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Abstract— This paper presents the first hierarchical Byzantine upon the content of any message leaving the site for the globa
fault-tolerant replication architecture suitable to systems that protocol.
span multiple wide area sites. The architecture confines the Guaranteeing a consistent agreement within a site is not
effects of any malicious replica to its local site, reduces essage L . .
complexity of wide area communication, and allows read-onl e_nough. 'I_'he protqcol needs to el_lmlnate the ability of __mall-
queries to be performed locally within a site for the price Cious replicas to misrepresent decisions that took pladesin
of additional standard hardware. We present proofs that our site. To that end, messages between servers at differest sit
algorithm provides safety and liveness properties. A prottype carry a threshold signature attesting that enough servéne a
implementation is evaluated over several network topologis originating site agreed with the content of the messages Thi

and is compared with a flat Byzantine fault-tolerant approad. . .
The experimental results show considerable improvement @v allows Steward to save the space and computation associated

flat Byzantine replication algorithms, bringing the performance With sending and verifying multiple individual signatures
of Byzantine replication closer to existing benign fault-blerant Moreover, it allows for a practical key management scheme

replication techniques over wide area networks. where all servers need to know only a single public key for
Index Terms— Fault-tolerance, scalability, wide-area networks €ach remote site and not the individual public keys of all
remote servers.
Steward’s hierarchical architecture reduces the message
|. INTRODUCTION complexity on wide area exchanges frad(~N?) (N being
rpg total number of replicas in the system) @(S?) (S

During the last few years, there has been considerable th ber of wid i derably i .
progress in the design of Byzantine fault-tolerant repiica €ing the n’um er of wide area si es),_ considerably Inangasi
he system’s ability to scale. It confines the effects of any

systems. Current state of the art protocols perform very wé&l<, S . . : .
y P P y alicious replica to its local site, enabling the use of a

on small-scale systems that are usually confined to local ﬁ

networks, which have small latencies and do not experie %mg_n fault-tolfzhrant all?ot:!frtlm ?\;ﬁr the tvwde area UdEtWO”‘
frequent network partitions. However, current solutioms- e IS improves {he availability ol Ine system over wide area

ploy flat architectures that suffer from several limitagon networl;sdthz_att are pror&e dtot partltklons. Only a major|t):j Of'th
Message complexity limits their ability to scale, and sgonConnece Sltes 1S needed 1o make progress, compared wi

connectivity requirements limit their availability on védarea at least2f + 1 servers (out of3f + 1) in flat Byzantine

networks, which usually have lower bandwidth, higher laten archltectursetsx IS ;hellljpper boznd (Im the n_uml?erl;)f mah;:musd
and exhibit more frequent network partitions. servers). Steward allows read-only queries to be performe

This paper presents Steward [1], the first hierarchical Byzaloc"""y within a site, enabling the system to continue segvi

tine fault-tolerant replication architecture suitable §ystems r%adc_it—_only_trequglsts even Itr'] S:tis that are partltt|onﬁd alma;;
that span multiple wide area sites, each consisting of gbyefaiion, It enables a practical k€y management schemeswner

server replicas. Steward assumes no trusted componen lﬁtl)"c keys of specific replicas need to be known only within

the entire system, other than a mechanism to pre-distribﬁtags'; owndS|te. ides th benefits b . . d
private/public keys. eward provides these benefits by using an increase

Steward uses Byzantine fault-tolerant protocols Withiclheanumber of SEIVErS. More specnﬂcally, '.f the requiremenis t
site and a lightweight, benign fault-tolerant protocol amo protect againsany f Byzantine servers in the system, Steward

wide area sites. Each site, consisting of several potgntia'iequ'resngrl servers in each site. However, in return, it can

malicious replicas, is converted into a single logical teds fm:rfgrﬁr:ﬂ;ﬁ{ irsn?(I-:I‘;Is::af)eliarveiz/se:]mt?\(;h(S:gg xzobc?gteﬂ\sls wi
participant in the wide area fault-tolerant protocol. Sesv d 9

within a site run a Byzantine agreement protocol to agrézgmputers, today. . - .
Steward’s efficacy depends on using servers within a site
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pensively generate variation. 1. RELATED WORK
The paper demonstrates that the performance of Steward

with 3f + 1 servers ineach siteis much better even compared Agreem_ent and Consensust the core of many replication
with a flat Byzantine architecture with a smaller system @70ocoIs is a more general problem, known as the agreement

3f + 1 total servers spread over the same wide area topoloé))r/ consensus problem. A good overview of significant results

The paper further demonstrates that Steward exhibits perfly PréSented in [4]. The strongest fault model that reseaisch
mance comparable (though somewhat lower) with Commgﬁn&der is the Byzantine model, where some participants
benign fault-tolerant protocols on wide area networks behave in an arbitrary manner. If communication is not authe
We implemented the Steward system, and a DARPA retijc_:ated and nodes are _directly connect&ﬂ,+_1 participants
team experiment has confirmed its practical survivabilitjhie and f M 1 communication rour_1ds are f?‘q”'fed to tolergte
face of white-box attacks (where the red-team has Complégzantlne faults. If authentication is available, the nembf
knowledge of system design, access to its source code, gﬁ&tm.npants can be redu.ced f,°+ 2 [3]- )
control of f replicas in each site). According to the rules of en- Fail Stop ProcessorsiPrevious work [6] discusses the
gagement, where a red-team attack succeeded only if itstopfiPlementation and use of k-fail-stop processors, which ar
progress or caused inconsistency, no attacks succeeded.C@@Posed of several potentially Byzantine processorsigden

include a detailed description of the red-team experiment fault-tolerant protocols safely run on top of these fadpst
Section VILI. processors even in the presence of Byzantine faults. Stewar

While solutions previously existed for Byzantine and benigiSes @ similar strategy to mask Byzantine faults. However,
fault-tolerant replication and for providing practicar¢shold €2ch trusted entity in Steward continues to function caiyec

signatures, these concepts have never been used in a prov4B|eSS/ + 1 or more computers in a site are faulty, at which
correct, hierarchical architecture that scales Byzantindt- POINt safety is no longer guaranteed. _
tolerant replication to large, wide area systems. This pape Byzantine Group CommunicatiofRelated with our work

presents the design, implementation, and proofs of coresst are group communication systems resilient to Byzantirle fai
for such an architecture. ures. Two such systems are Rampart [7] and SecureRing [8].

The main contributions of this paper are: Although these systems are extremely robust, they have a
1) It presents the first hierarchical architecture and alggt_evere performance cost and require a large number of un-

rithm that scales Byzantine fault-tolerant replication tgomprom_lsed nodes to maintain thelr gugrantee_s - Bothragste
large, wide area networks. rely on failure detectors to determine which replicas avdtya

2) It provides a complete proof of correctness for this aIgéA-n attackert.canb etpr0|t EE'S to Stl.?w corrﬁct repllclasé odr fthe
rithm, demonstrating its safety and liveness propertieé;Ommunlca ion between them untif énough are excluded from

3) It presents a software artifact that implements the alggle group. . I :
rithm completely. Another intrusion-tolerant group communication system is

4) It shows the performance evaluation of the implemehl YA [8], [10]. The ITUA system, developed by BBN and

tation software and compares it with the current sta IUC, focuses on providing intrusion-tolerant group sees.

of the art. The experiments demonstrate that the hieyh€ approach taken considers all participants as equalsand i

archical approach greatly outperforms existing solutiorf!€ 10 tolerate up to less than a third of malicious pardintp.
when deployed on large, wide area networks. Replication with Benign FaultsThe two-phase commit

The remainder of the paper is organized as follows, V&ZPC) protocol [11] provides serializability in a distriled

. . : . atabase system when transactions may span several sites. |
discuss previous work in several related research areascn Y ; y span )
s commonly used to synchronize transactions in a replicate

tion Il. We provide background in Section Ill. We present ou atabase. Three-phase commit [12] overcomes some of the
system model in Section IV and the service properties met ggailabilit. roblerFr)13 of 2PC a: in thev fice of an additib
our protocol in Section V. We describe our protocol, Stev,vara yp » Paying P

in Section VI. We present experimental results demonﬂ'gjatiCommumcatlon round, and therefore, additional latenayd8

the improved scalability of Steward on wide area networks H3], [14] is & very robust algorithm for benign fault-tafert

Section VII. We include a proof sketch for both safety amr]epllcatlon z;nd N desgrr;b;d n Sectll(:)n Illl'_l_ | .
liveness in Section VIII. We summarize our conclusions in Quorum Systems with Byzantine Fault-Toleran€guorum

Section IX. Appendix A contains complete pseudocode fgystems obtain Byzantine fault tolerance by applying quo-

our protocol, and complete correctness proofs can be faund M replication methods_. Examples of such systems include
Appendix B Phalanx [15], [16] and its successor Fleet [17], [18]. Fleet

provides a distributed repository for Java objects. Iteli
on an object replication mechanism that tolerates Byzantin
failures of servers, while supporting benign clients. Alilgh
the approach is relatively scalable with the number of gsyve
it suffers from the drawbacks of flat Byzantine replication
solutions.

Replication with Byzantine Fault-Toleranc&he first prac-
tical work to solve replication while withstanding Byzamgi
failures is the work of Castro and Liskov [19], which is



described in Section Ill. Yin et al. [20] propose separatimg number to a client update and sendsPeposal message
agreement component that orders requests from the exacutiontaining this assignment to the rest of the servers. In the
component that processes requests, which allows utdizati second round, any server receiving the Proposal sends an
the same agreement component for many different replicatidcceptmessage, acknowledging the Proposal, to the rest of
tasks and reduces the number of processing storage refdicathe servers. When a server receives a majority of matching
2f+1. Martin and Alvisi [21] recently introduced a two-roundAccept messages — indicating that a majority of servers have
Byzantine consensus algorithm, which ugeg5+ 1 servers accepted the Proposal —dtdersthe corresponding update.
in order to overcomef faults. This approach trades lower BFT: The BFT [19] protocol addresses the problem of
availability for increased performance. The solution ipegd- replication in the Byzantine model where a number of servers
ing for local area networks with high connectivity. While wecan exhibit arbitrary behavior. Similar to Paxos, BFT uses a
considered using it within the sites in our architectures thelected leader to coordinate the protocol and proceedadhro
overhead of combining larger threshold signatured pf- 1 a series of views. BFT extends Paxos into the Byzantine
shares would greatly overcome the benefits of using one lessironment by using an additional communication round in
intra-site round. the common case to ensure consistency both in and across
Alternate ArchitecturesAn alternate hierarchical approachviews and by constructing strong majorities in each round
to scale Byzantine replication to wide area networks can béthe protocol. Specifically, BFT uses a flat architecturd an
based on having a few trusted nodes that are assumedeguires acknowledgments fro2y + 1 out of 3f + 1 servers
be working under a weaker adversary model. For exampte, mask the behavior of Byzantine servers. A client must
these trusted nodes may exhibit crashes and recoveries Wait for f + 1 identical responses to be guaranteed that at least
not penetrations. A Byzantine replication algorithm in lsucone correct server assented to the returned value.
an environment can use this knowledge in order to optimizeln the common case (Fig. 2), BFT uses three communication
performance. rounds. In the first round, the leader assigns a sequencearumb
Verissimo et al. propose such a hybrid approach [22 a client update and proposes this assignment to the rest
[23], where synchronous, trusted nodes provide strongaglolof the servers by broadcasting Rre-prepare message. In
timing guarantees. This inspired the Survivable Spread [24he second round, a server accepts the proposed assignment
work, where a few trusted nodes (at least one per site) dng broadcasting an acknowledgmeRtepare When a server
assumed impenetrable, but are not synchronous, may crdsh@pllects aPrepare Certificatgi.e., it receives the Pre-Prepare
recover, and may experience network partitions and mergesd 2f Prepare messages with the same view number and
These trusted nodes were implemented by Boeing Secasgluence number as the Pre-prepare), it begins the thind rou
Network Server (SNS) boxes, limited computers designed ly broadcasting e&Commit message. A servetommitsthe
be impenetrable. corresponding update when it receig’st+ 1 matching commit
Both the hybrid approach and the approach proposed in thi€ssages.
paper can scale Byzantine replication to wide area networks Threshold digital signatures: Threshold cryptography [25]
The hybrid approach makes stronger assumptions, while @ligtributes trust among a group of participants to protect
approach pays more hardware and computational costs. information (e.g., threshold secret sharing [26]) or cotapan
(e.g., threshold digital signatures [27]).

A (k, n) threshold digital signature scheme allows a set
of servers to generate a digital signature as a single Ibgica
Our work requires concepts from fault tolerance, Byzantirentity despitek — 1 Byzantine faults. It divides a private key
fault tolerance, and threshold cryptography. To fac#iti#te into n shares, each owned by a server, such that any set of
presentation of our protocol, Steward, we first provide anservers can pool their shares to generate a valid threshold

overview of three representative works in these areas: Raxsignature on a message;, while any set of fewer thak
BFT and RSA threshold signatures. servers is unable to do so. Each server uses its key share
Paxos:Paxos [13], [14] is a well-known fault-tolerant pro-to generate a partial signature em and sends the partial
tocol that allows a set of distributed servers, exchangieg-m signature to acombinerserver, which combines the partial
sages via asynchronous communication, to totally ordentli signatures into a threshold signature sn The threshold
requests in the benign-fault, crash-recovery model. Pages signature is verified using the public key correspondinghto t
an electedleader to coordinate the agreement protocol. Itlivided private key. One important property provided by som
the leader crashes or becomes unreachable, the otherssemvgeshold signature schemesvigrifiable secret sharing8],
elect a new leader; giew changeoccurs, allowing progress which guarantees the robustness [29] of the threshold sigma
to (safely) resume in the new view under the reign of the negeneration by allowing participants to verify that the fmrt
leader. Paxos requires at leasf + 1 servers to toleratef  signatures contributed by other participants are vala,(they
faulty servers. Since servers are not Byzantine, only alesingvere generated with a share from the initial key split).
reply needs to be delivered to the client. A representative example of practical threshold digitgt si
In the common case (Fig. 1), in which a single leader existature schemes is the RSA Shoup [27] scheme, which allows
and can communicate with a majority of servers, Paxos ugeasrticipants to generate threshold signatures based miahe
two asynchronous communication rounds to globally orddard RSA [30] digital signature. It provides verifiable scr
client updates. In the first round, the leader assigns a sequesharing, which is critical in achieving signature robusta

I1l. BACKGROUND
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Fig. 1. Common case operation of the Paxos algorithm whefig. 2. Common case operation of the BFT algorithm wifiea 1.
f = 1. Server 0 is the current leader. Server 0 is the current leader.

the Byzantine environment we consider. V. SERVICE PROPERTIES

Our protocol assigns global, monotonically increasing se-
guence numbers to updates, to establish a global, totat.orde
IV. SYSTEM MODEL Below we define the safety and liveness properties of the
Steward protocol.
Servers are implemented as deterministic state machinegye say that:
[31], [32]. All correct servers begin in the same initialtsta |, 5 client proposesan update when the client sends the

and transition between states by applying updates as tileey ar | 5qate to a correct server in the local site, and the correct
ordered. The next state is completely determined by thentrr server receives it.

state and the next update to be applied. « a server executesn update with sequence number

We assume a Byzantine fault model. Servers are edber when it applies the update to its state machine. A server
rect or faulty. Correct servers do not crash. Faulty servers may executes updateonly after having executed all updates
behave arbitrarily. Communication is asynchronous. Mgssa  wijth a lower sequence number in the global total order.
can be delayed, lost, or duplicated. Messages that do arrivg two servers are connecteor a client and server are
are not corrupted. connectedf any message that is sent between them will

Servers are organized into wide arsdies each having arrive in a bounded time. The protocol participants need

a unique identifier. Each server belongs to one site and not know this bound beforehand.

has a unique identifier within that site. The network may « two sites are connectetlevery correct server in one site
partition into multiple disjointcomponentseach containing is connected to every correct server in the other site.
one or more sites. During a partition, servers from sites in. a client is connected to a siiéit can communicate with
different components are unable to communicate with each all servers in that site.

other. Components may subsequently re-merge. EachSsite We define the following two safety conditions:

has at leasB * (f;) + 1 servers, wheref; is the maximum  DeriNniTION 5.1; S1 - Q\FETY: If two correct servers
number of servers that may be faulty withi. For simplicity, execute the'” update, then these updates are identical.
we assume in what follows that all sites may have at mfost DEerINITION 5.2: S2 - \ALIDITY: Only an update that was
faulty servers. proposed by a client may be executed.

Clients are distinguished by uniqgue identifiers. Clientsdse  Since no asynchronous Byzantine replication protocol can
updates to servers within their local site and receive nesp® always be both safe and live [33], we provide liveness under
from these servers. Each update is uniquely identified bycartain synchrony conditions. We introduce the following
pair consisting of the identifier of the client that genedateterminology to encapsulate these synchrony conditionsand
the update and a unigque, monotonically increasing logigalogress metric:
timestamp. Clients propose updates sequentially: a afienyt 1) A site is stablewith respect to timer if there exists a
propose an update with timestamp- 1 only after it receives set, S, of 2f + 1 servers within the site, where, for all
a reply for an update with timestanip timesT’ > T, the members of are (1) correct and (2)

We employ digital signatures, and we make use of a  connected. We call the members ®fstable servers
cryptographic hash function to compute message digests?2) Thesystem is stableith respect to timd" if there exists
Client updates are properly authenticated and protectaitsty a set,S, of a majority of sites, where, for all timeg’
modifications. We assume that all adversaries, includiotiyfa > T, the sites inS are (1) stable with respect 6 and
servers, are computationally bounded such that they can- (2) connected. We call the sites fithe stable sites
not subvert these cryptographic mechanisms. We also use &) Global progressoccurs when some stable server exe-
(2f + 1, 3f + 1) threshold digital signature scheme. Each cutes an update.
site has a public key, and each server receives a share withVe now define our liveness property:
the corresponding proof that can be used to demonstrate th®EFINITION 5.3: L1 - G.OBAL LIVENESS: If the system
validity of the server’s partial signatures. We assume thigtstable with respect to timé&, then if, after timeT’, a stable
threshold signatures are unforgeable without knowlifigr 1  server receives an update which it has not executed, théalglo
or more shares. progress eventually occurs.



V1. PROTOCOLDESCRIPTION global progress (as detected by timeout mechanisms) weirig

_ ] _ the appropriate view changes.
Steward leverages a hierarchical architecture to scalam®yz |, the remainder of this section. we present the local and

tine replication to the high-latency, low-bandwidth linésar- 4 5ha) protocols that Steward uses to totally order client

acteristic of wide area networks. Instead of running a 8ingl,pgates. We first present the data structures and messages
relatively costly Byzantine fault-tolerant protocol (e.8FT) _used by our protocols. We then present the common case
among allserversin the system, Steward runs a Paxos-likgperation of Steward, followed by the view change protacols
benign fault-tolerant protocol among altesin the system, \yhich are run when failures occur. We then present the tineou
which reduces the number of messages and communicaigchanisms that Steward uses to ensure liveness. Due ® spac
rounds on the wide area network compared to a flat Byzantifi@itations, we include selected pseudocode where retevan

solution. _ _ _ _ Complete pseudocode can be found in Appendix A.
Steward’s hierarchical architecture results in two lewvals

protocols: global and local. The global, Paxos-like protoc
is run among wide area sites. Since each site consists of-aData Structures and Message Types
set of potentially malicious servers (instead of a singlsted  To facilitate the presentation of Steward, we first present
participant, as Paxos assumes), Steward employs seveahl Ighe message types used by the protocols (Fig. 4) and the data
(i.e., intra-site) Byzantine fault-tolerant protocolsrt@sk the structures maintained by each server (Fig. 5).
effects of malicious behavior at the local level. Serverghini As listed in Fig. 5, each server maintains variables for the
a site agree upon the contents of messages to be used bygtbgal, Paxos-like protocol and the local, intra-site, &ytine
global protocol and generate a threshold signature for eaglult-tolerant protocols; we say that a server’s state el
message, preventing a malicious server from misrepregentinto the global contextand thelocal context respectively,
the site’s decision and confining malicious behavior to theflecting our hierarchical architecture. Within the glbban-
local site. In this way, the local protocols allow each sitgext, a server maintains (1) the state of its current global
to emulate the behavior of a correct Paxos participant in thgw and (2) aGlobalHistory, reflecting the status of those
global protocol. updates it has globally ordered or is attempting to globally
Similar to the rotating coordinator scheme used in BFT, tf@der. Within the local context, a server maintains theestdit
local, intra-site protocols in Steward are run in the contéx its current local view. In addition, each server at the leade
local view with one server, theite representativeserving as site maintains d.ocalHistory, reflecting the status of those
the coordinator of a given view. Besides coordinating tlelo updates for which it has constructed, or is attempting to
agreement and threshold-signing protocols, the repratesmt construct, a Proposal.
is responsible for (1) disseminating messages in the globaEach server updates its data structures according to a set
protocol originating from the local site to the other sitpre  of rules. These rules are designed to maintain the consisten
sentatives and (2) receiving global messages and distributof the server’s data structures despite the behavior ofyfaul
them to the local servers. If the site representative isesttegd servers. Upon receiving a message, a server first runs atyalid
to be Byzantine, the other servers in the site run a local viesieck on the message to ensure that it contains a valid RSA
change protocol to replace the representative and instea signature and does not originate from a server known to be
view. faulty. If a message is valid, it can be applied to the sesver’
While Paxos uses a rotating leader server to coordinate tfeta structures provided it does not conflict with any data
protocol, Steward uses a rotatitepder siteto coordinate the contained therein. Pseudocode for the update rules, wyalidi
global protocol; the global protocol runs in the context of ahecks, conflict checks, and several utility predicates lwan
global view with one leader site in charge of each view. Ifound in Fig. A-1 through Fig. A-6.
the leader site is partitioned away, the non-leader sitasaru
global view change protocol to elect a new one and instﬂl
a new global view. As described below, the representative of
the leader site drives the global protocol by invoking thealo  In this section, we trace the flow of an update through the
protocols needed to construct the messages sent over tee Vgitem as it is globally ordered during common case operatio
area network. (i.e., when no leader site or site representative electizuis).
Fig. 3 depicts a Steward system with five sites. As describ&§® common case makes use of two local, intra-site protocols
above, the coordinators of the local and global protocol$!RESHOLD-SIGN and ASSIGN-SEQUENCE (Fig. 6), which
(i.e., site representatives and the leader site, respigtiare W€ describe below. Pseudocode for the global ordering proto
replaced when failures occur. Intuitively, the system pemts CO! (ASSIGN-GLOBAL-ORDER) is listed in Fig. 7.
through different configurations of representatives amdi¢e ~ 1he common case works as follows:
sites via two levels of rotating “configuration wheels,” doe 1) A client sends an update to a server in its local site. This

The Common Case

each level of the hierarchy. At the local level, an intrasit server forwards the update to the local representative,
wheel rotates when the representative of a site is suspetted which forwards the update to the representative of the
being faulty. At the global level, an inter-site wheel retat leader site. If the client does not receive a reply within

when enough sites decide that the current leader site has its timeout period, it broadcasts the update to all servers
partitioned away. Servers within a site use the absence of in its site.



@ Leader-site replica

O Non-leader-site replica
@ Local representative

Fig. 3. A Steward system having five sites, each with seveveserEach smaller, local wheel rotates when its repretents suspected of being faulty.
The larger, global wheel rotates when the leader site isestisg to have partitioned away.

gl obal view, u = update; se sequence nunber;

St andard Abbreviations: Iv = local view, gv g =
partial signature; t_sig = threshold signature

ctx = context; sig = signature; partial sig =
/1 Message fromclient
Update = (client.d, timestanp, client_update, sig)

/1 Messages used by THRESHOLD- SI GN
Partial Sig = (server.d, data, partial sig, verificationproof, sig)
Corrupted_Server = (server_.d, data, Partial sig, sig)

/1 Messages used by ASSI GN- SEQUENCE

Pre-Prepare = (server.d, gv, |lv, seq, Update, siQg)

Prepare = (server.d, gv, lv, seq, Digest(Update), sig)

Prepare Certificate( gv, lv, seq, u) = a set containing a Pre-Prepare(server.id, gv, lv, seq, u,
sig) message and a list of 2f distinct Prepare(*, gv, lv, seq, Digest(u), sig) nessages

/!l Messages used by ASSI GN- GLOBAL- ORDER

Proposal = (site.did, gv, lv, seq, Update, t_sig)

Accept = (sitedd, gv, lv, seq, Digest(Update), t_sigQ)

A obal | y_Ordered_Updat e(gv, seq, u) = a set containing a Proposal (sitedd, gv, lv, seq, u, t_sig)
nmessage and a |list of distinct Accept(*, seq, gv, *, Digest(u), t_sig) nessages froma majority-1
of sites

/1 Messages used by LOCAL- VI EW CHANGE
New_Rep = (server_.d, suggestedlv, sig)
Local _Preinstall Proof = a set of 2f+1 distinct NewRep nmessages

/1 Messages used by GLOBAL- VI EW CHANGE
d obal VC = (sitelid, gv, tsig)
d obal Preinstall Proof = a set of distinct @ obal VC nessages froma majority of sites

/1 Messages used by CONSTRUCT- ARU, CONSTRUCT- LOCAL- CONSTRAI NT, and CONSTRUCT- GLOBAL- CONSTRAI NT
Request _Local State = (server.d, gv, lv, seq)

Request .d obal _State = (server.d, gv, lv, seq)

Local _Server State = (server.dd, gv, lv, invocationaru, a set of Prepare Certificates, a set of
Proposal s, sig)

d obal _Server State = (server.d, gv, lv, invocation.aru, a set of Prepare Certificates, a set of
Proposal s, a set d obally_O dered_Updates, sig)

Local _Col | ect ed_Server State = (server_id, gv, lv, a set of 2f+1 Local _Server _State nessages, SiQ)
d obal Col |l ected_Server _State = (server.id, gv, lv, a set of 2f+1 G obal _Server_State nessages, sig)

/| Messages used by GLOBAL- VI EW CHANGE

Aru_Message = (site.id, gv, site.aru)

d obal Constraint = (sitedid, gv, invocationaru, a set of Proposals and/or

d obal | y.Ordered_Updates with seq > invocation_aru)

Col | ect ed_d obal Constraints(server_.id, gv, v, a set of majority d obal _Constrai nt nessages, sig)

/| Messages used by GLOBAL- RECONCI LI ATI ON and LOCAL- RECONCI LI ATI ON

d obal _Recon_Request = (server_.id, global session.seq, requested.aru, globally_ordered_update)
Local _-Recon_Request = (server_d, |ocal _session_seq, requested.aru)

A obal Recon = (site.id, server.d, global _sessionseq, requested.aru)

Fig. 4. Message types used in the global and local protocols.

2) When the representative of the leader site receives an signmentis encapsulated ilPaoposalmessage. The site
update, it invokes theéSSIGN-SEQUENCE protocol to then generates a threshold signature on the constructed
assign a global sequence number to the update; this as- Proposal usingrtHRESHOLD-SIGN, and the representa-



int Server_d: unique id of this server within the site
int Siteid: unique id of this server’'s site

A. dobal Context (d obal Protocol) Data Structure
int dobal _seq: next global sequence nunber to assign.
int dobal _view current global view of this server, initialized to O.
int dobal preinstalledview |ast global viewthis server preinstalled, initialized to O.
bool Installedglobal view If it is 0, then Aobal viewis the new view to be install ed.
d obal VC Latest d obal V([ ]: |atest d obal VC nessage received fromeach site.
struct gl obal |l y_proposed.item {
Proposal struct Proposal
Accept _struct _Li st Accept _Li st
d obal Ordered_Updatestruct d obal | y_Ordered_Update
} G obal History[] // indexed by d obal seq
int dobal _aru: global seq up to which this server has globally ordered all updates.
bool gl obally_constrai ned: set to true when constrained in global context.
int Last_d obal _Session_Seq[]: |atest session.seq fromeach server (local) or site (global)
int Last_d obal _Requested_Aru[]: latest requested aru fromeach server (local) or site (global)
int Last_d obal _Request Time[]: time of |ast global reconciliation request fromeach |ocal server
int Max_d obal _Requested_Aru[]: maxi mumrequested aru seen fromeach site

B. Local Context (Intra-site Protocols) Data Structure
int Local .view |ocal view nunber this server is in
int Local preinstalledvew last local viewthis server preinstalled, initialized to O.
bool Installedlocal view If it is 0, then Gobal viewis the new one to be installed.
New_Rep Latest _New.Rep[]: |atest NewRep nessage received fromeach site.
struct pendi ng_proposal .i tem {
Pre-Preparestruct Pre-Prepare
Prepare_struct _Li st Prepare_List
Prepare_Cert struct PrepareCertificate
Proposal struct Proposal
} Local Hi story[] //indexed by G obal seq
i nt Pendi ng_proposal _aru: global seq up to which this server has constructed proposals
bool locally_constrained: set to true when constrained in the |ocal context.
Partial _Sigs: associative container keyed by data. Each slot in the container holds an array,
i ndexed by server.id. To access data d fromserver s.id, we wite Partial _Sigs{d}[s.id].
Updat e_Pool : pool of client updates, both unconstrai ned and constrai ned
int Last_Local _Session_Seq[]: |atest sessionseq fromeach |ocal server
int Last_Local Requested Aru[]: latest requested aru fromeach | ocal server
int Last_Local _Request Tine[]: time of last local reconciliation request fromeach | ocal server

Fig. 5. Global and Local data structures maintained by eactes

ASS| G\ SEQUENCE( Updat e u):

Al. Upon invoking:

A2. SEND to all local servers: Pre-Prepare(gv, |lv, dobal seq, u)
A3. d obal seq++

Upon receiving Pre-Prepare(gv, lv, seq, u):
Apply Pre-Prepare to Local History
SEND to all |ocal servers: Prepare(gv, lv, seq, Digest(u))

W W m
wh e

Upon receiving Prepare(gv, |lv, seq, digest):
Apply Prepare to Local _History
if PrepareCertificate_Ready(seq)
preparecertificate «— Local _History[seq].PreparecCertificate
pre-prepare «— preparecertificate.Pre-Prepare
unsi gned_proposal <« Construct Proposal (pre-prepare)
i nvoke THRESHOLD_SI G\(unsi gned_proposal ) //returns signed_proposal

Upon THRESHOLD_SI GN r et ur ni ng si gned_proposal :
Apply signed.proposal to d obal History
Apply signed._proposal to Local History
return si gned_proposal

RES8R Q88R101°

Fig. 6. ASSIGN-SEQUENCE Protocol, used to bind an update $equence number and produce a threshold-signed Proposshgee

3)

tive sends the signed Proposal to the representatives o) The representative of a site forwards the incoming
all other sites for global ordering. Accept messages to the local servers. A server glob-
When a representative receives a signed Proposal, it ally orders the update when it received’/2| Accept
forwards this Proposal to the servers in its site. Upon  messages from distinct sites (wheké is the number
receiving a Proposal, a server constructs a site ac- of sites) and the corresponding Proposal. The server at
knowledgment (i.e., arAccept message) and invokes the client’s local site that originally received the update

THRESHOLD-SIGN on this message. The representa- sends a reply back to the client.

tive combines the partial signatures and then sendsye now highlight the details of theHRESHOLD-SIGN and

the resulting threshold-signed Accept message to thgsgn-seQuUENCEprotocols.
representatives of the other sites.

Threshold-Sign: The THRESHOLD-SIGN intra-site protocol



ASS| G\N- GLOBAL- ORDER( ) :
Al. Upon receiving or executing an update, or becomnming globally or locally constrained:

A2. if representative of |eader site

A3. if (globally_constrained and | ocally_constrained and | n.W ndow( @ obal seq))
A4. u «— Cet _Next _To_Propose()

A5. if (u # NULL)

A6. i nvoke ASS|I GN- SEQUENCE(u) //returns Proposal

Bl. Upon ASSI G\N- SEQUENCE r et urni ng Proposal :
B2. SEND to all sites: Proposal

Cl. Upon receiving Proposal (siteid, gv, lv, seq, u):

c2 Apply Proposal to d obal _Hi story

c3 if representative

CA. SEND to all |ocal servers: Proposal

C5. i nvoke THRESHOLD_SI G\( Proposal , Server_.id) //returns Accept
D1

D2

D3

D4

Upon THRESHOLD.SI GN return Accept:
Apply Accept to d obal _History
if representative

SEND to all sites: Accept

E1. Upon receiving Accept(sitelid, gv, lv, seq, Digest(u)):
E2. Apply Accept to d obal _History

E3. if representative

E4. SEND to all |ocal servers: Accept

E5. if dobally.OderedReady(seq)

E6. gl obal | y_ordered_update < Construct Or der edUpdat e(seq)
E7. Apply gl obally_ordered.update to d obal _Hi story

Fig. 7. ASSIGN-GLOBAL-ORDER Protocol. The protocol runs @mg all sites and is similar to Paxos. It invokes the ASSIGRREENCE and
THRESHOLD-SIGN intra-site protocols to allow a site to eatal the behavior of a Paxos participant.

generates a2(f + 1, 3f + 1) threshold signature on a given ASSIGN-SEQUENCE consists of three rounds. The first
messageé. Upon invoking the protocol, a server generates tao are similar to the corresponding rounds of BFT, and
Partial Signature message, containing a partial signature on the third round consists of an invocation ®HRESHOLD-
message to be signed and a verification proof that otherserv&@GN. During the first round, the representative binds an
can use to confirm that the partial signature was created asinupdate to a sequence number by creating and sending a
valid share. The Partigignature message is broadcast withiRre-Preparegquence_number, update) message. A Pre-

the site. Upon receiving 2f+1 partial signatures on a messa@reparefeq, u) causes a conflict if either a bindingeg, v’)

a server combines the partial signatures into a threshad (seq’, u) exists in a server’s data structures. When a non-
signature on that message, which is then verified using thepresentative receives a Pre-Prepare that does not cause a
site’s public key. If the signature verification fails, one oconflict, it broadcasts a matching Prepaeg( u) message.
more partial signatures used in the combination were idyaliAt the end of the second round, when a server receives a
in which case the verification proofs provided with the rti Pre-Preparegq, u) and 2f matching Prepare messages for
signatures are used to identify incorrect shares, and therse the same views, sequence number, and update (i.e., when it
that sent these incorrect shares are classified as maliciaalects aPrepareCertificate, it invokes THRESHOLD-SIGN
Further messages from the corrupted servers are ignordd, an a Proposaleg, ). If there are2f + 1 correct, connected

the proof of corruption (the invalid Parti&lig message) is servers in the siteTHRESHOLD-SIGN returns a threshold-
broadcast to the other servers in the site. Pseudocodedor dsflgned Proposateg, «) to all servers.

THRESHOLD-SIGN protocol can be found in Fig. A-7.

Assign-SequenceThe ASSIGN-SEQUENCE local protocol C. View Changes
(Fig. 6) is used in the leader site to construct a Proposal mes 9
sage. The protocol takes as input an update that was returne@everal types of failure may occur during system execution,
by the GetNext.To_Propose procedure, which is invoked bysuch as the corruption of a site representative or the parti-
the representative of the leader site durkgBIGN-GLOBAL- tioning away of the leader site. Such failures require ddic
ORDER (Fig. 7, line A4). GetNext To_Propose considers thehandling to preserve safety and liveness.
next sequence number for which an update should be orderedo ensure that the system can continue to make progress
and returns either (1) an update that has already been boundéspite server or network failures, Steward uses timeout-
that sequence number, or (2) an update that is not bound to &niggeredleader electiorprotocols at both the local and global
sequence number. This ensures that the constructed Ploplesels of the hierarchy to select new protocol coordinators
cannot be used to violate safety and, if globally orderedl, wEach server maintains two timers, Lodaland GlobalT,
result in global progress. Gétext To_Propose is listed in Fig. which expire if the server does not execute a new update
A-8. (i.e., make global progress) within the local or global toue

period. When the Local timers of 2f + 1 servers within

We could use anf{+ 1, 3f + 1) threshold signature at the cost of an@ Sit€ expire, the servers replace the current represemtati
additional intra-site protocol round. Similarly, when the Globall timers of2f + 1 servers in a



majority of sites expire, the sites replace the currentdead LOCAL-VIEW-CHANGE: When a server’s local timer, Lo-
site. Our timeout mechanism is described in more detail oalLT, expires, it increments its local view i@ and suggests
Section VI-D. this view to the servers in its site by invokinGHRESHOLD-
While the leader election protocols guarantee progresssifGN on a NewRep({v) message. Wheff + 1 stable servers
sufficient synchrony and connectivity exist, Steward ude&s move to local viewlv, THRESHOLD-SIGN returns a signed
changeprotocols at both levels of the hierarchy to ensurdew_Rep{v) message to all stable servers in the site. Since
safe progress. The presence of benign or malicious failuressigned NewRep(v) message cannot be generated unless
introduces a window of uncertainty with respect to pendir®f + 1 servers suggest local viely, such a message is proof
decisions that may (or may not) have been made in previdihsit f + 1 correct servers within a site are in at least local
views. For example, the new coordinator may not be abléew /v. We say a server hgwreinstalledlocal view [v if it
to definitively determine if some server globally ordered aimas a NewRep(v) message. Servers send their latest Nesp
update for a given sequence number. However, our viemessage to all other servers in the site, and, thereforgahlle
change protocols guarantee tlifaany server globally ordered servers immediately move to the highest preinstalled view.
an update for that sequence number in a previous view, therver starts its Local timer only when its preinstalled view
new coordinator will collect sufficient information to emsu equals its local view (i.e., it has a NeRep(v) message where
that it acts conservatively and respects the establishding its Localview = [v). Since at leasf + 1 correct servers must
in the new view. This guarantee also applies to those Prégpogdimeout (i.e., Locall must expire) before a NelRRep message
that may have been constructed in a previous local view withtan be created for the next local view, the servers in the site
the current global view. increment their views consecutively and remain in eachlloca
Steward uses aonstraining mechanism to enforce thisview for at least a local timeout period. Moreover, if global
conservative behavior. Before participating in the glaraler- progress does not occur, then stable servers will remain in a
ing protocol, a correct server must become bloitally con- local view for one local timeout period.
strainedand globally constrainedy completing theL.oCAL-
VIEW-CHANGE andGLOBAL-VIEW-CHANGE protocols (Fig. 8
and Fig. 11, respectively). The local constraint mechanism
ensures continuity across local views (when the site repres
tative changes), and the global constraint mechanism essur
continuity across global views (when the leader site chenge
Since the site representative coordinating the globalrarge
protocol may ignore the constraints imposed by previoussie
if it is faulty, all servers in the leader site become constrained,
allowing them to monitor the representative’s behavior and
preventing a faulty server from causing them to act in an
inconsistent way.
We now provide relevant details of our leader election and
view change protocols.
Leader Election: Steward uses two Byzantine fault-tolerant
leader election protocols. Each site runs th@CcAL-VIEW-
CHANGE protocol (Fig. 8) to elect its representative, and
the system runs thesLOBAL-LEADER-ELECTION protocol
(Fig. 9) to elect the leader site. Both leader election proto
cols provide two important properties necessary for ligsne
Specifically, if the system is stable and does not make global
progress, (1) views are incremented consecutively, and (2)
stable servers remain in each view for approximately one
timeout period. We make use of these properties in our lisgne
proof. We now describe the protocols in detail.



10

Initial State:

Local .view = 0

ny_preinstall proof = a priori proof that view 0 was preinstalled
RESET- LOCAL- Tl MER()

LOCAL- VI EW CHANGE( )

Al. Upon Local _T expiration:

A2.  Local .vi ewt+

A3. | ocal | y_constrai ned «— Fal se

A4. unsi gned_new.r ep «— Construct _New.Rep(Local .vi ew)

A5. i nvoke THRESHOLD- SI GN(unsi gned_new.rep) //returns NewRep

B1l. Upon THRESHOLD- SI GN returni ng NewRep(lv):
B2. Apply NewRep()
B3. SEND to all servers in site: NewRep

Cl. Upon receiving NewRep(lv):
C2.  Apply New.Rep()

D1. Upon increasing Local preinstalledview
REL| ABLE- SEND- TO- ALL- SI TES( New.Rep)
SEND to all servers in site: NewRep
RESET- LOCAL- TI MER(); Start Local _T
if representative of |eader site
i nvoke CONSTRUCT- LOCAL- CONSTRAI NT( Pendi ng_pr oposal _ar u)
if NOT gl obally_constrained
i nvoke GLOBAL_VI EWCHANGE
. el se
D10. ny gl obal _constraints « Construct Col | ected_d obal _Constrai nts()
D11. SEND to all servers in site: My_global constraints

BEIBHRRER

Fig. 8. LOCAL-VIEW-CHANGE Protocol, used to elect a new gigpresentative when the current one is suspected to hded.fahe protocol also ensures
that the servers in the leader site have enough knowledgerafipg decisions to preserve safety in the new local view.

GLOBAL- LEADER- ELECTI ON:

Al. Upon d obal T expiration:

A2. d obal .vi ewt++

A3. globally_constrained «— Fal se

Ad. unsi gned_gl obal vc < Construct _d obal VC()
A5. i nvoke THRESHOLD- SI GN(unsi gned_gl obal _vc)

Bl. Upon THRESHOLD- SI GN returni ng d obal VC(gv):
B2. Apply dobal VC to data structures
B3. Rel i abl eSendToAl | Sit es(d obal VO)

Cl1. Upon receiving d obal VC(gv):
C2. Apply Gobal VCto data structures

D1. Upon receiving d obal _Preinstall _Proof(gv):
D2. Apply d obal _Preinstall _Proof()

E1l. Upon increasing d obal preinstalled.view

E2. sorted.vc_nmessages < sort Latest_d obal VC by gv

E3. proof <« last |[N/2]+1 dobal VC nmessages in sorted.vc_nessages
E4. Rel i abl eSendToAl | Sites( proof )

E5. SEND to all local servers: proof

E6. RESET-GLOBAL-TIMER(); Start G obal T
E7. if representative of |eader site

E8. i nvoke GLOBAL- VI EW CHANGE

Fig. 9. GLOBAL-LEADER-ELECTION Protocol. When the Glohaltimers of at leas f + 1 servers in a majority of sites expire, the sites run a distetd,
global protocol to elect a new leader site by exchangingstiote-signed Global/C messages.

GLOBAL-LEADER-ELECTION: When a server's Global preinstall proof to all connected servers using HE IABLE-
timer, expires, it increments its global view §o and suggests SEND-TO-ALL -SITES procedure (Fig. A-15), which ensures
this global view to other servers in its sit&, by invok- that the message will arrive at all correct connected ssrver
ing THRESHOLD-SIGN on a GlobalvVC(S, gv) message. A despite the behavior of faulty site representatives. These
threshold-signed GlobafC(S, gv) message proves that atas soon as any stable server preinstalls a new global view,
leastf +1 servers in site5 are in global viewgv or above. Site all stable servers will preinstall this view. As in the local
S attempts to preinstall global vieww by sending this mes- representative election protocol, a server starts its &ldb
sage to all other sites. A set of a majority of Gloh&L(gv) timer only when its preinstalled view equals its global view.
messages (i.eglobal preinstall proof proves that at leagt+1  Since the Globall timer of at leastf + 1 correct servers must
correct servers in a majority of sites have moved to at leasneout in a site before the site can construct a Glabal
global viewgu. If a server collects a global preinstall proof formessage for the next global view, stable servers increment
gv, we say it has preinstalled global vieyw. When a server their global views consecutively and remain in each global
preinstalls a new global view, it sends the correspondiobajl view for at least one global timeout period.
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CONSTRUCT- LOCAL- CONSTRAI NT(i nt seq):
Al. if representative
A2. Request _Local _State < Construct Request St at e( G obal .vi ew, Local .vi ew, seq)

A3. SEND to all local servers: Request_Local State

Bl. Upon receiving Request_Local _State(gv, lv, s):

B2. invocationaru «— s

B3. i f (Pendi ng_Proposal Aru < s)

B4. Request mi ssing Proposals or dobally. O dered_Update nessages fromrepresentative
B5. i f (Pendi ng_Proposal Aru > s)

B6. Local _Server _State «— Construct _Local _Server _St ate(s)

B7. SEND to the representative: Local _Server _State

Cl. Upon collecting LSS Set with 2f+1 distinct Local _Server _State(invocationaru) messages:
Local _Col | ect ed_Servers_State «— Construct Bundl e(LSS_Set)
SEND to all local servers: Local _Collected_Servers_ State

Upon receiving Local _Col | ect ed_Servers_State:
if (all Local _Server _State nessages in bundle contain invocation_aru)
i f (Pending_Proposal Aru > invocation_aru)
Apply Local Coll ected Servers_State to Local History
| ocal l y_constrained «— True

return Local _Col | ect ed_Servers_State

BHERERE 88

Fig. 10. CONSTRUCT-LOCAL-CONSTRAINT Protocol. The protdas invoked by a newly-elected leader site representativé involves the participation
of all servers in the leader site. Upon completing the pmloa server becomes locally constrained and will act in a W&y enforces decisions made in
previous local views.

GLOBAL- VI EW CHANGE:
Al. Upon invoki ng:
A2. I nvoke CONSTRUCT- ARU(d obal .aru)// returns (d obal -Constraint, Aru_Message)

B1l. Upon CONSTRUCT- ARU returning (d obal _Constraint, Aru_Message):
B2. Store G obal _Constraint

B3. if representative of |eader site

B4. SEND to all sites: Aru_Message

Cl. Upon receiving AruMessage(sitedd, gv, site.aru):
C2. if representative site

C3. SEND to all servers in site: Aru_Message

CA. i nvoke CONSTRUCT- GLOBAL- CONSTRAI NT( Aru_Message) //returns d obal _Constraint
D1. Upon CONSTRUCT- GLOBAL- CONSTRAI NT returni ng @ obal Constraint:

D2. if representative of non-|eader site

D3. SEND to representative of |eader site: G obal Constraint

E1. Upon collecting GCSET with majority distinct G obal Constraint nmessages:
E2. if representative

E3. Col | ect ed_d obal _-Constrai nts « Construct Bundl e( GC_SET)

E4. SEND to all in site: Collectedd obal _Constraints

E5. Apply Col | ected_d obal Constraints to d obal _H story

E6. gl obal l y_constrai ned «— True

F1. Upon receiving Collected-G obal Constraints:

F2. Apply Coll ected_d obal Constraints to A obal History
F3. globally_constrained «— True

F4. Pendi ng_proposal .aru — d obal _aru

Fig. 11. GLOBAL-VIEW-CHANGE Protocol, used to globally cstmain the servers in a new leader site. These servers dhfaimation from a majority
of sites, ensuring that they will respect the bindings éistabd by any updates that were globally ordered in a previgew.

Local View Changes: When a server is elected as theontaining all Prepar€ertificates and Proposals with a higher
representative of the leader site, it invokes t®NSTRUCTF sequence number thaeq. The representative computes the
LOCAL-CONSTRAINT protocol (Fig. 10). The protocol guar-union of 2f + 1 responses, eliminating duplicates and using
antees sufficient intra-site reconciliation to safely makide entry from the latest view if multiple updates have
progress after changing the site representative. As atreshe same sequence number; it then broadcasts the union
of the protocol, servers becontecally constrainedmeaning within the site in the form of a LocaCollectedServersState
their LocalHistory data structures have enough informatiomessage. When a server receives this message, it applies
about pending Proposals to preserve safety in the new Ib-to its LocalHistory, adopting the bindings contained
cal view. Specifically, it prevents two conflicting Propasal within the union. Pseudocode for the procedures used within
Pl@v, lv, seq, v) and P2gv, lv, seq, u’), with u # u’, from CONSTRUCFLOCAL-CONSTRAINT is contained in Fig. A-11
being constructed in the same global view. and Fig. A-12.

A site representative iNnvVOKeSCONSTRUCTFLOCAL-
CONSTRAINT by sending a sequence numbseeg, to all
servers within the site. A server responds with a message
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Global View Changes:A global view change is triggered the coordinators of the global and local protocols to betetéc
after a leader site election. In addition toHRESHOLD- at different rates, guaranteeing that, during each gloleat,v
SIGN, the global view change makes use of two other intr@gorrect representatives at the leader site can communidtite
site protocols,CONSTRUCFARU and CONSTRUCFGLOBAL- correct representatives at all stable non-leader sitesnave
CONSTRAINT, which we describe below. We then describe theéescribe the three timeouts.

GLOBAL-VIEW-CHANGE protocol, which is listed in Fig. 11.  Non-Leader Site Local Timeout (T1)ocal.T is set to this

CONSTRUCTFARU: The CONSTRUCTFARU protocol is used timeout at servers in non-leader sites. When Locaxpires
by the leader site during a global view change. It is simitar @t all stable servers in a site, they preinstall a new localvi
CONSTRUCTFLOCAL-CONSTRAINT in that it provides intra- T1 must be long enough for servers in the non-leader site to
site reconciliation, but it functions in the global contextconstruct GlobalConstraint messages, which requires at least
The protocol generates an AMessage, which contains theenough time to completeHRESHOLD-SIGN.
sequence number up to which at legst- 1 correct servers Leader Site Local Timeout (T2)ocalT is set to this
in the leader site have globally ordered all previous umatdimeout at servers in the leader site. T2 must be long enaugh t
Pseudocode foCONSTRUCTFARU is contained in Fig. A-9.  allow the representative to communicate with all stablessit

CONSTRUCTFGLOBAL-CONSTRAINT. The CcONSTRUCF Observe that all non-leader sites do not need to have correct
GLOBAL-CONSTRAINT protocol is used by the non-leader sitegsepresentatives at the same time; Steward makes progress
during a global view change. It generates a message refiectas long as each leader site representative can communicate
the state of the site’'s knowledge above the sequence numiyéh at least one correct server at each stable non-leader
contained in the result ofoONSTRUCFARU. The leader site site. We accomplish this by choosing T1 and T2 so that,
collects these GlobaConstraint messages from a majority ofluring the reign of a representative at the leader dite; 1
sites. Pseudocode f@rONSTRUCTFGLOBAL-CONSTRAINT iS  servers reign for complete terms at each non-leader site. Th
listed in Fig. A-10. reader can think of the relationship between the timeouts as

GLOBAL-VIEW-CHANGE: After completing thecLoBaL- follows: The time during which a server is representative at
LEADER-ELECTION protocol, the representative of the newhe leader siteoverlapswith the time thatf + 1 servers are
leader site invokeSONSTRUCTFARU with its Globalaru (i.e., representatives at the non-leader sites. Therefore, wareeq
the sequence number up to which it has globally ordered #iat 72 > (f + 2) = T'1. The factor f 4+ 2 accounts for
updates). The resulting threshold-signed AMfassage con- the possibility that Locall is already running at some of
tains the sequence number up to which at lefist- 1 the non-leader-site servers when the leader site electsva ne
correct servers within the leader site have globally ordergepresentative.
all updates. The representative sends the_Massage to all  Global Timeout (T3):GlobalT is set to this timeout at
other site representatives. Upon receiving this messagegllaservers, regardless of whether the server is in the teade
non-leader site representative inVOkeSNSTRUCFGLOBAL- Site. At least two correct representatives in the leader sit
CONSTRAINT and sends the resultant Glob@bnstraint mes- must serve complete terms during each global view. From the
sage to the representative of the new leader site. Servés inrelationship between T1 and T2, each of these represeggativ
leader site use the Gloh@&lonstraint messages from a majorityvill be able to communicate with a correct representative
of sites to becomelobally constrained which restricts the at each stable site. If the timeouts are sufficiently long and
Proposals they will generate in the new view to preserveigafghe system is stable, then the first correct server to serve a
full reign as representative at the leader site will comgplet
GLOBAL-VIEW-CHANGE. The second correct server will be
able to globally order and execute a new update, thereby

Steward uses timeouts to detect failures. If a server does nwaking global progress.
execute updates, a local and, eventually, a global timedut w Our protocols do not assume synchronized clocks; however,
occur. These timeouts cause the server to "assume” that #edo assume that the drift of the clocks at different serigers
current local and/or global coordinator has failed. Acaogty, small. This assumption is valid considering today’s te¢bgp
the server attempts to elect a new local/global coordinayor In order to tolerate different clock rates at different eatr
suggesting new views. In this section, we describe the titseoservers, each of the relationships given above can be riedtip
that we use and how their relative values ensure liveness. Ty the ratio of the fastest clock to the slowest.
timeouts in the servers have been carefully engineeredaw al Timeout management: We compute our timeout values
a correct representative of the leader site to eventuallgror based on the global view as shown in Fig. 12. If the system
an update. is stable, all stable servers will move to the same globakvie

Steward uses timeout-triggered protocols to elect new og-ig. 9). Timeouts T1, T2, and T3 are deterministic funcsion
ordinators. Intuitively, coordinators are elected foreagn, of the global view, guaranteeing that the timeout relathjps
during which each server expects to make progress. Ifdascribed above are met awery stable server. Timeouts
server does not make progress, its La€atimer expires, double everyN global views, whereN is the number of
and it attempts to elect a new representative. Similarly if sites. Thus, if there is a time after which message delays do
server's Globall timer expires, it attempts to elect a newnot increase, then our timeouts eventually grow long enough
leader site. In order to provide liveness, Steward changss that global progress can be made. Our protocol can be
coordinators using three timeout values. These valuesecansodified so that our timeouts decrease if global progress is

D. Timeouts
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RESET- GLOBAL- PROGRESS- T MER() :
Al. dobal .T « GLOBAL- TI MEOUT()

RESET- LOCAL- TI MER() :

B1. if in leader site

B2. Local .T «— GLOBAL- TI NEQUT() /(f + 3)

B3. el se

B4. Local .T « GLOBAL- TI MEQUT() /(f +3)(f +2)

GLOBAL_TI MEQUT() :
Cl. return K x2[Globalview/N]

Fig. 12. RESET-GLOBAL-TIMER and RESET-LOCAL-TIMER procaeks. These procedures establish the relationships bet@tesvard’s timeout values
at both the local and global levels of the hierarchy. Notd tha local timeout at the leader site is longer than at theleader sites to ensure a correct
representative of the leader site has enough time to conmamenwith correct representatives at the non-leader Sites.values increase as a function of the
global view.

made. only queries in our experiments carried a payload of 200yyte
representing a common SQL statement.

We compared BFT to our similar intra-site agreement
protocol, ASSIGN-SEQUENCE BFT performed slightly bet-

To evaluate the performance of our hierarchical architectuter than ourAssIGN-SEQUENCE implementation because we
we implemented a complete prototype of our protocol inise somewhat larger messages. This supports our claim that
cluding all necessary communication and cryptographicfunSteward’s performance advantage over BFT is due to its
tionality. In this paper we focus only on the networking andierarchical architecture and resultant wide area message
cryptographic aspects of our protocols and do not considsvings. Note that in our five-site test configuration, BFT
disk writes. sends over twenty times more wide area messages per update

Testbed and Network Setup: We selected a network than Steward. This message savings is consistent with the
topology consisting of 5 wide area sites and assumed difference in performance between Steward and BFT shown
most 5 Byzantine faults in each site, in order to quantify tha the experiments that follow.
performance of our system in a realistic scenario. Thisirequ  Bandwidth Limitation: We first investigate the benefits
16 replicated servers in each site. of the hierarchical architecture in a symmetric configunati

Our experimental testbed consists of a cluster with twenwyith 5 sites, where all sites are connected to each other with
3.2 GHz, 64-bit Intel Xeon computers. Each computer c&® ms latency links (emulating crossing the continental.US)
compute a 1024-bit RSA signature in 1.3 ms and verify it In the first experiment, clients inject write updates. Fig. 1
in 0.07 ms. For n=16, k=11, 1024-bit threshold cryptograptshows how limiting the capacity of wide area links affects
which we use for these experiments, a computer can computgaaate throughput. As we increase the number of clients,
partial signature and verification proof in 3.9 ms and corabiBFT’s throughput increases at a lower slope than Steward’s,
the partial signatures in 5.6 ms. The leader site was de@loymainly due to the additional wide area crossing for each
on 16 machines, and the other 4 sites were emulated by apelate. Steward can process up to 84 updates/sec in all
computer each. An emulating computer performed the rdandwidth cases, at which point it is limited by CPU used to
of a representative of a complete 16 server site. Thus, aompute threshold signatures. At 10, 5, and 2.5 Mbps, BFT
testbed was equivalent to an 80 node system distributedscrachieves about 58, 26, and 6 updates/sec, respectivelgchn e
5 sites. Upon receiving a message, the emulating computefshese cases, BFT’s throughput is bandwidth limited. VEe al
busy-waited for the time it took a 16 server site to handle thaotice a reduction in the throughput of BFT as the number of
packet and reply to it, including intra-site communicataond clients increases. We attribute this to a cascading inereas
computation. We determined busy-wait times for each typeessage loss, caused by the lack of flow control in BFT. For
of packet by benchmarking individual protocols on a fullfhe same reason, we were not able to run BFT with more than
deployed, 16 server site. We used the Spines [34] messagdgclients at 5 Mbps, and 15 clients at 2.5 Mbps. We believe
system to emulate latency and throughput constraints on that adding a client queuing mechanism would stabilize the
wide area links. performance of BFT to its maximum achieved throughput.

We compared the performance results of the above systenfrig. 14 shows that Steward’s average update latency slightl
with those of BFT [19] on the same network setup with fivécreases with the addition of clients, reaching 190 ms at 15
sites, run on the same cluster. Instead of using 16 server<iients in all bandwidth cases. As client updates start to be
each site, for BFT we used tatal of 16 servers across thequeued, latency increases linearly. BFT exhibits a sintiéard
entire network. This allows for up to 5 Byzantine failureghie at 10 Mbps, where the average update latency is 336 ms at
entire network for BFT, instead of up to 5 Byzantine failuies 15 clients. As the bandwidth decreases, the update latency
each site for Steward. Since BFT is a flat solution where therereases heavily, reaching 600 ms at 5 Mbps and 5 seconds
is no correlation between faults and the sites in which they 2.5 Mbps, at 15 clients.
can occur, we believe this comparison is fair. We distridute Adding Read-only Queries: Our hierarchical architec-
the BFT servers such that four sites contain 3 servers eatthre enables read-only queries to be answered locally. To
and one site contains 4 servers. All the write updates ardt redemonstrate this benefit, we conducted an experiment where

VIl. PERFORMANCEEVALUATION
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10 clients send random mixes of read-only queries and writpdates/sec in our tests, limited mainly by the bandwidth of
updates. We compared the performance of Steward and B#R€ link between the East and West Coasts in CAIRN. In
with 50 ms, 10 Mbps links, where neither was bandwidtbomparison, an upper bound of two-phase commit protocols
limited. Fig. 15 and Fig. 16 show the average throughput apdesented in [36] was able to achieve 76 updates/sec. We
latency, respectively, of different mixes of queries andatgs. believe that the difference in performance is caused by the
When clients send only queries, Steward achieves about®.9presence of additional digital signatures in the messagd-he
per query, with a throughput of over 3,400 queries/sec.eSiners of Steward, adding 128 bytes to the 200 byte payload
gueries are answered locally, their latency is dominated by each update. BFT achieved a maximum throughput.of
two RSA signatures, one at the originating client and one apdates/sec and an update latency of over a second, except
the servers answering the query. Depending on the mix ratighen there was a single client.
Steward performs 2 to 30 times better than BFT. Red-Team Results: In December 2005, DARPA conducted
BFT's read-only query latency is about 105 ms, and i® red-team experiment on our Steward implementation to
throughput is 95 queries/sec. This is expected, as read-odétermine its practical survivability in the face of white-
queries in BFT need to be answered by at lefastl servers, box attacks. We provided the red team with system design
some of which are located across wide area links. BFT regjuidocuments and gave them access to our source code; we also
at least2f + 1 servers in each site to guarantee that worked closely with them to explain some of the delicate
can answer queries locally. Such a deployment, for 5 faulssues in our protocol concerning safety and liveness. Per
and 5 sites, would require at least 55 servers, which woulde rules of engagement, the red team had complete control
dramatically increase communication for updates and medunver f replicas in each site and could declare success if it
BFT’'s performance. (1) stopped progress or (2) caused consistency errors among
Wide Area Scalability: To demonstrate Steward’s scalthe replicas. The red team used both benign attacks, such
ability on real networks, we conducted an experiment thas packet reordering, packet duplication, and packet delay
emulated a wide area network spanning several continems. #d Byzantine attacks, in which the red team ran its own
selected five sites on the Planetlab network [35], measunedlicious server code. While progress was slowed down in
the latency and available bandwidth between all sites, agéveral of the tests, such as when all messages sent by the
emulated the network topology on our cluster. We ran thepresentative of the leader site were delayed, the red team
experiment on our cluster because Planetlab machines lagks unable to block progress indefinitely and never caused
sufficient computational power. The five sites are located inconsistency. Thus, according to the rules of engagement,
the US (University of Washington), Brazil (Rio Grande damone of the attacks succeeded. We plan to investigate ways to
Sul), Sweden (Swedish Institute of Computer Science), &orensure high performance under attack (which is stronger tha
(KAIST) and Australia (Monash University). The networkthe eventual progress afforded by system liveness) in dutur
latency varied between 59 ms (US - Korea) and 289 ms (Brawibrk.
- Korea). Available bandwidth varied between 405 Kbps(Braz
- Korea) and 1.3 Mbps (US - Australia). VIIl. PROOF SKETCH

Fig. 17 shows the average write update throughput as WeAppendix B contains a complete proof of correctness for

increased the number of clients in the system, while Fig. _]rﬁe safety and liveness properties listed in Section V. I8 th
shows the average update latency. Steward is able to achlg

its maximum throughput of 84 updates/sec with 27 clientg Th &Etion, we provide an outline of the proof.

latency increases from about 200 ms for one client to about

360 ms for 30 clients. BFT is bandwidth limited to about @ Safety

updates/sec. The update latency is 631 ms for one client andiVe prove Safety by showing that two servers cannot glob-

several seconds with more than 6 clients. ally order conflicting updates for the same sequence number.
Comparison with Non-Byzantine Protocols: Since Stew- The proof is divided into two main claims. In the first claim,

ard deploys a lightweight fault-tolerant protocol betwaka we show that any two servers which globally order an update

wide area sites, we expect it to achieve performance com-the same global view for the same sequence number will

parable to existing benign fault-tolerant replicationtpowls. globally order the same update. To prove this claim, we

We compare the performance of our hierarchical Byzantishow that a leader site cannot construct conflicting Prdposa

architecture with that of two-phase commit protocols. 16][3 messages in the same global view. A conflicting Proposal has

we evaluated the performance of two-phase commit protoctii® same sequence number as another Proposal, but it has a

[11] using a WAN setup across the US, called CAIRN [37[ifferentupdate. Since globally ordering two different updates

We emulated the topology of the CAIRN network using théor the same sequence number in the same global view would

Spines messaging system, and we ran Steward and BFT onrequire two different Proposals from the same global viewd, a

of it. The main characteristic of CAIRN is that East and Westince only one Proposal can be constructed within a global

Coast sites were connected through a single 38 ms, 1.86 Mivpsw, all servers that globally order an update for a given

link. sequence number in the same global view must order the same
Fig. 19 and Fig. 20 show the average throughput amghdate.

latency of write updates, respectively, of Steward and BFT In the second claim, we show that any two servers which

on the CAIRN network topology. Steward achieved about Sflobally order an update idifferentglobal views for the same
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sequence number must order the same update. To prove 8iisce the duration of our timeouts are a function of the dloba

claim, we show that a leader site from a later global viewiew, and stable servers preinstall consecutive globaksje

cannot construct a Proposal conflicting with one used bytlae stable servers will eventually reach a global view inalahi

server in an earlier global view to globally order an updat new update can be globally ordered and executed, which

for that sequence number. The value that may be contairiewblies global progress.

in a Proposal for this sequence number is tlamchored

Since no Proposals can be created that conflict with the one

that has been globally ordered, no correct server can djobal

order a different update with the same sequence numberThis paper presented a hierarchical architecture thatlenab

Since a server only executes an update once it has glob#&fficient scaling of Byzantine replication to systems thzdrs

ordered an update for all previous sequence numbers, twltiple wide area sites, each consisting of several poten-

servers executing th&" update will therefore execute thetially malicious replicas. The architecture reduces thesage

same update. complexity on wide area updates, increasing the system’s

scalability. By confining the effect of any malicious replic

to its local site, the architecture enables the use of a benig

fault-tolerant algorithm over the WAN, increasing system
We prove Global Liveness by contradiction. We assume theatailability. Further increase in availability and perfaance

global progress does not occur and show that, if the systésnachieved by the ability to process read-only queriesiwith

is stable and a stable server receives an update which it basite.

not executed, then the system will reach a state in which somé&Ve implemented Steward, a fully functional prototype that

stable servewill execute an update and make global progresgalizes our architecture, and evaluated its performanee o

The proof is divided into three main claims, which we outlingeveral network topologies. The experimental results show

below. considerable improvement over flat Byzantine replicatibn a
In the first claim, we show that, if no global progress occurgprithms, bringing the performance of Byzantine replicati

then all stable servers eventually reconcile their Gldthigtory closer to existing benign fault-tolerant replication teicfues

data structures to the maximum sequence number throumker WANS.

which any stable server has executed all updates. By definiti

if any stable server executes an update beyond this point,

global progress will have been made, and we will have reached ACKNOWLEDGMENT

a contradiction. . ... Yair Amir thanks his friend Dan Schnackenberg for intro-
The second claim shows that, once the above reconmhaﬂ&rjwcin him to thi bl df fi thi
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has completed, the system eventually reaches a state it WP}lc
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APPENDIXA
COMPLETE PSEUDOCODE

In this section we provide complete pseudocode for Stew-
ard. We then use this pseudocode in Appendix B to prove the
safety and liveness of our protocol.
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/+ Notation: <== neans append */
UPDATE- LOCAL- DATA- STRUCTURES:
case nmessage:
Al. Pre-Prepare(server.d, *, lv, seq, u):

A2. if Local History[seq].Pre-Prepare is enpty

A3. Local _Hi story[seq]. Pre-Prepare «— Pre-Prepare

Ad. el se

AS5. i gnore Pre-Prepare

B1. Prepare(server.id, *, lv, seq, digest):

B2. if Local History[seq].Pre-Prepare is enpty

B3. i gnore Prepare

B4. if Local History[seq].Preparelist contains a Prepare with server.id
B5. i gnore Prepare

B6. Local _Hi story[seq].Preparelist <== Prepare

B7. if PrepareCertificate_Ready(seq)

B8. pre-prepare «— Local _Hi story[seq].Pre-Prepare

B9. PC «— Construct PrepareCertificate(pre-prepare, Local _H story[seq].Prepare.list)
B10. Local _Hi story[seq].PrepareCertificate «— PC

Cl. Partial _Sig(server_.id, data, partial _sig, verificationproof, sig):
if Local History.Partial _Sigs{ data }[Server.id] is enpty

ignore Partial Sig
Local History. Partial Sigs{ data }[server.id] < Partial Sig

Local _Col | ect ed_Server _State(gv, |v, Local Server_State[]):
uni on «— Conput e_Local _Uni on(Local _Col | ect ed_Server _St at e)
invocationaru «— Extract_ nvocati on_Aru(Local _Server State[])
max_| ocal _entry «— Extract_Max_Local _Entry(Local Hi story[])
for each seq from (invocation.aru+l) to max. ocal entry
if Local History[seq].PrepareCertificate(*, Iv', seq, *) exists and |v' < lv
clear Local H story[seq].PrepareCertificate
if Local History[seq].Proposal (*, Iv', seq, *) exists and |v' < lv
cl ear Local _Hi story[seq].Proposal
if Local History[seq].Pre-Prepare(*, lv', seq, *) exists and v’ < lv
cl ear Local _History[seq].Pre-Prepare
for each PrepareCertificate(*, *, seq, *), PC, in union
if Local History[seq].PrepareCertificate is enpty
Local _Hi story[seq].PrepareCertificate «— PC
for each Proposal (*, *, seq, *), P, in union
if Local History[seq].Proposal is enpty

222229988 99RRERR 200

D17. Local _Hi story[seq].Proposal «— P

E1. New_Rep(site.id,|v):

E2. if (Iv > Latest _NewRep[site.id])

E3. Lat est New.Rep[site.id] «— NewRep

E4. Local preinstall ed.view «— Latest_New.Rep[Site.d]
F1. Updat e(u):

F2. SEND to all servers in site: Update(u)

F3. if representative of non-|leader site

F4. SEND to representative of |eader site: Update(u)
F5. Add Update(u) to Update_Pool

Fig. A-1. Rules for applying a message to the Lodétory data structure. The rules assume that there is nflictome., Conflict(message) == FALSE
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/+ Notation: <== neans append */
UPDATE- GLOBAL - DATA- STRUCTURES:
case nessage:
Al. Proposal P(site.id, gv, *, seq, u):

A2. if dobal _History[seq].Proposal is enpty

A3. d obal History[seq].Proposal — P

A4. if server in |leader site

A5. Reconput e Pendi ng_proposal _aru

A6. if dobal _Hstory[seq].PrepareCertificate is not empty

AT7. renove Prepare Certificate fromd obal _Hi story[seq].PrepareCertificate
A8. if dobal _H story[seq].Proposal contains Proposal (siteid, gv', *, seq, Uu')
A9. if gv > gv

Al0. d obal History[seq].Proposal — P

All. if server in leader site

Al2. Recomput e Pendi ng_proposal _aru

Al3. if dobal _Hstory[seq].PrepareCertificate is not enpty

Al4. remove Prepare_Certificate fromd obal _H story[seq].PrepareCertificate
Bl. Accept A(site.d, gv, *, seq, digest):

B2. if dobal _H story[seq].Proposal is enpty

B3. ignore A

B4. if dobal _History[seq].Accept_List is enpty

B5. d obal History[seq].Accept _List <== A

B6. if dobal _H story[seq].Accept_List has any Accept(siteid, gv', *, seq, digest’)
B7. if gv > gv

B8. discard all Accepts in dobal History[seq]

B9. A obal History[seq].Accept List <== A

B10. if gv == gv' and d obal History[seq] does not have Accept fromsite.d
B11. d obal History[seq].Accept List <== A

B12. if gv < gv

B13. ignore A

B14. if dobally.OderedReady(seq)

B15. Construct gl obally_ordered.update from Proposal and |ist of Accepts

B16. Apply gl obal | y_ordered_.update to d obal _Hi story

Cl. Gobally OderedUpdate (gv, seq, u):

c2 if not dobally Odered(seq) and |s_Conti guous(seq)

c3 d obal History[seq].d oball y.Ordered_Update — G

A Reconmput e G obal _aru

C5 execset < all unexecuted globally ordered updates with seq < G obal _aru
(] execute the updates in exec_set

c7 if there exists at |east one dobally Ordered_Update(*, *, *) in exec_set
c8 RESET- GLOBAL- TI MER()

9 RESET- LOCAL- TI MER( )

C10. if server in |eader site

C11. Reconput e Pendi ng_proposal _aru

D1 Col | ect ed_G obal Constraints(gv, d obal Constraint[]):

D2 uni on «— Conput e_Const rai nt _Uni on( Col | ect ed_@ obal _Constrai nts)

D3 invocationaru «— Extract_ nvocati on_Aru(d obal _Constraint[])

D4 max_gl obal .entry «— Extract_Max_d obal Entry(d obal History[])

D5 for each seq from (invocation.aru+l) to nmax_gl obal entry

D6 if dobal _History[seq].PrepareCertificate(gv', *, seq, *) exists and gv' < gv
D7 clear A obal History[seq].PreparecCertificate

D8 if dobal _H story[seq].Proposal (gv', *, seq, *) exists and gv' < gv
D9. cl ear d obal History[seq].Proposal

D10. for each dobally Ordered_Update(*, *, seq, *), G in union

D11. d obal History[seq].d oball y Ordered_Update «— G

D12. for each Proposal (*, *, seq, *), P, in union

D13. if G obal Hstory[seq].Proposal is enpty

D14. d obal History[seq].Proposal — P

El. dobal VC(site.id, gv):

E2. if ( gv > Latest dobal V(site.id].gv)

E3. Lat est A obal V([site.id] <« d obal VC

E4. sorted_vc_nessages « sort Latest_d obal VC by gv

E5. d obal preinstalledview «— sortedvc.nessages[ |[N/2]+11].gv

E6. if ( dobal preinstalledview > d obal .view )

E7. d obal view «— d obal preinstalledview

ES8. gl obal I y_constrai ned — Fal se

F1. dobal _Preinstall _Proof (gl obal vc_nessages[]):

F2. for each d obal VC(gv) in global vc_messsages]]

F3. Apply d obal VC

Fig. A-2. Rules for applying a message to the GloH#tory data structure. The rules assume that there is nifictome., Conflict(message) == FALSE
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Al. bool ean d obal | y_Ordered(seq):

A2. if dobal _Hstory[seq].d obally OderedUpdate is not enpty
A3. return TRUE

Ad. return FALSE

Bl. bool ean d obal | y_Or der ed_Ready(seq):

B2. if G obal _H story. Proposal [seq] contains a Proposal (sitedid, gv, lv, seq, u)

B3. if dobal _H story[seq].Accept_List contains (majority-1) of distinct
Accept(sitelid(i), gv, lv, seq, Digest(u)) with sitelid(i) # site.id

B4. return TRUE

B5. if dobal _Hi story[seq].Accept_List contains a majority of distinct

B6. Accept(sitesid(i), gv', lv, seq, Digest(u)) with gv >= gv’

B7. return TRUE

B8. return FALSE

Cl. bool ean Prepare Certificate_Ready(seq):

c2. if Local History.Proposal [seq] contains a Pre-Prepare(server.d, gv, lv, seq, u)

c3 if Local History[seq].Prepare.List contains 2f distinct
Prepare(server.id(i), gv, lv, seq, d) with server_.id # server_.id(i) and d == Di gest (u)

CA. return TRUE

C5. return FALSE

D1. bool ean | n.W ndow seq):

D2 if dobal aru < seq < dobal aru + W
D3. return TRUE

D4 el se

D5 return FALSE

E1l. bool ean | s_Contiguous(seq):
E2. for i fromdobal aru+l to seqg-1

E3. if dobal _H story[seq].Prepare-Certificate == NULL and

E4. A obal History[seq].Proposal == NULL and

E5. d obal History[seq].d obal |l y.Ordered_Update == NULL and
E6. Local _Hi story[seq].Prepare-Certificate == NULL and

E7. Local _Hi story[seq].Proposal == NULL

ES8. return FALSE

E9. return TRUE

Fig. A-3. Predicate functions used by the global and locatqmols to determine if and how a message should be appliedstyver’'s data structures.

bool ean Val i d( nessage):

Al. if message has threshold RSA signature S

A2. if NOT VERIFY(S)

A3. return FALSE

A4, i f message has RSA-signature S

A5. if NOT VERIFY(S)

A6. return FALSE

AT7. i f message contains update with client signature C
A8. if NOT VERI FY(C)

A9. return FALSE

A10. if nessage.sender is in Corrupted_Server List
All. return FALSE

Al2. return TRUE

Fig. A-4. Validity checks run on each incoming message. lidvaessages are discarded.
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bool ean Conflict (message):
case message
Al. Proposal ((sitedid, gv, lv, seq, u):

A2. if gv # d obal view

A3. return TRUE

Ad. if server in |eader site

AS5. return TRUE

A6. if dobal _H story[seq].d obal .Ordered_Update(gv’', seq, u') exists
AT7. if (u # u) or (gv' > gv)
A8. return TRUE

A9. if not |s_Contiguous(seq)
Al0. return TRUE

All. if not | n.Wndow(seq)

Al2. return TRUE

Al3. return FALSE

Bl. Accept(site.d, gv, lv, seq, digest):

B2. if gv # dobal view

B3. return TRUE

B4. if (dobal History[seq].Proposal (*, *, *, seq, u) exists) and (Digest(u’) # digest)
B5. return TRUE

B6. if dobal _History[seq].d obal Ordered_Update(gv’', seq, u') exists
B7. if (Digest(u') # digest) or (gv' > gv)

B8. return TRUE

B9. return FALSE

Cl. Aru_Message(site.dd, gv, sitearu):

C2. if gv # d obal view

C3. return TRUE

C4. if server in |eader site

C5. return TRUE

C6. return FALSE

D1. Request _d obal _State(server_id, gv, lv, aru):

D2. if (gv # dobal view) or (lv # Local -view)

D3. return TRUE

D4. if serverid # |v nod numservers_.insite

D5. return TRUE

D6. return FALSE

El. d obal _Server _State(server.id, gv, lv, seq, stateset):
E2. if (gv # dobal view) or (lv # Local _view)

E3. return TRUE

E4. if not representative

E5. return TRUE

E6. if entries in state_set are not conti guous above seq
E7. return TRUE

E8. return FALSE

F1. dobal Collected Servers State(server.id, gv, lv, gssset):

F2. if (gv # dobal view) or (lv # Local -view)
F3. return TRUE
F4. if each nmessage in gss_set is not contiguous above invocation_seq
F5. return TRUE
Gl. G obal Constraint(sitedid, gv, seq, stateset):
Q. if gv # dobal view
G3. return TRUE
4. if server not in |leader site
Gb. return TRUE
6. return FALSE
Hl. Coll ect ed_d obal _Constraints(server.id, gv, lv, gcset):
H2. if gv # d obal view
H3. return TRUE
H4. aru < Extract Aru(gc_set)
H5. if dobal aru < aru
H6. return TRUE
H7. return FALSE
Fig. A-5. Conflict checks run on incoming messages used irgkbleal context. Messages that conflict with a server’'s curgdobal state are discarded.



bool ean Conflict(nmessage):
case message
Al. Pre-Prepare(server.d, gv, lv, seq, u):

A2. if not (globallyconstrained & | ocally_constrained)

A3. return TRUE

Ad. if serverid # |v nod numservers_.insite

A5. return TRUE

A6. if (gv # dobal view) or (lv # Local _view)

AT. return TRUE

A8. if Local History[seq].Pre-Prepare(serverid, gv, lv, seq, u) exists
A9. return TRUE

Al10 if Local History[seq].PrepareCertificate.Pre-Prepare(gv, IVv', seq,
All. return TRUE

Al2. if Local History[seq].Proposal (siteid, gv, Iv', u) exists

Al3. if (u #u) or (v >1v)

Al4. return TRUE

Al5. if dobal _History[seq].Proposal (siteid, gv', Iv', seq, u') exists
Al6. if (u #u) or (gvi > gv)

Al7. return TRUE

Al8. if dobal _H story[seq].d obally Ordered.Update(*, seq, u ) exists
Al9. if (u #u)

A20. return TRUE

A21. if not |s_Contiguous(seq)

A22. return TRUE

A23. if not |In.Wndow(seq)

A24. return TRUE

A25. if uis bound to seq’ in Local History or G obal History

A26. return TRUE

A27. return FALSE

B1. Prepare(server.id, gv, |lv, seq, digest):

B2. if not (globallyconstrained & | ocally_constrained)

B3. return TRUE

B4. if (gv # dobal view) or (lv # Local _view)

B5. return TRUE

B6. if Local History[seq].Pre-Prepare(serverid , gv, lv, seq, u) exists
B7. if digest # Digest(u)

B8. return TRUE

B9. if Local History[seq].PrepareCertificate.Pre-Prepare(gv, IVv', seq,
B10. if (digest # Digest(u)) or (v’ >1v)

B11. return TRUE

B12. if Local History[seq].Proposal (gv, Iv', seq, u) exists

B13. if (digest # Digest(u)) or (v’ >1v)

B14. return TRUE

B15. return FALSE

Cl. Request _Local _State(server.id, gv, lv, aru):
if (gv # dobal view) or (lv # Local -view)
return TRUE
if serverid # |v nod numservers_.insite
return TRUE
return FALSE

c2
C3
4
c5
C6
D1. Local _Server State(server.d, gv, lv, seq, statesset):
D2. if (gv # dobal view) or (lv # Local _view)
D3. return TRUE

D4 if not representative

D5 return TRUE

D6 if entries in stateset are not contiguous above seq
D7 return TRUE

D8 return FALSE

E1. Local _Col | ect ed_Servers_State(server.id, gv, lv, |ssset):

E2. if (gv # dobal view) or (lv # Local -view)

E3. return TRUE

E4. if each nmessage in | ss_set is not contiguous above invocation_seq
ES5. return TRUE

E6. return FALSE

and U # u

u') exists and u’

u) exists

#u

Fig. A-6. Conflict checks run on incoming messages used irfaba context. Messages that conflict with a server's curlecal state are discarded.
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THRESHOLD_SI G\N(Dat a_s data, int server.d):

Al. Sig_Share «— GENERATE_SI GNATURE_SHARE( dat a, server _id)
A2. SEND to all local servers: Sig_Share

Bl. Upon receiving a set, Sig-Share Set, of 2f+1 Sig.Share fromdistinct servers:
B2. si gnature «— COMBI NE( Si g_Shar e_Set )

B3. i f VERI FY(signature)

B4. return signature

B5. el se

B6. for each S in Sig_Share_Set

B7. if NOT VERIFY(S)

B8. REMOVE( S, Si g_-Share_Set)

B9. ADD( S. server_.id, Corrupted_Servers_List)

B9. Corrupt ed_Server <« CORRUPTED(S)

B10. SEND to all local servers: Corrupted_Server
B11. continue to wait for nore Sig-Share nessages

Fig. A-7.  THRESHOLD-SIGN Protocol, used to generate a thoksb signature on a message. The message can then be usetbbalapgotocol.

Al.
A2.
A3.
A4.
AS.
AG.
AT7.
A8.

Get _Next _To_Propose():

u «— NULL

i f(d obal Hi story[d obal seq]. Proposal is not enpty)
u «— G obal _History[ d obal seq]. Proposal . Updat e

el se if(Local History[d obal seq].PrepareCertificate is not enpty)
u «— Local _Hi story[ d obal seq].Prepare_Certificate. Update

el se if(Unconstrai ned_Updates is not enpty)
u <« Unconstrai ned_Updat es. Pop_Front ()

return u

Fig. A-8.

some update not currently bound to any sequence number) &{UBL if the server does not have any unbound updates.
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GetNext.To_Propose Procedure. For a given sequence number, the preaedurns (1) the update currently bound to that sequencden (2)
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CONSTRUCT- ARU(i nt seq):

Al. if representative

A2. Request .d obal _St ate «— Construct Request St at e( @ obal vi ew, Local .vi ew, seq)
A3. SEND to all local servers: Request_d obal _State

B1l. Upon receiving Request G obal State(gv, Iv, s):

B2. i nvocationaru «— s

B3. if (dobal_aru < s)

B4. Request mi ssing d obally Ordered_Updates fromrepresentative
B5. if (dobal_aru > s)

B6. d obal Server _State < Construct _d obal _Server _State(s)

B7. SEND to the representative: d obal Server State

Cl. Upon collecting GSS_Set with 2f+1 distinct d obal _Server _State(invocation.aru) nmessages:

C2. G obal CollectedServers_State < Construct Bundl e( GSS_Set)

C3. SEND to all local servers: d obal _Collected Servers_State

D1. Upon receiving d obal Collected.Servers_State:

D2. if (all dobal Server_State nessage in bundle contain invocation_aru)
D3. i f(d obal _aru > invocation.,aru)

D4. uni on < Conput e d obal _Uni on(d obal _Col | ect ed_Ser ver s_St at e)
D5. for each Prepare Certificate, PC(gv, lv, seq, u), in union
D6. I nvoke THRESHOLD_SI GN(PC) // Returns Proposal

E1l. Upon THRESHOLD.SI GN returning Proposal P(gv, lv, seq, u):

E2. d obal H story[seq].Proposal — P

F1. Upon conpl eting THRESHOLD.SI GN on all Prepare Certificates in union:
F2. I nvoke THRESHOLD_SI GN( uni on) //Returns d obal _Constrai nt

Gl. Upon THRESHOLD.SI GN returni ng G obal Constraint:

X

Apply each d obal |l y_Ordered_Update in Constraint Message to d obal _History
3. uni on_aru < Extract Aru(uni on)
4. I nvoke THRESHOLD_SI GN( uni on_aru) //Returns Aru_Message

H1l. Upon THRESHOLD.SI GN returni ng Aru_Message:
H2. return (d obal Constraint, Aru_Message)

Fig. A-9. CONSTRUCT-ARU Protocol, used by the leader sitegémerate an AnMessage during a global view change. The Message contains a
sequence number through which at lefist 1 correct servers in the leader site have globally orderedmdates.

CONSTRUCT- GLOBAL- CONSTRAI NT( Ar u_Message A):

Al. invocationaru «— A seq

A2. G obal Server _State < Construct _d obal _Server _St at e( gl obal context, A seq)
A3. SEND to the representative: d obal _Server _State

B1l. Upon collecting GSS.Set with 2f+1 distinct d obal _Server _State(invocationaru) nmessages:
B2. A obal Col | ected_Servers_State « Construct Bundl e( GSS_Set)
B3. SEND to all local servers: G obal _Collected_Servers_State

Cl. Upon receiving dobal _Coll ected_Servers_State:

C2. if (all dobal Server_State nessages in bundle contain invocation_aru)
C3. uni on «— Conmput e_d obal _Uni on(d obal _Col | ect ed_Servers_State)

CA. for each Prepare Certificate, PC(gv, |lv, seq, u), in union

C5. I nvoke THRESHOLD_SI G\N(PC) // Returns Proposal

D1. Upon THRESHOLD.SI GN returning Proposal P(gv, lv, seq, u):
D2. d obal History[seq].Proposal — P

E1l. Upon conpl eting THRESHOLD.SI GN on all Prepare Certificates in union:
E2. I nvoke THRESHOLD_SI GN(uni on) //Returns d obal _Constraint

F1. Upon THRESHOLD.SI GN returni ng d obal -Constraint:
F2. return d obal _Constraint

Fig. A-10. CONSTRUCT-GLOBAL-CONSTRAINT Protocol, used liye non-leader sites during a global view change to generaBobal Constraint
message. The Gloh&lonstraint contains Proposals and GlohallyderedUpdates for all sequence numbers greater than the sequantdgen contained in
the AruMessage, allowing the servers in the leader site to enfoecesidons made in previous global views.
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Construct _Local _Server _Stat e(seq):
Al. stateset « 0
A2. For each sequence nunber i from(seq + 1) to (dobal Aru + W:

A3. if Local History[i].Proposal, P, exists

Ad. stateset « stateset U P

A5. else if Local History[i].PreparecCertificate, PC, exists:
A6. stateset «— statesset U PC

A7. return Local Server _State(Server.id, gv, lv, seq, stateset)

Construct _d obal _Server _St ate(seq):

Bl. stateset — 0

B2. For each sequence nunber i from(seq + 1) to (d obal aru + W:
B3. if Gobal Hstory[i].d oballyOrdered-Update, G exists

B4. stateset «— stateset U G

B5. else if Aobal Hstory[i].Proposal, P, exists:

B6. stateset « stateset U P

B7. else if dobal History[i].PrepareCertificate, PC, exists:
B8. stateset «— stateset U PC

B9. return d obal Server _State(Server.id, gv, |v, seq, state_set)

Fig. A-11. Construct Server State Procedures. During laodl global view changes, individual servers use these guoes to generate Loc&8erverState
and GlobalServerState messages. These messages contain entries for eaemsequmber, above some invocation sequence number, th whéerver
currently has an update bound.

/1 Assunption: all entries in css are from Qd obal _vi ew

Conput e_Local _Uni on(Local _Col | ect ed_Servers_State css):

Al. union « 0

A2. css._unique «— Renove duplicate entries fromcss

A3. seqlist < Sort entries in css_unique by increasing (seq, |v)

Bl. For each itemin seq.list

B2. if any Proposal P

B3. P* «— Proposal fromlatest |ocal view
B4. uni on < union U P*

B5. else if any Prepare Certificate PC

B6. PC* — PC fromlatest |ocal view

B7. uni on < union U PC*

B8. return union

Conput e_d obal _Uni on( G obal Col | ect ed_Servers_State css):
Cl. union « 0

C2. css_uni que < Renove duplicate entries fromcss

C3. seqlist «— Sort entries in css.unique by increasing (seq, gv, |v)
Dl1. For each itemin seq.list

D2. if any d obal |l y_Ordered_Update

D3. G* «— GQobally OderedUpdate with Proposal fromlatest view (gv, I|v)
D4. uni on < union U G*

D5. el se

D6. MAX_ GV «— gl obal view of entry with | atest global view

D7. if any Proposal from MAX.GV

D8. P* «— Proposal from MAX.GV and | atest |ocal view

D9. uni on < union U P*

D10. else if any Prepare Certificate PC from MAX.GV

D11. PC* «— PC from MAX.GV and | atest |ocal view

D12. uni on < union U PC*

D13. return union

Conput e_Constrai nt _Uni on(Col | ect ed_d obal _Constraints cgc):

El. union « 0

E2. css.unique <— Renpve duplicate entries fromcgc

E3. seqlist « Sort entries in css_unique by increasing (seq, gv)

F1. For each itemin seq.list

F2. if any d obal |l y_Ordered_Update

F3. G* «— GQobally OderedUpdate with Proposal fromlatest view (gv, I|v)
F4. uni on < union U G*

F5. el se

F6. MAX_ GV «— gl obal view of entry with | atest global view

F7. if any Proposal from MAX.GV

F8. P* «— Proposal from MAX.GV and | atest |ocal view

F9 uni on < union U P*

Flb. return union

Fig. A-12. ComputeUnion Procedures. The procedures are used during locallahdlyiew changes. For each entry in the input set, the phaes remove
duplicates (based on sequence number) and, for each sequember, take the appropriate entry from the latest view.
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LOCAL- RECONCI LI ATI ON:

Al. Upon expiration of LOCAL_RECON.TI MER:

A2. | ocal _sessi on_seq++

A3. requested.aru «— d obal _aru

A4, Local _-Recon_Request <« Construct Request (server.did, |ocal _session_seq, requested.aru)
A5. SEND to all local servers: Local _Recon_Request

A6.  Set LOCAL_RECON_TI MER

B1l. Upon receiving Local _Recon_Request (server_.id, |ocal sessionseq, requested.aru):

B2. if local sessionseq < |ast_sessionseq[server._id]

B3. i gnore Local _Recon_Request

B4. if (current_time - |ast_ocal request_tinme[server.id]) < LOCAL.RECON.THROTTLE_PERI CD
B5. i gnore Local _Recon_Request

B6. if requested.aru < | ast_ ocal requested.aru[serverd]

B7. i gnore Local _Recon_Request

B8. | ast _| ocal sessi on_seq[server.id] < |ocal _sessionseq

B9 | ast | ocal request time[server_.id] « current_tine

Blb. | ast | ocal requested_aru[server_d] « requested.aru
B11. if dobal _aru > requested.aru
B12. THROTTLE- SEND( r equest ed.aru, d obal .aru, LOCAL_RATE, W to server.d

Fig. A-13. LOCAL-RECONCIILIATION Protocol, used to recovenissing GloballyOrderedUpdates within a site. Servers limit both the rate at which
they will respond to requests and the rate at which they wilidsrequested messages.

GLOBAL- RECONCI LI ATI ON:

Al. Upon expiration of GLOBAL_RECON.TI MER:

A2. gl obal _sessi on_seq++

A3. requested.aru «— d obal Laru

A4. g «— G obal H story[requested.aru].d obal | y_Ordered_Update

A5. d obal _Recon_Request « Construct Request (server.d, gl obal sessi on_seq, request ed.aru, g)
A6. SEND to all local servers: d obal _Recon_Request

A7.  Set GLOBAL_RECON.TI MER

B1l. Upon receiving d obal _Recon_Request (server.id, global sessionseq, requested.aru, g):

B2. i f gl obal sessionseq < |ast_gl obal _session_seq[server_ d]

B3. i gnore 4 obal _Recon_Request

B4. if (current_time - |ast_gl obal request_tine[server.id]) < GLOBAL.RECON.THROTTLE_PERI CD
B5. i gnore d obal _-Recon_Request

B6. if requested.aru < |ast_gl obal requested._aru[server . d]

B7. i gnore d obal _Recon_Request

B8. if gis not avalid dobally.OderedUpdate for requested.aru

B9 i gnore d obal _-Recon_Request

B10. | ast _gl obal _sessi on_seq[server_.id] « gl obal _session_seq
B11. | ast _gl obal _request _tinme[server.id] < current_tine
B12. | ast _gl obal _requested_aru[server_.d] < requested.aru
B13. if dobal .aru > requested-aaru
B14. si g_share «— GENERATE_SI GNATURE_SHARE( )
B15. SEND to server_.id: sigshare
if Gobal _aru < requested.aru
when d obal _aru > requested.aru:
si g.share «— GENERATE_SI GNATURE_SHARE( )
SEND si g_share to server.d

Upon collecting 2f +1 Partial sig nessages for gl obal sessi on_seq:
GLOBAL_RECON «— COMBI NE( parti al sigs)
SEND to peer server in each site: GLOBAL_RECON

Upon receiving GLOBAL_.RECON(site.d d, server.id, global sessionseq, requested.aru):
i f max_gl obal requestedaru[site.id] < requested.aru
max_gl obal requestedaru[site.id] < requestedaru
el se
i gnore GLOBAL_RECON
if (sitedd == Site.id) or (server.id # Server.id)
i gnore GLOBAL_RECON
i f gl obal sessionseq < |ast_global session_seq[site.d]
i gnore GLOBAL_RECON
D10. if (current_time - |ast_global request_tinme[sitelid]) < GLOBAL_RECON.THROTTLE_PERI OD
D11. i gnore GLOBAL_RECON
D12. SEND to all local servers: GLOBAL_RECON
D13. | ast_gl obal session=seq[site.id] « global sessionseq
D14. | ast _global request_tine[siteid] « current_tine
D15. if dobal _aru > requested.aru
D16. THROTTLE- SEND( r equest ed.aru, d obal .aru, GLOBAL_.RATE, W to server.d

22IBHRERE O0R EZEE

Fig. A-14. GLOBAL-RECONCIILIATION Protocol, used by a sit® recover missing GloballyprderedUpdates from other wide area sites. Each server
generates threshold-signed reconciliation requests aminzinicates with a single server at each other site.
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RELI ABLE- SEND- TO- ALL- SI TES( nmessage m ):

Al. Upon invoking:

A2. rel _message < ConstructRel i abl eMessage(m)
A3. SEND to all servers in site: rel _nessage
A4.  SendToPeers(m)

B1l. Upon receiving nessage Reliabl e.Message(m):
B2. SendToPeer s(m)

Cl. Upon receiving nessage m froma server with ny id:
C2. SEND to all servers in site: m

SendToPeer s(m) :

D1. if mis a threshold signed message fromny site and nmy Server_.id <2f+1:
D2. my_server id «— Server.d

D3. for each site S:

D4. SEND to server in site S with Server.id = ny_server_id: m

Fig. A-15. RELIABLE-SEND-TO-ALL-SITESProtocol. Each oRf + 1 servers within a site sends a given message to a peer sereaclinother site. When
sufficient connectivity exists, the protocol reliably seral message from one site to all other servers in all othes sites despite the behavior of faulty
servers.
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APPENDIX B site S for sequence numbeseq. Then no other Proposal
PROOFS OFCORRECTNESS message P2, v/, seq, u’) for v/ > lv, with v/ # u, can

In this section we show that Steward provides the servib& constructed.

properties specified in Section V. We begin with a proof of _ ] )
safety and then consider liveness. We prove Lemma A.1 with a series of lemmas. We begin

with two preliminary lemmas, proving that two servers canno
collect conflicting Prepare Certificates or construct cotifig
A. Proof of Safety Proposals in the same global and local view.
Our goal in this section is to prove that Steward meets the
following safety property: Lemma A.2: Let PClgv, lv, seq, u) be a Prepare
Certificate collected by some server in leader sitelThen no
S1-SAFETY If two correct servers execute th& update, server in S can collect a different Prepare Certificate, BG2(
then these updates are identical. v, seq, u'), with (u # u').

Proof Strategy: We prove Safety by showing that two Proof: We assume that both Prepare Certificates
servers cannot globally order conflicting updates for theesa were collected and show that this leads to a contradic-
sequence number. We show this using two main claims. tion. PC1 contains a Pre-Prepare( v, seq, u) and 2f
the first claim, we show that any two servers which globallpreparequ, lv, seq, Digestf:)) messages from distinct servers.
order an update in the same global view for the same seque8igce there are at mogtfaulty servers inS, at leastf + 1 of
number will globally order the same update. To prove thihe messages in PC1 were from correct servers. PC2 contains
claim, we show that a leader site cannot construct conftjctigimilar messages, but with' instead ofu. Since any two sets
Proposal messages in the same global view. A conflicting Pisf-2 f +1 messages intersect on at least one correct server, there
posal has the same sequence number as another Proposakists a correct server that contributed to both PC1 and PC2.
it has adifferentupdate. Since globally ordering two differentAssume, without loss of generality, that this server ctoted
updates for the same sequence number in the same glabaPC1 first (either by sending the Pre-Prepare message or by
view would require two different Proposals from the samesponding to it). If this server was the representativwepitld
global view, and since only one Proposal can be constructiest have sent the second Pre-Prepare message, because, from
within a global view, all servers that globally order an uigda Figure 6 line A3, it increments Glohakeq and does not return
for a given sequence number in the same global view mustseq in this local view. If this server was a non-representative,
order the same update. In the second claim, we show that @nywould not have contributed a Prepare in response to the
two servers which globally order an update in different glob second Pre-Prepare, since this would have generated actonfli
views for the same sequence number must order the safRgure A-6, line A8). Thus, this server did not contribute t
update. To prove this claim, we show that a leader site fromPeC2, a contradiction. ]
later global view cannot construct a Proposal conflictinthwi
one used by a server in an earlier global view to globally Lemma A.3: Let P1(v, lv, seq, v) be a Proposal message
order an update for that sequence number. The value thahstructed by some server in leader siteThen no other
may be contained in a Proposal for this sequence numbePi®posal message R2( v, seq, u') with (v # u’) can be
thusanchored Since no Proposals can be created that conflicbnstructed by any server isi.
with the one that has been globally ordered, no correct serve
can globally order a different update with the same sequence Proof: By Lemma A.2, only one Prepare Certificate can
number. Since a server only executes an update once it basconstructed in each viewy, lv) for a given sequence
globally ordered an update for all previous sequence nusnbatumberseq. For P2 to be constructed, at legst- 1 correct
two servers executing thé" update will therefore execute theservers would have had to send partial signatures on P2, afte
same update. obtaining a Prepare Certificate PC2 reflecting the binding of

We now proceed to prove the first main claim: seq to v/ (Figure 6, line C7). Since P1 was constructed, there

must have been a Prepare Certificate PC1 reflecting the lgindin

Claim A.1: Let u be the first update globally ordered byof seq to u. Thus, thef + 1 correct servers cannot have
any server for sequence numbey, and letgv be the global obtained PC2, since this would contradict Lemma A.2. 1
view in which v was globally ordered. Then if any other
server globally orders an update for sequence numbgin We now show that two conflicting Proposal messages
global view gv, it will globally order v. cannot be constructed in the same global view, even across

local view changes. In proving this, we use the following

To prove this claim, we use the following lemmajnvariant:
which shows that conflicting Proposal messages cannot be
constructed in the same global view: INVARIANT A.l: Let P(v, lv, seq, u) be the first

threshold-signed Proposal message constructed by angrserv

Lemma A.1: Let Pl@v, lv, seq, u) be the first threshold- in leader siteS for sequence numbeaeq in global viewgv. We
signed Proposal message constructed by any server in leadsr that Invariant A.1 holds with respect to P if the follogin
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conditions hold in leader sit® in global view guv: that server successfully generates and applies a

1) There exists a set of at leagt+ 1 correct servers LocalCollectedServersState message fopy, (v).
with a Prepare Certificate P&(, [v', seq, u) or
a Proposalfv, v/, seq, w), for v/ > v, in We first prove the following property ofCONSTRUCT
their LocalHistory[seq] data structure, or a Glob- LOCAL-CONSTRAINT.
ally_OrderedUpdategv’, seq, u), for gv’ > gv, in their
Global History[seq] data structure. Lemma A.5: Let P(gv, lv, seq, u) be the first threshold-

2) There does not exist a server with any conflictingigned Proposal message constructed by any server in leader
Prepare Certificate or Proposal from any view,(iv'), Site S for sequence numbeeg in global viewgo. If Invariant
with [v' > [v, or a conflicting GloballyOrderedUpdate A.1 holds with respect to P at the beginning of a run of
from any global viewgv’ > gv. CONSTRUCTFLOCAL-CONSTRAINT, then it is never violated

during the run.

We first show that the invariant holds in the first global and

local view in which any Proposal might have been constructed Proof: ~ During the run of CONSTRUCFLOCAL-

for a given sequence number. We then show that the invari@@NSTRAINT, a server only alters its Locadistory[seq] data

holds throughout the remainder of the global view. Finallgtructure during the reconciliation phase (which occufsige

we show that if the invariant holds, no Proposal messagending a LocaBerverState message, Figure 10 line B7) or

conflicting with the first Proposal that was constructed can lvhen processing the resultant

created. In other words, once a Proposal has been constru¢tecal CollectedServersState message. During the reconcil-

for sequence numbeteq, there will always exist a set of atiation phase, a correct server will only replace a Prepare

least f + 1 correct servers which maintain and enforce th@ertificate with a Proposal (either independently or in a

binding reflected in the Proposal. Globally_OrderedUpdate), since the server and the rep-
resentative are only exchanging Proposals and Glob-

Lemma A.4: Let P(gu, lv, seq, u) be the first threshold- ally_OrderedUpdates. Since Invariant A.1 holds at the be-

signed Proposal message constructed by any server in leaglaning of the run, any Proposal from a later local view
site S for sequence numbeseq in global view gv. Then than the Prepare Certificate held by some correct server will
when P is constructed, Invariant A.1 holds with respect to Ppt conflict with the Prepare Certificate. A server with a
and it holds for the remainder of{, (v). Globally_OrderedUpdate in its GlobaHistory data structure
does not remove it. Thus, the invariant is not violated byg thi
Proof: Since P is constructed, there exists a set of egconciliation.
least f + 1 correct servers which sent a partial signature onIf one or more correct servers processes the resultant
P (Figure 6, line C7). These servers do so after collectingla@cal.CollectedServersState message, we must show that the
Prepare Certificatg(, (v, seq, u) binding seq to v (Figure 6, invariant still holds.
line C3). By Lemmas A.2 and A.3, any server that collects aWhen a  correct server processes the Lo-
Prepare Certificate or a Proposal ijv(Iv) collects the same cal.CollectedServersState message (Figure A-1, block
one. Since this is the first Proposal that was constructedi, d»), there are two cases to consider. First, if the message
a Proposal is required to globally order an update, the orfigntains an entry foseq (i.e., it contains either a Prepare
Globally_OrderedUpdate that can exist bind®q to «. Thus, Certificate or a Proposal bindingq to an update), then the
the invariant is met when the Proposal is constructed. correct server adopts the binding. In the second case, the
According to the rules for updating the Logddlstory data LocalCollectedServersState message does not contain an
structure, a correct server with a Prepare Certificate frogmtry for seq, and the correct server clears out its Prepare
(gv, lv) will not replace it and may only add a ProposaCertificate forsegq, if it has one. We need to show that in
message from the same view (Figure 6, line D3). By Lemni®th cases, Invariant A.1 is not violated.
A.3, this Proposal is unique, and since it contains the samelhe LocalServerState message from at least one correct
update and sequence number as the unique Prepare Certificgtever from the set of at leagt- 1 correct servers maintained
it will not conflict with the Prepare Certificate. by the invariant appears in any LodabllectedServersState

A correct server with a Proposal will not replace it with anynessage, since any two sets 2f + 1 servers intersect on
other message while in global vieyw. A correct server with a at least one correct server. We consider the contents of this
Globally_OrderedUpdate will never replace it. Thus, Invarianiserver's LocalServerState message. If this server received
A.1 holds with respect to P for the remainder ¢f(/v). m a RequestocalState message with an invocation sequence

number lower thanseq, then the server includes its entry
We now proceed to show that Invariant A.1 holds acrossnding seq to u in the LocalServerState message (Figure
local view changes. Before proceeding, we introduce thell, Block A), after bringing its PendingroposalAru up to
following terminology: the invocation sequence number (if necessary). Invariaht A
guarantees that the Prepare Certificate or Proposal fraen thi

DEFINITION A.1: We say that an execution of theserver is the latest entry for sequence numdzet Thus, the

CONSTRUCTFLOCAL-CONSTRAINT  protocol completes entry bindingseq to « in any LocalCollectedServersState
at a server within the site in a viewgd, Ilv) if bundle will not be removed by the Computecal Union
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function (Figure A-12 line B3 or B6). conflict. Since a Proposal is needed to construct a Glob-
If this server received a Requdsbcal State message with ally_OrderedUpdate, no conflicting Globall{prderedUpdate
an invocation sequence number greater than or equad¢o can be constructed, and no GloballyderedUpdate is ever
then the server will not report a binding feeg, since it will removed from the GlobaHistory data structure. Thus, Invari-
obtain either a Proposal or a GlobalBrderedUpdate via rec- ant A.1 holds throughoui@, Iv'). [ ]
onciliation before sending its Loc&lerverState message. In
turn, the server only applies the LodabllectedServersState We can now prove Lemma A.1:
if the 2f 4+ 1 Local ServerState messages contained therein
contain the same invocation sequence number, which was Proof: By Lemma A.4, Invariant A.1 holds with respect
greater than or equal tgeq (Figure 10, line D2). Since to P throughout 4v, lv). By Lemma A.5, the invariant
a correct server only sends a LocerverState message holds with respect to P during and afteONSTRUCFLOCAL-
if its PendingProposalAru is greater than or equal to theCONSTRAINT. By Lemma A.6, the invariant holds at the
invocation sequence number it received (Figure 10, line B3eginning and end of viewy{, lv+1). Repeated applications
this implies that at leasf + 1 correct servers have a Pendof Lemma A.5 and Lemma A.6 shows that the invariant always
ing_ProposalAru greater than or equal teeq. The invariant holds in global viewgv.
ensures that all such Proposals or Gloh&@kderedUpdates  In order for P2 to be constructed, at legst- 1 correct
bind seq to u. Since only Proposals with a sequence numbeervers must send a partial signature on P2 after collecting
greater than the invocation sequence number may be remoaetbrresponding Prepare Certificate (Figure 6, line C3)ceSin
by applying the LocalCollectedServersState message, andthe invariant holds throughoyb, at leastf +1 correct servers
since GloballyOrderedUpdate messages are never removedp not collect such a Prepare Certificate and do not send such a
applying the message will not violate Invariant A.1. ® partial signature. This leaves orily servers remaining, which
is insufficient to construct the Proposal. Since a Propcsal i
Our next goal is to show that if Invariant A.1 holds at th@eeded to construct a Global@rderedUpdate, no conflicting
beginning of a view after the view in which a Proposal haSlobally_OrderedUpdate can be constructed. ]
been constructed, then it holds throughout the view.
Finally, we can prove Claim A.1:
Lemma A.6: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in leader Proof:  To globally order an update: in global
site S for sequence numbegeq in global view gv. If view gv for sequence numbereq, a server needs a
Invariant A.1 holds with respect to P at the beginning of Broposal¢v, *, seq, u) message and N/2| Accept cor-
view (gv, [v"), with [v" > v, then it holds throughout the view. responding Accept messages. By Lemma A.1, all Proposal
messages constructed in global viegw are for the same
Proof: To show that the invariant will not be violatedupdate, which implies that all servers which globally ordar
during the view, we show that no server can collect a Prepangdate in global viewgv for sequence numbeteq globally

Certificategu, lv', seq, u'), Proposalfv, lv', seq, u’), or order the same update. ]
Globally OrderedUpdategv, seq,u’), for u # v/, that would
cause the invariant to be violated. We now prove the second main claim:

Since Invariant A.1 holds at the beginning of the view,
there exists a set of at leagt+ 1 correct servers with a Claim A.2: Let u be the first update globally ordered by
Prepare Certificate or a Proposal in their Laekdtory[seq] any server for sequence numbey, and letgv be the global
data structure bindingeq to u, or a GloballyOrderedUpdate view in which v was globally ordered. Then if any other
in their GlobalHistory[seq] data structure bindingeq to u. server globally orders an update for sequence nursbgin
If a conflicting Prepare Certificate is constructed, then som global viewgv’, with gv’ > gu, it will globally order w.
server collected a Pre-Prepare(iv’, seq, u’) message and
2f Preparequ, v/, seq, Digest@')) messages. At leagt+ 1 We prove Claim A.2 using the following lemma, which
of these messages were from correct servers. This impl&®ws that, once an update has been globally ordered for a
that at least one correct server from the set maintained giyen sequence number, no conflicting Proposal messages can
the invariant contributed to the conflicting Prepare Cediff be generated for that sequence number in any future global
(either by sending a Pre-Prepare or a Prepare). This canvietv.
occur because the server would have seen a conflict in its
Local History[seq] data structure (Figure A-6, A8) or in its Lemma A.7: Let u be the first update globally ordered
Global History[seq] data structure (Figure A-6, A18). Thus,by any server for sequence numhey with corresponding
the conflicting Prepare Certificate cannot be constructed. Proposal Plfv, lv, seq, u). Then no other Proposal message

Since no server can collect a conflicting Prepare Certifical2(gv’, *, seq, ') for g’ > gv, with v/ # u, can be
no server can construct a conflicting Proposal. Thus, by thenstructed.
rules of updating the Locallistory data structure, a correct
server only replaces its Prepare Certificate (if any) with a We prove Lemma A.7 using a series of lemmas. We use
Prepare Certificate or Proposal fromw( [v’), which cannot a strategy similar to the one used in proving Lemma A.1
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above, and we maintain the following invariant: view (Figure A-2, lines A7 and Al4), which does not conflict
with the PrepareCertificate because it contains and thus it
INVARIANT A.2: Let u be the first update globally or- does not violate Condition 1. Similarly, a correct servegin
dered by any server for sequence numbeg, and letgv only replaces an entry in Gloh#listory[seq].Proposal with
be the global view in whichu was globally ordered. Let a GloballyOrderedUpdate. Since a GloballprderedUpdate
P(gv, lv, seq, u) be the first Proposal message constructentains a Proposal fromyv, and all Proposals from
by any server in the leader site yv for sequence numbergv for sequence numbeseq contain u, Condition 1 is

seq. We say that Invariant A.2 holds with respect to P if thetil met. No correct server ever replaces an entry in

following conditions hold: Global History[seq].Globally_OrderedUpdate. ]
1) There exists a majority of sites, each with at lefst 1
correct servers with a Prepare Certificgte(v’, seq, u), We now show that Invariant A.2 holds across global view
a Proposal{t’, *, seq, u), or a changes. We start by showing that theNSTRUCTFARU and

Globally.OrderedUpdategv’, seq, u), with gv’ > gv CONSTRUCFGLOBAL-CONSTRAINT protocols, used during

andlv’ > lv, in its GlobalHistory[seq] data structure. @ global view change in the leader site and non-leader sites,
2) There does not exist a server with anyespectively, will not cause the invariant to be violated.

conflicting Prepare Certificatef’, v/, seq, u/), We then show that if any correct server in the leader site

Proposalgv’, * seq, u), or Glob- becomes globally constrained by completing the global view
ally_OrderedUpdategv’, seq, u'), with gv' > gv, Change protocol, the invariant will still hold after applyi
Iv' > lv, andu’ # u. the CollectedGlobal Constraints message to its data structure.

We first show that Invariant A.2 holds when the first update Lemma A.9: Let u be the first update globally ordered
is globally ordered for sequence number; and that it holds by any server for sequence numbetq, and let gv be
throughout the view in which it is ordered. the global view in whichu was globally ordered. Let

P(gv, lv, seq, u) be the first Proposal message constructed

Lemma A.8: Let u be the first update globally ordered byby any server in the leader site yv for sequence number
any server for sequence numbeyr, and letgv be the global seq. Assume Invariant A.2 holds with respect to P, and let
view in which u was globally ordered. Let B¢, [v, seq, v) S be one of the (majority) sites maintained by the first
be the first Proposal message constructed by any serveccémdition of the invariant. Then if a run ofONSTRUCF
the leader site iyv for sequence numbetkg. Then whemu, ~ ARU begins atS, the invariant is never violated during the run.
is globally ordered, Invariant A.2 holds with respect to il a
it holds for the remainder of global vieyw. Proof: During a run of CONSTRUCFARU, a correct

server only modifies its

Proof: Since u was globally ordered ingv, some GlobalHistory[seq] data structure in three cases. We show
server collected a Proposaly, *, seq, u) message anfiN/2| that, in each case, Invariant A.2 will not be violated if it is
Accept@u, *, seq, Digest()) messages. Each of tHev/2] already met.
sites that generated a threshold-signed Accept message hdde first case occurs during the reconciliation phase of the
at leastf + 1 correct servers that contributed to the Acceppgrotocol. In this phase, a correct server with either a Reepa
since2f + 1 partial signatures are required to construct th@ertificate or Proposal in Gloh#listory[seq] may replace it
Accept and at mostf are faulty. These servers store P inith a Globally OrderedUpdate, since the server and the rep-
Global History[seq].Proposal when they apply it (Figure A-resentative only exchange GlobalBrderedUpdate messages.
2, block A). Since the leader site constructed P and P Sénce Invariant A.2 holds at the beginning of the run, noeerv
threshold-signed, at leagt+ 1 correct servers in the leaderhas a GloballyOrderedUpdate from any viewyv’ > gv that
site have either a Prepare Certificate corresponding to Pcnflicts with the binding ofeq to u. Sinceu could only have
GlobalHistory[seq].PrepareCertificate or the Proposal P inbeen globally ordered in a global vigw’ > gv, no conflicting
Global History[seq].Proposal. Thus, Condition 1 is met. Globally_OrderedUpdate exists from a previous global view.

By Lemma A.1, all Proposals generated by the leader sitéius, Invariant A.2 is not violated during the reconcilbati
for sequence numbeseq in gv contain the same update.phase.

Thus, no server can have a conflicting Proposal or Glob-In the second case, a correct server with a Prepare Cer-
ally_OrderedUpdate, sinceyu is the first view in which an tificate in GlobalHistory[seq] tries to construct correspond-
update has been globally ordered for sequence numtker ing Proposals (replacing the Prepare Certificate) by imgki
Since Invariant A.1 holds iv, no server has a conflicting THRESHOLD-SIGN (Figure A-9, line D6). Since the Proposal
Prepare Certificate fromg¢, [v'), with [v' > lv. Thus, is for the same binding as the Prepare Certificate, the ewtri
Condition 2 is met. is not violated.

We now show that Condition 1 is not violated throughout In the third case, a correct server applies any Glob-
the rest of global viewgv. By the rules of updating the ally_OrderedUpdates appearing in the Glob@bnstraint mes-
Global History data structure igv, a correct server with an sage to its GlobaHistory data structure (Figure A-9, line
entry in GlobalHistory[seq].PrepareCertificate only removes G2). Since Invariant A.2 holds at the beginning of the run,
it if it generates a Proposal message from the same global GloballyOrderedUpdate exists from any viewv’ > gv
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that conflicts with the binding afeq to u. Sincew could only this site,S. The same logic will apply when Gloh&lonstraint
have been globally ordered in a global view’ > gv, no messages from more than one site in the set maintained by the
conflicting GloballyOrderedUpdate exists from a previousinvariant appear in the Collectg@lobal Constraints message.
global view. We first consider the case whefeis a non-leader site.
Since these are the only cases in which GldB&ttory[seq] There are two sub-cases to consider.
is modified during the protocol, the invariant holds throagh ~ Case la:In the first sub-case, the AMessage generated
the run. B Dby the leader site ICONSTRUCFARU contains a sequence
number less thareq. In this case, each of thé + 1 correct
Lemma A.10: Let u be the first update globally ordered byservers inS maintained by Invariant A.2 reports a Proposal
any server for sequence numbey, and letgv be the global message bindingeq to u in its GlobalServerState message
view in which v was globally ordered. Let B¢, [v, seq, u) (Figure A-11, Block B). At least one such message will appear
be the first Proposal message constructed by any server inithéhe
leader site ingv for sequence numbeteq. Assume Invariant GlobalCollectedServersState bundle, since any two sets of
A.2 holds with respect to P, and I8tbe one of the (majority) 2f + 1 intersect on at least one correct server. Invariant A.2
sites maintained by the first condition of the invariant. Themaintains that the entry bindingeq to u is the latest, and
if a run of CONSTRUCFGLOBAL-CONSTRAINT begins atS, thus it will not be removed by the Compu@obalUnion
the invariant is never violated during the run. procedure (Figure A-12, Blocks C and D). The resultant
Global Constraint message therefore bindg to «. Invariant
Proof: During a run of CONSTRUCFGLOBAL- A.2 also guarantees that this entry or one with the same
CONSTRAINT, a correct server only modifies itsbinding will be the latest among those contained in the
GlobalHistory[seq] data structure when trying to construciCollectedGlobal Constraints message, and thus it will not
Proposals corresponding to any Prepare Certificates dppeabe removed by the ComputgonstraintUnion function run
in the union (Figure A-10, line C5). Since the Proposalhen applying the message to Globéktory (Figure A-
resulting fromTHRESHOLD-SIGN is for the same binding as 12, Blocks E and F) By the rules of applying the Col-
the Prepare Certificate, the invariant is not violated. ® lectedGlobalConstraints message (Figure A-2, Block D), the
binding of seq to u will be adopted by the correct servers
We now show that if Invariant A.2 holds at the beginningn the leader site that become globally constrained, and thu
of a run of theGLOBAL-VIEW-CHANGE protocol after the Invariant A.2 is not violated.
global view in which an update was globally ordered, then Case 1b:In the second sub-case, the Avlessage gen-
the invariant is never violated during the run. erated by the leader site iDONSTRUCTFARU contains a se-
guence number greater than or equaldg. In this case, no en-
Lemma A.11: Letu be the first update globally ordered bytry binding seq to v will be reported in the GlobaConstraint
any server for sequence numbey, and letgv be the global message. In this case, we show that at le@ast 1 correct
view in which v was globally ordered. Let B(, lv, seq, u) servers in the leader site have already globally ordered
be the first Proposal message constructed by any server in The invariant guarantees that those servers which havadsire
leader site ingv for sequence numbeteq. Then if Invariant globally ordered an update faseq have globally ordered
A.2 holds with respect to P at the beginning of a run of the. To construct the AriMessage, at leasf + 1 correct
GlobalView_Change protocol, then it is never violated duringervers contributed partial signatures to the result dfneal
the run. ExtractAru (Figure A-9, line G3) on the union derived from
the GlobalCollectedServersState bundle. Thus, at least-1
Proof: During a run of GLOBAL-VIEW-CHANGE, a correct servers accepted the GlakalllectedServersState
correct server may only modify its Gloh#listory[seq] data message as valid, and, at Figure A-9, line D3, enforced that
structure in three cases. The first occurs in the leader sifigeir Globalaru was at least as high as the invocation sequence
during a run ofCONSTRUCTFARU (Figure 11, line A2). By number (which was greater than or equaktq). Thus, these
Lemma A.9, Invariant A.2 is not violated during this protbco servers have GloballprderedUpdate messages faeq, and
The second case occurs at the non-leader sites, during d ruthe invariant holds in this case.
CONSTRUCTFGLOBAL-CONSTRAINT (Figure 11, line C4). By  We must now consider the case whe$eis the leader
Lemma A.10, Invariant A.2 is not violated during this pratbc site. As before, there are two sub-cases to consider. We
The final case occurs at the leader site when a correstist show that Invariant A.2 is not violated in each case.
server becomes globally constrained by applying a Cdburing CONSTRUCFARU, the GlobalServerState message
lectedGlobalConstraints message to its Globditory data from at least one correct server from the set of at Igastl
structure (Figure 11, lines E5 and F2). We must now shavorrect servers maintained by the invariant appears in any

that Invariant A.2 is not violated in this case. CollectedGlobalServersState message, since any two sets
Any CollectedGlobal Constraints message received by af 2f + 1 servers intersect on at least one correct server.
correct server contains a We consider the contents of this server’'s GloBalverState

Global Constraint message from at least one site maintainegessage.
by Invariant A.2, since any two majorities intersect on aiste  Case 2a:In the first sub-case, if this server received a
one site. We consider the Glob@bnstraint message sent byRequesiGlobal State message with an invocation sequence
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number lower thanseq, then the server includes its entry Our next goal is to show that if Invariant A.2 holds at the
binding seq to u in the GlobalServerState message, afterbeginning of a global view after which an update has been
bringing its GlobalAru up to the invocation sequence numbeglobally ordered, then it holds throughout the view.

(if necessary) (Figure A-9, lines B5 and B7). Invariant A.2

guarantees that the Prepare Certificate, Proposal, or Globbemma A.13: Let u be the first update globally ordered by
ally_OrderedUpdate bindingseq to u is the latest entry for any server for sequence numbey, and letgv be the global
sequence numbeeq. Thus, the entry bindingeq to w in any view in which gv was globally ordered. Let B(, lv, seq, w)
Global CollectedServersState bundle will not be removedbe the first Proposal message constructed by any server in the
by the ComputeSlobalUnion function (Figure A-12, Blocks leader site ingv for sequence numbeseq. Then if Invariant

C and D) and will appear in the resultant Glol@dnstraint A.2 holds with respect to P at the beginning of a global
message. Thus, the Collect&@lobal Constraints message will view (gv’, *), with gv’ > gv, then it holds throughout the view.
bind seq to u, and by the rules of applying this message to

the GlobalHistory[seq] data structure, Invariant A.2 is not Proof: To show that the invariant will not be violated
violated when the correct servers in the leader site becohgring global viewgv’, we show that no conflicting Prepare
globally constrained by applying the mesasge (Figure A-Zertificate, Proposal, or Global@rderedUpdate can be con-
block D). structed during the view that would cause the invariant to be

Case 2b:If this server received a RequeStobalState Violated.

message with an invocation sequence number greater thal{/¢ assume that a conflicting Prepare Certificate PC
or equal toseg, then the server will not report a binding's collected and show that this leads to a contradiction.

for seq, since it will obtain a GloballyOrderedUpdate via This then implies that no conflicting Proposals or Glob-

reconciliation before sending its GlobSkrverState mes- ally-OrderedUpdates can be constructed.

sage (Figure A-9, lines B4). In turn, the server only con- If PC is collected, then some server collected a Pre-
tributes a partial signature on the AMiessage if it received Preparegv:, lv, seq, u’) and 2/f _

a valid GlobalCollectedServersState message, which im_Plreparegv, lv, seq, Digest(')) for some local viewlv and
plies that the2f + 1 GlobalServerState messages in thet 7 u- At least/ + 1 of these messages were from correct,
Global CollectedServersState bundle contained the same inS€rVers. Moreover, this implies that at ledst1 correct servers
vocation sequence number, which was greater than or equag€ 9lobally constrained.

seq (Figure A-9, line D2). Since a correct server only sends aBY Corollary A.12, since at leasf + 1 correct servers
Global ServerState message if its Globalru is greater than ecame globally constrained igv’, the leader site meets
or equal to the invocation sequence number it received (gigl-ondition 1 of Invariant A.2, and it thus has at legst- 1
A-9, line D3), this implies that at least + 1 correct servers COIT€ct servers with a Prepare Certificate, Proposal, ob-Glo
have a GlobalAru greater than or equal te-q. The invariant ally-OrderedUpdate bindingscq to u. At least one server
ensures that all such GlobalrderedUpdates bindseq to v 7O the set of at leasf + 1 correct servers bindingeq to u

Thus, even if the CollecteGlobal Constraints message doegontributed to the construction of PC. A correct represerga
not contain an entry bindingeq to u, the leader site and Would not send such a Pre-Prepare message because the
| N/2] non-leader sites will maintain Invariant A.2. m CetNextToPropose() routine would return the constrained

updatew (Figure A-8, line A3 or A5). Similarly, a correct

, server would see a conflict (Figure A-6, line A10 or A13).
Corollary A.12: Let u be the first update globally ordered g .o g server can collect a conflicting Prepare Certificate
by any server for sequence numberg, and let gv be ,q sarver can construct a conflicting Proposal. Thus, neserv

the global view in WhiChu was globally ordered. Let can collect a conflicting GloballprderedUpdate, since this
P(gv, lv, seq, u) be the first Proposal message constructed Would require a conflicting Proposal

any server in the leader site v for sequence numbeteq.
Then if Invariant A.2 holds with respect to P at the beginning
of a run of theGLOBAL-VIEW-CHANGE protocol, then if at
least f + 1 correct servers in the leader site become globally

constrained by completing theGLOBAL-VIEW-CHANGE Proof: By Lemma A.8, Invariant A.2 holds with respect
protocol, the leader site will be in the set maintained by pq throughout global viewwv. By Lemma A.11, the invari-
Condition 1 of Invariant A.2. ant holds with respect to P1 during and after thieoBAL-
VIEW-CHANGE protocol. By Lemma A.13, the invariant holds
Proof: We consider each of the four sub-cases describatl the beginning and end of global vieyw + 1. Repeated
in Lemma A.11l. In Cases la and 2a, any correct server tlagiplication of Lemma A.11 and Lemma A.13 shows that the
becomes globally constrained bingts; to u. In Cases 1b and invariant always holds for all global viewg' > gv.
2b, there exists a set of at least+ 1 correct servers that In order for P2 to be constructed, at legst- 1 correct
have globally ordered: for sequence numbeteq. Thus, in servers must send a partial signature on P2 after colleeting
all four cases, if at least+ 1 correct servers become globallycorresponding Prepare Certificate (Figure 6, line C3).&the
constrained, the leader site meets the data structuretammdiinvariant holds, at least+1 correct servers do not collect such
of of Condition 1 of Invariant A.2. B a Prepare Certificate and do not send such a partial signature

Thus, Invariant A.2 holds throughout global view’. =

We can now prove Lemma A.7:
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This leaves onl\2f servers remaining, which is insufficientshow that, if the system is stable and a stable server receive

to construct the Proposal. B an update which it has not executed, then the system will
reach a state in which some stable serwglt execute an
Finally, we can prove Claim A.2: update, a contradiction. We prove Global Liveness using

three main claims. In the first claim, we show that if no
Proof: We assume that two servers globally order corglobal progress occurs, then all stable servers eventugadtn-
flicting updates with the same sequence number in two glolzdle their GlobalHistory data structures to a common point.
views gv and gv’ and show that this leads to a contradictiorSpecifically, the stable servers set their Glohal variables
Without loss of generality, assume that a server globallg the maximum sequence number through which any stable
orders update: in gv, with gv < gv’. This server collected a server has executed all updates. By definition, if any stable
a Proposalfv, *, seq, u) message antiN/2| corresponding server executes an update beyond this point, global pregres
Accept messages. By Lemma A.7, any future Proposal magH have been made, and we will have reached a contradiction
sage for sequence numbetqg contains update:, including In the second claim, we show that, once this reconciliation
the Proposal fronyv’. This implies that another server thahas occurred, the system eventually reaches a state in which
globally orders an update ijv’ for sequence numbeeg must stable representative of a stable leader site remains irepow
do so using the Proposal containingwhich contradicts the for sufficiently long to be able to complete the global view
fact that it globally ordered’ for sequence numberq. B change protocol, which is a precondition for globally oidgr
an update that would cause progress to occur. To prove the
We can now prove &ETY - S1. second claim, we first prove three subclaims. The first two
subclaims show that, eventually, the stable sites will move
Proof: By Claims A.1 and A.2, if two servers globallythrough global views together, and within each stable site,
order an update for the same sequence number in any tiie stable servers will move through local views togethbe T
global views, then they globally order the same update. Thukird subclaim establishes relationships between theadid
if two servers execute an update for any sequence numbecal timeouts, which we use to show that the stable servers
they execute the same update, completing the proof. m will eventually remain in their views long enough for global
progress to be made. Finally, in the third claim, we show that
We now prove that Steward meets the following validity stable representative of a stable leader site will evéptua
property: be able to globally order (and execute) an update which it has
not previously executed, which contradicts our assumption
S2 - \ALIDITY Only an update that was proposed by a In the claims and proofs that follow, we assume that the
client may be executed. system has already reached a stabilization tifieat which
the system became stable. Since we assume that no global
Proof: A server executes an update when it has be@nogress occurs, we use the following definition:
globally ordered. To globally order an update, a serverinbta
a Proposal and N/2] corresponding Accept messages. To DEFINITION B.1: We say that a sequence number is the
construct a Proposal, at leagt+ 1 correct servers collect a max_stableseq if, assuming no further global progress is
Prepare Certificate and invok@lRESHOLD-SIGN. To collecta made, it is the last sequence number for which any stable
Prepare Certificate, at leagt-1 correct servers must have senserver has executed an update.
either a Pre-Prepare or a Prepare in response to a Pre-@repar
From the validity check run on each incoming message (FigureWWe now proceed to prove the first main claim:
A-4, lines A7 - A9), a Pre-Prepare message is only processed
if the update contained within has a valid client signature. Claim B.1: If no global progress occurs, then all stable
Since we assume that client signatures cannot be forgeygl, osgrvers in all stable sites eventually set their Glodral
a valid update, proposed by a client, may be globally orderadriables tomax_stable_seq.
[ |
To prove Claim B.1, we first prove two lemmas relating
. t0 LOCAL-RECONCILIATION andGLOBAL-RECONCILIATION.
B. Liveness Proof
We now prove that Steward meets the following liveness Lemma B.1: Let aru by the Globalaru of some stable
property: server,s, in stable SiteS at timeT'. Then all stable servers
in S eventually have a Globalru of at leastru.
L1 - GLoBAL LIVENESS If the system is stable with

respect to timeT, then if, after timeT, a stable server Proof: The stable servers inS run LOCAL-
receives an update which it has not executed, then glolrECcONCILIATION by sending a
progress eventually occurs. Local ReconRequest message everyLOCAL-RECON

THROTTLE-PERIOD time units (Figure A-13, line Al). Since
Proof Strategy: We prove Global Liveness by contradic-S is stable,s will receive a LocalReconRequest message
tion. We assume that global progress does not occur andm each stable server within one local message delay. If



36

the requesting server, has a Globahru less thamru, s as above, these stable servers set their Glahalvariables
will send to » Globally OrderedUpdate messages for eachio exactlymaz_stable_seq. By applying Lemma B.1 in each
sequence number in the difference. These messages wiilble site and using the same logic as above, all stable
arrive in bounded time. Thus, each stable servefigets it servers in all stable sites eventually set their Gladral to
Globalaru to at leastiru. B  max_stable_seq. [ ]

Lemma B.2: Let S be a stable site in which all stable We now proceed to prove the second main claim, which
servers have a Glohalru of at leastiru at timeT'. Then if shows that, once the above reconciliation has taken plaee, t
no global progress occurs, at least one stable server in @jktem will reach a state in which a stable representatie of
stable sites eventually has a Glolzail of at leastru. stable leader site can complete theOBAL-VIEW-CHANGE

protocol, which is a precondition for globally ordering a
Proof: Since no global progress occurs, there exist&w update. This notion is encapsulated in the followingcla
some sequence numberu’, for each stable siteR, that
is the last sequence number for which a stable serveR in  Claim B.2: If no global progress occurs, and the system is
globally ordered an update. By Lemma B.1, all stable servestable with respect to tim&', then there exists an infinite set
in R eventually reacturu’ via the LOCAL-RECONCILIATION  of global viewsgv;, each with stable leader sifg, in which
protocol. the first stable representative fy serving for at least a local

The stable servers iR run GLOBAL-RECONCILIATION timeout period can completeLOBAL-VIEW-CHANGE.
by sending a GlobaReconRequest message everyOBAL-

RECONTHROTTLE-PERIODtime units (Figure A-14, line A1).  Since completing GLOBAL-VIEW-CHANGE requires all
SinceR is stable, each stable serverihreceives the requeststable servers to be in the same global view for some
of all other stable servers iR within a local message delay.amount of time, we begin by proving several claims about the
Upon receiving a request, a stable server will send a P&8igal GLOBAL-LEADER-ELECTION protocol. Before proceeding, we
message to the requester, since they have the same Glabal prove the following claim relating to thEHRESHOLD-SIGN
arv’. Each stable server can thus construct a threshold-sigmedtocol, which is used bgLOBAL-LEADER-ELECTION:
GLOBAL-RECON message containingru’. Since there are

2f + 1 stable servers, the pigeonhole principle guarantees thaClaim B.3: If all stable servers in a stable site invoke
at least one of them sends@ OBAL-RECON message to a THRESHOLD-SIGN on the same messagem, then
stable peer in each other stable site. The message arriveSHRESHOLD-SIGN returns a correctly threshold-signed
one wide area message delay. messagen at all stable servers in the site within some finite

If all stable sites send aLOBAL-RECON message contain- time, Ag; ;.
ing a requestedru value of at leastru, then the lemma holds,
since at leasf + 1 correct servers contributed a Partd on To prove Claim B.3, we use the following lemma:
such a message, and at least one of them is stable. If there
exists any stable sit® that sends &LOBAL-RECONMmMessage Lemma B.3: If all stable servers in a stable site invoke
with a requeste@ru value lower tharuru, we must show THRESHOLD-SIGN on the same message:, then all stable
that R will eventually have at least one stable server with servers will receive at leagtf + 1 correct partial signature

Globalaru of at leastru. shares form within a bounded time.
Each stable server it has a Globahkru of arv’, with
aru’ > aru. Upon receiving theGLOBAL-RECON message Proof: When a correct server invOKEBHRESHOLD-

from R, a stable server uses thBROTTLE-SEND procedure to SIGN on a messagen, it generates a partial signature for
send all GloballyOrderedUpdate messages in the differencen and sends this to all servers in its site (Figure A-7, Block
to the requester (Figure A-14, line D16). Since the systefy). A correct server uses only its threshold key share and
is stable, each Globall@rderedUpdate will arrive at the a deterministic algorithm to generate a partial signatume o
requester in bounded time, and the requester will increaser. The algorithm is guaranteed to complete in a bounded

Globalaru to at leastiru. B time. Since the site is stable, there are at I@gst 1 correct
servers that are connected to each other in the site. Therefo
We now prove Claim B.1: if the stable servers invOKEHRESHOLD-SIGN onm, then each
stable server will receive at lea3f + 1 partial signatures on
Proof: Assume, without loss of generality, that stable sitex from correct servers. ]

S has a stable server with a Globmlu of max_stable_seq.

By Lemma B.1, all stable servers ifi eventually set their We can now prove Claim B.3.

Globalaru to at leastnax_stable_seq. Since no stable server

sets its Globahru beyond this sequence number (by the Proof: A correct server combinesf + 1 correct partial
definition of max_stable_seq), the stable servers ifi set their signatures to generate a threshold signaturenanFrom
Globalaru to exactlymax_stable_seq. By Lemma B.2, at Lemma B.3, a correct server will recei2¢ + 1 correct partial
least one stable server in each stable site eventually tsetssignatures omn.

Globalaru to at leastnax_stable_seq. Using similar logic ~ We now need to show that a correct server will eventually
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combine the correct signature shares. Malicious servars ca
contribute an incorrect signature share. If the correcteser Lemma B.4: Invariant B.1 always holds.
combines a set o2f + 1 signature shares, and one or more
of the signature shares are incorrect, the resulting toidsh Proof: We show that Invariant B.1 holds using an
signature is also incorrect. argument based on a state machifd/. SM has the two
When a correct server receives a set2¢f+ 1 signature states listed in Invariant B.1.
shares, it will combine this set and test to see if the resylti  We first show that a correct server starts in state (1). When
signature verifies (Figure A-7, Block B). If the signatureé correct server starts, its Globakw is initialized to 0, it
verifies, the server will return message with a correct has ana priori global preinstall proof for 0, and its Glohal
threshold signature (line B4). If the signature does noifyer timer is running. Therefore, Invariant B.1 holds immediate
then THRESHOLD-SIGN does not return message with a after the system is initialized, and the server is in staje (1
threshold signature. On lines B6-B11, the correct serveckkqr  We now show that a correct server can only transition
each partial signature that it has received from other serife between these two states)M has the following two types of
any partial signature does not verify, it removes the inectrr State transitions. These transitions are the only eventravh
partial signature from its data structure and adds the ser{&) the state of Global can change (from running to stopped
that sent the partial signature to a list of corrupted setvar or from stopped to running), (2) the value of Gloathanges,
correct server will drop any message sent by a server in tbe (3) the value of global preinstall proof changes. In our
corrupted server list (Figure A-4, lines A10-A11). Sinceréh pseudocode, the state transitions occur across multipdes li
are at mostf malicious servers in the site, these servers camd functions. However, they are atomic events that always
prevent a correct server from correctly combining fhfe+ 1 occur together, and we treat them as such.
correct partial signatures om at most f times. Therefore, « Transition (1): A server can transition from state (1) to

after a maximum off verification failures on line B3, there state (2) only when Global expires and it increments
will be a verification success aniHRESHOLD-SIGN will its global view by one.
return a correctly threshold signed messageat all correct  « Transition (2): A server can transition from state (2) to
servers, proving the claim. ] state (1) or from state (1) to state (1) when it increases
its global preinstall proof and starts Globgl

We now can prove claims abouGLOBAL-LEADER- We now show that if Invariant B.1 holds before a state
ELECTION. We first introduce the following terminology usedtransition, it will hold after a state transition.
in the proof: We first consider transition (1). We assume that Invariant

B.1 holds immediately before the transition. Before traosi
DEFINITION B.2: We say that a servemeinstalls global (1), SM is in state (1) and Globatiew is equal to
view gv when it collects a set of GlobAIC(gv;) messages Globalpreinstalledview, and GlobalT is running. After tran-
from a majority of sites, whergv; > gv. sition (1), SM is in state (2) and Globaliew is equal
to Globalpreinstalledview + 1, and Globall is stopped.
DEFINITION B.3: A global preinstall proof for global Therefore, after the state transition, Invariant B.1 holbisis
view gv is a set of GlobaVC(gv;) messages from a majority transition corresponds to Figure 9, lines A1 and A2. On line
of sites whergyv; > gv. The set of messages is proof that A1, GlobalT expires and stops. On line A2, Globabw is

preinstalled. incremented by oneSM cannot transition back to state (1)
_ _ _ until a transition (2) occurs.
Our goal is to prove the following claim: We next consider transition (2). We assume that Invariant

B.1 holds immediately before the transition. Before traosi
Claim B.4: If global progress does not occur, and th@2) SAs can be in either state (1) or state (2). We now prove
system is stable with respect to tinig, then all stable that the invariant holds immediately after transition (R)ti
servers will preinstall the same global viegw, in a finite  occurs from either state (1) or state (2).
time. Subsequently, all stable servers will: (1) preirissl Let gv be the value of Globaliew before the transition. If
consecutive global views abovgv within one wide area S\/ is in state (1) before transition (2), then global preiristal
message delay of each other and (2) remain in each glopgdof is gv, and GlobalT is running. If SM is in state (2)
view for at least one global timeout period. before transition (2), then global preinstall proofjis— 1, and
GlobalT is stopped. In either case, the following is true before
To prove Claim B.4, we maintain the following invarianthe transition: global preinstalled proof gv — 1. Transition
and show that it always holds: (2) occurs only when global preinstall proof increases \(Fég
9, block E). Line E6 of Figure 9 is the only line in the
INVARIANT B.1: If a correct serves, has Globalview gv, pseudocode where Gloh@lis started after initialization, and

then it is in one of the two following states: this line is triggered upon increasing global preinstabqir
1) GlobalT is running ands has global preinstall proof for Let global preinstall proof equajp after transition (2) and
gu. Globalview be gv’. Since the global preinstall proof must be

2) GlobalT is not running ands has global preinstall greater than what it was before the transitigp, > gv. On
proof for gv — 1. lines E5 - E7 of Figure A-2, when global preinstall proof is
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increased, Globaliew is increased to global preinstall proof

if Global.view < global preinstall proof. Thusgv’ > gp. Proof: We first show that if any stable server increases
Finally, g’ > gv, because Globatiew either remained the its global view togv because it receives global preinstall proof
same or increase. for gv, then all stable servers will preinstglb. When a stable

We now must examine two different cases. First, wheserver increases its global preinstall proofdo, it reliably
gv’ > gv, the Globalview was increased tgp, and, therefore, sends this proof to all servers (Figure 9, lines E4 and E5) By
gv' = gp. Second, whemv' = gv (i.e., Globalview was not Claim B.5, all stable servers receive this proof, apply iig a
increased), then, fromp > gv andgv’ > gp, gv' = gp. In  preinstall global viewgv.

either case, therefore, Invariant B.1 holds after tramsi(2). We now show that if all stable servers increase their global
We have shown that Invariant B.1 holds when a server staviews to gv without first receiving global preinstall proof for
and that it holds after each state transition. B gov, all stable servers will preinstajlv. A correct server can

increase its Globaliew to gv without having preinstall proof

We now prove a claim aboukELIABLE-SEND-TO-ALL- for gv in only one place in the pseudocode (Figure 9, line A2).
SITES that we use to prove Claim B.4: If a stable server executes this line, then it also consrant

unsigned GlobaVC(gv) message and invOkeSHRESHOLD-

Claim B.5: If the system is stable with respect to timesiGN on this message (lines A4-A5).

T, then if a stable server invoOke@sELIABLE-SEND-TO-ALL - From Claim B.3, if all stable servers in a stable site invoke
SITES on messagen, then all stable servers will receive. THRESHOLD-SIGN on
GlobalVC(gv), then a correctly threshold signed

Proof: When a stable server invokeRELIABLE- GlobalVC(gv) message will be returned to all stable
SEND-TO-ALL-SITES on messagen, it first creates a Reli- servers in this site. WhemHRESHOLD-SIGN returns a
able Messagef:) message and sends it to all of the serveGlobalVC message to a stable server, this server reliably
in its site, S, (Figure A-15, lines A2 and A3). Therefore, allsends it to all other sites. By Claim B.5, all stable servers
stable servers ity will receive message: embedded within will receive the GlobaMC(gv) message. Since we assume
the ReliableMessage. all stable servers in all sites increase their global viewg:t

The server that invokedRELIABLE-SEND-TO-ALL-SITES all stable servers will receive a Glob¥IC(gv) message from
calls SendToPeers om (line A4). All other servers call a majority of sites. ]
SendToPeers{) when they receive Reliahlglessagef)

(line B2). Therefore, all stable servers i§ will call We next prove that soon after the system becomes stable,
SendToPeers{). This function first checks to see if the serveall stable servers preinstall the same global view We also

that called it has a Servéd between 1 and@f + 1 (line D1). show that there can be no global preinstall proof for a global
Recall that servers in each site are uniquely numbered witlew abovegu:

integers from 1 ta3f + 1. If a server is one of thef + 1

servers with the lowest values, it will send its message lto al Lemma B.6: If global progress does not occur, and the
servers in all other sites that have a Sendeequal to its server system is stable with respect to tirfig then all stable servers

id (lines D2-D4). will preinstall the same global viewv before timeT + A,

Therefore, if we considef and any other stable sit§’, wheregv is equal to the the maximum global preinstall proof
then messagen is sent acros&f + 1 links, where thetf + in the system when the stable servers first preingtall
2 servers serving as endpoints on these links are unique. A
link passesn from site S to S’ if both endpoints are stable Proof: Let s, be the stable server with the highest
servers. There are at madsf servers that are not stable in thepreinstalled global viewgp,,..., at timeT’, and letgpsysmax
two sites. Therefore, if each of these non-stable serveckbl be the highest preinstalled view in the system at tihéNe
one link, there is still one link with stable servers at botfirst show thatyp.,a. +1 > gpsysma.. S€cond, we show that
endpoints. Thus, message will pass fromS to at least one all stable servers will preinstadip,,..... Then we show that the
stable server in all other sites. When a server on the rexpiviGlobalT timers will expire at all stable servers, and they will
endpoint receives: (lines C1-C2), it sends: to all servers in increase their global view tgp,,... + 1. Next, we show that
its site. Therefore, we have proved that if any stable sdrverwhen all stable servers move to global vigw,,.. + 1, each
a stable system invOkeSELIABLE-SEND-TO-ALL-SITES on site will create a threshold signed GlobBaC(gp;,q. + 1) mes-

m, all stable servers in all stable sites will receive B sage, and all stables servers will receive enough Glukal
messages to preinstalp,,q. + 1.

We now show that if all stable servers increase theirIn order for gpsysm.. to have been preinstalled,
Globalview to gv, then all stable servers will preinstallsome server in the system must have collected
global view gv. GlobalVC(gpsysmaz) mMessages from a majority of

sites. Therefore, at least + 1 stable servers must have

Lemma B.5: If the system is stable with respect to timéhad global views forgpsys.., because they must have
T, then if, at a time aftefl’, all stable servers increase theiinvoked THRESHOLD-SIGN on GlobalVC(gpsysmaz). From
Globalview variables togv, all stable servers will preinstall Invariant B.1, if a correct server is ipsysmaqz, it must have
global view gv. global preinstall proof for at leastpsys..... — 1. Therefore,
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9Pmaz + 1 2 gpsySmaz-

When s, preinstallsgp,..., it reliably sends global pre- Proof: A stable system has a majority of sites each
install proof for gp,,... t0 all stable sites (via theeLIABLE- with at least2f + 1 stable servers. If all of the servers in
SEND-TO-ALL-SITES protocol). By Claim B.5, all stable all non-stable sites generate Gloh&L(gv + 1) messages, the
servers will receive and apply GlobBreinstallProof@gp....) Set of existing messages does not constitute global padlinst
and increase their Glohaiew variables tap,,.... Therefore, proof for gv + 1. One of the stable sites must contribute a
within approximately one widea-area message delay ,cdll GlobalVC(gv + 1) message. In order for this to occar; + 1
stable servers will preinstajp...... By Invariant B.1, all stable servers at one of the stable sites must invOk&RESHOLD-
servers must have global vieyw,,,q. OF gpmaz+1. Any stable sIGN on GlobalVC(gv+1), which impliesf +1 stable servers
server with Globaliew gp,... + 1 did not yet preinstall this had global viewgv + 1. Since global preinstall proof could
global view. Therefore, its timer is stopped as describetthén not have been generated without the GloW&l message from
proof of Lemma B.4, and it will not increase its view againheir site, GlobalT at these servers must have expired.
until it receives proof for a view higher thagp,,.q. .

We now need to show that all stable servers with We now use Lemmas B.5, B.6, and B.7 to prove Claim B.4:
Globalview gp,,q. Will move to Globalview gp,,q. + 1. All
of the servers ingp,... have running timers because their Proof: By Lemma B.6, all servers will preinstall the same
global preinstall proof= Globalview. The GlobalT timer is view, gv, and the highest global preinstall proof in the system
reset in only two places in the pseudocode. The first is @ gv. If global progress does not occur, then the Global
line E6 of Figure 9. This code is not called unless a servBmer at all stable servers will eventually expire. Whersthi
increases its global preinstall proof, in which case it wkalso occurs, all stable servers will increase their global view t
increase its Globabiew to gp,,... +1. The second case occurgyv+1. By Lemma B.5, all stable servers will preinstedl+1.
when a server executes a GloballyderedUpdate (Figure By Lemma B.5, Globall must have expired at at leaft+ 1
A-2, line C8), which cannot happen because we assume thttble servers. We have shown that if all stable servers are
global progress does not occur. Therefore, if a stable serie the same global view, they will remain in this view until
that has viewgp,,.. does not increase its view because it leastf + 1 stable servers Globdl timer expires, and they
receives preinstall proof fogp,... + 1, its GlobalT timer will definitely preinstall the next view when all stable sers’
will expire and it will increment its global view t@p,,.. +1. GlobalT timer expires.

We have shown that if global progress does not occur, andWhen the first stable server preinstalls global vigw+ 1,
the system is stable with respect to tirfie then all stable it reliably sends global preinstall progfv + 1 to all stable
servers will move to the same global vieyw,....+1. A server servers (Figure 9, line E4). Therefore, all stable servells w
either moves to this view because it has preinstall proof foeceive global preinstall proof fogv + 1 at approximately
gPmaz+1 OF it increments its global view tgp,,... +1. If any the same time (within approximately one wide area message
server has preinstall proof famp.,,..., it sends this proof to all delay). The stable servers will reset their Glabaimers and
stable servers usingELIABLE-SEND-TO-ALL-SITES and all start them when they preinstall. At this point, no server can
stable servers will preinstaljp,... + 1. By Lemma B.5, if preinstall the next global view until there is a global timmeo
none of the stable servers have preinstall proof¢iar.. +1 at at leastf + 1 stable servers. If the servers don't preinstall
and they have incremented their global viewdgi@,... + 1, the next global view before, they will do so when there is a

then all stable servers will preinstajp, ... + 1. global timeout at all stable servers. Then the process tepea
We conclude by showing that timA is finite. As soon The stable servers preinstall all consecutive global viend
as the system becomes stable, the server with the higheshain in them for a global timeout period. [ ]

global preinstall proofgp,...., sends this proof to all stable
servers as described above. It reaches them in one widdVe now prove a similar claim about the local representative
area message delay. After at most one global timeout, thlection protocol. The protocol is embedded within the
stable servers will increment their global views becausdr th LOCAL-VIEW-CHANGE protocol, and it is responsible for the
GlobalT timeout will expire. At this point, the stable serversvay in which stable servers within a site synchronize their
will invoke THRESHOLD-SIGN, GlobalVC messages will be Localview variable.
returned at each stable site, and the stable servers in each
site will reliably send their Global/C messages to all stable Claim B.6: If global progress does not occur, and the
servers. These messages will arrive in approximately ode wisystem is stable with respect to tinmg, then all stable
area delay, and all servers will install the same vigw,..+1. servers in a stable site will preinstall the same local view,
m v, in a finite time. Subsequently, all stable servers in the
site will: (1) preinstall all consecutive local views aboie
We now prove the last lemma necessary to prove Claim Buithin one local area message delay of each other and (2)
remain in each local view for at least one local timeout pario
Lemma B.7: If the system is stable with respect to tirfig
then if all stable servers are in global view, the GlobalT To prove Claim B.6, we use a state machine based
timers of at leastf + 1 stable servers must timeout beforargument to show that the following invariant holds:
the global preinstall proof fogv + 1 can be generated.
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INVARIANT B.2: If a correct servers, has Localview [v, We now must examine two different cases. First, whén>
then it is in one of the following two states: lv, Localview was increased tép, and, thereforelv’ = Ip.
1) LocalT is running ands has local preinstall prodfv ~ Second, wheriv’ = lv (i.e., Localview was not increased),
2) LocalT is not running ands has local preinstall proof then, fromip > lv and v’ > Ip and simple substituition,
lv—1. Iv' = Ip'. In either case, therefore, Invariant B.2 holds after
transition (2).

We have shown that Invariant B.2 holds when a server starts
and that it holds after each state transition, completirgy th
Proof: When a correct server starts, Ladalis started, proof. [ |

Localview is set to 0, and the server has arpriori proof
(New_Rep message) for local view 0. Therefore, it is in state We can now prove Claim B.6.
Q).
A server can transition from one state to another only in the Proof: Let s, be the stable server with the highest
following two cases. These transitions are the only timesrah local preinstalled view/pyq., in stable siteS. Let lv,,q.
a server (1) increases its local preinstall proof, (2) iases be servers,,..'s local view. The local preinstall proof is a
its Localview, or (3) starts or stops Locdal New_Rep({p,..,) message threshold signed by site Server
. Transition (1): A server can transition from state (1) t6ma: SENAS its local preinstall proof to all other servers in site
state (2) only when Local expires and it increments its.S when it increases its local preinstall proof (Figure 8, line
local view by one. D3). Therefore, all stable servers in sigewill receive the
« Transition (2): A server can transition from state (2) thlew.Rep message and preinstail, q..
state (1) or from state (1) to state (1) when it increasesFrom Invariant B.2/paz = lvmaz — 1 OF Ipmas = lWmaa-
its local preinstall proof and starts Local Therefore, all stable servers are within one local view ahea

We now show that if Invariant B.2 holds before a stat8ther. If/pmas = lumaz, then all servers have the same local
transition, it will hold after a state transition. view and their Locall timers are running. If not, then there

We first consider transition (1). We assume that Invariagfe two cases we must consider.

Lemma B.8: Invariant B.2 always holds.

B.2 holds immediately before the transition. Before traosi
(1), the server is in state (1) and Locaéw is equal to local
preinstalled view, and Local is running. After transition (1),
the server is in state (2) and Loocdkw is equal to local

preinstalled view + 1, and Locdl is stopped. Therefore, after

the state transition, Invariant B.2 holds. This transittamre-
sponds to lines Al and A2 in Figure 8. On line Al, Ladal
expires and stops. On line A2, Localkew is incremented by

one. The server cannot transition back to state (1) untilethe

is a transition (2).

1) LocalT will expire at the servers with local view, .
and they will increment their local view t,,, .. (Figure
8, line D3). Therefore, all stable servers will increment
their local views tolv,,.,, and invOke THRESHOLD-
SIGN on NewRep(v,...) (Figure 8, line A5). By Claim
B.3, a correctly threshold signed Ne®ep(v,,q..) mes-
sage will be returned to all stable servers. They will
increase their local preinstall proof ..., send the
New_Rep message to all other servers, and start their
LocalT timers.

We next consider transition (2). We assume that Invariant2) The servers with local viewp,,.. will receive a local

B.2 holds immediately before the transition. Before traosi

(2) the server can be in either state (1) or state (2). We now

prove that the invariant holds immediately after transit{@)
if it occurs from either state (1) or state (2).

Let [v be the value of Localiew before transition. If the
server is in state (1) before transition (2), then local pstll

preinstall proof higher tharip,,... In this case, the
servers increase their local view to the value of the
preinstall proof they received, send the preinstall proof,
and start their Local timers.

We have shown that, in all cases, all stable servers will
preinstall the same local view and that their local timert wi

proof isiv, and LocalT is running. If the server is in state (2)be running. Now, we need to show that these stable servers
before transition (2), then local preinstall prooflis— 1, and will remain in the same local view for one local timeout, and
LocalT is stopped. In either case, the following is true beforgen all preinstall the next local view.

the transition: local preinstall progt gv — 1. Transition (2)

At least 2f + 1 servers must first be in a local view

occurs only when local preinstall proof increases (Figure Before a NewRep message will be created for that view.
block D). Line D4 of theLOoCAL-VIEW-CHANGE protocol is Therefore, thef malicious servers cannot create a preinstall
the only line in the pseudocode where Ladais started after proof by themselves. When any stable server increasesis lo
initialization, and this line is triggered only upon incséiag preinstall proof to the highest in the system, it will sength

local preinstall proof. Let local preinstall proof equal after

proof to all other stable servers. These servers will aduigt t

transition (2) and LocaView belv’. Since the local preinstall preinstall proof and start their timers. Thus, all of theircal T
proof must be greater than what it was before the transiticimers will start at approximately the same time. At leAst1
Ip > lv. On lines E2-E4 of Figure A-1, when local preinstalbtable servers must timeout before a higher preinstall fproo
proof is increased, Localiew is increased to local preinstallcan be created. Therefore, the stable servers will stayen th

proof if Localview < local preinstall proof. Thusiy’ > Ip.

same local view for a local timeout period. Since all stable

Finally, lv" > lv, because Localiew either remained the sameservers start Local at about the same time (within a local

or increased.

area message delay), they will all timeout at about the same
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time. At that time, they all invoke HRESHOLD-SIGN and a

New_Rep message will be created for the next view. At this  Proof: From Claim B.6, if no global progress occurs, (1)
point, the first server to increase its preinstall proof setiis local views will be installed consecutively, and (2) thevess
proof to all stable servers. They start their La@alimers, and will remain in the same local view for one local timeout.
the process repeats. Each consecutive local view is gesm@ntTherefore, any correct representative at the leader sie wi
to preinstall, and the stable servers will remain in the sameign for one local timeout at the leader sifecal_to_ls.
view for a local timeout. m Similarly, any correct representative at a non-leader \site

reign for approximately one local timeout at a non-leade, si
We now establish relationships between our timeoutgcal_to_nls.
Each server has two timers, GlobBland LocalT, and a  From Claim B.7, the local timeout at the leader sitef is 2
corresponding global and local timeout period for each timaimes the local timeout at the non-leader sitec¢l_to_ls =
The servers in the leader site have a longer local timequt + 2)iocalto_nls). If stable server is representative for
than the servers in the non-leader site so that a corr@séal_to_ls, then, at each leader site, there will be at lefastl
representative in the leader site can communicate withaat leservers that are representative for tireal_to_nls during
one correct representative in all stable non-leader sites. the time that- is representative. Since the representative has
following claim specifies the values of the timeouts relativa Serverid equal to Localview mod(3f + 1), a server can
to each other. never be elected representative twice during1 consecutive
local views. It follows that a stable representative in tader
Claim B.7: All correct servers with the same global viewsijte can communicate witlf + 1 different servers for time

gv, have the following timeouts: periodlocal _to_ls. Since there are at mogtservers that are
1) The local timeout at servers in the non-leader sites it stable, at least one of thfe+ 1 servers must be stable.
local to_nls From Claim B.7, the global timeout doubles every
2) The local timeout at the servers in the leader site @@nsecutive global views, wheré is the number of sites. The
local tols = (f + 2)local_to_nls local timeouts are a constant fraction of a global timeond, a
3) The global timeout iglobal to = (f + 3)local to_ls = therefore, they grow at the same rate as the global timeout.
K « 2[Globalview/N] Since the leader site has Sitk = Globalview modN, a

leader site is elected exactly once evéfyconsecutive global
Proof: The timeouts are set by functions specified imiews. Therefore, each time a site becomes the leader, ¢kt lo
Figure 12. The global timeouglobal_to is a deterministic and global timeouts double. [ ]
function of the global viewglobal_to = K x 2[Global-view/NT
where K is the minimum global timeout andV is the Claim B.9: If global progress does not occur and the
number of sites. Therefore, all servers in the same gloksistem is stable with respect to tinff§ then in any global
view will compute the same global timeout (line C1). Theiew gv that begins after timg’, there will be at least two
RESEFGLOBAL-TIMER function sets the value of Glohdlto stable representatives in the leader site that are eackrkead
global_to. The RESEFLOCAL-TIMER function sets the value for a local timeout at the leader sitkical_to_s.
of Local T depending on whether the server is in the leader
site. If the server is in the leader site, the Ladatimer Proof: From Claim B.6, if no global progress occurs,
is set tolocal_tols = (globalto/(f + 3)) (line B2). If (1) local views will be installed consecutively, and (2) the
the server is not in the leader site, the Lagatimer is set servers will remain in the same local view for one local
local to_nls = local_tols/(f + 2) (line B4). Therefore, the timeout. From Claim B.4, if no global progress occurs, the
above ratios hold for all servers in the same global viem. servers in the same global view will remain in this global
view for one global timeoutglobal_to. From Claim B.7,
We now prove that each time a site becomes the leadgobal to = (f + 3)local_to_ls. Therefore, during the time
site in a new global view, correct representatives in thighen all stable servers are in global vieyw, there will
site will be able to communicate with at least one correbe f + 2 representatives in the leader site that each serve
representative in all other sites. This follows from thedont for local_to_ls. We say that these servers have complete
relationships in Claim B.7. Moreover, we show that eadfeigns ingv. Since the representative has a Selideequal
time a site becomes the leader, it will have more time to Localview mod(3f + 1), a server can never be elected
communicate with each correct representative. Intuitivblis representative twice during + 2 consecutive local views.
claim follows from the relative rates at which the coordarat There are at mosf servers in a stable site that are not stable,
rotate at the leader and non-leader sites. therefore at least two of thé + 2 servers that have complete
reigns ingv will be stable. [ ]
Claim B.8: If LS is the leader site in global viewg and
gv’ with gv > gv’, then any stable representative elected in We now proceed with our main argument for proving
gv can communicate with a stable representative at all stal@taim B.2, which will show that a stable server will be
non-leader sites for timé\,,, and any stable representativeéble to complete thesLOBAL-VIEW-CHANGE protocol. To
elected ingv’ can communicate with a stable representativemplete GLOBAL-VIEW-CHANGE in a global view gv, a
at all stable non-leader sites for tirdg,,» andA,, > 2+xA,,,. stable representative must coordinate the construction of
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an AruMessage, send the Afdessage to the other sitesconstructed to each non-leader site representative, émity
and collect GlobalConstraint messages from a majority obf which it learns from the NevRep message, (2) each non-
sites. We leverage the properties of the global and lodehder site representative can completeNSTRUCFGLOBAL-
timeouts to show that, as the stable sites move through glob@NSTRAINT, and (3) the leader site representative can collect
views together, a stable representative of the leader site vGlobalConstraint messages from a majority of sites. We can
eventually remain in power long enough to complete thapply the same logic to each subsequent global vielwvith

protocol, provided each component of the protocol completa stable leader site. ]
in finite time. This intuition is encapsulated in the followi
lemma: We call the set of views for which Lemma B.9 holds the

completion views Intuitively, a completion view is a view
Lemma B.9: If global progress does not occur and thégv, lv) in which the timeouts are large enough such that,
system is stable with respect to tini€, then there exists if CONSTRUCTARU and CONSTRUCFGLOBAL-CONSTRAINT
an infinite set of global viewgwv;, each with an associatedcomplete in some bounded finite amounts of time, the stable
local view lv; and a stable leader sit§;, in which, if representative of the leader sit of gv (which is the first
CONSTRUCTFARU and CONSTRUCFGLOBAL-CONSTRAINT stable representative ¢f serving for at least a local timeout
complete in bounded finite times, then if the first stablperiod) will complete thesLOBAL-VIEW-CHANGE protocol.
representative ofS; serving for at least a local timeout Given Lemma B.9, it just remains to show that there
period invokesGLOBAL-VIEW-CHANGE, it will complete the exists a completion view in whictCONSTRUCFARU and
protocol in @v;, lv;). CONSTRUCFGLOBAL-CONSTRAINT terminate in bounded fi-
nite time. We use Claim B.1 to leverage the fact that all
Proof: By Claim B.4, if the system is stable and ncstable servers eventually reconcile their Glab#tory data
global progress is made, all stable servers move togetisttuctures tomaz_stable_seq to bound the amount of work
through all (consecutive) global views above some initial required by each protocol. Since there are an infinite number
synchronization view, and they remain §m for at least one of completion views, we consider those completion views in
global timeout period, which increases by at least a factahich this reconciliation has already completed.
of two every N global view changes. Since the stable sites We first show that there is a bound on the size of the
preinstall consecutive global views, an infinite number dblobalServerState messages used GONSTRUCFARU and
stable leader sites will be elected. By Claim B.9, each SUCIDNSTRUCFGLOBAL-CONSTRAINT.
stable leader site elects three stable representativesehibie
GlobalT timer of any stable server expires, two of which Lemma B.10: If all stable servers have a Globatu
remain in power for at least a local timeout period beforef max_stable_seq, then no server can have a Prepare
any stable server it$ expires its Locall timeout. We now Certificate, Proposal, or Global@rderedUpdate for any
show that we can continue to increase this timeout periséquence number greater th@nax_stable_seq + 2 x W).
(by increasing the value ofv) until, if CONSTRUCFARU
andCONSTRUCTFGLOBAL-CONSTRAINT complete in bounded Proof: Since obtaining a GloballpprderedUpdate re-
finite timesA,,, andA,, respectively, the representative willquires a Proposal, and generating a Proposal requireseolle
completeGLOBAL-VIEW-CHANGE. ing a Prepare Certificate, we assume that a Prepare Cedificat
A stable representative invoOk&ONSTRUCTFARU after in- with a sequence number greater tifatuax_stable_seq+2xW)
voking theGLOBAL-VIEW-CHANGE protocol (Figure 11, line was generated and show that this leads to a contradiction.
A2), which occurs either after preinstalling the globalwie If any server collects a Prepare Certificate for a sequence
(Figure 9, line E8) or after completing a local view changeumberseq greater than
when not globally constrained (Figure 8, line D8). Since thgnax_stable_seq + 2 x W), then it collects a Pre-Prepare
duration of the local timeout periotbcal_to_ls increases by message an@f Prepare messages fdmax_stable_seq +
at least a factor of two every global view changes, there2 « W). This implies that at leasf + 1 correct servers sent
will be a global viewgv in which the local timeout period is either a Pre-Prepare or a Prepare. A correct representetiye
greater tham\,..,,, at which point the stable representative hasends a Pre-Prepare message sy if its Globalaru is at
enough time to construct the Aiessage. least(seq — W) (Figure 7, line A3), and a correct server only
By Claim B.8, if no global progress occurs, then a stabkends a Prepare message if its Glodal is at leastseq— W)
representative of the leader site can communicate withbdesta(Figure A-6, A23). Thus, at least + 1 correct servers had a
representative at each stable non-leader site in a global viGlobalaru of at leas{seq — W).
gv for some amount of timef,,, that increases by at least For this to occur, thesg+ 1 correct servers obtained Glob-
a factor of two everyN global view changes. The stableally_OrderedUpdates for those sequence numbers up to and
representative of the leader site receives a M&p message including (seq — W). To obtain a GloballyOrderedUpdate, a
containing the identity of the new site representative froserver collects a Proposal message aNg2| corresponding
each stable site roughly one wide area message delay aftecept messages. To construct a Proposal(feq — W), at
the non-leader site representative is elected. SiAge is leastf+1 correct servers in the leader site had a Glodral of
finite, there is a global view sufficiently large such that (1at least(seq—2W) > max_stable_seq. Similarly, to construct
the leader site representative can send the_Message it an Accept message, at legbt 1 correct servers in a non-
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leader site contributed a Partigsig message. Thus, there existenessage from a correct server will contain contiguous &tri
a majority of sites, each with at leagt- 1 correct servers with Since the site is stable, the representative collects valid
a Globalaru greater thamax_stable_seq. GlobalServerState messages from at least 4+ 1 servers,

Since any two majorities intersect, one of these sites isbandles them together, and sends the
stable site. Thus, there exists a stable site with someestaBllobalCollectedServersState message to all local servers
server with a Globaaru greater thamax_stable_seq, which  (Figure A-9, line C3).
contradicts the definition ofhaxz_stable_seq. [ ] Since the representative is stable, and all stable servers

have a Globahru of max_stable_seq (which is equal to

Lemma B.11: If all stable servers have a Globafu of the invocation sequence number), all stable servers meet th
maz_stable_seq, then if a stable representative of the leaderonditionals at Figure A-9, lines D2 and D3. They do not
site invokes CONSTRUCTARU, or if a stable server in a see a conflict at Figure A-5, line F4, because the repre-
non-leader site iNnvokeSONSTRUCFGLOBAL-CONSTRAINT sentative only collects Gloh&8erverState messages that are
with an AruMessage containing a sequence number at leasintiguous. They construct the union message by completing
maz_stable_seq, then any valid GlobaberverState message ComputeGlobalUnion (line D4), and invokeTHRESHOLD-
will contain at mos « W entries. SIGN on each Prepare Certificate in the union. Since there are

a finite number of entries in the union, there are a finite numbe

Proof: A stable server invokeSONSTRUCFARU with an of Prepare Certificates. By Lemma B.3, all stable servers

invocation sequence number ofax_stable_seq. By Lemma convert the Prepare Certificates into Proposals and invoke
B.10, no server can have a Prepare Certificate, Proposal,TARESHOLD-SIGN on the union (line F2). By Lemma B.3,
Globally_OrderedUpdate for any sequence number greatell stable servers generate the GloRBainstraint message (line
than(maz_stable_seq+2xW). Since these are the only entries51) and invokeTHRESHOLD-SIGN on the extracted uniaaru
reported in a valid GlobaberverState message (Figure A-11(line G4). By Lemma B.3, all stable servers generate the
Block B), the lemma holds. We use the same logic as abo&eu_Message and complete the protocol.
in the case OCONSTRUCFGLOBAL-CONSTRAINT. | Since gv; can be arbitrarily high, with the timeout period

increasing by at least a factor of two evely global view

The next two lemmas show thaCONSTRUCFARU changes, there will eventually be enough time to complete th
and CONSTRUCFGLOBAL-CONSTRAINT will complete in bounded amount of computation and communication in the
bounded finite time. protocol. We apply the same logic to all subsequent global

views with a stable leader site to obtain the infinite setm

Lemma B.12: If the system is stable with respect to time
T and no global progress is made, then there exists an infinitdlemma B.13: Let A be an AruMessage containing a
set of views §u;, lv;) in which a run of CONSTRUCFARU sequence number ofax_stable_seq. If the system is stable
invoked by the stable representative of the leader site willith respect to timel” and no global progress is made, then
complete in some bounded finite timA,,,,. there exists an infinite set of viewg(, [v;) in which a run

of CONSTRUCFGLOBAL-CONSTRAINT invoked by a stable
Proof: By Claim B.1, if no global progress is madeserver in local viewlv;, where the representative éb; is
then all stable servers eventually reconcile their Glaval stable, in a non-leader site with argumefit will complete
to max_stable_seq. We consider those completion views inn some bounded finite time) ..
which this reconciliation has already completed.

The  representative of the completion view Proof: By Claim B.1, if no global progress is made,
invokes CONSTRUCTFARU upon completing GLOBAL- then all stable servers eventually reconcile their Glairal
LEADER-ELECTION (Figure 11, line A2). It sends ato max_stable_seq. We consider those completion views in
RequesiGlobal State message to all local servers containinghich this reconciliation has already occurred.

a sequence number reflecting its current Glaral value.  The AruMessageA has a value of ainaz_stable_seq.
Since all stable servers are reconciled uprtez_stable_seq, Since the representative éf’ is stable, it sendsd to all
this sequence number is equal teax_stable_seq. Since servers in its site. All stable servers receiavithin one local
the leader site is stable, all stable servers receive thmessage delay.

RequesiGlobalState message within one local messageAll stable servers invoke CONSTRUCFGLOBAL-
delay. CONSTRAINT upon receivingd and send GlobaBerverState

When a stable server receives the Requ#ebalState messages to the representative. By Lemma B.11, the
message, it immediately sends a GlaoBarverState message GlobalServerState messages contain entries for at most
(Figure A-9, lines B5-B7), because it has a Glahal of 2 x W sequence numbers. We show below in Claim B.11
max_stable_seq. By Lemma B.11, any valid that all correct servers have contiguous entries above the
GlobalServerState message can contain entries for &@ivocation sequence number in their Glalb#story data
most 2 « W sequence numbers. We show below in Claimstructures. From Figure A-11 Block B, the Glolfs¢rverState
B.11 that all correct servers have contiguous entries abawessage from a correct server will contain contiguous estri
the invocation sequence number in their Globi@tory data The representative will receive at leagtf + 1 valid
structures. From Figure A-11 Block B, the Glol#s¢rverState GlobalServerState messages, since all messages sent by
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stable servers will be valid. The representative bundles agdocal timeout period, or any subsequent stable repreasenta
the messages and sends a GldballectedServersState elected at the leader site during; will already have a set
message (Figure A-10, line B3). consisting of a majority of GlobaConstraint messages from
All stable servers receive thegv;.
Global CollectedServersState message within one local
message delay. The message will meet the conditional at Proof: By Claim B.2, there exists an infinite set of global
line C2, because it was sent by a stable representative. Thégws in which the first stable representative serving foeast
do not see a conflict at Figure A-5, line F4, because thelocal timeout period will completeLOBAL-VIEW-CHANGE.
representative only collects Glob&krverState messagesTo completeGLOBAL-VIEW-CHANGE, this representative col-
that are contiguous. All stable servers construct the unitatts GlobalConstraintMessages from a majority of sites. The
message by completing Compu@obalUnion (line C3), representative sends a signed Colleg@dbalConstraints
and invoke THRESHOLD-SIGN on each Prepare Certificatemessage to all local servers (Figure 8, line D11). Since the
in the union. Since all valid Globa&erverState messagessite is stable, all stable servers receive this messageanwith
contained at mos® x W entries, there are at mo&t« W  one local message delay. If we extend the reign of the stable
entries in the union an@ x W Prepare Certificates in therepresentative that completed OBAL-VIEW-CHANGE by one
union. By Lemma B.3, all stable servers convert the Prepdozal message delay (by increasing the valuegof, then
Certificates into Proposals and invoOKeHRESHOLD-SIGN in all subsequent local views in this global view, a stable
on the union (line E2). By Lemma B.3, all stable servengpresentative will already have Glob@bnstraintMessages
generate the Globalonstraint message (line F2). from a majority of servers. We apply the same logic to all
Since gv; can be arbitrarily high, with the timeout periodsubsequent global views with a stable leader site to obiten t
increasing by at least a factor of two evely global view infinite set. ]
changes, there will eventually be enough time to complege th
bounded amount of computation and communication in theWe now show that if no global progress is made during the
protocol. We apply the same logic to all subsequent globalign of the stable representative that compleBAL-
views with a stable leader site to obtain the infinite setm VIEW-CHANGE, then a second stable representative that is
already globally constrained will serve for at least a local
Finally, we can prove Claim B.2: timeout period.

Proof: By Lemma B.9, the first stable representa- Lemma B.15: If the system is stable with respect to time
tive of some leader siteS can completeGLOBAL-VIEW- T, then there exists an infinite set of global views; in
CHANGE in a completion view v, lv) if CONSTRUCFARU which either global progress occurs during the reign of the
andCONSTRUCFGLOBAL-CONSTRAINT complete in bounded first stable representative at a stable leader site to servat f
finite time. By Lemmas B.12S can completecONSTRUCT least a local timeout period, or a second stable representat
ARU in bounded finite time. This message is sent to a stabte elected that serves for at least a local timeout period
representative in each non-leader site, and by Lemma B.A8Bd which already has a set consisting of a majority of
CONSTRUCTFGLOBAL-CONSTRAINT completes in bounded fi- Global Constraintgv;) messages upon being elected.
nite time. We apply this logic to all global views with stable
leader site abovgv, completing the proof. [ ] Proof: By Lemma B.14, there exists an infinite set of

global views in which, if no global progress occurs during th

We now show that either the first or the second stabieign of the first stable representative to serve at leastal lo
representative of the leader site serving for at least al lo¢eneout period, all subsequent stable representativemdyr
timeout period will make global progress, provided at leasiave a set consisting of a majority of Glob@bnstraint
one stable server receives an update that it has not préviousessages upon being elected. We now show that a second
executed. This then implies our liveness condition. stable representative will be elected.

We begin by showing that a stable representative of theBy Claim B.8, if no global progress is made, then the stable
leader site that completes OBAL-VIEW-CHANGE and serves leader site of some suchw will elect f + 3 representatives
for at least a local timeout period will be able to pass the before any stable server expires its Glabdimer, and at least
GlobalConstraint messages it collected to the other stabfer 2 of these representatives serve for at least a local timeout
servers. This implies that subsequent stable represesgatill period. Since there are at magtfaulty servers in the site, at
not need to run theLOBAL-VIEW-CHANGE protocol (because least two of these representatives will be stable. ]
they will already have the necessary Glakainstraint
messages and can become globally constrained) and car§ince globally ordering an update requires the serversan th
after becoming locally constrained, attempt to make pregyreleader site to be locally constrained, we prove the follgvin

lemma relating to theCONSTRUCFLOCAL-CONSTRAINT

Lemma B.14: If the system is stable with respect to timegrotocol:

T, then there exists an infinite set of global vieyus in which
either global progress occurs during the reign of the first Lemma B.16: If the system is stable with respect to time
stable representative at a stable leader site to serve feastt 7' and no global progress occrs, then there exists an infinite
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set of views §uv;, lv;) in which a run ofCONSTRUCFLOCAL- to max_stable_seq. We consider the global views in which
CONSTRAINT invoked by a stable representative of the leadéhis has already occurred.
site will complete at all stable servers in some boundedefinit When a stable server becomes globally constrained in
time, Ay.. some such viewju, it sets its PendindProposalAru variable
to its Globalaru (Figure 11, line F4), which is equal to
To prove Lemma B.16, we use the following two lemmasiaz_stable_seq, since reconciliation has already occurred. A
to bound the size of the messages sentCIONSTRUCT stable representative only increases its
LOCAL-CONSTRAINT: PendingProposalAru when it globally orders an update or
constructs a Proposal for the sequence number one highrer tha
Lemma B.17: If the system is stable with respect to timéts current Pending’roposalAru (Figure A-2, lines A5, A12,
T, no global progress is made, and all stable servers havaral C11). The stable representative does not globally order
Globalaru of maz_stable_seq, then no server in any stablean update forsraz_stable_seq + 1), since when the server
leader siteS has a Prepare Certificate or Proposal messaglebally ordered an update fémax_stable_seq+1), it would
in its LocalHistory data structure for any sequence numbéave increased its Gloh&lru and executed the update, which
greater thaniqaz_stable_seq + W). violates the definition ofnax_stable_seq. By Lemma B.17, no
server inS has a Prepare Certificate or a Proposal message for
Proof: We show that no server ir§ can have a any sequence number> (max_stable_seq + W). Thus, the
Prepare Certificate for any sequence numbé&r where stable representative’s PendiRgoposalAru can be at most
s’ > (maz_stable_seq + W). This implies that no server hasmaxz_stable_seq + W when invoking CONSTRUCFLOCAL-
a Proposal message for any such sequence nushb&nce a CONSTRAINT
Prepare Certificate is needed to construct a Proposal messagSince the representative @ is stable, it sends a Re-
If any server has a Prepare Certificate for a sequence numipeestLocal State message to all local servers, which arrives
s’ > (max_stable_seq + W), it collects a Pre-Prepare and awithin one local message delay. All stable servers have a
Prepare fron2f + 1 servers. Since at mogtservers inS are PendingProposalAru of at least maz_stable_seq and no
faulty, some stable server sent a Pre-Prepare or a Preparetore than {uaz_stable_seq + W). Thus, if a stable server’s
sequence numbetf. A correct representative only sends a Pré?endingProposalAru is at least as high as the invocation
Prepare message for those sequence numbers in its wind@guence number, it sends a LoBarverState message im-
(Figure 7, line A3). A non-representative server only seadsmediately (Figure 10, lines B5 - B7). Otherwise, the server
Prepare message for those sequence numbers in its wind@guests Proposals for those messages in the difference, of
since otherwise it would have a conflict (Figure A-6, linavhich there are at mosil. Since the site is stable, these
A23). This implies that some stable server has a window thaessages will arrive in some bounded time that is a function
starts aftermax_stable_seq, which contradicts the definition of the window size and the local message delay.
of max_stable_seq. [ ] By Lemma B.18, any valid LocaberverState message
contains at mosti’” entries. We show below in Claim B.11 that
Lemma B.18: If no global progress occurs, and all stablall correct servers have contiguous entries above the &tigwt
servers have a Glohalru of max_stable_seq when installing sequence number in their LocHistory data structures. From
a global viewgw, then if a stable representative of a leaddfigure A-11 Block A, the LocaBerverState message from
site S invokes CONSTRUCFLOCAL-CONSTRAINT in some a correct server will contain contiguous entries. The repre
local view (gv, lv), any valid LocalServerState message sentative will receive at leastf + 1 valid LocalServerState
will contain at mostiV entries. messages, since all messages sent by stable servers will be
valid. The representative bundles up the messages and sends
Proof: When the stable representative installed global LocalCollectedServersState message. All stable servers
view gv, it set PendingProposalAru to its Globalaru receive the LocaCollectedServersState message within one
(Figure 11, line F4), which ismaz_stable_seq. Since local message delay. The message will meet the conditionals
PendingProposalAru only increases, the stable representan Figure 10, lines D2 and D3, at any stable server that sent
tive invokes CONSTRUCFLOCAL-CONSTRAINT with a se- a LocalServerState message. They do not see a conflict at
quence number of at leashaz_stable_seq. A valid Lo- Figure A-6, line E4, because the representative only csllec
cal_ServerState message contains Prepare Certificates or Procal ServerState messages that are contiguous. All stable
posals for those sequence numbers greater than the inmocasiervers apply the LocalollectedServersState message to
sequence number (Figure A-6, line D6). By Lemma B.17, ribeir LocalHistory data structures.
server inS has a Prepare Certificate or Proposal for a sequencesince gv can be arbitrarily high, with the timeout period
number greater tham{az_stable_seq+ W), and thus, a valid increasing by at least a factor of two evely global view

message has at moBt entries. m changes, there will eventually be enough time for all stable
servers to receive the Requésical Server state message,
We now prove Lemma B.16: reconcile their LocaHistory data structures (if necessary)

and send a LocdberverState message, and process a Lo-
Proof: By Claim B.1, if no global progress is madecal CollectedServersState message from the representative.
then all stable servers eventually reconcile their Glodal Thus, there will eventually be enough time to complete the
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bounded amount of computation and communication in thiene. This intuition is encapsulated in the following lemma
protocol, and we can apply this argument to all subsequent
global views with stable leader sites to obtain the infinge s Lemma B.20: If the system is stable with respect to time
m 7T and no global progress occurs, then there exists a view
(gv, lv) in which, if ASSIGN-SEQUENCE and THRESHOLD-

The following lemma encapsulates the notion that all stab#eGN complete in bounded finite times, and all stable
servers will become globally and locally constrained diiortservers at all non-leader sites iNVOKBHRESHOLD-SIGN
after the second stable representative to serve for at &asin the same Proposal fromw, then if the ProgresRep
local timeout period is elected: invokesASSIGN-SEQUENCEat least once and is the update

on which it is first invoked, it will globally ordet: in (gv, lv).

Lemma B.19: If the system is stable with respect to time
T and no global progress occurs, then there exists an infinite Proof: By Claim B.1, if no global progress occurs,
set of views in which all stable servers become globalthen all stable servers eventually reconcile their Glaral
and locally constrained withim\;. time of the election of to max_stable_seq. We consider the global views in which
the second stable representative serving for at least a loitas has already occurred.
timeout period. Since the ProgreslRep has a Globaru of

max_stable_seq, it assigns v a sequence number of

Proof: By Lemma B.14, the second stable representativeaz_stable_seq + 1. SInCEASSIGN-SEQUENCEcompletes in

serving for at least a local timeout period will have a setome bounded, finite tima,.,, the ProgresRep constructs
of a majority of GlobalConstraint messages from its currenP(gv, lv, maz_stable_seq + 1, u), a Proposal for sequence
global view upon being elected. This server bundles up thembermaz_stable_seq + 1.
messages, signs the bundle, and send it to all local sersers éBy Claim B.8, if no global progress occurs, then a stable
a CollectedGlobalConstraints message (Figure 8, line D11yepresentative of the leader site can communicate withidesta
Since the site is stable, all stable servers receive theagessepresentative at each stable non-leader site in a global vi
within one local message delay and become globally cogw for some amount of timeQ,,, that increases by at least a
strained. The stable representative also invakessTRUCT factor of two everyN global view changes. Since we assume
LOCAL-CONSTRAINT upon being elected (line D6). Since wethat THRESHOLD-SIGN is invoked by all stable servers at
consider those global views in which reconciliation hasadly the stable non-leader sites and completes in some bounded,
occurred, Lemma B.16 implies that all stable servers becoffigte time, A;,,, there is a global view sufficiently large that
locally constrained within some bounded finite time. m (1) the leader site representative can send the Proposal P to

each non-leader site representative, (2) each non-ledger s

Since all stable servers are globally and locally consgémin representative can complet6RESHOLD-SIGN to generate an
the preconditions for attempting to make global progress ahccept message, and (3) the leader site representative can
met. We use the following term in the remainder of the proo€ollect the Accept messages from a majority of sites. ®

DEFINITION B.4: We say that a server isRrogressRep ~ We now show that, if no global progress occurs and
if (1) it is a stable representative of a leader site, (2) iveg Some stable server received an update that it had not previ-
for at least a local timeout period if no global progress igusly executed, then some Progr&pwill invoke ASSIGN-
made, and (3) it can cause all stable servers to be globa#FQUENCE We assume that the reconciliation guaranteed
and locally constrained withid\;. time of its election. by Claim B.1 has already completed (i.e., all stable servers

have a Globahru equal tomax_stable_seq). From the pseu-

The remainder of the proof shows that, in some view, tH#ocode (Figure 7, line Al), the ProgreRep invokesAssSIGN-
ProgressRep can globally order and execute an update thatGtOBAL-ORDER after becoming globally and locally con-
has not previously executed (i.e., it can make global psgjrestrained. The Progresgep calls GeNextTo_Propose to get
if no global progress has otherwise occurred. the next updatey, to attempt to order (line A4). The only

We first show that there exists a view in which thé&ase in which the Progresgep will not invoke ASSIGN-
ProgressRep has enough time to complete thessiGN- SEQUENCEIiS whenw is NULL. Thus, we must first show
GLOBAL-ORDER protocol (i.e., to globally order an update)that GetNext To_Propose will not return NULL.
assuming it invokes ASSIGN-SEQUENCE To complete Within GetNext. To_Propose, there are two possible cases:
ASSIGN-GLOBAL-ORDER, the Progres®ep must coordinate 1) Sequence numbenax_stable_seq + 1 is constrained:
the construction of a Proposal message, send the Proposal The Progres®ep has a Prepare-Certificate or Proposal
message to the other sites, and collect Accept messages from in LocalHistory and/or a Proposal in Glohgistory for
|N/2] sites. As in the case of theLOBAL-VIEW-CHANGE sequence numbenax_stable_seq + 1.
protocol, we leverage the properties of the global and local2) Sequence numbenax_stable_seq+1 is unconstrained.
timeouts to show that, as the stable sites move through globawe show that, ifmaz_stable_seq+ 1 is constrained, then
views together, the Progrefep will eventually remain in is an update that has not been executed by any stable server.
power long enough to complete the protocol, provided eathmax_stable_seq + 1 is unconstrained, then we show that if
component of the protocol completes in some bounded, finday stable server in sit§ received an update that it had not
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executed after the stabilization time, theris an update that A correct server will not invoke THRESHOLD-SIGN

has not been executed by any stable server. to create a Proposal message unless a corresponding
To show that the update returned by (uxt To_Propose Prepare-Certificate exists. Therefore, it follows that, if

is an update that has not yet been executed by any staBtepare-Certificate(, lv, seq’, w) cannot exist, then

server, we must first show that the same update canfspposalfv, lv, seq’, u) cannot exist. [

be globally ordered for two different sequence numbers.

Claim B.10 states that if a Global@rderedUpdate exists =~ We now use Invariant A.1 frorRroof of Safety

that binds update: to sequence numbefeq, then no other

Globally.OrderedUpdate exists that binds to seq’, where  Let Pgv, lv, seq, u) be the first threshold-signed Proposal

seq # seq’. We use this claim to argue that if a servefessage constructed by any server in leader Siter se-

globally orders an update with a sequence number abovedtence numbeseq in global view gv. We say that Invariant

Globalaru, then this update could not have been previoudlyl holds with respect to P if the following conditions hold

executed. It follows immediately that if a server globallyn leader siteS in global view gv:

orders any update with a sequence number one greater than it) There exists a set of at leagt+ 1 correct servers

Globalaru, then it will update execute this update and make with a Prepare Certificate P&@( [v', seq, u) or

global progress. We now formally state and prove Claim B.10. a Proposalfv, v/, seq, u), for v > lv, in

their LocalHistory[seq] data structure, or a Glob-

Claim B.10: If a Globally.OrderedUpdategeq, u) exists, ally_OrderedUpdatefv’, seq, u), for gv" > gv, in their
then there does not exist a GlobaBrderedUpdateéeq’, v), GlobalHistory[seq] data structure.
whereseq # seq’. 2) There does not exist a server with any conflicting

Prepare Certificate or Proposal from any view,(lv'),
We begin by showing that, if an update is bound to a  With lv' > lv, or a conflicting GloballyOrderedUpdate
sequence number in either a Pre-Prepare, Prepare-Céetifica  from any global viewgv’ > gv.
Proposal, or GloballyOrderedUpdate, then, within a local
view at the leader site, it cannot be bound to a different We use the Invariant A.1 to show that if a
sequence number. Proposal§v, v, seq, u) is constructed for the first time
in global view gv, then a constraining entry that bindsto
Lemma B.21: If in some global and local viewsg(, lv) seq will exist in all views (gv, [v), wherelv’ > lv.
at least one of the following constraining entries existhe t

Global History or LocalHistory of f + 1 correct servers: Lemma B.22: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in leader

site S binding updateu to sequence numbeteq in global
view gv. No other Proposal binding: to seq’ can be
constructed in global viewv, whereseq # seq’.

1) Pre-Prepare(, lv, seq, u)

2) Prepare-Certificate(*, *seq, u)

3) Proposal(*, *,seq, u)

4) Globally OrderedUpdate(*, *, seq, w)

Then, neither a Prepare-Certificate( lv, seq’, u) nor Proof: We show that Invariant A.1 holds within the
a Propo§ag(v, lv, seq’, u) can be constructed, wheresame global view irProof of SafetyWe now show that two
seq # seq’. Proposals having different sequence numbers ttwedsame

update cannot be created within the same global view.

Proof: When a stable server receives a Pre- From Lemma B.21 , if Proposat(, v, seq, u), P,
Preparefv, lv, seq, u), it checks its GlobaHistory and is constructed, then no constraining entries bindingo
Local History for any constraining entries that contains update’ exist in (gv, lv). Therefore, from Invariant A.1, no
u. Lemma B.21 lists the message types that are examingdoposalv, v/, seq’, u), P’ could have been constructed,
If there exists a constraining entry binding updatéo seq’, wherelv” < lv. This follows, because, iP’ was constructed,
whereseq # seq’, then Pre-Preparg, is ignored (Figure A-6, then Invariant A.1 states that a constraint bindingo seq’
lines 25-26). would exist in view v, lv), in which caseP could not

A Prepare-Certificate consists aff Prepares and a Pre-have been constructed. In summary, we have proved that if

Prepare message. We assume that there are no moref than, bindingu to seq, is constructed for the first time in some
malicious servers and a constraining entry bindisigy( ), b, local view in gv, thenno other proposal binding: to seq’
exists, and we show that there is a contradiction if Prepafgas constructed in global vieww or earlier.
Certificategv, lv, seq’, u), pc, exists. At leastf + 1 correct We assume that we creafé From Invariant A.1, afterP
servers must have contributedjie. By assumption (as statedwas constructed, constraining messages will exist in atllo
in Lemma B.21), at least + 1 correct servers have constrainviews > [v. These constraining messages will always bind
ing entryb. This leave2 f servers (at mosf that are malicious « to seq. Therefore, from Lemma B.21 no Proposal can be
and the remaining that are correct) that do not Heared could constructed that binds to a different sequence number than
contribute topc. Therefore, at least one correct server that had P in any local viewlv’, wherelv’ > lv. [ |
constraintb must have contributed toc. It would not do this
if it were correct; therefore, we have a contradiction. We now use Invariant A.2 frorroof of Safetyn a similar
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argument: that this was not possible, becau§e was constructed. In
summary, we have proved that @, binding u to seq, is
Let u be the first update globally ordered by any serveronstructed for the first time in some global vigw, thenno
for sequence numbeteq, and letgv be the global view in Globally.OrderedUpdate bindingu to seq’ was constructed
which v was globally ordered. Let B(, lv, seq, u) be the in global viewguv or earlier.
first Proposal message constructed by any server in therleadeNe assume that we constru@t Invariant A.2, implies that
site in gv for sequence numbeeq. We say that Invariant A.2 in all global views> gv, constraining messages, bindingo
holds with respect to P if the following conditions hold: seq, will exist in at leastf + 1 servers at the leader site when
1) There exists a majority of sites, each with at leAst1 a leader site constructs a Proposal. Therefore, from Lemma
correct servers with a Prepare Certificgie(v’, seq, u), B.21 no Proposal can be constructed that binds a different
a Proposalfv’, *, seq, u), or a sequence number than keq in any local viewlv’, where
Globally_OrderedUpdategv’, seq, u), with gv’ > gv v > lv. [ |
andlv’ > lv, in its GlobalHistory[seq] data structure.
2) There does not exist a server with any We now return to the first case within GRext To_Propose,
conflicting Prepare Certificatg{’, v, seq, u'), where (mazx_stable-seq + 1) is constrained at the

Proposal§v’, * seq, u'), or Glob- ProgresRep.
ally_OrderedUpdategv’, seq, u'), with gv’ > gv,
' > v, andu’ # . Lemma B.24: If sequence numbémaz_stable_seq+1) is

constrained when a ProgreRep calls GefNext To_Propose,

We use the Invariant A.2 to show that ifthen the function returns an updatehat has not previously
Globally.OrderedUpdategv, lv, seq, w) is constructed, been executed by any stable server.
then there will be a majority of sites where at legst+ 1
correct servers in each site have a constraining entry that Proof: ~ From Figure A-8 lines A2 - A5, if
binds u to seq in all global views greater than or equal to(maz_stable_seq + 1) is constrained at the ProgreRBep,
gv. From this, it follows that any set of Gloh&lonstraint then GetNextTo_Propose returns the updaiteto which the
messages from a majority of sites will contain an entry thaequence number is bound.
bindsu to seq. We assume that: has been executed by some stable

server and show that this leads to a contradiction. Since

Lemma B.23: Let G(gv, lv, seq, u) be the first was executed by a stable server, it was executed with some
Globally OrderedUpdate constructed by any server. Nsequence numbes less than or equal tonax_stable_seq.
other Prepare-Certificate or Proposal bindimgo seq’ can By Lemma B.23, ifu has already been globally ordered
be constructed. with sequence numbes#, no Prepare Certificate, Proposal,

or Globally OrderedUpdate can be constructed for any other
Proof: We show that Invariant A.2 holds across globadequence numbef (which includes(max_stable_seq + 1)).
views in Proof of Safety We now show that if Glob- Thus, the constraining updatecannot have been executed by
ally_OrderedUpdategw, lv, seq, u), G, is constructed at any any stable server, since all executed updates have alresay b
server, then no Prepare-Certificate or Proposal havingréiit globally ordered. ]
sequence numbers atite sameupdate can exist.

If G exists, then Proposal(, (v, seq, w), P, must We now consider the second case within
have been created. From Lemma B.21, if was con- GetNextTo_Propose, in which (mazx_stable_seq + 1)
structed, then no constraining entries bindingto seq’ is unconstrained at the ProgreRsp (Figure A-8, lines A6
exist in (gv, lv). Therefore, from Invariant A.2, no Glob-- A7). In this part of the proof, we divide the Upda@ol
ally_OrderedUpdategv, lv”, seq’, u), G’ could have been data structure into two logical parts:
constructed, wherév” < [v. This follows, because, it7’
was constructed, then Invariant A.1 implies that a constrai DEFINITION B.5: We say an update that was added to
bindingu to seq’ would exist in views §v, lv), in which case the UpdatePool is in a logicalunconstrained.Updates data
G could not have been construct&toof of Satefyproves this structure if it does not appear as a Prepare Certificate,
in detail. To summarize, if a majority of sites each have aste Proposal, or GloballOrderedUpdate in either the
f + 1 correct servers that have a global constraining entry, Local History or GlobalHistory data structure.
then these sites would all generate GloBainstraint messages
that includeb. To become globally constrained, correct servers We begin by showing that, if some stable server in site
must apply a bundle of Globh&onstraint messages fromR received an update that it had not previously executed,
a majority of sites, which includes one Glob@bnstraint then either global progress occurs or the ProgReys of
message that contairts A correct server will never send R eventually hasu either in its Unconstrainedpdates
a Prepare or Pre-Prepare message without first becomitada structure or as a Prepare Certificate, Proposal, or
globally constrained. Therefore, &' was constructed, then Globally OrderedUpdate  constraining some sequence
there would have been a constraint bindingto seq’ in  number.
the site whereGG was constructed. We have already shown
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Lemma B.25: If the system is stable with respect to timdgo a contradiction: since: is constraining some sequence
T, and some stable serverin site R receives an update number in the ProgredRep’s data structures other than
that it has not previously executed at some tiftie> T', then (max_stable_seq + 1), some other new update necessar-
either global progress occurs or there exists a view in whicly constrains (max_stable_seq + 1). This implies that if
if sequence numbefmazx_stable_seq + 1) is unconstrained (mazx_stable_seq+ 1) is unconstrained at the ProgreRsp,u
when a ProgresRep calls GeNextTo_Propose, then the mustbe in the Unconstrainedpdates data structure. In this
ProgresRep haswu either in its Unconstrainetpdates case, GefNext To_Propose will return either or some other
data structure or as a Prep&ertificate, Proposal, or unconstrained update that has not yet been executed by any
Globally_OrderedUpdate. stable server.

To aid in proving this, we introduce the following terms:

Proof: If any stable server previously executedthen
by Claim B.1, all stable servers (including will eventually DEFINITION B.6: We say that a Prepare Certificate,
execute the update and global progress occurs. Proposal, or GloballOrderedUpdate is a constraining

When server receivesu, it broadcasta: within its site, entry in the LocalHistory and GlobaHistory data structures.

R (Figure A-1, line F2). Sincer is stable, all stable servers

receiveu within one local message delay. From Figure A- DEFINITION B.7: We say that a server isontiguous

1, line F5, they place: in their Unconstrained)pdates data if there exists a constraining entry in its Loddistory or

structure. By definitiony is only removed from the Uncon- GlobalHistory data structures for all sequence numbers up

strainedUpdates (although it remains in the Upd#eol) if to and including the sequence number of the server’s highest

the server obtains a Prepare Certificate, Proposal, or Glaienstraining entry.

ally_OrderedUpdate bindingu to a sequence number. If the

server later removes this binding, the update is placed backVe will now show that all correct servers are always

into the Unconstrainetlpdates data structure. Sineeonly contiguous. Since correct servers begin with empty data

moves between these two states, the lemma holds. ® structures, they are trivially contiguous when the system
starts. Moreover, all LocaCollectedServersState and

Lemma B.25 allows us to consider two cases, in whidBollectedGlobalConstraints bundles are empty until the first
some new update, received by a stable server in sife, view in which some server collects a constraining entry. We
is either in the Unconstrainedpdates data structure of thenow show that, if a server begins a view as contiguous, it
ProgressRep, or it is constraining some other sequenceill remain contiguous. The following lemma considers data
number. Since there are an infinite humber of consecutiggucture modifications made during normal case operation;
views in which a ProgresRep exists, we consider those viewspecifically, we defer a discussion of modifications madado t
in which R is the leader site. We first examine the former casdata structures by applying a Lod@bllectedServersState

or CollectedGlobalConstraints message, which we consider
Lemma B.26: If the system is stable with respect to timebelow.
T, and some stable serverin site R receives an update
that it has not previously executed at some tiftie> T, then Lemma B.27: If a correct server is contiguous before
if no global progress occurs, there exists a view in whiclmserting a constraining entry into its data structure
if sequence numbefmax_stable_seq + 1) is unconstrained that is not part of a LocaCollectedServersState or
when a ProgresRep calls GelNext To_Propose and: is in CollectedGlobalConstraints message, then it is contiguous
the Unconstrainetpdates data structure of the Progr&ep, after inserting the entry.
GetNext.To_Propose will return an update not previously
executed by any stable server. Proof: There are three types of constraining entries that
must be considered. We examine each in turn.

Proof: By Lemma B.25,u is either in the Uncon- When a correct server inserts a Prepare Certificate into
strainedUpdates data structure of the Progr&ep or it is either its LocalHistory or GlobalHistory data structure, it
constraining some other sequence number. Sini® in the collects a Pre-Prepare adl corresponding Prepare messages.
UnconstrainedUpdates data structure of the Progr&ep and From Figure A-1, lines B2 - B33, a correct server ignores
(maz_stable_seq+ 1) was unconstrained, or some other un- a Prepare message unless it has a Pre-Prepare for the same
constrained update will be returned from G¢&txt To_Propose sequence number. From Figure A-6, line A21, a correct server
(Figure A-8, line A7). The returned update cannot have besmes a conflict upon receiving a Pre-Prepare unless it is
executed by any stable server, since by Claim B.1, all staldlentiguous up to that sequence number. Thus, when the server
servers would have executed the update and global progresiects the Prepare Certificate, it must be contiguous tipetb
would have been made. E sequence number.

Similarly, when a server in a non-leader site receives a

We now examine the case in whidaz_stable_seq + Proposal message with a given sequence number, it only
1) is unconstrained at the ProgreRep, but the new up- applies the update to its data structure if it is contiguops u
date w is not in the Unconstrainedpdates data structureto that sequence number (Figure A-5, line A9). For those
of the Progres®kep. We will show that this case leadsservers in the leader site, a Proposal is generated when the
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THRESHOLD-SIGN protocol completes (Figure 6, lines D2 andemoves all constraining entries above the highest seguenc
D3). Since a correct server only invok@sSIRESHOLD-SIGN humber for which a constraining entry appeared in the union,

when it collects a Prepare Certificate (line C7), the serter @and thus it will still be contiguous. ]
least has a Prepare Certificate, which is a constraining entr
that satisfies the contiguous requirement. We now use a similar argument to show that any contiguous

A correct server will only apply a GloballprderedUpdate server applying a
to its GlobalHistory data structure if it is contiguous up toCollectedGlobalConstraints message to its data structure
that sequence number (Figure A-2, line C2). will be contiguous after applying:

During CONSTRUCFARU OF CONSTRUCFGLOBAL-
CONSTRAINT, a server converts its Prepare Certificates to Lemma B.29: If all correct servers are contiguous during
Proposals by invokingHRESHOLD-SIGN, but a constraining a run of GLOBAL-VIEW-CHANGE, then any contiguous
entry still remains for each sequence number that was inserver applying the resultant Collect&obalConstraints
Prepare Certificate after the conversion completes. B message to its data structure will be contiguous after apgly

The only other time a contiguous server modifies its data Proof: Using the same logic as in Lemma B.28
structures is when it applies a LodabllectedServersState (but using the GlobaHistory and Globahkru instead
or CollectedGlobalConstraints message to its data structuresf the LocalHistory and PendindProposalAru), any
We will now show that the union computed on any LoGlobalConstraint message generated will contain contigu-
calCollectedServersState or CollectedSlobalConstraints ous entries beginning directly above the invocation segeien
message will result in a contiguous set of constrainingi@htr number contained in the leader site’s Avlessage. The
directly above the associated invocation sequence nuMger. CollectedGlobalConstraints message thus consists of a ma-
will then show that, if a contiguous server applies the tasutl jority of GlobalConstraints messages, each with contigu-
union to its data structure, it will be contiguous after afipd.  ous constraining entries beginning directly above the -nvo

We begin by showing that any valid Lo-cation sequence number. When CompGtnstraintUnion
cal CollectedServersState message contains contiguous run (Figure A-2, line D2), the resultant union will
constraining entries beginning above the invocation secgie be contiguous. A contiguous server only applies the Col-
number. lectedGlobalConstraints message if its Globalu is at least

as high as the invocation sequence number reflected in the

Lemma B.28: If all correct servers are contiguousmessages therein (Figure A-5, lines H5 - H6), and thus
during a run of CONSTRUCFLOCAL-CONSTRAINT, it is contiguous up to that sequence number. When Com-
then any contiguous server that applies the resultgmite ConstraintUnion is applied (Figure A-12, Blocks E and
Local CollectedServersState message will be contiguousd) the server only removes constraining entries for those

after applying. sequence numbers above the sequence number of the highest
constraining entry in the union, and thus the server remains
Proof: A correct server sends a Loc8krverState contiguous after applying. ]

message in response to a

RequesiLocal State message containing some invocation se-We can now make the following claim regarding contiguous

guence numbegeq (Figure 10, line B7). The server includesservers:

all constraining entries directly abogeq (Figure A-11, Block

A). Each LocalServerState message sent by a contiguous Claim B.11: All correct servers are always contiguous.

server will therefore contain contiguous constrainingriest

beginning atseq + 1. The representative collec®f + 1 Proof: When the system starts, a correct server has

LocalServerState messages. By Figure A-6 line E4, eadmo constraining entries in its data structures. Thus, it is

Local ServerState message collected is enforced to be comivially contiguous. We now consider the first view in

tiguous. When the LocaCollectedServersState bundle is which any constraining entry was constructed. Since no

received from the representative, it contafs+ 1 messages, constraining entries were previously constructed, any Lo-

each with contiguous constraining entries beginningeat-1.  cal CollectedServersState or Collectedslobal Constraints

The LocalCollectedServersState message is only appliednessage applied during this view must be empty. By Lemma

when a server’s Pendid@roposalAru is at least as high as theB.27, a contiguous server inserting a Prepare Certificate, P

invocation sequence number contained in the messagesiwithdsal, or GloballyOrderedUpdate into its data structure dur-

(Figure 10, lines D3 - D4). Since the PendiRgoposalAru ing this view remains contiguous. Thus, wheDNSTRUCF

reflects Proposals and GlobalrderedUpdates, the server LOCAL-CONSTRAINT Or GLOBAL-VIEW-CHANGE are in-

is contiguous up to and including the invocation sequenweked, all correct servers are still contiguous. By Lemma

number when applying. B.28, any contiguous server that becomes locally constdain
When Computd.ocalUnion is computed on the bundleby applying a LocalCollectedServersState message to its

(Figure A-1, line D2), the result must contain contiguoudata structure remains contiguous after applying. By Lemma

constraining entries beginning a&tq + 1, since it is the union B.29, any contiguous server that becomes globally comstdai

of contiguous messages. After applying the union, the senl®y applying a CollectedslobalConstraints message remains
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contiguous after applying. Since these are the only caseswhere a stable representative, in the leader siteS has

which a contiguous server modifies its data structures, tBdobalConstraintgv) messages from a majority of sites.

claim holds. B Serverr will send construct and send a
CollectedGlobalConstraintsqv) to all stable servers ir5.

We can now return to our examination of theThe servers become globally constrained when they process
GetNextTo_Propose function to show that, ifthis message. From Lemma B.16, all stable serveiS ill
(maz_stable_seq + 1) is unconstrained at the ProgreRep, become locally constrained. To summarize, there existe\a Vi
then some new update must be in the Unconstraiedates (gv, lv) in which:

data structure of the ProgreBep. 1) Stable  representatve r has sent Col-

] ) ] lectedGlobal Constraints and a
Lemma B.30: If the system is stable with respect to time LocalCollectedServersState message to all stable

T, and some stable serverin site R receives an update servers. This message arrives at all stable servers in
that it has not previously executed at some tﬁ?ig> T, then. one local area message delay.

if no global progress occurs, there exists a view in which, 2y A staple servers inS have processed the constrain
if sequence numbefmaz stable_seq + 1) is unconstrained collections sent by the representative, and, therefore, al
when a ProgresRep calls GeNext To_Proposey must be in stable servers ¥ are globally and locally constrained.

the Unconstrained)pdates data structure of the Progr&ep. .
We now proceed to prove thatssSIGN-SEQUENCE will

Proof: Since the ProgresRep is a stable, correct Servercomplete in a finite time in two steps. First we show that
by Claim B.11, it is contiguous. This imp’Iies that sincéhe protocol will complete if there are no conflicts when the
(maa_stable_seq+1) is unconstrained, the ProgreBep does stable servers process the Pre-Prepare messagerfrohen

not have any constraining entry (i.e., Prepare Certifidate; we show th‘?‘t there will be no conflicts. .
posal, or GloballyOrderedUpdate) for any sequence number When r invokes ASSIGN-SEQUENCE it sends a Pre-
higher than(maz_stable_seq + 1). By Lemma B.25u must Preparegu, lv, seq, u) 10 all servers in sites (Figure 6,

either be in the Unconstrainddpdates data structure or aé_'ne A2). All stable servers inS' will receive this message )
a constrained entry. It is not a constrained entry, since tfpone local area message delay. When a non-representative

ProgresRep has a Globaaru of maz_stable_seq and has stable server receives a Pre-Prepare message (and there is

not executedu (since otherwise progress would have bediC conflict), it will send a Prepargq, lv, seq, u) message

made). Thusy must appear in the Unconstrainghdates data to all servers inS (line B3). Therefore, since there apef
structure. stable servers that are not the representative, all steblers

in S will receive 2f Prepare messages and a Pre-Prepare
gnessage fordv, lv, seq, u) (line C3). This set of2f + 1
time 7, and some stable server in site R receives an Messages forms a Prepare-Certifigate(v, seq, u), pc. When

updateu that it has not previously executed at some tim@ Stable server receives;, it invokes THRESHOLD-SIGN on
T' > T, then if no global progress occurs, there exists &' Unsigned Proposgl{, lv, seq, u) message (line C7). By
infinite set of views in which, if the Progrestep invokes Claim B.3,THRESHOLD-SIGN will return a correctly threshold

GetNextTo_Propose, it will return an update that has not Signed Proposaje, lv, seq, u) message to all stable servers.
been executed by any stable server. Now we must show that there are no conflicts when stable

servers receive the Pre-Prepare message frointuitively,
Proof: Follows immediately from Lemmas B.26 andthere will be no conflicts because the representative of the
B.30. m 'eader site coordinates the constrained state of all stzlers
in the site. To formally prove that there will not be a conflict

Corollary B.31 implies that there exists a view in which #/hen a stable server receives a Pre-Preparé(, seq, u),
ProgressRep will invoke ASSIGN-SEQUENCEWith an update Preprep from r, we consider block A of Figure A-6. We
that has not been executed by any stable server, since it ddddress each case in the following list. We first state the
so when GeNextTo_Propose does not return NULL. wecondition that must be true for there to be a conflict, then,
now show that there exists an infinite set of global views ffter & colon, we state why this case cannot occur.
which ASSIGN-SEQUENCE will complete in some bounded 1) not locally constrained or not globally constrainedniro
finite time. the above argument, all servers are locally and globally

constrained

Lemma B.32: If global progress does not occur, and the 2) preprep is not from r: in our scenario,r sent the

Corollary B.31: If the system is stable with respect t

system is stable with respect to tin#, then there exists message

an infinite set of views in which, if a stable server invokes 3) gv # Globalview orlv # Localview: all servers in site
ASSIGN-SEQUENCE wWhen Globalseq = seq, then ASSIGN- S are in the same local and global views
SEQUENCE will return Proposal with sequence numbery 4) There exists a LocaHistory[seq].Pre-
in finite time. Preparequ, lv, seq, u'), where v’ # w: If there

are two conflicting Pre-Prepare messages for the same
Proof: From Lemma B.14, there exists a viewu( (v) global and local views, then the representative at the
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leader site must have generated both messages. This will send a Pre-Prepargq(, v, seq, u) than doesn’t

will not happen, because is a correct server and will
not send two conflicting Pre-Prepares.

There exists either a Prepare-Certificate(v, seq, u’)

or a Proposalfv, lv, seq, u') in LocalHistory[seq],
whereu’ # u: A correct representative makes a single
Local CollectedServersState messagégss. All stable
servers become locally constrained by applyilgs
to their local data structures. Block D of Figure A-1
shows how this message is processed. First, the union is
computed using a deterministic function that returns a
list of Proposals and Prepare-Certificates having unique
sequence numbers. The union also contains the invoca-

tion aru, the aru on which it was invoked. On Lines D5 - 8)

D11, all Pre-Prepares, Prepare-Certificates, and Propos-
als with local views< [v (wherelv is the local view

of both the server and the Loc&bllectedServersState
message) are removed from the Lakhastory. Since
no Pre-Prepares have been created gm, (lv), no
Prepare-Certificates or Proposals exist with higher local
views thanlv. Then, on D12 - D17, all Proposals
and Prepare-Certificates in the union are added to the
Local History. Since all stable servers compute iden-
tical unions, these two steps guarantee that all stable

7

9)

conflict with the GlobalHistory of any stable server in

S.

The server is not contiguous up 4eq: A correct server
applies the same

LocalCollectedServersState and Col-
lectedGlobal Constraints messages as Therefore,

as described in the previous two cases, the correct
server has the same constraints in its Lddatory

and GlobalHistory asr. By Lemma B.11, all correct
servers are contiguous. Therefore, there will never be a
conflict when a correct server receives an update from
r that is one above’s Globalaru.

seq is not in the servers window: If there is no global
progress, all servers will reconcile up to the same global
sequence numbenax_stable_seq. Therefore, there will

be no conflict when a correct server receives an update
from r that is one above’s Globalaru.

There exists a constraint binding updateo seq’ in
either the LocaHistory or

GlobalHistory: Since a correct server applies the same
LocalCollectedServersState and

CollectedGlobal Constraints messages asthe correct
server has the same constraints in its Lddatory and

GlobalHistory asr. Representative will send a
Pre-Prepare(*, *,seq, u) where either (L)u is in r's
unconstrained update pool or (&)is constrained. Ifu

is constrained, then from Lemmas B.21, B.22, and B.23
the © must be bound teeq at bothr and the correct
server. This follows because two bindingsq, «) and
(seq’, w) cannot exist in any correct server.

servers will have identical Localistory data structures
after they applylcss. A correct representative will
never invokeasSIGN-SEQUENCESuch that it sends Pre-
Prepare(*, *,seq’, *) where seq’ < the invocation aru.
Therefore, when invokes ASSIGN-SEQUENCE it will
send a Pre-Preparg(, lv, seq, u) that doesn't conflict
with the LocalHistory of any stable server if.

There exists either a Proposal( lv, seq, u) We have shown that a Pre-Prepare sent: lill not cause
or a GloballyOrderedUpdategv, lv, seq, ') in  a conflict at any stable server. This follows from the fact tha
GlobalHistory[seq], where v’ # wu: A correct repre- the local and global data structures of all stable servelidwi
sentative makes a single Collect€obalConstraints in the same state for any sequence number wheends Pre-
messagecge. All stable servers become globally conPrepareqv, lv, seq, u), as shown above. Therefore, Prepare
strained by applyingcge to their global data struc- messages sent by stable servers in response to the first Pre-
tures. Block D of Figure A-2 shows how this messagerepare message sent byin (gv, lv) will also not cause

is processed. First, the union is computed using gonflicts. The arguments are parallel to those given in betai
deterministic function that returns a list of Proposal# the above cases.

and GloballyOrderedUpdates having unique sequence We have shown that Pre-Prepare and Prepare messages sent
numbers. The union also contains the invocation aru, thg the stable servers will not cause conflicts when received
aru on whichGLOBAL-VIEW-CHANGE was invoked. On by the stable servers. We have also shown thasIGN-
Lines D5 - D9, all Prepare-Certificates and ProposassqQuENCE will correctly return a Proposal message if this
with global views < gv (where gv is the local view is true, proving Lemma B.20. ]

of both the server and the Collect&lobal Constraints

message) are removed from the Glablidtory. Any Having shown thahssIGN-SEQUENCEWill complete in a
Pre-Prepares or Proposals that have global views eqfinite amount of time, we now show that the stable non-leader
to gv must also be in the union and be consistesites will construct Accept messages in a finite time. Since
with the entry in the union. Then, on D10 - D14, allClaim B.3 states thatHRESHOLD-SIGN completes in finite
Proposals and Globall@rderedUpdates in the union time if all stable servers invoke it on the same message,
are added to the Glohalistory. Since all stable serverswe must simply show that all stable servers will invoke
compute identical unions, these two steps guarantee ti&RESHOLD-SIGN upon receiving the Proposal message
all stable servers will have identical Globldistory data generated byzSSIGN-SEQUENCE

structures after they apphgyc. A correct representative

will never invokeASSIGN-SEQUENCESuch that it sends Lemma B.33: If the system is stable with respect to tirfiie
Pre-Prepare(*, *seq’, *) where seq’ < the invocation and no global progress occurs, then there exists an infigite s
aru. Therefore, whem invokesASSIGN-SEQUENCE it  of views (gv, Iv) in which all stable servers at all non-leader
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sites invokeTHRESHOLD-SIGN on a Proposalv, *, seq, v). and THRESHOLD-SIGN complete in bounded time (where
THRESHOLD-SIGN is invoked both during\SSIGN-SEQUENCE
Proof: We consider the global views in which alland at the non-leader sites upon receiving the Proposal). By
stable servers have already reconciled their Glaival to Lemma B.32,ASSIGN-SEQUENCEWiIll complete in bounded
max_stable_seq and in which a ProgresRep exists. By finite time, and by Lemma B.33[HRESHOLD-SIGN will be
Corollary B.31, the Progred®ep will invoke ASSIGN- invoked by all stable servers at the non-leader sites. BinCla
SEQUENCEWhen Globalseq is equal tonax_stable_seq+ 1. B.3, THRESHOLD-SIGN completes in bounded finite time in
By Lemma B.32, there exists an infinite set of views ithis case. Thus, the ProgreRep will globally order the
which AssIGN-SEQUENCEWill return a Proposal in boundedupdate for sequence numbénaz_stable_seq + 1). It will
finite time. By Claim B.8, there exists a view in which thehen execute the update and make global progress, congpletin
ProgressRep has enough time to send the Proposal to a stabiie proof. ]
representative in each stable non-leader site.
We must show that all stable servers in all stable non-leader
sites will invoke THRESHOLD-SIGN on an Accept message
upon receiving the Proposal. We first show that no conflict
will exist at any stable server. The first two conflicts cannot
exist (Figure A-5, lines A2 and A4), because the stable serve
is in the same global view as the stable servers in the leader
site, and the server is in a non-leader site. The stable rserve
cannot have a GloballprderedUpdate in its GlobaHistory
data structure for this sequence number (line A6) because
otherwise it would have executed the update, violating the
definition of max_stable_seq. The server is contiguous up
to (max_stable_seq + 1) (line A9) because its Globalru
is max_stable_seq and it has a GloballfOrderedUpdate
for all previous sequence numbers. The sequence num-
ber is in its window (line All) sincenax_stable_seq <
(max_stable_seq + 1) < (max_stable_seq + W).
We now show that all stable servers will apply the Proposal
to their data structures. From Figure A-2, Block A, the serve
has either applied a Proposal from this view already (from
some previous representative), in which case it would have
invoked THRESHOLD-SIGN when it applied the Proposal, or
it will apply the Proposal just received because it is froma th
latest global view. In both cases, all stable servers haxakad
THRESHOLD-SIGN on the same message. [ |

Finally, we can prove L1 6LOBAL LIVENESS:

Proof: By Claim B.1, if no global progress occurs,

then all stable servers eventually reconcile their Glabal
to max_stable_seq. We consider those views in which this
reconciliation has completed. By Lemma B.19, there exists
an infinite set of views in which all stable servers become
globally and locally constrained within a bounded finite éim
A, of the election of the second stable representative serving
for at least a local timeout period (i.e., the ProgrBep). After
becoming globally and locally constrained, the ProgiRsp
calls GetNextTo_Propose to get an update to propose for
global ordering (Figure 7, line A4). By Corollary B.31, teer
exists an infinite set of views in which, if some stable server
receives an update that it has not previously executed and no
global progress has otherwise occurred, Sekt To_Propose
returns an update that has not previously been executed by
any stable server. Thus, the Progr&sep will invokeASSIGN-
SEQUENCE(Figure 7, line AB6).

By Lemma B.20, some ProgreBep will have enough
time to globally order the new update ASSIGN-SEQUENCE



