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Abstract

This paper presents a hierarchical replication architec-
ture, tailored to systems that span multiple wide-area sites,
that enables free substitution of the fault tolerance method
used in each position of the hierarchy. This unique ap-
proach enables customization based on perceived risks, bal-
ancing performance and fault tolerance, by deploying ei-
ther a Byzantine or a benign fault-tolerant protocol at each
site and in each level of the hierarchy. An implementation
of four different compositions is evaluated over wide-area
networks.

1 Introduction

As network environments become increasingly hostile,
even well-protected distributed information systems, con-
structed with security in mind, are likely to be compro-
mised. Some estimate the number of new compromised
zombie nodes on the Internet per day to be as high as
250,000 [1]. It seems very likely that some of these zombies
serve important functions in critical systems. Thus, thereis
a significant need for information systems that can function
correctly even when an adversary gains control over part of
the system.

Our previous work, Steward [4], was the first system
to efficiently scale Byzantine replication to wide-area net-
works that span multiple sites, each consisting of several
servers. Steward uses a hierarchical architecture in which
Byzantine fault-tolerant protocols are run among the servers
in each site to confine malicious behavior to the local level,
allowing a benign fault-tolerant protocol to be run among
sites at the wide-area level. Steward is tailored to mask
Byzantine behavior locally under the assumption that less
than 1/3 of the servers in any site will be compromised (a
common assumption in state of the art Byzantine research).

Steward demonstrated that a hierarchical solution yielded
considerable performance gains over a flat architecture.

After Steward’s introduction, several interesting obser-
vations were made. First, potential future users noted that
in some environments, an entire site can be physically com-
promised, in which case running a local Byzantine fault-
tolerant protocol is not necessary. In such cases, sites cannot
be made trusted and, therefore, running a Byzantine fault-
tolerant protocol over the wide-area, between the sites, is
necessary. Second, running a wide-area Byzantine proto-
col over a local-area Byzantine protocol can meet the same
guarantees as Steward at a lower hardware cost, at the price
of one additional wide-area round. Third, different sites
may have different risk profiles and therefore running some
local sites with Byzantine replication and other sites with
benign fault-tolerant replication is useful in certain environ-
ments (e.g., where trusted hardware unlikely to be compro-
mised is deployed).

Steward’s design targeted the best possible performance,
and indeed achieved performance not far from common be-
nign fault-tolerant wide-area replication protocols. How-
ever, its performance benefit came with a significant price:

Inflexibility: Steward is designed for the case where less
than 1/3 of the servers in each site will be compromised.
The techniques used to mask Byzantine behavior are in-
terdependent with the techniques used to achieve efficient
wide-area global ordering. As a result, the different proto-
cols in each level cannot be replaced to support other threat
models such as complete site compromises.

Complexity: In order to save message exchange rounds
and computation, the local and wide-area components of
Steward are intertwined. The resultant protocol is glob-
ally optimized but its specification and correctness proof are
very complex (see [3] for this complexity).

These observations convinced us that, to be practical in
a diverse, wide-area environment, we must evolve our ap-



proach, even at the expense of decreased performance. A
desired solution will have two key properties:free substi-
tution andclean separation. Free substitution of the fault
tolerance approach used in each position of the hierarchy
allows an administrator to customize a system based on per-
ceived risks, balancing performance and fault tolerance, by
deploying either a Byzantine or a benign fault-tolerant pro-
tocol at each site and in each level of the hierarchy. Clean
separation of the protocols running within each site and in
each level of the hierarchy reduces the complexity of the
overall protocol and its correctness proof.

This paper describes a composable, hierarchical archi-
tecture that provides these two properties. Similar to Stew-
ard, we convert the physical machines within each site into a
logical entity that plays the role of a single participant inthe
wide-area protocol. However, our new architecture imple-
ments this conversion in a fundamentally different way. We
build on the well-known technique of state machine repli-
cation [16, 29] to convert the servers in a site into alogi-
cal machine. The servers composing each logical machine
totally orderall events that cause a state transition in the
wide-area protocol (i.e., updates, acknowledgements, and
wide-area timeouts), and execute these events in the same
order. Hence, the logical machine runs the wide-area pro-
tocol just as if it were implemented by a single server. The
local protocol is oblivious to the state of the wide-area pro-
tocol. This separation enables free substitution.

The new architecture brings to light two new challenges
that must be addressed: performance and efficient wide-
area communication. Since we remove protocol-aware
global optimizations, we must gain performance in some
other way to make the approach practical. In addition,
we must provide a mechanism that allows two logical ma-
chines, each composed of potentially malicious servers, to
efficiently send messages to each other. The mechanism
should not depend on the protocols running in each logical
machine and should usually send a message only once.

The contributions of this work are:

1. It is the first solution that allows a system administra-
tor to find the best way to deploy his system, meeting
required guarantees by separately choosing either be-
nign or Byzantine fault tolerance in each of the sites,
as well as choosing either a benign or Byzantine fault-
tolerant wide-area protocol. This, for example, allows
the system administrator to have autonomy in trading
off hardware costs and wide-area crossings. In par-
ticular, it is the first solution that composes a Byzan-
tine fault-tolerant protocol between the sites over a
Byzantine fault-tolerant protocol in each site, provid-
ing stronger security guarantees.

2. It presents a novel protocol that facilitates efficient
wide-area communication between logical machines,

each of which is constructed from several non-trusted
entities, such that messages usually require one send
over the wide-area network.

3. It presents optimizations that reduce the computational
cost of the logical machines, improving the logical ma-
chine local throughput so that it can play a more re-
sponsive role on the wide area. As a result, it increases
the overall maximum wide-area throughput by a factor
of 4 compared with the previous state of the art.

We compare, both analytically and experimentally, four
possible compositions of the architecture, plus the Steward
architecture, over emulated wide-area networks. The ex-
periments show that the composable architecture that runs
a wide-area benign fault-tolerant protocol and Byzantine
local-area protocols within each site has performance that
is within 12 percent of Steward. Furthermore, the composi-
tion that runs a wide-area Byzantine fault-tolerant protocol
on the wide area and Byzantine fault-tolerant protocols in
each site is within 35 percent of the performance of Stew-
ard. This composition provides much stronger fault toler-
ance, surviving more than twice the number of total Byzan-
tine faults compared with Steward, and up to more than a
third of the total number of servers in the system in some
cases.

We believe this new approach is a considerable step for-
ward in making wide-area Byzantine replication a reality.

The remainder of this paper is presented as follows. In
Section 2, we provide background on state machine replica-
tion and the fault-tolerant protocols used by our customiz-
able architecture. Section 3 describes our system model and
service guarantees. In Section 4, we describe our system ar-
chitecture. Section 5 presents solutions to two key technical
challenges in achieving high performance with the compos-
able architecture. In Section 6, we evaluate the performance
of our architecture. Section 7 provides discussion, and Sec-
tion 8 concludes.

2 Background and Related Work

Our work uses techniques from fault-tolerant replication,
cryptography, and Byzantine fault-tolerant protocols andar-
chitectures. In this section, we describe related work most
relevant to our new architecture.

State Machine Replication:Lamport [16] and Schnei-
der [29] introduced and popularized state machine replica-
tion, where deterministic replicas execute a totally ordered
stream of events that cause state transitions. Therefore, all
replicas proceed through exactly the same states. This tech-
nique can be used to implement replicated information ac-
cess systems, databases, and other services. Schlichting and
Schneider [28] discuss the implementation and use of k-
fail-stop processors, which are composed of several poten-
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tially Byzantine processors. Benign fault-tolerant protocols
safely run on top of these fail-stop processors even in the
presence of Byzantine faults.

Paxos and BFT:Paxos [17, 15] is a fault-tolerant proto-
col that enables a group of distributed servers, exchanging
messages via asynchronous communication, to totally or-
der client requests in a benign fault, crash-recovery model.
Paxos uses a leader to coordinate an agreement protocol. If
the leader fails, the other servers elect a new leader, which
coordinates sufficient reconciliation so that progress can
safely continue. In the normal case, when the leader does
not fail, Paxos requires two communication rounds to order
a message, one of which is an all-to-all message exchange.
Paxos continues to order client updates if at leastf + 1 out
of 2f + 1 servers are connected and functioning correctly.
BFT [5] also totally orders client request, similar to Paxos.
However, it tolerates Byzantine faults, where compromised
servers behave maliciously in an attempt to disrupt the sys-
tem. BFT uses three communication rounds, two of which
are all-to-all message exchanges. It can survivef Byzantine
server failures out of a total of3f +1. BASE [27] describes
an abstraction that is built upon BFT and gives examples of
how to use this abstraction to build Byzantine fault-tolerant
services. We use a similar abstraction to convert the servers
in one site into a logical machine.

Steward: Steward [4] is a hierachical state machine
replication architecture for wide-area networks. Concep-
tually, it converts a group of servers in a site into a logical
entity that plays the role of a single participant in a wide-
area protocol. However, it does not use state machine repli-
cation to create logical machines. Instead, it uses a series
of customized Byzantine fault-tolerant protocols, enabling
a group of servers to emulate a participant in the Paxos pro-
tocol. Steward can withstandf out of 3f + 1 Byzantine
failures within each site but cannot survive even a single
site compromise.

Agreement and Consensus:At the core of many repli-
cation protocols is a more general problem, known as the
agreement or consensus problem. A good overview of sig-
nificant results is presented in [11]. The strongest fault
model that researchers consider is the Byzantine model,
where some participants behave in an arbitrary manner. If
communication is not authenticated and nodes are directly
connected,3f + 1 participants andf + 1 communication
rounds are required to toleratef Byzantine faults. If au-
thentication is available, the number of participants can be
reduced tof + 2 [9].

Replication with Benign Fault Tolerance: The two-
phase commit (2PC) protocol [10] provides serializabilityin
a distributed database system when transactions may span
several sites. It is commonly used to synchronize trans-
actions in a replicated database. Three-phase commit [31]
overcomes some of the availability problems of 2PC, pay-

ing the price of an additional communication round, and
therefore, additional latency.

Replication with Byzantine Fault Tolerance: Yin et
al. [33] describe a Byzantine fault-tolerant replication ar-
chitecture that separates the agreement component that or-
ders requests from the execution component that processes
them. Their architecture reduces the number of storage
replicas to2f+1 and provides a privacy firewall, which pre-
vents a compromised server from divulging sensitive infor-
mation. Martin and Alvisi [22] recently introduced a two-
round Byzantine consensus algorithm, which uses5f + 1
servers to overcomef faults. This approach trades lower
availability for increased performance. Cowling et al. [7]
recently introduced a hybrid approach to achieving state
machine replication that uses quorum-based methods when
there is no contention and BFT to resolve contention by or-
dering the contending operations.

Byzantine Group Communication: Related with our
work are group communication systems resilient to Byzan-
tine failures. Two such systems are Rampart [25] and Se-
cureRing [14]. Although these systems are extremely ro-
bust, they have a severe performance cost and require a
large number of uncompromised nodes to maintain their
guarantees. Both systems rely on failure detectors to de-
termine which replicas are faulty. An attacker can exploit
this to slow correct replicas or the communication between
them until enough are excluded from the group. Another
intrusion-tolerant group communication system is ITUA
[8, 24]. The ITUA system, developed by BBN and UIUC,
focuses on providing intrusion-tolerant group services. The
approach taken considers all participants as equal and is
able to tolerate up to less than a third of malicious partic-
ipants.

Quorum Systems with Byzantine Fault-Tolerance:
Quorum systems obtain Byzantine fault tolerance by ap-
plying quorum replication methods. Examples of such
systems include Phalanx [21, 18] and its successor Fleet
[19, 20]. Fleet provides a distributed repository for Java
objects. It relies on an object replication mechanism that
tolerates Byzantine failures of servers, while supportingbe-
nign clients. Although the approach is relatively scalable
with the number of servers, it suffers from the drawbacks of
flat Byzantine replication solutions.

Alternate Architectures: An alternate hierarchical ap-
proach to scale Byzantine replication to wide-area networks
can be based on having a few trusted nodes that are assumed
to be working under a weaker adversary model. For exam-
ple, these trusted nodes may exhibit crashes and recoveries
but not penetrations. A Byzantine replication algorithm in
such an environment can use this knowledge in order to op-
timize performance. Verissimo et al. propose such a hybrid
approach [6, 32], where synchronous, trusted nodes provide
strong global timing guarantees.
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3 System Model and Service Guarantees

We achieve replication via the state machine approach
[16, 29]. All correct servers begin in the same initial state
and transition between states by applying updates as they
are ordered. The next state is completely determined by the
current state and the next update to be applied. As described
in Section 4, non-deterministic events are handled by mak-
ing them appear deterministic to the wide-area protocol.

Servers are organized into wide-areasites, each having
a unique identifier. Each server belongs to one site and has
a unique identifier within that site. The network may parti-
tion into multiple disjointcomponents, each containing one
or more sites. During a partition, servers from sites in differ-
ent components are unable to communicate with each other.
Components may subsequently re-merge. The number of
servers within each site varies with the desired level of fault
tolerance within the site. If a benign fault-tolerant protocol
(such as Paxos) is deployed within a site, then we assume
there are at least2f + 1 servers within the site, wheref
is the maximum number of servers that may be faulty. If a
Byzantine fault-tolerant protocol (such as BFT) is deployed,
then we assume there are at least3f + 1 servers within the
site, where at mostf servers may be Byzantine.

The architecture presented in this paper supports a rich
configuration space, in terms of both the number of faults
and the types of faults allowed at each level of the hier-
archy and within each site. Our system (unlike Steward)
can still guarantee correct and live execution even when the
fault assumptions made within some of the sites are vio-
lated; this is achieved by running a Byzantine fault-tolerant
protocol among sites. We say that a site is Byzantine if
(1) it is running a local benign fault-tolerant protocol and
at least one server is Byzantine or (2) it is running a local
Byzantine fault-tolerant protocol and more thanf servers
are Byzantine. The number of sites needed in this case is
dependent on the wide-area protocol choice, but will be at
least3F + 1, whereF is the maximum number ofsites that
may be Byzantine.

Clients are distinguished by unique identifiers. Clients
send updates to servers within their local site and receive
responses from these servers. Each update is uniquely iden-
tified by a pair consisting of the identifier of the client that
generated the update and a unique, monotonically increas-
ing sequence number. Clients propose updates sequentially:
a client may propose an update with sequence numberi+1
only after it receives a reply for an update with sequence
numberi. Clients may be faulty; updates from faulty clients
will be replicated consistently. Access control techniques
can be used to restrict the impact of faulty clients.

We employ digital signatures, and we make use of a
cryptographic hash function to compute message digests.
Client updates are properly authenticated and protected

against modifications. We assume that all adversaries, in-
cluding faulty servers, are computationally bounded such
that they cannot subvert these cryptographic mechanisms.

When Byzantine fault-tolerance is deployed within a
site, the servers in that site use an (f + 1, 3f + 1) thresh-
old digital signature scheme [30]. Each site has a public
key, and each server receives a share with the correspond-
ing proof that can be used to demonstrate the validity of the
server’s partial signatures. We assume that threshold signa-
tures are unforgeable without knowingf+1 or more shares.

As in Steward, our system achieves replication by es-
tablishing a global, total order on updates in the wide-area
protocol and executing the updates in this order. Below we
define the safety and liveness properties provided by our
replication system. We say that:

• a client proposes an update when the client sends the
update to a correct server in the local site, and the cor-
rect server receives it.

• a server executes a wide-area protocol update with se-
quence numberi when it applies the update to its state
machine. A server executes updatei only after having
executed all updates with a lower sequence number in
the global total order.

• two servers are connected or a client and server are
connected if any message that is sent between them
will arrive in a bounded time. The protocol partici-
pants need not know this bound beforehand.

• two sites are connected if every correct server in one
site is connected to every correct server in the other.

• a client is connected to a site if it can communicate
with all correct servers in that site.

We define the following two safety conditions:

DEFINITION 3.1 S1 - SAFETY: If two correct servers ex-
ecute the ith update, then these updates are identical.

DEFINITION 3.2 S2 - VALIDITY : Only an update that was
proposed by a client may be executed.

Since no asynchronous, fault-tolerant replication proto-
col can always be both safe and live [12], we provide live-
ness under certain synchrony conditions. We use the fol-
lowing terminology to encapsulate these conditions:

• A site is stable with respect to timeT if there exists a
set,S, of c servers within the site (withc = 2f + 1
for sites tolerant to Byzantine failures andc = f +
1 for sites tolerant to benign failures), where, for all
timesT ′ > T , the members ofS are (1) correct and (2)
connected. We call the members ofS stable servers.
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• Let N be the total number of sites in the system and
F be the maximum number of sites that may be faulty.
The system is stable with respect to timeT if there
exists a set,W , of r wide-area sites (withr > ⌊N/2⌋
when sites may exhibit benign failures andr = 2F +1
when sites may exhibit Byzantine failures) where, for
all timesT ′ > T , the sites inW are (1) stable with
respect toT and (2) connected. We call the sites inW
thestable sites.

We now define our liveness property:

DEFINITION 3.3 L1 - GLOBAL L IVENESS: If the system
is stable with respect to time T , then if, after time T , a stable
server receives an update which it has not executed, then
that update will eventually be executed.

4 System Architecture

Our new composable architecture provides flexibility by
cleanly separating the wide-area protocol and the local-area
protocols run in each site. In this section we present a high-
level description of the components of our architecture and
explain how they lead to protocol separation.

The system uses two representative, well-known, flat
replication protocols: Paxos [17, 15] as our lightweight, be-
nign fault-tolerant protocol, and BFT [5] as our Byzantine
fault-tolerant replication protocol. Each of these protocols
can be selected for use within each site and on the wide
area. The local-area protocol is used to totally order wide-
area protocol messages that come into the site, enabling
the servers within a site to execute the wide-area protocol
and act as a single logical machine. The wide-area replica-
tion protocol, which runs on the logical machines, assigns a
global order to updates submitted by clients.

When BFT is run within a site, a logical machine will
function correctly if less than one third of the servers in the
site are compromised. When BFT is run on the wide-area,
the system will function correctly if less than one third of
the sites are compromised. When Paxos is run within a site,
the logical machine will function correctly if less than a ma-
jority of servers suffer benign faults. When Paxos is run on
the wide-area, the system will function correctly if less than
a majority of sites suffer benign failures. In the remainder
of this paper, we refer to compositions aswide-area proto-
col/local-area protocol. For example, we refer to a compo-
sition which runs BFT on the wide-area and Paxos on the
local area as BFT/Paxos. Even though our architecture uses
BFT and Paxos, it is extensible and can use any of several
existing state of the art flat replication protocols.

In our composable architecture, the top-level replication
protocol used on the wide area runs just as it would if it
were run on a series of single machines where each ma-
chine was located in its own site. It sends the same types of

R e c e i v i n g O r d e r i n gS e n d i n g S i g n i n gW i d e A r e a C o m m u n i c a t i o nL o g i c a l M a c h i n e
Figure 1:Logical machine.

wide area messages and has the same communication pat-
terns. During view changes, which occur when a leader site
fails and needs to be replaced, exactly the same messages
are sent as in the original flat protocol. Thus, the wide-area
bandwidth requirements and message complexity in a com-
position with Paxos running on the wide area are the same
as if a flat Paxos system were run on a single machine in
each site. More significantly, we can use the known safety
proof for flat Paxos, together with one for the local-area pro-
tocol, and trivially prove safety for the composition. The
liveness proof is more complicated, but much simpler than
what is necessary for a globally optimized architecture such
as Steward where the wide-area and local-area protocols are
interdependent.

Logical Machine: A logical machine(LM) is the group
of servers within a site that, together, play the role of a
single participant in the wide-area protocol. We use the
state machine approach to build our logical machines [29]
[16]. We say that the servers within a site implement the
LM corresponding to their site. To support the logical ma-
chine abstraction, the servers implementing a given LM use
the agreement protocol (Paxos or BFT) to establish a to-
tal ordering on all wide-area protocol events; the servers
then handle the events according to the total order. Conse-
quently, the logical machine handles, orexecutes, a single
stream of wide-area protocol events, just as if it were im-
plemented by a single correct server. The logical machine
is composed of three modules, each providing a necessary
service: communication, ordering, and signing (Figure 1).

The Communication Module provides efficient wide-
area message transmission even in a Byzantine environ-
ment, where some of the servers that send messages from
one logical machine to another try to block this communi-
cation. This module is part of our composable architecture
and is described in detail in Section 5.1.

TheOrdering Module uses Paxos or BFT to totally or-
der the protocol events handled by the servers in an LM.
These events include wide-area protocol timeouts, wide-
area messages, and local timeouts used to implement the
LM. The ordering module delivers those events related to
the wide-area protocol to the LM, which executes them.
We use a technique similar to BASE [27] to handle non-
deterministic events. To implement a logical wide-area pro-
tocol timeout, each server in the site sets a local timer, and
when this timer expires, it sends a signed message to the
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leader of the ordering module. The leader waits forf + 1
signed messages proving that the timer expired at at least
one correct server and then orders a logical timeout mes-
sage (containing this proof). A server only transitions state
based on a timeout when it receives an ordered logical time-
out message. The ordering module corresponds to the local
replication protocol run within a site.

The Signing Module generates an RSA signature [26]
for wide-area messages. When running Paxos within the
site (in the ordering module), this module simply gener-
ates an RSA signature on the message. When running BFT
within the site, this module generates an RSA threshold sig-
nature, attesting to the fact thatf + 1 servers agreed on
the message. This prevents malicious servers within a site
from forging a message. Moreover, outgoing messsages
carry only a single RSA signature, saving wide-area band-
width. Our optimized architecture amortizes the high cost
of threshold cryptography over many outgoing messages.
We use a technique similar to Steward to prevent malicious
servers from disrupting the threshold signature protocol.

We conclude by providing an example of Paxos/BFT that
traces the flow of an update through the system in the nor-
mal case, when there are no faults that require changing pro-
tocol coordinators. First, a client sends an update to a server
in its own site, which forwards the update to the leader site,
using the communication module. The ordering module of
the leader site logical machine uses BFT, which requires
three local communication rounds, to order the update. The
logical machine generates a wide-area proposal message,
binding a global sequence number to the update. The mes-
sage proceeds to the signing module, which uses a one-
round protocol to generate a threshold signature. The com-
munication module sends the threshold-signed proposal to
the other sites. Each non-leader logical machine orders the
incoming proposal and generates an acknowledgement (ac-
cept) message for the proposal. The logical machine sends
the acknowledgement to the other logical machines. Incom-
ing accept messages are then ordered by the logical ma-
chine. When the proposal and a majority of accepts are
collected, the logical machine globally orders the client up-
date, completing the protocol. This example elucidates that
there are many rounds, most of which are associated with
the ordering module. This is the price to achieve the clean
separation and free substitution properties.

5 Technical Challenges and Solutions

In this section, we present solutions to two technical
challenges in achieving efficient, high-performance replica-
tion in a composable architecture.

XX XXS e n d e r R e c e i v e r 2 f + 1
Figure 2:In any set of 2f+1 (forwarder, peer) link pairs, at least
one pair must have both servers correct. In this example, f=2.

5.1 Byzantine-resilient Communication

We first address the issue of how logical machines can ef-
ficiently communicate over wide-area links, which have rel-
atively low bandwidth compared to local-area links. Since
each logical machine is implemented by a replicated group
of machines, some of which may be faulty, care must be
taken to ensure that messages are successfully sent and re-
ceived despite faulty behavior, without consuming too much
extra wide-area bandwidth. For example, the naive solution,
in which each off + 1 replicas in the sending LM sends to
f + 1 replicas in the receiving LM, results in an impractical
O(f2) bandwidth increase. Ideally, each logical machine
will use roughly the same wide-area bandwidth as a single
physical machine.

We now present a newlink protocol that allows log-
ical machines to efficiently communicate with each other
over the wide-area network, regardless of the protocols they
are running. The protocol masks faulty behavior at its end-
points and provides a reliable transport mechanism between
the sending logical machine and the receiving logical ma-
chine. The link protocol is implemented by the sending and
receiving parts of the communication module.

The link protocol is built upon three simple but power-
ful techniques. The first technique provides a novel way of
delegating the responsibility for wide-area communication
such that (1) messages are normally sent only once and (2)
the adversary is unable to repeatedly block communication
between two logical machines. The second technique lever-
ages the power of threshold cryptography and state machine
replication to allow the servers in the sending logical ma-
chine to monitor the behavior of the link and take action if
it appears to be faulty; it also provides reliability. The third
technique is a fairness mechanism that prevents the adver-
sary from starving any particular client or link.

Delegating Communication Responsibility: Servers
within the sending logical machine elect aforwarder for
each outgoing link. This election is done independently for
each link; different servers may act as forwarder on dif-
ferent links, or the same server may act as forwarder on
multiple links. Each potential forwarder is statically as-
signed one uniquepeer server, in the receiving logical ma-
chine, to which it sends outgoing messages and which dis-
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seminates incoming messages. This assignment is made
using the servers’ unique identifiers: the two servers with
the same identifier in the sending and receiving logical ma-
chines form a (forwarder, peer) pair. Given two logical ma-
chines, each with3f + 1 servers, the pigeonhole principle
guarantees that, out of2f + 1 (forwarder, peer) pairs, there
exists at least one pair in which both participants are correct
(see Figure 2) Since either the forwarder or the peer may be
faulty, the other servers within the sending logical machine
monitor the performance of the link and elect a different for-
warder if the current one is not performing well enough (we
define this notion more precisely below). The successor is
the next server in a static order, with wrap-around, placed
on all servers in the sending logical machine. Thus, after ro-
tating through at most2f +1 pairs, the link is guaranteed to
reach a pair with two correct endpoints, allowing messages
to flow from the sending machine to the receiving machine.

When the Byzantine fault-tolerant link protocol is run
between two logical machines consisting of different num-
bers of servers, the forwarder and peer can be chosen as
follows. Let L1 andL2 be two logical machines, and let
F be the number of faults thatL1 can survive andf be the
number of faults thatL2 can survive. LetF ≥ f . L1 has a
total of3F +1 servers, andL2 has a total of3f +1 servers.
We assign3F + 1 distinct pairs of peers, where one of the
peers is inL1 and the other is inL2. Each of the3F + 1
servers inL1 is a member of exactly one pair. We assign
pairs round robin, based on unique server identifiers. Each
server inL2 is paired with the servers inL1 that have equal
identifiers modulo3f + 1.

We now present a proof sketch showing that when the
pairs are assigned as described, there will be at least one
peer pair where both servers are correct. A single server in
L1 is a member of exactly one pair. It follows that each of
theF malicious servers inL1 can corrupt one pair. A single
server inL2 can be a member of no more thanc2 = ⌈ 3F+1

3f+1
⌉

pairs. Since there are at mostf malicious servers inL2,
these servers can corrupt at mostf ∗ c2 pairs. Therefore,
together, the malicious servers inL1 andL2 can corrupt at
mostc = f⌈ 3F+1

3f+1
⌉ + F pairs. Since there are a total of

3F + 1 links, we need to show thatc < 3F + 1. We can
rewrite this relationship asc ≤ f

(

F
f

+ 1
)

+ F < 3F + 1.

Simplifying yieldsc ≤ 2F +f < 3F +1. This relationship
is true becauseF > f . This completes our proof sketch.

Reliability and Monitoring: The link protocol uses
threshold-signed, cumulative acknowledgements to ensure
reliability. Each message sent on an outgoing logical link
is assigned a link-specific sequence number. Assigning
these sequence numbers consistently is simple, since out-
going messages are generated in response to totally-ordered
wide-area protocol events and can be sequenced using this
total order. Each logical machine periodically generates
a threshold-signed acknowledgement message, which con-

tains, for each link, the sequence number through which the
logical machine has received all previous messages. The
generation of the acknowledgement is triggered by execut-
ing a logical machine timeout1. The peer server for each in-
coming link sends the acknowledgement to its correspond-
ing forwarder, which presents the acknowledgement to the
servers in the sending logical machine.

The acknowledgement serves two purposes. First, it is
used to determine which messages need to be retransmitted
over the link in order to achieve reliability. This reliability is
guaranteed even if the current forwarder is replaced, since
the next forwarder knows exactly which messages remain
unacknowledged and should be resent. Second, the servers
in the sending logical machine use the acknowledgement
to evaluate the performance of the current forwarder. Each
server in the sending logical machine maintains a queue of
the unacknowledged messages on each link, placing a log-
ical machine timeout on the acknowledgement of the first
message in the queue. If, before the timeout expires, the
forwarder presents an acknowledgement indicating the mes-
sage was successfully received by the receiving logical ma-
chine, the timeout is canceled and a new timeout is set on
the next message in the queue2. However, if the timeout
expires before such an acknowledgement is received, the
servers in the sending logical machine suspect that the link
is faulty and elect the next forwarder.

Fairness:The third technique addresses the dependency
between the evaluation of the link forwarder and the perfor-
mance of the ordering module at the receiving logical ma-
chine. Intuitively, if the ordering module could selectively
refuse to order certain messages or could delay them too
long, then a correct forwarder might not be able to collect
an acknowledgement in time to convince the other servers
that it sent the messages correctly. We would like to set-
tle on a correct (forwarder, peer) pair to the extent possible,
and thus we augment the ordering module with a fairness
mechanism, tailored to meet the needs of the link protocol.

Conceptually, there are two types of input events to the
ordering module: link-based events and client-based events.
When a peer in a receiving logical machine receives an in-
coming message, it disseminates the message within the
site; all servers then expect the ordering module to order the
message such that it can be executed by the logical machine.
Similarly, client updates must be ordered by the leader site
logical machine so that they are processed in the wide-area
protocol. To ensure fairness, servers must place a timeout
on the leader of the ordering module to prevent the selective
starvation of a particular link or client.

Servers within the logical machine maintain a queue for

1Servers could also piggy-back acknowledgements on regularoutgoing
messages for more timely, fine-grained feedback.

2This mechanism can be augmented to enforce a higher throughput of
acknowledged messages by placing a timeout on a batch of messages.
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each incoming link and a single queue for all clients. When
the leader receives a message to be ordered, it places the
message on the appropriate queue (i.e., on a link queue or
on the client queue). The leader then attempts to order mes-
sages off of the queues in round-robin fashion. Since in-
coming link messages have link-based sequence numbers,
all servers know exactly which message should be the next
one ordered for each link. Thus, upon receiving the next
message on a link, a server places a timeout on the message
and attempts to replace the leader if the message is not or-
dered in time. Since there does not exist a total order on all
client updates, servers allow the leader to orderany client
update from the client queue. However, the servers sus-
pect the leader if it tries to order two updates from the same
client without ordering one from another client for which an
update is in the queue.

5.2 Performance Optimizations

Our composable architecture has significant computa-
tional overhead, because each logical machine must order
all events that cause state transitions in the wide-area proto-
col. This Byzantine fault-tolerant ordering (which in our ar-
chitecture uses digital signatures) is computationally costly.
In addition, each logical machine threshold signs all outgo-
ing messages, which imposes an even greater computational
cost. Consequently, we use Merkle hash trees to amortize
the cost of threshold signing, and we improve the perfor-
mance of logical machine event processing via aggregation.
These optimizations are appliedonly to the local protocols.
Thus, there is a one-to-one correspondence between wide-
area messages in an optimized, composable protocol and its
unoptimized equivalent.

Merkle Tree Based Signatures:We first consider how
to amortize the cost of generating threshold signatures,
which are applied to outgoing messages. Instead of thresh-
old signing every outgoing message, we generate a single
threshold signature that can be used to authenticate sev-
eral messages. Each outgoing message is completely self-
contained, including everything necessary to validate the
message (except the public key). We accomplish this by
creating a signature based on a Merkle hash tree [23].

The leaf nodes in a Merkle hash tree contain the hashes
of the messages that need to be sent. Each of the internal
nodes contains a hash of the concatenation of the two hashes
in its children nodes. The signature is generated over the
hash contained in the root. When a message is sent, we
include the series of hashes that can be used to generate
the root hash. The number of included hashes islog(N),
whereN is the number of messages that were signed with
the single signature.

Logical Machine Event Processing:We now consider
how to increase the throughput of local event processing by

Protocol Rounds
Protocol Wide Area Local Area Total
Steward 2 4 6
Paxos/Paxos 2 6 8
BFT/Paxos 3 8 11
Paxos/BFT 2 11 13
BFT/BFT 3 15 18

Table 1: Number of Protocol Rounds.

the logical machine. We use aggregation to order several
logical machine events at once. This improvement allows
a logical machine to order thousands of events per second
over local-area networks while providing Byzantine fault
tolerance. With this performance, it is likely that the in-
coming wide-area bandwidth will limit throughput. Events
flowing into the ordering module are buffered. When the
leader of the ordering module is ready to begin the Byzan-
tine fault-tolerant ordering protocol (by sending a BFT Pre-
Prepare message to the other servers), it takes all of the
events in the buffer (up to approximately 50) and creates
a Pre-Prepare message that can order all of them using one
Byzantine agreement invocation. The Pre-Prepare includes
digests corresponding to each event that was in the buffer.
Note that this does not limit the size of incoming messages
being ordered.

6 Performance Evaluation

To evaluate the performance of our composable architec-
ture, we implemented our protocols, including all necessary
communication and cryptographic functionality.

Testbed and Network Setup:We used a network topol-
ogy consisting of 5 wide-area sites, each containing 16
physical machines, to quantify the performance of our sys-
tem. In order to facilitate comparisons with Steward, we
chose to use the same topology and numbers of machines
used in [4]. If BFT is run within a site, then the site can
tolerate up to 5 Byzantine servers. If Paxos is run within
a site, then the site can tolerate 7 benign server failures. If
BFT is run on the wide-area, then the system can tolerate
one Byzantine site compromise. If Paxos is run on the wide
area, then the system remains available if no more than two
sites are disconnected from the others.

Our experimental testbed consists of a cluster with
twenty 3.2 GHz, 64-bit Intel Xeon computers. Each com-
puter can compute a 1024-bit RSA signature in 1.3 ms and
verify it in 0.07 ms. For n=16, k=6, 1024-bit threshold cryp-
tography which we use for these experiments, a computer
can compute a partial signature and verification proof in 3.9
ms and combine the partial signatures in 3.4 ms. The leader
site was fully deployed on 16 machines, and the other 4 sites
were emulated by one computer each.
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Protocol Computational Costs
Protocol Threshold RSA Sign RSA Sign
Steward 1 3
Paxos/Paxos 0 2 + (S − 1)
BFT/Paxos 0 3 + 2(S − 1)
Paxos/BFT 1 3 + 2(S − 1)
BFT/BFT 2 4 + 4(S − 1)

Table 2: Number of expensive cryptographic operations thateach
server at the leader site does for one update.

Each emulating computer performed the role of a repre-
sentative of a complete 16 server site. Therefore, our testbed
is equivalent to an 80 node system distributed across 5 sites.
Upon receiving a message, the emulating computers busy-
waited for the time it took a 16 server site to handle that
packet and reply to it, including intra-site communication
and computation. We also modeled the aggregation used by
the optimized protocols. We determined busy-wait times for
each type of packet by benchmarking the different types of
ordering protocols on a fully deployed, 16 server site. The
Spines [2] messaging system was used to emulate latency
and throughput constraints on the wide-area links. We lim-
ited the capacity of wide-area links to 10 Mbps in all tests.

We compared the performance results of five protocols
with and without optimizations. Four of these are based
on our composable architecture: Paxos/Paxos, BFT/Paxos,
Paxos/BFT, BFT/BFT. The fifth is an augmented implemen-
tation of Steward, which includes the option of using the
same optimization techniques used in our new architecture.
All the write updates in our experiments carried a payload
of 200 bytes, representative of an SQL statement.

We exclusively use RSA signatures for authentication,
both for consistency with our previous work and to provide
non-repudiation, which is valuable when identifying mali-
cious servers. The benign fault-tolerant protocols use RSA
signatures to protect against external attackers. While itis
possible to use more efficient cryptography in the compo-
sitions based on Paxos, these changes improve the unopti-
mized protocols but have a smaller effect on the optimized
versions. We also note that BFT can use MACs, which im-
proves its latency and results in much better unoptimized
performance. However, this change has a smaller effect on
our optimized protocols, because the total update latency is
dominated by the wide-area latency.

Protocol Rounds and Cryptographic Costs: Table 1
shows the number of protocol rounds in Steward, and in
each of the four combinations of our composable architec-
ture. The protocol rounds are classified as wide-area when
the message is sent between sites, and local-area when it is
sent between two physical machines within a site. Table 1
shows that Steward has the least rounds of any of the proto-
cols, including Paxos/Paxos. The difference in total rounds
ranges from 6 (Steward) to 18 (BFT/BFT). However, it is

important to observe that all of the protocols listed have ei-
ther two or three wide-area rounds.

Table 2 shows the computationally expensive crypto-
graphic operations required for each update at the leader
site in the unoptimized protocols. The costs are a function
of the number of sites, denoted byS. The table shows the
number of threshold signatures to which each server in the
leader must contribute and the number of RSA signatures
that each server in the leader site must compute. In the
tests presented in this paper, the unoptimized versions of our
algorithm are always limited by computational resources.
Consequently, these costs are inversely proportional to the
maximum throughput. Our throughput tests match what one
would expect based on the costs presented in Table 2.

Performance of Unoptimized Protocols:We first com-
pare the performance of the five unoptimized protocols.
Each time an external message is ordered or a threshold
signed message is produced, the protocols do all crypto-
graphic operations listed in Table 2. The following two
tests were performed on a symmetric configuration where
all sites are connected to each other with the same latency
and bandwidth constraints. We used a 50 ms (emulating
crossing the continental US) and 100 ms (to demonstrate
scalability) network diameter. Clients inject updates into
the system by sending them to a server in their site. A client
waits until it receives proof that the update was ordered and
then immediately injects the next update.

Figure 3 shows update throughput as a function of the
number of clients. In all of the graphs, throughput initially
increases as the number of clients increases. When the
load on the CPU increases to 100%, throughput plateaus.
This graph shows the performance benefit of Steward’s op-
timized architecture. In Steward, external wide-area ac-
cept messages do not need to be ordered before the repli-
cas can process them. Steward achieves over twice the per-
formance of Paxos/BFT, its equivalent composition. This
is the price of clean separation. Steward even outperforms
Paxos/Paxos, which has more ordering and RSA signature
generation, but does not use threshold signatures. The ini-
tial slope of these curves is most dependent on the number
of wide-area protocol rounds shown in Table 1. The peak
performance of each of the protocols is a function of the
number of cryptographic operations shown in Table 2. The
Paxos/BFT composition has about twice the throughput of
the BFT/BFT composition, and it has approximately half of
the cryptographic costs. A similar relationship exists be-
tween Paxos/Paxos and BFT/Paxos.

Figure 4 shows average update latency measured at the
clients as a function of the number of clients. In each of
the curves, the update latency remains approximately con-
stant until the CPU is 100% utilized, at which point, latency
climbs as the number of clients increases. In our system, we
queue client updates if the system is overburdened and in-
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Figure 3: Throughput of Unoptimized Protocols, 50 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30  35

U
pd

at
e 

La
te

nc
y 

(m
s)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 4: Latency of Unoptimized Protocols, 50 ms Diameter

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

U
pd

at
e 

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 5: Throughput of Unoptimized Protocols, 100 ms Diameter
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Figure 6: Latency of Unoptimized Protocols, 100 ms Diameter

ject these updates in the order in which they were received.

Figures 5 and 6 show the results for the same tests as
above with 100 ms network diameter. We observe the same
maximum bandwidth and latency trends. Additional latency
on the wide-area links reduces the slope of the lines in Fig-
ure 5 (update throughput), but has no effect on the maxi-
mum throughput that is achieved.

Performance of Optimized Protocols:We now present
the performance of the five protocols with the optimiza-
tions described in Section 5.2. In these protocols, the cost
of the cryptographic operations listed in Table 2 are amor-
tized over several updates when CPU load is high. In con-
trast to the unoptimized protocols, none of our optimized
protocols were CPU limited in the following tests. Max-
imum throughput was always limited by wide-area band-
width constraints. In all cases, the optimized protocols in-
creased throughput by at least a factor of 4 compared to their
unoptimized versions.

Figure 7 shows the update throughput as a function of
the number of clients. The relative maximum throughput
and slopes of the curves are very different from the un-
optimized versions. For example, Paxos/Paxos, Steward,
and Paxos/BFT have almost the same maximum through-
put. This attests to the effectiveness of the optimizationsin
greatly reducing the performance overhead associated with
clean separation. The optimization improves the perfor-

mance of the compositions more than it improves Steward
because the composable architecture uses many more local
rounds. In a wide-area environment, local rounds are rela-
tively inexpensiveif they do not consume too much com-
putational resources. The optimizations eliminate the com-
putational bottleneck of the unoptimized protocols. Thus,
performance of the optimized version is predominantly de-
pendent on the number of wide-area protocol rounds.

The local-area protocol has a smaller, but significant,
effect on performance. The slopes of the curves are dif-
ferent because of the difference in latency contributed by
the local-area protocols. BFT and threshold signing con-
tribute the greatest latency. As a result, Steward has a
steeper slope than its equivalent composition, Paxos/BFT.
Here also, we can see the benefit of Steward, but the per-
formance difference is considerably smaller than in the un-
optimized protocols. Paxos contributes very little latency
and therefore, Paxos/Paxos’s performance slightly exceeds
Steward’s. Note that Paxos/Paxos benefits slightly more
than Steward from the optimizations. This is due to the fact
that Paxos/Paxos locally orders more messages than Stew-
ard (which orders the update locally only once).

Figure 8 shows the average update latency in the same
experiment, measured by the client. Although aggregation
is commonly associated with an increase in latency, the op-
timized protocols have similar or lower latency compared
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Figure 10: Latency of Optimized Protocols, 100 ms Diameter

to the unoptimized variants. A logical machine must locally
order at least two external messages to execute a client’s up-
date. Therefore, even with a single client in the system, if
the external accept messages arrive at about the same time,
the latency can be lower with aggregation. When there are
many clients, the average latency of the optimized protocols
is considerably less than the latency of the unoptimized pro-
tocols, because the optimized protocols have much higher
maximum throughput. Figures 9 and 10 validate the same
trends on a 100 ms diameter network.

Discussion: The optimized composable architecture
achieves practical performance, with throughputs of hun-
dreds of updates per second, even while offering the strong
security guarantees of BFT/BFT. This presents a factor of
4 improvement compared with the previous state of the
art for wide-area Byzantine replication (i.e., unoptomized
Steward) . The performance of the unoptimized protocols
is computationally limited and reflects the cost associated
with achieving composability and flexibility.

While the composable architecture natively suffers from
a performance reduction compared with an architecture
such as Steward that makes protocol-aware global optimiza-
tions, the optimized version achieves roughly 85 percent of
Steward’s throughput. One can build a protocol-aware glob-
ally optimized solution for each of the other three compo-
sitions to obtain faster performance, trading protocol com-

plexity and implementation effort. While this performance
improvement may be necessary in some deployments, we
believe the performance achieved by the optimized com-
posable architecture is likely to be sufficient in most cases.

7 Discussion

Using Other Replication Protocols: Our composable
architecture can be extended by adding new replication pro-
tocols for use on the wide area or local area besides Paxos
and BFT. Several existing protocols provide desirable prop-
erties and are promising candidates for use within our sys-
tem. As demonstrated in Section 6, wide-area protocol
rounds are very costly due both to increased latency and
increased message complexity. Therefore, if a system re-
quires Byzantine fault tolerance and high performance and
can tolerate reduced availability, Martin and Alvisi’s two-
round Byzantine fault-tolerant replication protocol [22]is
well-suited for use as our wide-area protocol. We believe
that a composition that used this protocol would approach
the performance of a composition that used Paxos on the
wide area, because both are two-round protocols. The work
of Yin et al. on privacy firewalls [33] can also be used ef-
fectively within a site, as part of our local-area protocol.
Verrisimo’s work on hybrid architectures [6, 32] is another
excellent candidate for use within our architecture. Special
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trusted hardware that provides stronger guarantees within
a site can be used to strengthen the fault tolerance of our
logical machines.

Finally, we note that the consistency guarantees of our
wide-area protocol can be relaxed for use with systems that
do not require state machine replication semantics. Thus, a
composition could use a state machine replication protocol
as the local-area protocol and an anti-entropy protocol [13]
on the wide area.

Safety and Liveness Proof Sketch:Our composable ar-
chitecture offers flexibility by separating the wide-area pro-
tocol, run among the logical machines, from the local-area
protocol, run within the logical machine. As a direct conse-
quence, it is possible to use a variety of replication protocols
at each level of the hierarchy. Our architecture uses Paxos
and BFT, both of which guarantee safety and liveness under
certain synchrony assumptions. Therefore, we can directly
use the known properties of these protocols when proving
safety and liveness of our hierarchical architecture.

Paxos and BFT do not rely on synchrony assumptions
for safety. As a result, the safety of a protocol composition
follows directly from the safety of these two protocols. The
local state machine replication protocol used in the order-
ing component ensures that all replicas in a logical machine
transition through the same states and invoke the signing
component on identical outgoing messages. When running
BFT in the logical machine, we use threshold cryptography
so that malicious servers cannot generate messages that are
signed by the logical machine. Thus the logical machine
will not exhibit two-faced behavior assuming that it con-
tains at mostf malicious servers. In a system where BFT
is run on the wide area, the wide area protocol guarantees
safety if at mostF sites are compromised.

We now show that protocol compositions using Paxos
and BFT are live if the system is stable, as described in Sec-
tion 3. Paxos and BFT guarantee liveness when the mes-
sage delay does not grow faster than the timeout used to
detect a failed leader. In a flat system, the message delay
is dominated by wide-area network latency. In our sys-
tem, message delay is a function of both network latency
and the delay associated with local ordering of wide-area
protocol events. The message delay can be expressed as:
∆mess = (2f + 2)(L + (f + 2)Tlocal), wheref denotes
the number of faults tolerated by a site,L denotes latency
due to network round trip and acknowledgment timer gran-
ularity, andTlocal denotes the timeout used to detect a failed
local leader. The(2f + 2) term reflects the potential need
to rotate through2f link peer pairs before reaching a cor-
rect pair. The remaining term is the link protocol timeout,
which is dependent onL andTlocal. Tlocal is multiplied by
(f +2) because there must be enough time to rotate through
f malicious local leaders at the receiving site.

When the system is stable, all of the terms in the equation

are constant except forTlocal. Thus, ifTlocal does not grow
faster than the timeout used to detect a failed leader site
in the wide-area protocol, then the composable system is
live. In a stable system, either progress occurs or wide-area
protocol leaders are elected continuously and the wide-area
timeout continues to increase. The timeouts are calculated
according to the following equations:Tlocal = γαVlocal

whereα is any positive constant,Vlocal is the local-area
protocol view number, andγ is any constant greater than
1; Tglobal = γβVglobal whereTglobal is the wide-area pro-
tocol timeout,β is any positive constant, andVglobal is the
wide-area protocol view number. Ifα < β, then the time-
outs will grow as required for system liveness.

8 Conclusions

This paper presented a composable, hierarchical repli-
cation architecture, tailored to systems that span multiple
wide-area sites, that enables free substitution of the fault tol-
erance method used in each position of the hierarchy. The
approach enables an administrator to customize his system,
deploying either a Byzantine or a benign fault-tolerant pro-
tocol at each site and in each level of the hierarchy. The
paper also presented a new link protocol that provided effi-
cient communication between logical machines, facilitating
clean separation between the local and wide-area protocols.
The paper presented two optimizations that resulted in max-
imum wide-area Byzantine replication throughput at least
four times higher than the previous state of the art.
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