the number of sites. The
local timeouts are a constant fraction of a global timeout, and,
therefore, they grow at the same rate as the global timeout.
Since the leader site has Siteid = Global view modN , a
leader site is elected exactly once everyN consecutive global
views. Therefore, each time a site becomes the leader, the local
and global timeouts double.

Claim B.9: If global progress does not occur and the
system is stable with respect to timeT , then in any global
view gv that begins after timeT , there will be at least two
stable representatives in the leader site that are each leaders
for a local timeout at the leader site,local to ls.

Proof: From Claim B.6, if no global progress occurs,
(1) local views will be installed consecutively, and (2) the
servers will remain in the same local view for one local
timeout. From Claim B.4, if no global progress occurs, the
servers in the same global view will remain in this global
view for one global timeout,global to. From Claim B.7,
global to = (f + 3)local to ls. Therefore, during the time
when all stable servers are in global viewgv, there will
be f + 2 representatives in the leader site that each serve
for local to ls. We say that these servers have complete
reigns in gv. Since the representative has a Serverid equal
to Local view mod(3f + 1), a server can never be elected
representative twice duringf + 2 consecutive local views.
There are at mostf servers in a stable site that are not stable,
therefore at least two of thef + 2 servers that have complete
reigns ingv will be stable.

We now proceed with our main argument for proving
Claim B.2, which will show that a stable server will be
able to complete theGLOBAL-VIEW-CHANGE protocol. To
complete GLOBAL-VIEW-CHANGE in a global view gv, a
stable representative must coordinate the construction of

42

an Aru Message, send the AruMessage to the other sites,
and collect GlobalConstraint messages from a majority of
sites. We leverage the properties of the global and local
timeouts to show that, as the stable sites move through global
views together, a stable representative of the leader site will
eventually remain in power long enough to complete the
protocol, provided each component of the protocol completes
in finite time. This intuition is encapsulated in the following
lemma:

Lemma B.9: If global progress does not occur and the
system is stable with respect to timeT , then there exists
an infinite set of global viewsgvi, each with an associated
local view lvi and a stable leader siteSi, in which, if
CONSTRUCT-ARU and CONSTRUCT-GLOBAL-CONSTRAINT

complete in bounded finite times, then if the first stable
representative ofSi serving for at least a local timeout
period invokesGLOBAL-VIEW-CHANGE, it will complete the
protocol in (gvi, lvi).

Proof: By Claim B.4, if the system is stable and no
global progress is made, all stable servers move together
through all (consecutive) global viewsgv above some initial
synchronization view, and they remain ingv for at least one
global timeout period, which increases by at least a factor
of two everyN global view changes. Since the stable sites
preinstall consecutive global views, an infinite number of
stable leader sites will be elected. By Claim B.9, each such
stable leader site elects three stable representatives before the
Global T timer of any stable server expires, two of which
remain in power for at least a local timeout period before
any stable server inS expires its LocalT timeout. We now
show that we can continue to increase this timeout period
(by increasing the value ofgv) until, if CONSTRUCT-ARU

andCONSTRUCT-GLOBAL-CONSTRAINT complete in bounded
finite times∆aru and∆gc, respectively, the representative will
completeGLOBAL-VIEW-CHANGE.

A stable representative invokesCONSTRUCT-ARU after in-
voking theGLOBAL-VIEW-CHANGE protocol (Figure 11, line
A2), which occurs either after preinstalling the global view
(Figure 9, line E8) or after completing a local view change
when not globally constrained (Figure 8, line D8). Since the
duration of the local timeout periodlocal to ls increases by
at least a factor of two everyN global view changes, there
will be a global viewgv in which the local timeout period is
greater than∆aru, at which point the stable representative has
enough time to construct the AruMessage.

By Claim B.8, if no global progress occurs, then a stable
representative of the leader site can communicate with a stable
representative at each stable non-leader site in a global view
gv for some amount of time,∆gv, that increases by at least
a factor of two everyN global view changes. The stable
representative of the leader site receives a NewRep message
containing the identity of the new site representative from
each stable site roughly one wide area message delay after
the non-leader site representative is elected. Since∆gc is
finite, there is a global view sufficiently large such that (1)
the leader site representative can send the AruMessage it

constructed to each non-leader site representative, the identity
of which it learns from the NewRep message, (2) each non-
leader site representative can completeCONSTRUCT-GLOBAL-
CONSTRAINT, and (3) the leader site representative can collect
Global Constraint messages from a majority of sites. We can
apply the same logic to each subsequent global viewgv′ with
a stable leader site.

We call the set of views for which Lemma B.9 holds the
completion views. Intuitively, a completion view is a view
(gv, lv) in which the timeouts are large enough such that,
if CONSTRUCT-ARU andCONSTRUCT-GLOBAL-CONSTRAINT

complete in some bounded finite amounts of time, the stable
representative of the leader siteS of gv (which is the first
stable representative ofS serving for at least a local timeout
period) will complete theGLOBAL-VIEW-CHANGE protocol.

Given Lemma B.9, it just remains to show that there
exists a completion view in whichCONSTRUCT-ARU and
CONSTRUCT-GLOBAL-CONSTRAINT terminate in bounded fi-
nite time. We use Claim B.1 to leverage the fact that all
stable servers eventually reconcile their GlobalHistory data
structures tomax stable seq to bound the amount of work
required by each protocol. Since there are an infinite number
of completion views, we consider those completion views in
which this reconciliation has already completed.

We first show that there is a bound on the size of the
Global ServerState messages used inCONSTRUCT-ARU and
CONSTRUCT-GLOBAL-CONSTRAINT.

Lemma B.10: If all stable servers have a Globalaru
of max stable seq, then no server can have a Prepare
Certificate, Proposal, or GloballyOrderedUpdate for any
sequence number greater than(max stable seq + 2 ∗ W).

Proof: Since obtaining a GloballyOrderedUpdate re-
quires a Proposal, and generating a Proposal requires collect-
ing a Prepare Certificate, we assume that a Prepare Certificate
with a sequence number greater than(max stable seq+2∗W)
was generated and show that this leads to a contradiction.

If any server collects a Prepare Certificate for a sequence
numberseq greater than
(max stable seq + 2 ∗ W), then it collects a Pre-Prepare
message and2f Prepare messages for(max stable seq +
2 ∗ W). This implies that at leastf + 1 correct servers sent
either a Pre-Prepare or a Prepare. A correct representativeonly
sends a Pre-Prepare message forseq if its Global aru is at
least(seq−W) (Figure 7, line A3), and a correct server only
sends a Prepare message if its Globalaru is at least(seq−W)
(Figure A-6, A23). Thus, at leastf + 1 correct servers had a
Global aru of at least(seq − W).

For this to occur, thesef +1 correct servers obtained Glob-
ally OrderedUpdates for those sequence numbers up to and
including(seq−W). To obtain a GloballyOrderedUpdate, a
server collects a Proposal message and⌊N/2⌋ corresponding
Accept messages. To construct a Proposal for(seq − W), at
leastf +1 correct servers in the leader site had a Globalaru of
at least(seq−2W) > max stable seq. Similarly, to construct
an Accept message, at leastf + 1 correct servers in a non-

43

leader site contributed a Partialsig message. Thus, there exists
a majority of sites, each with at leastf +1 correct servers with
a Globalaru greater thanmax stable seq.

Since any two majorities intersect, one of these sites is a
stable site. Thus, there exists a stable site with some stable
server with a Globalaru greater thanmax stable seq, which
contradicts the definition ofmax stable seq.

Lemma B.11: If all stable servers have a Globalaru of
max stable seq, then if a stable representative of the leader
site invokes CONSTRUCT-ARU, or if a stable server in a
non-leader site invokesCONSTRUCT-GLOBAL-CONSTRAINT

with an Aru Message containing a sequence number at least
max stable seq, then any valid GlobalServerState message
will contain at most2 ∗ W entries.

Proof: A stable server invokesCONSTRUCT-ARU with an
invocation sequence number ofmax stable seq. By Lemma
B.10, no server can have a Prepare Certificate, Proposal, or
Globally OrderedUpdate for any sequence number greater
than(max stable seq+2∗W). Since these are the only entries
reported in a valid GlobalServerState message (Figure A-11,
Block B), the lemma holds. We use the same logic as above
in the case ofCONSTRUCT-GLOBAL-CONSTRAINT.

The next two lemmas show thatCONSTRUCT-ARU

and CONSTRUCT-GLOBAL-CONSTRAINT will complete in
bounded finite time.

Lemma B.12: If the system is stable with respect to time
T and no global progress is made, then there exists an infinite
set of views (gvi, lvi) in which a run ofCONSTRUCT-ARU

invoked by the stable representative of the leader site will
complete in some bounded finite time,∆aru.

Proof: By Claim B.1, if no global progress is made,
then all stable servers eventually reconcile their Globalaru
to max stable seq. We consider those completion views in
which this reconciliation has already completed.

The representative of the completion view
invokes CONSTRUCT-ARU upon completing GLOBAL-
LEADER-ELECTION (Figure 11, line A2). It sends a
RequestGlobal State message to all local servers containing
a sequence number reflecting its current Globalaru value.
Since all stable servers are reconciled up tomax stable seq,
this sequence number is equal tomax stable seq. Since
the leader site is stable, all stable servers receive the
RequestGlobal State message within one local message
delay.

When a stable server receives the RequestGlobal State
message, it immediately sends a GlobalServerState message
(Figure A-9, lines B5-B7), because it has a Globalaru of
max stable seq. By Lemma B.11, any valid
Global ServerState message can contain entries for at
most 2 ∗ W sequence numbers. We show below in Claim
B.11 that all correct servers have contiguous entries above
the invocation sequence number in their GlobalHistory data
structures. From Figure A-11 Block B, the GlobalServerState

message from a correct server will contain contiguous entries.
Since the site is stable, the representative collects valid
Global ServerState messages from at least2f + 1 servers,
bundles them together, and sends the
Global CollectedServersState message to all local servers
(Figure A-9, line C3).

Since the representative is stable, and all stable servers
have a Globalaru of max stable seq (which is equal to
the invocation sequence number), all stable servers meet the
conditionals at Figure A-9, lines D2 and D3. They do not
see a conflict at Figure A-5, line F4, because the repre-
sentative only collects GlobalServerState messages that are
contiguous. They construct the union message by completing
ComputeGlobal Union (line D4), and invokeTHRESHOLD-
SIGN on each Prepare Certificate in the union. Since there are
a finite number of entries in the union, there are a finite number
of Prepare Certificates. By Lemma B.3, all stable servers
convert the Prepare Certificates into Proposals and invoke
THRESHOLD-SIGN on the union (line F2). By Lemma B.3,
all stable servers generate the GlobalConstraint message (line
G1) and invokeTHRESHOLD-SIGN on the extracted unionaru
(line G4). By Lemma B.3, all stable servers generate the
Aru Message and complete the protocol.

Sincegvi can be arbitrarily high, with the timeout period
increasing by at least a factor of two everyN global view
changes, there will eventually be enough time to complete the
bounded amount of computation and communication in the
protocol. We apply the same logic to all subsequent global
views with a stable leader site to obtain the infinite set.

Lemma B.13: Let A be an AruMessage containing a
sequence number ofmax stable seq. If the system is stable
with respect to timeT and no global progress is made, then
there exists an infinite set of views (gvi, lvi) in which a run
of CONSTRUCT-GLOBAL-CONSTRAINT invoked by a stable
server in local viewlvi, where the representative oflvi is
stable, in a non-leader site with argumentA, will complete
in some bounded finite time,∆gc.

Proof: By Claim B.1, if no global progress is made,
then all stable servers eventually reconcile their Globalaru
to max stable seq. We consider those completion views in
which this reconciliation has already occurred.

The Aru MessageA has a value of atmax stable seq.
Since the representative oflv′ is stable, it sendsA to all
servers in its site. All stable servers receiveA within one local
message delay.

All stable servers invoke CONSTRUCT-GLOBAL-
CONSTRAINT upon receivingA and send GlobalServerState
messages to the representative. By Lemma B.11, the
Global ServerState messages contain entries for at most
2 ∗ W sequence numbers. We show below in Claim B.11
that all correct servers have contiguous entries above the
invocation sequence number in their GlobalHistory data
structures. From Figure A-11 Block B, the GlobalServerState
message from a correct server will contain contiguous entries.
The representative will receive at least2f + 1 valid
Global ServerState messages, since all messages sent by

44

stable servers will be valid. The representative bundles up
the messages and sends a GlobalCollectedServersState
message (Figure A-10, line B3).

All stable servers receive the
Global CollectedServersState message within one local
message delay. The message will meet the conditional at
line C2, because it was sent by a stable representative. They
do not see a conflict at Figure A-5, line F4, because the
representative only collects GlobalServerState messages
that are contiguous. All stable servers construct the union
message by completing ComputeGlobal Union (line C3),
and invoke THRESHOLD-SIGN on each Prepare Certificate
in the union. Since all valid GlobalServerState messages
contained at most2 ∗ W entries, there are at most2 ∗ W
entries in the union and2 ∗ W Prepare Certificates in the
union. By Lemma B.3, all stable servers convert the Prepare
Certificates into Proposals and invokeTHRESHOLD-SIGN

on the union (line E2). By Lemma B.3, all stable servers
generate the GlobalConstraint message (line F2).

Sincegvi can be arbitrarily high, with the timeout period
increasing by at least a factor of two everyN global view
changes, there will eventually be enough time to complete the
bounded amount of computation and communication in the
protocol. We apply the same logic to all subsequent global
views with a stable leader site to obtain the infinite set.

Finally, we can prove Claim B.2:

Proof: By Lemma B.9, the first stable representa-
tive of some leader siteS can completeGLOBAL-VIEW-
CHANGE in a completion view (gv, lv) if CONSTRUCT-ARU

andCONSTRUCT-GLOBAL-CONSTRAINT complete in bounded
finite time. By Lemmas B.12,S can completeCONSTRUCT-
ARU in bounded finite time. This message is sent to a stable
representative in each non-leader site, and by Lemma B.13,
CONSTRUCT-GLOBAL-CONSTRAINT completes in bounded fi-
nite time. We apply this logic to all global views with stable
leader site abovegv, completing the proof.

We now show that either the first or the second stable
representative of the leader site serving for at least a local
timeout period will make global progress, provided at least
one stable server receives an update that it has not previously
executed. This then implies our liveness condition.

We begin by showing that a stable representative of the
leader site that completesGLOBAL-VIEW-CHANGE and serves
for at least a local timeout period will be able to pass the
Global Constraint messages it collected to the other stable
servers. This implies that subsequent stable representatives will
not need to run theGLOBAL-VIEW-CHANGE protocol (because
they will already have the necessary GlobalConstraint
messages and can become globally constrained) and can,
after becoming locally constrained, attempt to make progress.

Lemma B.14: If the system is stable with respect to time
T , then there exists an infinite set of global viewsgvi in which
either global progress occurs during the reign of the first
stable representative at a stable leader site to serve for atleast

a local timeout period, or any subsequent stable representative
elected at the leader site duringgvi will already have a set
consisting of a majority of GlobalConstraint messages from
gvi.

Proof: By Claim B.2, there exists an infinite set of global
views in which the first stable representative serving for atleast
a local timeout period will completeGLOBAL-VIEW-CHANGE.
To completeGLOBAL-VIEW-CHANGE, this representative col-
lects GlobalConstraintMessages from a majority of sites. The
representative sends a signed CollectedGlobal Constraints
message to all local servers (Figure 8, line D11). Since the
site is stable, all stable servers receive this message within
one local message delay. If we extend the reign of the stable
representative that completedGLOBAL-VIEW-CHANGE by one
local message delay (by increasing the value ofgv), then
in all subsequent local views in this global view, a stable
representative will already have GlobalConstraintMessages
from a majority of servers. We apply the same logic to all
subsequent global views with a stable leader site to obtain the
infinite set.

We now show that if no global progress is made during the
reign of the stable representative that completedGLOBAL-
VIEW-CHANGE, then a second stable representative that is
already globally constrained will serve for at least a local
timeout period.

Lemma B.15: If the system is stable with respect to time
T , then there exists an infinite set of global viewsgvi in
which either global progress occurs during the reign of the
first stable representative at a stable leader site to serve for at
least a local timeout period, or a second stable representative
is elected that serves for at least a local timeout period
and which already has a set consisting of a majority of
Global Constraint(gvi) messages upon being elected.

Proof: By Lemma B.14, there exists an infinite set of
global views in which, if no global progress occurs during the
reign of the first stable representative to serve at least a local
timeout period, all subsequent stable representatives already
have a set consisting of a majority of GlobalConstraint
messages upon being elected. We now show that a second
stable representative will be elected.

By Claim B.8, if no global progress is made, then the stable
leader site of some suchgv will elect f + 3 representatives
before any stable server expires its GlobalT timer, and at least
f +2 of these representatives serve for at least a local timeout
period. Since there are at mostf faulty servers in the site, at
least two of these representatives will be stable.

Since globally ordering an update requires the servers in the
leader site to be locally constrained, we prove the following
lemma relating to theCONSTRUCT-LOCAL-CONSTRAINT

protocol:

Lemma B.16: If the system is stable with respect to time
T and no global progress occrs, then there exists an infinite

45

set of views (gvi, lvi) in which a run ofCONSTRUCT-LOCAL-
CONSTRAINT invoked by a stable representative of the leader
site will complete at all stable servers in some bounded finite
time, ∆lc.

To prove Lemma B.16, we use the following two lemmas
to bound the size of the messages sent inCONSTRUCT-
LOCAL-CONSTRAINT:

Lemma B.17: If the system is stable with respect to time
T , no global progress is made, and all stable servers have a
Global aru of max stable seq, then no server in any stable
leader siteS has a Prepare Certificate or Proposal message
in its Local History data structure for any sequence number
greater than (max stable seq + W).

Proof: We show that no server inS can have a
Prepare Certificate for any sequence numbers′, where
s′ > (max stable seq + W). This implies that no server has
a Proposal message for any such sequence numbers′, since a
Prepare Certificate is needed to construct a Proposal message.

If any server has a Prepare Certificate for a sequence number
s′ > (max stable seq + W), it collects a Pre-Prepare and a
Prepare from2f +1 servers. Since at mostf servers inS are
faulty, some stable server sent a Pre-Prepare or a Prepare for
sequence numbers′. A correct representative only sends a Pre-
Prepare message for those sequence numbers in its window
(Figure 7, line A3). A non-representative server only sendsa
Prepare message for those sequence numbers in its window,
since otherwise it would have a conflict (Figure A-6, line
A23). This implies that some stable server has a window that
starts aftermax stable seq, which contradicts the definition
of max stable seq.

Lemma B.18: If no global progress occurs, and all stable
servers have a Globalaru of max stable seq when installing
a global viewgv, then if a stable representative of a leader
site S invokes CONSTRUCT-LOCAL-CONSTRAINT in some
local view (gv, lv), any valid LocalServerState message
will contain at mostW entries.

Proof: When the stable representative installed global
view gv, it set PendingProposalAru to its Globalaru
(Figure 11, line F4), which ismax stable seq. Since
PendingProposalAru only increases, the stable representa-
tive invokes CONSTRUCT-LOCAL-CONSTRAINT with a se-
quence number of at leastmax stable seq. A valid Lo-
cal ServerState message contains Prepare Certificates or Pro-
posals for those sequence numbers greater than the invocation
sequence number (Figure A-6, line D6). By Lemma B.17, no
server inS has a Prepare Certificate or Proposal for a sequence
number greater than (max stable seq +W), and thus, a valid
message has at mostW entries.

We now prove Lemma B.16:

Proof: By Claim B.1, if no global progress is made,
then all stable servers eventually reconcile their GlobalAru

to max stable seq. We consider the global views in which
this has already occurred.

When a stable server becomes globally constrained in
some such viewgv, it sets its PendingProposalAru variable
to its Globalaru (Figure 11, line F4), which is equal to
max stable seq, since reconciliation has already occurred. A
stable representative only increases its
PendingProposalAru when it globally orders an update or
constructs a Proposal for the sequence number one higher than
its current PendingProposalAru (Figure A-2, lines A5, A12,
and C11). The stable representative does not globally order
an update for (max stable seq + 1), since when the server
globally ordered an update for(max stable seq+1), it would
have increased its GlobalAru and executed the update, which
violates the definition ofmax stable seq. By Lemma B.17, no
server inS has a Prepare Certificate or a Proposal message for
any sequence numbers > (max stable seq + W). Thus, the
stable representative’s PendingProposalAru can be at most
max stable seq + W when invoking CONSTRUCT-LOCAL-
CONSTRAINT

Since the representative oflv is stable, it sends a Re-
questLocal State message to all local servers, which arrives
within one local message delay. All stable servers have a
PendingProposalAru of at least max stable seq and no
more than (max stable seq + W). Thus, if a stable server’s
PendingProposalAru is at least as high as the invocation
sequence number, it sends a LocalServerState message im-
mediately (Figure 10, lines B5 - B7). Otherwise, the server
requests Proposals for those messages in the difference, of
which there are at mostW . Since the site is stable, these
messages will arrive in some bounded time that is a function
of the window size and the local message delay.

By Lemma B.18, any valid LocalServerState message
contains at mostW entries. We show below in Claim B.11 that
all correct servers have contiguous entries above the invocation
sequence number in their LocalHistory data structures. From
Figure A-11 Block A, the LocalServerState message from
a correct server will contain contiguous entries. The repre-
sentative will receive at least2f + 1 valid Local ServerState
messages, since all messages sent by stable servers will be
valid. The representative bundles up the messages and sends
a LocalCollectedServersState message. All stable servers
receive the LocalCollectedServersState message within one
local message delay. The message will meet the conditionals
in Figure 10, lines D2 and D3, at any stable server that sent
a LocalServerState message. They do not see a conflict at
Figure A-6, line E4, because the representative only collects
Local ServerState messages that are contiguous. All stable
servers apply the LocalCollectedServersState message to
their LocalHistory data structures.

Since gv can be arbitrarily high, with the timeout period
increasing by at least a factor of two everyN global view
changes, there will eventually be enough time for all stable
servers to receive the RequestLocal Server state message,
reconcile their LocalHistory data structures (if necessary)
and send a LocalServerState message, and process a Lo-
cal CollectedServersState message from the representative.
Thus, there will eventually be enough time to complete the

46

bounded amount of computation and communication in the
protocol, and we can apply this argument to all subsequent
global views with stable leader sites to obtain the infinite set.

The following lemma encapsulates the notion that all stable
servers will become globally and locally constrained shortly
after the second stable representative to serve for at leasta
local timeout period is elected:

Lemma B.19: If the system is stable with respect to time
T and no global progress occurs, then there exists an infinite
set of views in which all stable servers become globally
and locally constrained within∆lc time of the election of
the second stable representative serving for at least a local
timeout period.

Proof: By Lemma B.14, the second stable representative
serving for at least a local timeout period will have a set
of a majority of GlobalConstraint messages from its current
global view upon being elected. This server bundles up the
messages, signs the bundle, and send it to all local servers as
a CollectedGlobal Constraints message (Figure 8, line D11).
Since the site is stable, all stable servers receive the message
within one local message delay and become globally con-
strained. The stable representative also invokesCONSTRUCT-
LOCAL-CONSTRAINT upon being elected (line D6). Since we
consider those global views in which reconciliation has already
occurred, Lemma B.16 implies that all stable servers become
locally constrained within some bounded finite time.

Since all stable servers are globally and locally constrained,
the preconditions for attempting to make global progress are
met. We use the following term in the remainder of the proof:

DEFINITION B.4: We say that a server is aProgressRep
if (1) it is a stable representative of a leader site, (2) it serves
for at least a local timeout period if no global progress is
made, and (3) it can cause all stable servers to be globally
and locally constrained within∆lc time of its election.

The remainder of the proof shows that, in some view, the
ProgressRep can globally order and execute an update that it
has not previously executed (i.e., it can make global progress)
if no global progress has otherwise occurred.

We first show that there exists a view in which the
ProgressRep has enough time to complete theASSIGN-
GLOBAL-ORDER protocol (i.e., to globally order an update),
assuming it invokes ASSIGN-SEQUENCE. To complete
ASSIGN-GLOBAL-ORDER, the ProgressRep must coordinate
the construction of a Proposal message, send the Proposal
message to the other sites, and collect Accept messages from
⌊N/2⌋ sites. As in the case of theGLOBAL-VIEW-CHANGE

protocol, we leverage the properties of the global and local
timeouts to show that, as the stable sites move through global
views together, the ProgressRep will eventually remain in
power long enough to complete the protocol, provided each
component of the protocol completes in some bounded, finite

time. This intuition is encapsulated in the following lemma:

Lemma B.20: If the system is stable with respect to time
T and no global progress occurs, then there exists a view
(gv, lv) in which, if ASSIGN-SEQUENCE and THRESHOLD-
SIGN complete in bounded finite times, and all stable
servers at all non-leader sites invokeTHRESHOLD-SIGN

on the same Proposal fromgv, then if the ProgressRep
invokesASSIGN-SEQUENCEat least once andu is the update
on which it is first invoked, it will globally orderu in (gv, lv).

Proof: By Claim B.1, if no global progress occurs,
then all stable servers eventually reconcile their Globalaru
to max stable seq. We consider the global views in which
this has already occurred.

Since the ProgressRep has a Globalaru of
max stable seq, it assigns u a sequence number of
max stable seq + 1. SinceASSIGN-SEQUENCEcompletes in
some bounded, finite time∆seq, the ProgressRep constructs
P(gv, lv, max stable seq + 1, u), a Proposal for sequence
numbermax stable seq + 1.

By Claim B.8, if no global progress occurs, then a stable
representative of the leader site can communicate with a stable
representative at each stable non-leader site in a global view
gv for some amount of time,∆gv, that increases by at least a
factor of two everyN global view changes. Since we assume
that THRESHOLD-SIGN is invoked by all stable servers at
the stable non-leader sites and completes in some bounded,
finite time,∆sign, there is a global view sufficiently large that
(1) the leader site representative can send the Proposal P to
each non-leader site representative, (2) each non-leader site
representative can completeTHRESHOLD-SIGN to generate an
Accept message, and (3) the leader site representative can
collect the Accept messages from a majority of sites.

We now show that, if no global progress occurs and
some stable server received an update that it had not previ-
ously executed, then some ProgressRepwill invoke ASSIGN-
SEQUENCE. We assume that the reconciliation guaranteed
by Claim B.1 has already completed (i.e., all stable servers
have a Globalaru equal tomax stable seq). From the pseu-
docode (Figure 7, line A1), the ProgressRep invokesASSIGN-
GLOBAL-ORDER after becoming globally and locally con-
strained. The ProgressRep calls GetNext To Propose to get
the next update,u, to attempt to order (line A4). The only
case in which the ProgressRep will not invoke ASSIGN-
SEQUENCE is when u is NULL. Thus, we must first show
that GetNext To Propose will not return NULL.

Within Get Next To Propose, there are two possible cases:
1) Sequence numbermax stable seq + 1 is constrained:

The ProgressRep has a Prepare-Certificate or Proposal
in Local History and/or a Proposal in GlobalHistory for
sequence numbermax stable seq + 1.

2) Sequence numbermax stable seq+1 is unconstrained.
We show that, ifmax stable seq +1 is constrained, thenu

is an update that has not been executed by any stable server.
If max stable seq + 1 is unconstrained, then we show that if
any stable server in siteS received an update that it had not

47

executed after the stabilization time, thenu is an update that
has not been executed by any stable server.

To show that the update returned by GetNext To Propose
is an update that has not yet been executed by any stable
server, we must first show that the same update cannot
be globally ordered for two different sequence numbers.
Claim B.10 states that if a GloballyOrderedUpdate exists
that binds updateu to sequence numberseq, then no other
Globally OrderedUpdate exists that bindsu to seq′, where
seq 6= seq′. We use this claim to argue that if a server
globally orders an update with a sequence number above its
Global aru, then this update could not have been previously
executed. It follows immediately that if a server globally
orders any update with a sequence number one greater than its
Global aru, then it will update execute this update and make
global progress. We now formally state and prove Claim B.10.

Claim B.10: If a Globally OrderedUpdate(seq, u) exists,
then there does not exist a GloballyOrderedUpdate(seq′, u),
whereseq 6= seq′.

We begin by showing that, if an update is bound to a
sequence number in either a Pre-Prepare, Prepare-Certificate,
Proposal, or GloballyOrderedUpdate, then, within a local
view at the leader site, it cannot be bound to a different
sequence number.

Lemma B.21: If in some global and local views (gv, lv)
at least one of the following constraining entries exist in the
Global History or LocalHistory of f + 1 correct servers:

1) Pre-Prepare(gv, lv, seq, u)
2) Prepare-Certificate(*, *,seq, u)
3) Proposal(*, *,seq, u)
4) Globally OrderedUpdate(*, *, seq, u)

Then, neither a Prepare-Certificate(gv, lv, seq′, u) nor
a Proposal(gv, lv, seq′, u) can be constructed, where
seq 6= seq′.

Proof: When a stable server receives a Pre-
Prepare(gv, lv, seq, u), it checks its GlobalHistory and
Local History for any constraining entries that contains update
u. Lemma B.21 lists the message types that are examined.
If there exists a constraining entry binding updateu to seq′,
whereseq 6= seq′, then Pre-Prepare,p, is ignored (Figure A-6,
lines 25-26).

A Prepare-Certificate consists of2f Prepares and a Pre-
Prepare message. We assume that there are no more thanf
malicious servers and a constraining entry binding (seq, u), b,
exists, and we show that there is a contradiction if Prepare-
Certificate(gv, lv, seq′, u), pc, exists. At leastf + 1 correct
servers must have contributed topc. By assumption (as stated
in Lemma B.21), at leastf +1 correct servers have constrain-
ing entryb. This leaves2f servers (at mostf that are malicious
and the remaining that are correct) that do not haveb and could
contribute topc. Therefore, at least one correct server that had
constraintb must have contributed topc. It would not do this
if it were correct; therefore, we have a contradiction.

A correct server will not invoke THRESHOLD-SIGN

to create a Proposal message unless a corresponding
Prepare-Certificate exists. Therefore, it follows that, if
Prepare-Certificate(gv, lv, seq′, u) cannot exist, then
Proposal(gv, lv, seq′, u) cannot exist.

We now use Invariant A.1 fromProof of Safety:

Let P(gv, lv, seq, u) be the first threshold-signed Proposal
message constructed by any server in leader siteS for se-
quence numberseq in global viewgv. We say that Invariant
A.1 holds with respect to P if the following conditions hold
in leader siteS in global viewgv:

1) There exists a set of at leastf + 1 correct servers
with a Prepare Certificate PC(gv, lv′, seq, u) or
a Proposal(gv, lv′, seq, u), for lv′ ≥ lv, in
their LocalHistory[seq] data structure, or a Glob-
ally OrderedUpdate(gv′, seq, u), for gv′ ≥ gv, in their
Global History[seq] data structure.

2) There does not exist a server with any conflicting
Prepare Certificate or Proposal from any view (gv, lv′),
with lv′ ≥ lv, or a conflicting GloballyOrderedUpdate
from any global viewgv′ ≥ gv.

We use the Invariant A.1 to show that if a
Proposal(gv, lv, seq, u) is constructed for the first time
in global view gv, then a constraining entry that bindsu to
seq will exist in all views (gv, lv′), wherelv′ ≥ lv.

Lemma B.22: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in leader
site S binding updateu to sequence numberseq in global
view gv. No other Proposal bindingu to seq′ can be
constructed in global viewgv, whereseq 6= seq′.

Proof: We show that Invariant A.1 holds within the
same global view inProof of Safety. We now show that two
Proposals having different sequence numbers andthe same
update cannot be created within the same global view.

From Lemma B.21 , if Proposal(gv, lv, seq, u), P ,
is constructed, then no constraining entries bindingu to
seq′ exist in (gv, lv). Therefore, from Invariant A.1, no
Proposal(gv, lv′′, seq′, u), P ′ could have been constructed,
wherelv′′ ≤ lv. This follows, because, ifP ′ was constructed,
then Invariant A.1 states that a constraint bindingu to seq′

would exist in view (gv, lv), in which caseP could not
have been constructed. In summary, we have proved that if
P , bindingu to seq, is constructed for the first time in some
local view in gv, then no other proposal bindingu to seq′

was constructed in global viewgv or earlier.
We assume that we createP . From Invariant A.1, afterP

was constructed, constraining messages will exist in all local
views ≥ lv. These constraining messages will always bind
u to seq. Therefore, from Lemma B.21 no Proposal can be
constructed that bindsu to a different sequence number than
in P in any local viewlv′, wherelv′ ≥ lv.

We now use Invariant A.2 fromProof of Safetyin a similar

48

argument:

Let u be the first update globally ordered by any server
for sequence numberseq, and letgv be the global view in
which u was globally ordered. Let P(gv, lv, seq, u) be the
first Proposal message constructed by any server in the leader
site ingv for sequence numberseq. We say that Invariant A.2
holds with respect to P if the following conditions hold:

1) There exists a majority of sites, each with at leastf +1
correct servers with a Prepare Certificate(gv, lv′, seq, u),
a Proposal(gv′, *, seq, u), or a
Globally OrderedUpdate(gv′, seq, u), with gv′ ≥ gv
and lv′ ≥ lv, in its GlobalHistory[seq] data structure.

2) There does not exist a server with any
conflicting Prepare Certificate(gv′, lv′, seq, u′),
Proposal(gv′, *, seq, u′), or Glob-
ally OrderedUpdate(gv′, seq, u′), with gv′ ≥ gv,
lv′ ≥ lv, andu′ 6= u.

We use the Invariant A.2 to show that if
Globally OrderedUpdate(gv, lv, seq, u) is constructed,
then there will be a majority of sites where at leastf + 1
correct servers in each site have a constraining entry that
binds u to seq in all global views greater than or equal to
gv. From this, it follows that any set of GlobalConstraint
messages from a majority of sites will contain an entry that
bindsu to seq.

Lemma B.23: Let G(gv, lv, seq, u) be the first
Globally OrderedUpdate constructed by any server. No
other Prepare-Certificate or Proposal bindingu to seq′ can
be constructed.

Proof: We show that Invariant A.2 holds across global
views in Proof of Safety. We now show that if Glob-
ally OrderedUpdate(gv, lv, seq, u), G, is constructed at any
server, then no Prepare-Certificate or Proposal having different
sequence numbers andthe sameupdate can exist.

If G exists, then Proposal(gv, lv, seq, u), P , must
have been created. From Lemma B.21, ifP was con-
structed, then no constraining entries bindingu to seq′

exist in (gv, lv). Therefore, from Invariant A.2, no Glob-
ally OrderedUpdate(gv, lv′′, seq′, u), G′ could have been
constructed, wherelv′′ ≤ lv. This follows, because, ifG′

was constructed, then Invariant A.1 implies that a constraint
bindingu to seq′ would exist in views (gv, lv), in which case
G could not have been constructed.Proof of Satefyproves this
in detail. To summarize, if a majority of sites each have at least
f + 1 correct servers that have a global constraining entry,b,
then these sites would all generate GlobalConstraint messages
that includeb. To become globally constrained, correct servers
must apply a bundle of GlobalConstraint messages from
a majority of sites, which includes one GlobalConstraint
message that containsb. A correct server will never send
a Prepare or Pre-Prepare message without first becoming
globally constrained. Therefore, ifG′ was constructed, then
there would have been a constraint bindingu to seq′ in
the site whereG was constructed. We have already shown

that this was not possible, becauseG was constructed. In
summary, we have proved that ifG, binding u to seq, is
constructed for the first time in some global viewgv, thenno
Globally OrderedUpdate bindingu to seq′ was constructed
in global viewgv or earlier.

We assume that we constructG. Invariant A.2, implies that
in all global views≥ gv, constraining messages, bindingu to
seq, will exist in at leastf +1 servers at the leader site when
a leader site constructs a Proposal. Therefore, from Lemma
B.21 no Proposal can be constructed that bindsu to a different
sequence number than inseq in any local view lv′, where
lv′ ≥ lv.

We now return to the first case within GetNext To Propose,
where (max stable seq + 1) is constrained at the
ProgressRep.

Lemma B.24: If sequence number(max stable seq+1) is
constrained when a ProgressRep calls GetNext To Propose,
then the function returns an updateu that has not previously
been executed by any stable server.

Proof: From Figure A-8 lines A2 - A5, if
(max stable seq + 1) is constrained at the ProgressRep,
then GetNext To Propose returns the updateu to which the
sequence number is bound.

We assume thatu has been executed by some stable
server and show that this leads to a contradiction. Sinceu
was executed by a stable server, it was executed with some
sequence numbers less than or equal tomax stable seq.
By Lemma B.23, if u has already been globally ordered
with sequence numbers, no Prepare Certificate, Proposal,
or Globally OrderedUpdate can be constructed for any other
sequence numbers′ (which includes(max stable seq + 1)).
Thus, the constraining updateu cannot have been executed by
any stable server, since all executed updates have already been
globally ordered.

We now consider the second case within
Get Next To Propose, in which (max stable seq + 1)
is unconstrained at the ProgressRep (Figure A-8, lines A6
- A7). In this part of the proof, we divide the UpdatePool
data structure into two logical parts:

DEFINITION B.5: We say an update that was added to
the UpdatePool is in a logicalUnconstrained Updatesdata
structure if it does not appear as a Prepare Certificate,
Proposal, or GloballyOrderedUpdate in either the
Local History or GlobalHistory data structure.

We begin by showing that, if some stable server in site
R received an updateu that it had not previously executed,
then either global progress occurs or the ProgressRep of
R eventually hasu either in its UnconstrainedUpdates
data structure or as a Prepare Certificate, Proposal, or
Globally OrderedUpdate constraining some sequence
number.

49

Lemma B.25: If the system is stable with respect to time
T , and some stable serverr in site R receives an updateu
that it has not previously executed at some timeT ′ > T , then
either global progress occurs or there exists a view in which,
if sequence number(max stable seq + 1) is unconstrained
when a ProgressRep calls GetNext To Propose, then the
ProgressRep has u either in its UnconstrainedUpdates
data structure or as a PrepareCertificate, Proposal, or
Globally OrderedUpdate.

Proof: If any stable server previously executedu, then
by Claim B.1, all stable servers (includingr) will eventually
execute the update and global progress occurs.

When serverr receivesu, it broadcastsu within its site,
R (Figure A-1, line F2). SinceR is stable, all stable servers
receiveu within one local message delay. From Figure A-
1, line F5, they placeu in their UnconstrainedUpdates data
structure. By definition,u is only removed from the Uncon-
strainedUpdates (although it remains in the UpdatePool) if
the server obtains a Prepare Certificate, Proposal, or Glob-
ally OrderedUpdate bindingu to a sequence number. If the
server later removes this binding, the update is placed back
into the UnconstrainedUpdates data structure. Sinceu only
moves between these two states, the lemma holds.

Lemma B.25 allows us to consider two cases, in which
some new updateu, received by a stable server in siteR,
is either in the UnconstrainedUpdates data structure of the
ProgressRep, or it is constraining some other sequence
number. Since there are an infinite number of consecutive
views in which a ProgressRep exists, we consider those views
in whichR is the leader site. We first examine the former case:

Lemma B.26: If the system is stable with respect to time
T , and some stable serverr in site R receives an updateu
that it has not previously executed at some timeT ′ > T , then
if no global progress occurs, there exists a view in which,
if sequence number(max stable seq + 1) is unconstrained
when a ProgressRep calls GetNext To Propose andu is in
the UnconstrainedUpdates data structure of the ProgressRep,
Get Next To Propose will return an update not previously
executed by any stable server.

Proof: By Lemma B.25,u is either in the Uncon-
strainedUpdates data structure of the ProgressRep or it is
constraining some other sequence number. Sinceu is in the
UnconstrainedUpdates data structure of the ProgressRep and
(max stable seq+1) was unconstrained,u or some other un-
constrained update will be returned from GetNext To Propose
(Figure A-8, line A7). The returned update cannot have been
executed by any stable server, since by Claim B.1, all stable
servers would have executed the update and global progress
would have been made.

We now examine the case in which(max stable seq +
1) is unconstrained at the ProgressRep, but the new up-
date u is not in the UnconstrainedUpdates data structure
of the ProgressRep. We will show that this case leads

to a contradiction: sinceu is constraining some sequence
number in the ProgressRep’s data structures other than
(max stable seq + 1), some other new update necessar-
ily constrains (max stable seq + 1). This implies that if
(max stable seq +1) is unconstrained at the ProgressRep,u
mustbe in the UnconstrainedUpdates data structure. In this
case, GetNext To Propose will return eitheru or some other
unconstrained update that has not yet been executed by any
stable server.

To aid in proving this, we introduce the following terms:

DEFINITION B.6: We say that a Prepare Certificate,
Proposal, or GloballyOrderedUpdate is a constraining
entry in the LocalHistory and GlobalHistory data structures.

DEFINITION B.7: We say that a server iscontiguous
if there exists a constraining entry in its LocalHistory or
Global History data structures for all sequence numbers up
to and including the sequence number of the server’s highest
constraining entry.

We will now show that all correct servers are always
contiguous. Since correct servers begin with empty data
structures, they are trivially contiguous when the system
starts. Moreover, all LocalCollectedServersState and
CollectedGlobal Constraints bundles are empty until the first
view in which some server collects a constraining entry. We
now show that, if a server begins a view as contiguous, it
will remain contiguous. The following lemma considers data
structure modifications made during normal case operation;
specifically, we defer a discussion of modifications made to the
data structures by applying a LocalCollectedServersState
or CollectedGlobal Constraints message, which we consider
below.

Lemma B.27: If a correct server is contiguous before
inserting a constraining entry into its data structure
that is not part of a LocalCollectedServersState or
CollectedGlobal Constraints message, then it is contiguous
after inserting the entry.

Proof: There are three types of constraining entries that
must be considered. We examine each in turn.

When a correct server inserts a Prepare Certificate into
either its LocalHistory or GlobalHistory data structure, it
collects a Pre-Prepare and2f corresponding Prepare messages.
From Figure A-1, lines B2 - B33, a correct server ignores
a Prepare message unless it has a Pre-Prepare for the same
sequence number. From Figure A-6, line A21, a correct server
sees a conflict upon receiving a Pre-Prepare unless it is
contiguous up to that sequence number. Thus, when the server
collects the Prepare Certificate, it must be contiguous up tothat
sequence number.

Similarly, when a server in a non-leader site receives a
Proposal message with a given sequence number, it only
applies the update to its data structure if it is contiguous up
to that sequence number (Figure A-5, line A9). For those
servers in the leader site, a Proposal is generated when the

50

THRESHOLD-SIGN protocol completes (Figure 6, lines D2 and
D3). Since a correct server only invokesTHRESHOLD-SIGN

when it collects a Prepare Certificate (line C7), the server at
least has a Prepare Certificate, which is a constraining entry
that satisfies the contiguous requirement.

A correct server will only apply a GloballyOrderedUpdate
to its GlobalHistory data structure if it is contiguous up to
that sequence number (Figure A-2, line C2).

During CONSTRUCT-ARU or CONSTRUCT-GLOBAL-
CONSTRAINT, a server converts its Prepare Certificates to
Proposals by invokingTHRESHOLD-SIGN, but a constraining
entry still remains for each sequence number that was in a
Prepare Certificate after the conversion completes.

The only other time a contiguous server modifies its data
structures is when it applies a LocalCollectedServersState
or CollectedGlobal Constraints message to its data structures.
We will now show that the union computed on any Lo-
cal CollectedServersState or CollectedGlobal Constraints
message will result in a contiguous set of constraining entries
directly above the associated invocation sequence number.We
will then show that, if a contiguous server applies the resultant
union to its data structure, it will be contiguous after applying.

We begin by showing that any valid Lo-
cal CollectedServersState message contains contiguous
constraining entries beginning above the invocation sequence
number.

Lemma B.28: If all correct servers are contiguous
during a run of CONSTRUCT-LOCAL-CONSTRAINT,
then any contiguous server that applies the resultant
Local CollectedServersState message will be contiguous
after applying.

Proof: A correct server sends a LocalServerState
message in response to a
RequestLocal State message containing some invocation se-
quence number,seq (Figure 10, line B7). The server includes
all constraining entries directly aboveseq (Figure A-11, Block
A). Each LocalServerState message sent by a contiguous
server will therefore contain contiguous constraining entries
beginning atseq + 1. The representative collects2f + 1
Local ServerState messages. By Figure A-6 line E4, each
Local ServerState message collected is enforced to be con-
tiguous. When the LocalCollectedServersState bundle is
received from the representative, it contains2f + 1 messages,
each with contiguous constraining entries beginning atseq+1.
The LocalCollectedServersState message is only applied
when a server’s PendingProposalAru is at least as high as the
invocation sequence number contained in the messages within
(Figure 10, lines D3 - D4). Since the PendingProposalAru
reflects Proposals and GloballyOrderedUpdates, the server
is contiguous up to and including the invocation sequence
number when applying.

When ComputeLocal Union is computed on the bundle
(Figure A-1, line D2), the result must contain contiguous
constraining entries beginning atseq +1, since it is the union
of contiguous messages. After applying the union, the server

removes all constraining entries above the highest sequence
number for which a constraining entry appeared in the union,
and thus it will still be contiguous.

We now use a similar argument to show that any contiguous
server applying a
CollectedGlobal Constraints message to its data structure
will be contiguous after applying:

Lemma B.29: If all correct servers are contiguous during
a run of GLOBAL-VIEW-CHANGE, then any contiguous
server applying the resultant CollectedGlobal Constraints
message to its data structure will be contiguous after applying.

Proof: Using the same logic as in Lemma B.28
(but using the GlobalHistory and Globalaru instead
of the LocalHistory and PendingProposalAru), any
Global Constraint message generated will contain contigu-
ous entries beginning directly above the invocation sequence
number contained in the leader site’s AruMessage. The
CollectedGlobal Constraints message thus consists of a ma-
jority of Global Constraints messages, each with contigu-
ous constraining entries beginning directly above the invo-
cation sequence number. When ComputeConstraintUnion
is run (Figure A-2, line D2), the resultant union will
be contiguous. A contiguous server only applies the Col-
lectedGlobal Constraints message if its Globalaru is at least
as high as the invocation sequence number reflected in the
messages therein (Figure A-5, lines H5 - H6), and thus
it is contiguous up to that sequence number. When Com-
puteConstraintUnion is applied (Figure A-12, Blocks E and
F) the server only removes constraining entries for those
sequence numbers above the sequence number of the highest
constraining entry in the union, and thus the server remains
contiguous after applying.

We can now make the following claim regarding contiguous
servers:

Claim B.11: All correct servers are always contiguous.

Proof: When the system starts, a correct server has
no constraining entries in its data structures. Thus, it is
trivially contiguous. We now consider the first view in
which any constraining entry was constructed. Since no
constraining entries were previously constructed, any Lo-
cal CollectedServersState or CollectedGlobal Constraints
message applied during this view must be empty. By Lemma
B.27, a contiguous server inserting a Prepare Certificate, Pro-
posal, or GloballyOrderedUpdate into its data structure dur-
ing this view remains contiguous. Thus, whenCONSTRUCT-
LOCAL-CONSTRAINT or GLOBAL-VIEW-CHANGE are in-
voked, all correct servers are still contiguous. By Lemma
B.28, any contiguous server that becomes locally constrained
by applying a LocalCollectedServersState message to its
data structure remains contiguous after applying. By Lemma
B.29, any contiguous server that becomes globally constrained
by applying a CollectedGlobal Constraints message remains

51

contiguous after applying. Since these are the only cases in
which a contiguous server modifies its data structures, the
claim holds.

We can now return to our examination of the
Get Next To Propose function to show that, if
(max stable seq + 1) is unconstrained at the ProgressRep,
then some new update must be in the UnconstrainedUpdates
data structure of the ProgressRep.

Lemma B.30: If the system is stable with respect to time
T , and some stable serverr in site R receives an updateu
that it has not previously executed at some timeT ′ > T , then
if no global progress occurs, there exists a view in which,
if sequence number(max stable seq + 1) is unconstrained
when a ProgressRep calls GetNext To Propose,u must be in
the UnconstrainedUpdates data structure of the ProgressRep.

Proof: Since the ProgressRep is a stable, correct server,
by Claim B.11, it is contiguous. This implies that, since
(max stable seq+1) is unconstrained, the ProgressRep does
not have any constraining entry (i.e., Prepare Certificate,Pro-
posal, or GloballyOrderedUpdate) for any sequence number
higher than(max stable seq + 1). By Lemma B.25,u must
either be in the UnconstrainedUpdates data structure or as
a constrained entry. It is not a constrained entry, since the
ProgressRep has a Globalaru of max stable seq and has
not executedu (since otherwise progress would have been
made). Thus,u must appear in the UnconstrainedUpdates data
structure.

Corollary B.31: If the system is stable with respect to
time T , and some stable serverr in site R receives an
updateu that it has not previously executed at some time
T ′ > T , then if no global progress occurs, there exists an
infinite set of views in which, if the ProgressRep invokes
Get Next To Propose, it will return an updateu that has not
been executed by any stable server.

Proof: Follows immediately from Lemmas B.26 and
B.30.

Corollary B.31 implies that there exists a view in which a
ProgressRep will invokeASSIGN-SEQUENCEwith an update
that has not been executed by any stable server, since it does
so when GetNext To Propose does not return NULL. We
now show that there exists an infinite set of global views in
which ASSIGN-SEQUENCE will complete in some bounded
finite time.

Lemma B.32: If global progress does not occur, and the
system is stable with respect to timeT , then there exists
an infinite set of views in which, if a stable server invokes
ASSIGN-SEQUENCE when Globalseq = seq, then ASSIGN-
SEQUENCE will return Proposal with sequence numberseq
in finite time.

Proof: From Lemma B.14, there exists a view (gv, lv)

where a stable representative,r, in the leader siteS has
Global Constraint(gv) messages from a majority of sites.
Serverr will send construct and send a
CollectedGlobal Constraints(gv) to all stable servers inS.
The servers become globally constrained when they process
this message. From Lemma B.16, all stable servers inS will
become locally constrained. To summarize, there exists a view
(gv, lv) in which:

1) Stable representative r has sent Col-
lectedGlobal Constraints and a
Local CollectedServersState message to all stable
servers. This message arrives at all stable servers in
one local area message delay.

2) All stable servers inS have processed the constrain
collections sent by the representative, and, therefore, all
stable servers inS are globally and locally constrained.

We now proceed to prove thatASSIGN-SEQUENCE will
complete in a finite time in two steps. First we show that
the protocol will complete if there are no conflicts when the
stable servers process the Pre-Prepare message fromr. Then
we show that there will be no conflicts.

When r invokes ASSIGN-SEQUENCE, it sends a Pre-
Prepare(gv, lv, seq, u) to all servers in siteS (Figure 6,
line A2). All stable servers inS will receive this message
in one local area message delay. When a non-representative
stable server receives a Pre-Prepare message (and there is
no conflict), it will send a Prepare(gv, lv, seq, u) message
to all servers inS (line B3). Therefore, since there are2f
stable servers that are not the representative, all stable servers
in S will receive 2f Prepare messages and a Pre-Prepare
message for (gv, lv, seq, u) (line C3). This set of2f + 1
messages forms a Prepare-Certificate(gv, lv, seq, u), pc. When
a stable server receivespc, it invokes THRESHOLD-SIGN on
an unsigned Proposal(gv, lv, seq, u) message (line C7). By
Claim B.3,THRESHOLD-SIGN will return a correctly threshold
signed Proposal(gv, lv, seq, u) message to all stable servers.

Now we must show that there are no conflicts when stable
servers receive the Pre-Prepare message fromr. Intuitively,
there will be no conflicts because the representative of the
leader site coordinates the constrained state of all stableservers
in the site. To formally prove that there will not be a conflict
when a stable server receives a Pre-Prepare(gv, lv, seq, u),
preprep from r, we consider block A of Figure A-6. We
address each case in the following list. We first state the
condition that must be true for there to be a conflict, then,
after a colon, we state why this case cannot occur.

1) not locally constrained or not globally constrained: from
the above argument, all servers are locally and globally
constrained

2) preprep is not from r: in our scenario,r sent the
message

3) gv 6= Global view or lv 6= Local view: all servers in site
S are in the same local and global views

4) There exists a LocalHistory[seq].Pre-
Prepare(gv, lv, seq, u′), where u′ 6= u: If there
are two conflicting Pre-Prepare messages for the same
global and local views, then the representative at the

52

leader site must have generated both messages. This
will not happen, becauser is a correct server and will
not send two conflicting Pre-Prepares.

5) There exists either a Prepare-Certificate(gv, lv, seq, u′)
or a Proposal(gv, lv, seq, u′) in Local History[seq],
whereu′ 6= u: A correct representative makes a single
Local CollectedServersState message,lcss. All stable
servers become locally constrained by applyinglcss
to their local data structures. Block D of Figure A-1
shows how this message is processed. First, the union is
computed using a deterministic function that returns a
list of Proposals and Prepare-Certificates having unique
sequence numbers. The union also contains the invoca-
tion aru, the aru on which it was invoked. On Lines D5 -
D11, all Pre-Prepares, Prepare-Certificates, and Propos-
als with local views< lv (where lv is the local view
of both the server and the LocalCollectedServersState
message) are removed from the LocalHistory. Since
no Pre-Prepares have been created in (gv, lv), no
Prepare-Certificates or Proposals exist with higher local
views than lv. Then, on D12 - D17, all Proposals
and Prepare-Certificates in the union are added to the
Local History. Since all stable servers compute iden-
tical unions, these two steps guarantee that all stable
servers will have identical LocalHistory data structures
after they apply lcss. A correct representative will
never invokeASSIGN-SEQUENCEsuch that it sends Pre-
Prepare(*, *,seq′, *) where seq′ ≤ the invocation aru.
Therefore, whenr invokes ASSIGN-SEQUENCE, it will
send a Pre-Prepare(gv, lv, seq, u) that doesn’t conflict
with the LocalHistory of any stable server inS.

6) There exists either a Proposal(gv, lv, seq, u′)
or a GloballyOrderedUpdate(gv, lv, seq, u′) in
Global History[seq], where u′ 6= u: A correct repre-
sentative makes a single CollectedGlobal Constraints
message,cgc. All stable servers become globally con-
strained by applyingcgc to their global data struc-
tures. Block D of Figure A-2 shows how this message
is processed. First, the union is computed using a
deterministic function that returns a list of Proposals
and GloballyOrderedUpdates having unique sequence
numbers. The union also contains the invocation aru, the
aru on whichGLOBAL-VIEW-CHANGE was invoked. On
Lines D5 - D9, all Prepare-Certificates and Proposals
with global views< gv (where gv is the local view
of both the server and the CollectedGlobal Constraints
message) are removed from the GlobalHistory. Any
Pre-Prepares or Proposals that have global views equal
to gv must also be in the union and be consistent
with the entry in the union. Then, on D10 - D14, all
Proposals and GloballyOrderedUpdates in the union
are added to the GlobalHistory. Since all stable servers
compute identical unions, these two steps guarantee that
all stable servers will have identical GlobalHistory data
structures after they applycgc. A correct representative
will never invokeASSIGN-SEQUENCEsuch that it sends
Pre-Prepare(*, *,seq′, *) where seq′ ≤ the invocation
aru. Therefore, whenr invokes ASSIGN-SEQUENCE, it

will send a Pre-Prepare(gv, lv, seq, u) than doesn’t
conflict with the GlobalHistory of any stable server in
S.

7) The server is not contiguous up toseq: A correct server
applies the same
Local CollectedServersState and Col-
lectedGlobal Constraints messages asr. Therefore,
as described in the previous two cases, the correct
server has the same constraints in its LocalHistory
and GlobalHistory asr. By Lemma B.11, all correct
servers are contiguous. Therefore, there will never be a
conflict when a correct server receives an update from
r that is one abover’s Global aru.

8) seq is not in the servers window: If there is no global
progress, all servers will reconcile up to the same global
sequence number,max stable seq. Therefore, there will
be no conflict when a correct server receives an update
from r that is one abover’s Global aru.

9) There exists a constraint binding updateu to seq′ in
either the LocalHistory or
Global History: Since a correct server applies the same
Local CollectedServersState and
CollectedGlobal Constraints messages asr, the correct
server has the same constraints in its LocalHistory and
Global History asr. Representativer will send a
Pre-Prepare(*, *,seq, u) where either (1)u is in r’s
unconstrained update pool or (2)u is constrained. Ifu
is constrained, then from Lemmas B.21, B.22, and B.23
the u must be bound toseq at bothr and the correct
server. This follows because two bindings (seq, u) and
(seq′, u) cannot exist in any correct server.

We have shown that a Pre-Prepare sent byr will not cause
a conflict at any stable server. This follows from the fact that
the local and global data structures of all stable servers will be
in the same state for any sequence number wherer sends Pre-
Prepare(gv, lv, seq, u), as shown above. Therefore, Prepare
messages sent by stable servers in response to the first Pre-
Prepare message sent byr in (gv, lv) will also not cause
conflicts. The arguments are parallel to those given in detail
in the above cases.

We have shown that Pre-Prepare and Prepare messages sent
by the stable servers will not cause conflicts when received
by the stable servers. We have also shown thatASSIGN-
SEQUENCE will correctly return a Proposal message if this
is true, proving Lemma B.20.

Having shown thatASSIGN-SEQUENCEwill complete in a
finite amount of time, we now show that the stable non-leader
sites will construct Accept messages in a finite time. Since
Claim B.3 states thatTHRESHOLD-SIGN completes in finite
time if all stable servers invoke it on the same message,
we must simply show that all stable servers will invoke
THRESHOLD-SIGN upon receiving the Proposal message
generated byASSIGN-SEQUENCE.

Lemma B.33: If the system is stable with respect to timeT
and no global progress occurs, then there exists an infinite set
of views (gv, lv) in which all stable servers at all non-leader

53

sites invokeTHRESHOLD-SIGN on a Proposal(gv, *, seq, u).

Proof: We consider the global views in which all
stable servers have already reconciled their Globalaru to
max stable seq and in which a ProgressRep exists. By
Corollary B.31, the ProgressRep will invoke ASSIGN-
SEQUENCEwhen Globalseq is equal tomax stable seq +1.
By Lemma B.32, there exists an infinite set of views in
which ASSIGN-SEQUENCEwill return a Proposal in bounded
finite time. By Claim B.8, there exists a view in which the
ProgressRep has enough time to send the Proposal to a stable
representative in each stable non-leader site.

We must show that all stable servers in all stable non-leader
sites will invoke THRESHOLD-SIGN on an Accept message
upon receiving the Proposal. We first show that no conflict
will exist at any stable server. The first two conflicts cannot
exist (Figure A-5, lines A2 and A4), because the stable server
is in the same global view as the stable servers in the leader
site, and the server is in a non-leader site. The stable server
cannot have a GloballyOrderedUpdate in its GlobalHistory
data structure for this sequence number (line A6) because
otherwise it would have executed the update, violating the
definition of max stable seq. The server is contiguous up
to (max stable seq + 1) (line A9) because its Globalaru
is max stable seq and it has a GloballyOrderedUpdate
for all previous sequence numbers. The sequence num-
ber is in its window (line A11) sincemax stable seq <
(max stable seq + 1) ≤ (max stable seq + W).

We now show that all stable servers will apply the Proposal
to their data structures. From Figure A-2, Block A, the server
has either applied a Proposal from this view already (from
some previous representative), in which case it would have
invoked THRESHOLD-SIGN when it applied the Proposal, or
it will apply the Proposal just received because it is from the
latest global view. In both cases, all stable servers have invoked
THRESHOLD-SIGN on the same message.

Finally, we can prove L1 -GLOBAL LIVENESS:

Proof: By Claim B.1, if no global progress occurs,
then all stable servers eventually reconcile their Globalaru
to max stable seq. We consider those views in which this
reconciliation has completed. By Lemma B.19, there exists
an infinite set of views in which all stable servers become
globally and locally constrained within a bounded finite time
∆lc of the election of the second stable representative serving
for at least a local timeout period (i.e., the ProgressRep). After
becoming globally and locally constrained, the ProgressRep
calls GetNext To Propose to get an update to propose for
global ordering (Figure 7, line A4). By Corollary B.31, there
exists an infinite set of views in which, if some stable server
receives an update that it has not previously executed and no
global progress has otherwise occurred, GetNext To Propose
returns an update that has not previously been executed by
any stable server. Thus, the ProgressRep will invokeASSIGN-
SEQUENCE(Figure 7, line A6).

By Lemma B.20, some ProgressRep will have enough
time to globally order the new update ifASSIGN-SEQUENCE

and THRESHOLD-SIGN complete in bounded time (where
THRESHOLD-SIGN is invoked both duringASSIGN-SEQUENCE

and at the non-leader sites upon receiving the Proposal). By
Lemma B.32,ASSIGN-SEQUENCEwill complete in bounded
finite time, and by Lemma B.33,THRESHOLD-SIGN will be
invoked by all stable servers at the non-leader sites. By Claim
B.3, THRESHOLD-SIGN completes in bounded finite time in
this case. Thus, the ProgressRep will globally order the
update for sequence number(max stable seq + 1). It will
then execute the update and make global progress, completing
the proof.

