
Customizable Fault Tolerance
for Wide-Area Replication ∗

Yair Amir1, Brian Coan2, Jonathan Kirsch1, John Lane1
1 Johns Hopkins University, Baltimore, MD.{yairamir, jak, johnlane}@cs.jhu.edu

2 Telcordia Technologies, Piscataway, NJ. coan@research.telcordia.com

Technical Report CNDS-2007-1 - May 2007
http://www.dsn.jhu.edu

Abstract

Constructing logical machines out of collections of physical machines is a well-known technique for improving
the robustness and fault tolerance of distributed systems.We present a new, scalable replication architecture, built
upon logical machines specifically designed to perform wellin wide-area systems spanning multiple sites. The
physical machines in each site implement a logical machine by running a local state machine replication protocol,
and a wide-area replication protocol runs among the logicalmachines. Implementing logical machines via the state
machine approach affords free substitution of the fault tolerance method used in each site and in the wide-area
replication protocol, allowing one to balance performanceand fault tolerance based on perceived risk.

We present a new Byzantine fault-tolerant protocol that establishes a reliable virtual communication link between
logical machines. Our communication protocol is efficient (a necessity in wide-area environments), avoiding the
need for redundant message sending during normal-case operation and allowing a logical machine to consume ap-
proximately the same wide-area bandwidth as a single physical machine. This dramatically improves the wide-area
performance of our system compared to existing logical machine based approaches. We implemented a prototype
system and compare its performance and fault tolerance to existing solutions.

1 Introduction

As network environments become increasingly hostile, evenwell-protected distributed information systems, con-
structed with security in mind, are likely to be compromised[1]. Byzantine fault-tolerant replication (e.g.,[4, 6,
23, 30]) can be used to construct survivable information systems that withstand partial compromises. Such systems
are typically deployed in several local-area sites distributed across a wide-area network. Practical solutions should
have two fundamental characteristics. First, they must achieve high performance in large-scale deployments, which
requires the efficient use of limited wide-area inter-site bandwidth. Second, they must offer customizability, because
heterogeneous sites have different risk profiles resultingfrom varied physical security, hardware, and performance
requirements. To the best of our knowledge, no previous replication architecture simultaneously provides these two
properties.

This paper presents the first scalable wide-area replication system that (1) achieves high performance through the
efficient use of wide-area bandwidth and (2) allows customization of the fault tolerance approach used within and
among the local-area sites. Our architecture uses the statemachine (SM) approach [17, 32] to transform the physical
machines in each site into alogical machine(LM), and the logical machines run a wide-area protocol. Using the
state machine approach to build logical machines is a well-known technique for cleanly separating the protocol used

∗This work was partially supported by NSF grant 0430271.

to implement the logical machine from the protocol running on top of it. Representative systems include Voltan
[5], Immune [26], BASE [30], Starfish [15], and Thema [24], which are described in more detail in Section 2. The
state machine approach affords free substitution of the fault tolerance method used in each site and in the wide-
area replication protocol, allowing a Byzantine or benign fault-tolerant protocol to be selected depending on system
requirements and perceived risks.

All previous Byzantine fault-tolerant SM-based logical machine abstractions send messages redundantly in order
to guarantee reliable communication in the presence of malicious protocol participants. Typically, to prevent mali-
cious servers from blocking the message transmission, at leastf + 1 servers in the sending LM will each send to
f + 1 servers in the receiving LM, wheref is the number of potential faults in each LM.1 While this strategy works
well on local-area networks, where bandwidth is plentiful,it is impractical for replication systems that must send
many messages over wide-area links. In our experience, it iswide-area bandwidth and not computational constraints
that limits the performance of well-engineered wide-area replication systems. To address this weakness, we present
BLink, the first Byzantine fault-tolerant communication protocol that guarantees efficient wide-area communication
between logical machines. BLink is specifically designed for use in systems where (1) the physical machines com-
prising an LM are located in a LAN that provides low-latency,high-bandwidth communication, and (2) the LMs are
located in different LANs, and are connected by high-latency, low-bandwidth links. BLink usually requires only one
physical message to be sent over the wide-area network for each message sent by the logical machine.

Our previous wide-area replication architecture, Steward[4], shares some similarities with our new architecture.
Both systems use a hierarchical logical machine architecture and provide high performance by efficiently utilizing
wide-area bandwidth. However, they use fundamentally different techniques to construct their logical machines.
The servers comprising each LM in our new architecture totally orderall events that cause a state transition in the
protocol running on top of them (i.e., updates, acknowledgements, and wide-area timeouts), and execute these events
in the same order. This is in striking contrast to the approach taken in Steward, where the wide-area protocol makes
state transitions based on unordered events. As a result, inSteward, the protocols running within the sites and those
running among the sites are interdependent and cannot be separated. Consequently, the fault tolerance approach
within and among the sites cannot be customized. Since Steward runs a benign fault-tolerant wide-area protocol, it
cannot survive a site compromise. We describe precisely whythe Steward architecture is inflexible and inherently a
poor match for diverse wide-area environments requiring customizability in Section 2.

To mitigate the high cost of the additional ordering required by the state machine approach, we use two op-
timizations. First, we amortize the computational costs associated with digital signatures within the LM ordering
protocol using known aggregation techniques. Second, we demonstrate the first use of a Merkle tree [25] mechanism
to amortize the cost of threshold signatures while producing a self-contained, threshold-signed wide-area message.
Amortizing optimizations enable an LM to process and send onthe order of a thousand wide-area messages per
second, preventing LM throughput from limiting overall performance. State machine based LMs augmented with
BLink and the Merkle tree optimization have precisely the necessary properties to build a customizable fault-tolerant
replication system without sacrificing performance.

The contributions of this work are:

1. It presents a new hierarchical replication architecturefor wide-area networks that combines high performance
and customizability of the fault tolerance approach used within each site and among the sites. Using a
Byzantine fault-tolerant protocol on the wide area protects against site compromises and offers fundamen-
tally stronger security guarantees than our previous system.

2. It presents a new Byzantine fault-tolerant protocol, BLink, that guarantees efficient wide-area communication
between logical machines, each of which is constructed fromseveral non-trusted entities, such that messages
usually require one send over the wide-area network. The useof BLink increases performance by over an order
of magnitude in comparison to an SM-based logical machine approach that uses previous communication
protocols, which require at least2f + 1, and typically(f + 1)2, redundant sends.

1It may be possible to use a peer-based protocol in which each of 2f + 1 servers sends to a unique peer. To the best of our knowledge, no
existing system uses this method, except for Steward [4], which uses it sparingly to send global view change messages.

2

3. It shows that by using optimizations that amortize the computational cost of the logical machine ordering, the
new system achieves high performance, outperforming the Steward system by 4 times.

We compare four possible compositions of the architecture,plus the Steward architecture, over emulated wide-
area networks. The experiments show that the composable architecture that runs a wide-area benign fault-tolerant
protocol and Byzantine local-area protocols within each site has performance that is 4 fold better than the original
Steward architecture, which was the previous state of the art. Our new architecture achieves 12 percent lower perfor-
mance than a new version of Steward that we developed for comparison that uses similar amortizing optimizations.
This performance difference is the cost of providing clean separation and customizability. A Byzantine over Byzan-
tine composition, which is not possible in Steward and provides fundamentally stronger fault tolerance, performs 3
times better than the original Steward, and within 35 percent of Steward with amortizing optimizations.

The remainder of this paper is presented as follows. In Section 2, we provide background on state machine
replication and the fault-tolerant protocols used by our customizable architecture. Section 3 describes our system
model and service guarantees. In Section 4, we describe our system architecture. Section 5 presents the BLink
protocol, and Section 6 describes our performance optimizations. In Section 7, we evaluate the performance of our
architecture. In Section 8 we provide a proof sketch for safety and liveness. Section 9 provides discussion, and
Section 10 concludes the paper.

2 Background and Related Work

Our work uses techniques from fault-tolerant replication,cryptography, and Byzantine fault-tolerant protocols
and architectures. In this section, we describe related work most relevant to our new architecture.

State Machine Replication: Lamport [17] and Schneider [32] introduced and popularizedstate machine replica-
tion, where deterministic replicas execute a totally ordered stream of events that cause state transitions. Therefore,
all replicas proceed through exactly the same states. This technique can be used to implement replicated information
access systems, databases, and other services.

The state machine approach has been used in many systems to construct fault-tolerant logical machines out of
collections of physical machines. Schlichting and Schneider [31] discuss the implementation and use of k-fail-stop
processors, which are composed of several potentially Byzantine processors. Benign fault-tolerant protocols safely
run on top of these fail-stop processors even in the presenceof Byzantine faults. The Voltan system of Brasileiro,
et al. [5] uses the state machine approach to construct two-processor fail-silent nodes that either work correctly or
become silent if an internal failure of one of the processes is detected. The FTS system of Friedman and Hadad
[12] uses active replication to construct a lightweight fault tolerance service for CORBA. The Immune system of
Narasimhan et al. [26] replicates objects in CORBA applications, allowing the applications to continue operating
despite Byzantine behavior. The Starfish system of Kihlstrom and Narasimhan [15] builds an intrusion-tolerant
middleware service by using a hierarchical membership structure and end-to-end intrusion detection. Both Immune
and Starfish use an underlying group communication system, such as SecureRing [14]. The Thema system of
Merideth, et al. [24] uses state machine replication to build Byzantine fault-tolerant Web Services.

Paxos and BFT: Paxos [16, 18] is a fault-tolerant protocol that enables a group of distributed servers, exchanging
messages via asynchronous communication, to totally orderclient requests in a benign fault, crash-recovery model
(enabling state machine replication). Paxos uses a leader to coordinate an agreement protocol. If the leader fails, the
other servers elect a new leader, which coordinates sufficient reconciliation so that progress can safely continue. In
the normal case, when the leader does not fail, Paxos requires two communication rounds to order a message, one of
which is an all-to-all message exchange. Paxos continues toorder client updates if at leastf +1 out of2f +1 servers
are connected and functioning correctly. BFT [6] also totally orders client requests, similar to Paxos. However, it
tolerates Byzantine faults, where compromised servers behave maliciously in an attempt to disrupt the system. BFT
uses three communication rounds, two of which are all-to-all message exchanges. It can survivef Byzantine server
failures out of a total of3f + 1. BASE [30] describes an abstraction that is built upon BFT and gives examples of
how to use this abstraction to build Byzantine fault-tolerant services. We use a similar abstraction to convert the
servers in one site into a logical machine.

3

Steward: Steward [4] is a hierarchical state machine replication architecture for wide-area networks. It converts
a group of servers in a site into a logical entity that plays the role of a single participant in a wide-area protocol.
However, it does not use state machine replication to createlogical machines. The servers within a site pass incoming
wide-area messages directly to the upper-level wide-area protocol,without ordering them within the site. For most
messages, this eliminates the overhead associated with Byzantine fault-tolerant agreement (Byzantine agreement is
used only to assign a sequence number to client updates). Theprice of this optimization is the need for customized
protocols specifically designed to overcome the temporary state divergence with respect to the lower-level protocols.
Steward has over ten specialized protocols that run within and among the sites. Most of these protocols are associated
with global view changes, during which a new leader site is elected. Since the servers comprising a Steward LM do
not proceed through the same sequence of states, they must run special protocols to agree on the content of outgoing
wide-area messages. For example, when a site needs to send a summary of its knowledge, it runs theCONSTRUCT-
GLOBAL-CONSTRAINT protocol so that (1) the servers can agree on a common state and (2) they can invoke the
THRESHOLD-SIGN protocol on the same message. Other wide-area messages require separate protocols. Note that
the servers do not exhibit state divergence with respect to the global state machine replication service. Steward can
withstandf out of3f + 1 Byzantine failures within each site but cannot survive evena single site compromise.

Other Byzantine Fault-tolerant Protocols: Yin et al. [35] describe a Byzantine fault-tolerant replication archi-
tecture that separates the agreement component that ordersrequests from the execution component that processes
them. Their architecture reduces the number of storage replicas to2f + 1 and provides a privacy firewall, which
prevents a compromised server from divulging sensitive information. Martin and Alvisi [23] recently introduced a
two-round Byzantine consensus algorithm, which uses5f + 1 servers to overcomef faults.

Quorum systems obtain Byzantine fault tolerance by applying quorum replication methods [19]. Examples of
such systems include Phalanx [22], and Fleet [20, 21]. The HQprotocol [9] combines the use of quorum replica-
tion with Byzantine fault-tolerant agreement, using a morelightweight quorum-based protocol during normal-case
operation and BFT to resolve contention when it arises. Alsorelated to our work are group communication sys-
tems resilient to Byzantine failures [10, 14, 27, 28]. Verissimo et al. propose a hybrid approach [8, 34], where
synchronous, trusted nodes provide strong global timing guarantees.

3 System Model and Service Guarantees

Servers are organized into wide-areasites; each site has a unique identifier. Each server belongs to onesite and
has a unique identifier within that site. The network may partition into multiple disjointcomponents, each containing
one or more sites. During a partition, servers from sites in different components are unable to communicate with
each other. Components may subsequently re-merge. We can use a state transfer mechanism (as in [7]) or an update
reconciliation mechanism (as in [3]) to reconcile states after a remerge. The number of servers within each site
varies with the desired level of fault tolerance within the site. If a benign fault-tolerant protocol is deployed withina
site, then we assume there are at least2f +1 servers within the site, wheref is the maximum number of servers that
may be faulty. If a Byzantine fault-tolerant protocol is deployed, then we assume there are at least3f + 1 servers
within the site, where at mostf servers may be Byzantine.

The free substitution property afforded by using SM-based logical machines allows our architecture to support a
rich configuration space. Each site can employ either a Byzantine or a benign fault-tolerant SM replication protocol
to implement its LM. Further, by running a Byzantine fault-tolerant wide-area protocol among LMs, our system can
guarantee consistency even when the fault assumptions madewithin some of the sites are violated. We say that a site
is Byzantine if (1) it is running a local benign fault-tolerant protocol and at least one server is Byzantine or (2) it is
running a local Byzantine fault-tolerant protocol and morethanf servers are Byzantine. The number of sites needed
in this case is dependent on the wide-area protocol choice, but will be at least3F + 1, whereF is the maximum
number ofsitesthat may be Byzantine.

Clients introduce updates into the system by communicatingwith the servers in their local site. Each update
is uniquely identified by a pair consisting of the identifier of the client that generated the update and a unique,
monotonically increasing sequence number. We say that a client proposesan update when the client sends the
update to a correct server in the local site, and the correct server receives it. Clients propose updates sequentially:

4

a client,c, may propose an update with sequence numberic + 1 only after it receives a reply for an update with
sequence numberic. Clients may be faulty; updates from faulty clients will be replicated consistently. Access
control techniques can be used to restrict the impact of faulty clients.

We employ digital signatures, and we make use of a cryptographic hash function to compute message digests.
We assume that all adversaries, including faulty servers, are computationally bounded such that they cannot subvert
these cryptographic mechanisms. When Byzantine fault tolerance is deployed within a site, the servers in that site
use an (f + 1, 3f + 1) threshold digital signature scheme [33]. Each site has a public key, and each server receives
a share with the corresponding proof that can be used to demonstrate the validity of the server’s partial signatures.
We assume that threshold signatures are unforgeable without knowingf + 1 or more shares.

Our system achieves replication via the state machine approach, establishing a global, total order on client updates
in the wide-area protocol. Each server executes an update with global sequence numberi when it applies the update
to its state machine. A server executes updatei only after having executed all updates with a lower sequencenumber.

Our replication system provides the following two safety conditions:

DEFINITION 3.1 S1 - SAFETY: If two correct servers execute theith update, then these updates are identical.

DEFINITION 3.2 S2 - VALIDITY : Only an update that was proposed by a client may be executed.

Since no asynchronous, fault-tolerant replication protocol tolerating even one failure can always be both safe and
live [11], we provide liveness under certain synchrony conditions. We define the following terminology and then
specify our liveness guarantee:

• Two servers are connectedor a client and server are connectedif any message that is sent between them will
arrive in a bounded time. The protocol participants need notknow this bound beforehand.

• Two sites are connectedif every correct server in one site is connected to every correct server in the other.

• A client is connected to a siteif it can communicate with all correct servers in that site.

• A site is stablewith respect to timeT if there exists a set,S, of c servers within the site (withc = 2f + 1 for
sites tolerant to Byzantine failures andc = f + 1 for sites tolerant to benign failures), where, for all timesT ′

> T , the members ofS are (1) correct and (2) connected. We call the members ofS stable servers.

• Let N be the total number of sites in the system andF be the maximum number of sites that may be faulty.
Thesystem is stablewith respect to timeT if there exists a set,W , of r wide-area sites (withr > ⌊N/2⌋ when
sites may exhibit benign failures andr = 2F + 1 when sites may be Byzantine) where, for all timesT ′ > T ,
the sites inW are (1) stable with respect toT and (2) connected. We call the sites inW thestable sites.

DEFINITION 3.3 L1 - GLOBAL L IVENESS: If the system is stable with respect to timeT , then if, after timeT , a
stable server receives an update which it has not executed, then that update will eventually be executed.

4 System Architecture

In our composable architecture, the physical machines in each site implement alogical machineby running a local
state machine replication protocol [17, 32]. We then run a state machine replication protocol on top of these logical
machines, among the sites. Using SM-based logical machinesis an established technique for cleanly separating the
implementation of the LM from the protocol running on top of it. Our architecture leverages the flexibility afforded
by this technique, allowing one to customize the protocol and type of fault tolerance desired, both within each LM
and among the LMs. Further, we can use the known safety proof for the wide-area protocol (when run among
single machines), together with one for the local state machine replication protocol, to trivially prove safety for the
composition. The liveness proof is more complicated, but much simpler than what is necessary when the wide-area
and local-area protocols are interdependent. See Section 8for a more formal discussion of the safety and liveness

5

properties. In the remainder of this section, we first reviewhow we use the state machine approach to build our
logical machines, and then present several compositions ofour architecture.

Implementing Logical Machines: The wide-area replication protocol running on top of our LMsruns just as
it would if it were run among a group of single machines, each located in its own site. Each LM sends the same
types of wide-area messages and makes the same state transitions as would a single machine running the wide-area
replication protocol. To support this abstraction, the physical machines in each site use an agreement protocol to
totally order all events (messages and timeouts) that causestate transitions in the wide-area protocol. The physical
machines then execute the events in the agreed upon order. Thus, the LM conceptually executes a single stream of
wide-area protocol events. The LMs communicate using BLinkto avoid sending redundant wide-area messages.

The SM approach assumes that all events are deterministic. As a result, we must prevent the physical machines
from diverging in response to non-deterministic events. For example, although the physical machines within a site
may fire a local timeout asynchronously, they must not act on the timeout until its order is agreed upon. We use a
technique similar to BASE [30] to handle non-deterministicevents. To implement an LM timeout when a Byzantine
fault-tolerant agreement protocol is used, each server in the site sets a local timer, and when this timer expires, it
sends a signed message to the leader of the agreement protocol. The leader waits forf + 1 signed messages proving
that the timer expired at at least one correct server and thenorders a logical timeout message (containing this proof).

Outgoing wide-area messages carry an RSA signature [29]. When a logical machine is implemented with a benign
fault-tolerant protocol, the message carries a standard RSA signature. When running a Byzantine fault-tolerant local
protocol, the physical machines within the site generate anRSA threshold signature, attesting to the fact thatf + 1
servers agreed on the message. This prevents malicious servers within a site from forging a message. Moreover,
outgoing messsages carry only a single RSA (threshold) signature, saving wide-area bandwidth. Our architecture
amortizes the high cost of threshold cryptography over manyoutgoing messages. We use a technique similar to
Steward to prevent malicious servers from disrupting the threshold signature protocol.

Protocol Compositions: The free substitution property of our architecture makes itextensible, allowing one to
use any of several existing state of the art replication protocols, both within each site and on the wide area. In this
paper, we focus on four compositions of our architecture, using two well-known, flat replication protocols: Paxos
[16, 18] as our benign fault-tolerant protocol, and BFT [6] as our Byzantine fault-tolerant replication protocol. When
BFT is used within a site to implement an LM, the LM will function correctly if less than one third of the servers in
the site are compromised. When BFT is run on the wide area, thesystem will function correctly if less than one third
of the sites are compromised. When Paxos is run within a site,the LM will function correctly if less than a majority
of servers suffer benign faults. When Paxos is run on the widearea, the system will function correctly if less than
a majority of sites suffer benign failures. We refer to compositions aswide-area protocol/local-area protocol. For
example, we refer to a composition which runs BFT on the wide area and Paxos on the local area as BFT/Paxos.

We conclude by providing an example of Paxos/BFT that tracesthe flow of a client update through the system
during normal-case operation. First, a client sends an update to a server in its own site, which forwards the update to
the leader site (i.e., the site coordinating the Paxos wide-area protocol). The leader site LM uses BFT (requiring three
local communication rounds), to locally order the message event corresponding to the reception of the update by the
LM. The LM generates a wide-area proposal message, binding aglobal sequence number to the update. The message
is then threshold signed via a one-round protocol. The threshold-signed proposal is then sent (using BLink) to the
other sites. Each non-leader LM orders the incoming proposal, generates an acknowledgement (accept) message
for the proposal, and then sends the acknowledgement (usingBLink) to the other LMs. Each LM then orders the
reception of the accept message. When the proposal and a majority of accepts are collected, the LM globally orders
the client update, completing the protocol. We observe thatthe protocol consists of many rounds, most of which are
associated with ordering incoming messages; this is the price to achieve protocol separation.

5 BLink: Byzantine-resilient Communication

To achieve high performance over the low-bandwidth links characteristic of wide-area networks, our architecture
requires an efficient mechanism for passing messages between logical machines. As described in Section 4, each
LM is implemented by a replicated group of physical machines, some of which may be faulty. Faulty servers may

6

fail to send, receive, and/or disseminate wide-area messages. Existing protocols that use state machine based logical
machines (e.g., [5, 24, 26]) overcome this problem by redundantly sending all messages between logical machines.
For example, in a system toleratingf faults, each off + 1 servers in the sending LM might send the outgoing
message tof + 1 servers in the receiving LM. While this overhead may be acceptable in high-bandwidth LANs
or systems supporting a small number of faults, the approach(or even one withO(f) overhead) is poorly suited to
large-scale wide-area deployments.

Steward [4] avoids sending redundant messages during normal-case operation by choosing one server (the site
representative) to send outgoing messages. Steward employs a coarse-grained mechanism to monitor the perfor-
mance of the representative, using a lack of global progressto signal that the representativemaybe acting faulty and
should be replaced. This approach has two undesired consequences: timeouts for detecting faulty behavior can be
significantly higher than they need to be, and the communication protocol is (1) not generic and (2) tightly coupled
with global and local protocols, making it unusable in our customizable architecture.

In this section we present theByzantine Linkprotocol (BLink), a new Byzantine fault-tolerant protocolthat allows
logical machines to efficiently communicate with each otherover the wide-area network, regardless of the protocols
they are running.2 BLink consists of four sub-protocols, each tailored to the fault tolerance method employed
in the sending and receiving LMs: (benign, benign), (Byzantine, benign), (benign, Byzantine), and (Byzantine,
Byzantine). We first focus on the most challenging case, where each LM runs a Byzantine fault-tolerant protocol.
We then describe the other sub-protocols.

BLink establishes a reliable communication link between two LMs using three techniques. The first technique
provides a novel way of delegating the responsibility for wide-area communication such that (1) messages are
normally sent only once and (2) the adversary is unable to repeatedly block communication between two logical
machines. The second technique leverages the power of threshold cryptography and state machine replication to
allow the servers in the sending LM to monitor the behavior ofthe link and take action if it appears to be faulty. The
third technique ensures fairness by preventing the adversary from starving any particular link.

5.1 Delegating Communication Responsibility

BLink constructs a set oflogical links from each LM to its neighboring LMs. These logical links are reliable,
masking faulty behavior at both the sending and receiving LMs. To support this abstraction, BLink defines a set of
virtual links, each consisting of one server (theforwarder) from the sending LM and one server (thepeer) from the
receiving LM. The servers on a virtual link form a (forwarder, peer) pair. The forwarder sends outgoing wide-area
messages to the peer, and the peer disseminates incoming messages to the other servers in the receiving LM.

For each outgoing logical link, the sending LM delegates communication responsibility to the forwarder of one
of its virtual links. This decision is made independently for each outgoing logical link; different servers may act as
forwarder on different logial links, and the same server mayact as forwarder on multiple logical links. Since either
the forwarder or the peer may be faulty, the other servers within the sending LM monitor the performance of the
virtual link and move to the next virtual link (electing the next forwarder) if the current forwarder is not performing
well enough on the given link (we define this notion more precisely below).

The virtual links are constructed as follows, for two logical machinesLMA andLMB. SupposeLMA has3FA+1
servers, andLMB has3FB + 1 servers, withFA ≥ FB . We constructv = LCM(3FA + 1, 3FB + 1) virtual links,
labeled 0 throughv − 1. Virtual link i consists of the server inLMA with server idi mod (3FA + 1) and the server
in LMB with server idi mod (3FB + 1). The LM moves through the virtual links sequentially, wrapping around
modulov. We use the least common multiple of3FA + 1 and3FB + 1 so that at each site each server is used in the
same number of virtual links. This prevents the adversary from “overbenefiting” in its fault allocation by making the
faulty servers participate in more virtual links than the correct servers. The BLink logical link is shown in Figure 1.

WhenFA = FB , it is easy to see (by an extension of the pigeonhole principle) that, out of3FA + 1 virtual links,
our matching guarantees the existence of at leastFA + 1 correct virtual links, where both the forwarder and the peer
are correct (see Figure 2). WhenFA > FB , the following proof sketch shows that at least1/3 of the virtual links

2The term “link” refers to the logical communication link established between LMs. In particular, BLink operates over UDP.

7

S e n d i n gL o g i c a lM a c h i n e R e c e i v i n gL o g i c a lM a c h i n eL o g i c a l L i n kV i r t u a lL i n k s
Figure 1: A logical link is constructed from LCM(3FA+1, 3FB+1)
virtual links. Each virtual link consists of a forwarder anda peer.
At any time, one virtual link is used to send messages on the logical
link. A virtual link that is diagnosed as potentially faultyis replaced.

XX XXS e n d i n gL M R e c e i v i n gL M
f + 1c o r r e c tl i n k s 3 f + 1v i r t u a ll i n k s

Figure 2: WhenFA = FB , any set of3FA + 1 virtual links has at
leastFA + 1 virtual links with both forwarder and peer correct.

are correct. Each server inLMA is a member ofv/(3FA + 1) virtual links, and each server inLMB is a member of
v/(3FB + 1) virtual links. Letb equal the number of faulty links. Then we have:

b ≤ FA
v

3FA+1 + FB
v

3FB+1

= (FA

3FA+1 + FB

3FB+1)v

< (FA

3FA
+ FB

3FB
)v

= 2
3v

Thus, at least1/3 of the virtual links are correct.
In addition to the ratio of correct virtual links, we also consider the worst-case number of virtual links through

which the sending LM must cycle before reaching a correct link. We refer to this value asCmax. We first present
the equation forCmax and then explain how the equation is derived:

G = ⌊
FA

2FB + 1
⌋

L = FB + FA mod (2FB + 1)

Cmax = G ∗ (3FB + 1) + L + 1 (1)

Intuitively, in each group of3FB + 1 links, the adversary can useFB servers fromLMB and must consume at least
2FB + 1 servers fromLMA (otherwise we will have reached a correct link). Thus,LMA may need to cycle through
G = ⌊ FA

2FB+1⌋ complete groups of3FB + 1 virtual links. The last group of3FB + 1 (calledL in the formula above)
can containFB servers fromLMB , plus the remaining faulty servers, if any, fromLMA.

We now show the following bound onCmax:

Cmax ≤ 1.5FA − 0.5(FA mod (2FB + 1)) + FB + 1 (2)

We begin by removing the floor from the first term in Equation 1:

Cmax ≤ ⌊
FA

2FB + 1
⌋(3FB + 1) + FB + FA mod (2FB + 1) + 1

=

(

FA

2FB + 1
−

FA mod (2FB + 1)

2FB + 1

)

(3FB + 1) + FB + FA mod (2FB + 1) + 1

=
FA

2FB + 1
(3FB + 1) −

FA mod (2FB + 1)

2FB + 1
(3FB + 1) + FB + FA mod (2FB + 1) + 1 (3)

We now rewrite the bound in Equation 2 in a way that will help toelucidate how the bound is derived:

Cmax ≤ 1.5FA − 1.5(FA mod (2FB + 1)) + FB + FA mod (2FB + 1) + 1 (4)

Comparing Equation 3 and Equation 4, we see that the last three terms appear in both equations. Thus, we can ignore
them for the time being and focus on proving the following intermediate result:

8

FA

2FB + 1
(3FB + 1) −

FA mod (2FB + 1)

2FB + 1
(3FB + 1) ≤ 1.5FA − 1.5(FA mod (2FB + 1)) (5)

Rewriting the left side of Equation 5, we wish to show:

(3FB + 1)
FA − FA mod (2FB + 1)

2FB + 1
≤ 1.5FA − 1.5(FA mod (2FB + 1)) (6)

We now consider the three possible cases for the relationship betweenFA and2FB +1. First, if FA < 2FB +1, then
modular arithmetic implies thatFA mod (2FB +1) = FA. Thus, in this case, Equation 6 is an equality. Substituting,
we obtain:

(3FB + 1)FA−FA mod (2FB+1)
2FB+1 = (3FB + 1)FA−FA

2FB+1

= 0
= 1.5FA − 1.5FA

= 1.5FA − 1.5(FA mod (2FB + 1))

We now consider the second case. IfFA is a multiple of2FB + 1, thenFA mod (2FB + 1) = 0. In this case,
substitution reveals that the left side of Equation 6 is strictly less than the right side:

(3FB + 1)FA−FA mod (2FB+1)
2FB+1 = (3FB + 1) FA−0

2FB+1

= 3FB+1
2FB+1FA

< 1.5FA

= 1.5FA − 1.5 ∗ 0
= 1.5FA − 1.5(FA mod (2FB + 1))

The third step holds because3FB+1
2FB+1 is bounded above by 1.5.

Finally, we consider the third case. IfFA > 2FB + 1 but not a multiple of2FB + 1, thenFA mod (2FB + 1)
produces a value in the open interval(0, 2FB +1), which must be less thanFA. In this case, the left side of Equation
6 is strictly less than the right side:

(3FB + 1)
FA − FA mod (2FB + 1)

2FB + 1
=

3FB + 1

2FB + 1
(FA − FA mod (2FB + 1))

< 1.5(FA − FA mod (2FB + 1))

The last step holds because3FB+1
2FB+1 < 1.5 and(FA − FA mod (2FB + 1)) is positive.

Thus, we have shown that Equation 6 (and, therefore, Equation 5) holds in all cases. Since all other terms are
identical in Equations 3 and 4, we have shown the following:

Cmax ≤ FA

2FB+1(3FB + 1) − FA mod (2FB+1)
2FB+1 (3FB + 1) + FB + FA mod (2FB + 1) + 1

≤ 1.5FA − 1.5(FA mod (2FB + 1)) + FB + FA mod (2FB + 1) + 1

Combining terms, we obtain the following, which matches Equation 2 and completes the proof:

Cmax ≤ 1.5FA − 0.5(FA mod (2FB + 1)) + FB + 1

We now provide the reader with an intuitive feel for the relationship betweenCmax (Equation 1) and its bound
(Equation 2) by summarizing actual values forCmax over a wide range of possible configurations. For configurations
in which FA andFB can vary from 1 to 1000, withFA ≥ FB , the minimum, maximum, and average values for
Cmax are(1.334FA + 1), (2.0FA + 1), and(1.704FA + 1), respectively.

9

5.2 Reliability and Monitoring

BLink uses threshold-signed, cumulative acknowledgements to ensure reliability. Each message sent on an out-
going logical link is assigned a link-specific sequence number. Assigning these sequence numbers consistently is
simple, since outgoing messages are generated in response to events totally-ordered by the LM and can be sequenced
using this total order. Each LM periodically generates a threshold-signed acknowledgement message, which con-
tains, for each logical link, the sequence number through which the LM has received all previous messages. The
generation of the acknowledgement is triggered by executing an LM timeout, as described in Section 4. Servers
could also piggy-back acknowledgements on regular outgoing messages for more timely, fine-grained feedback.
The peer server for each incoming logical link sends the acknowledgement to its corresponding forwarder, which
presents the acknowledgement to the servers in the sending LM.

The acknowledgement serves two purposes. First, it is used to determine which messages need to be retrans-
mitted over the link to achieve reliability. This reliability is guaranteed even if the current forwarder is replaced,
since the next forwarder knows exactly which messages remain unacknowledged and should be resent. Second, the
servers in the sending LM use the acknowledgement to evaluate the performance of the current forwarder. Each
server in the sending LM maintains a queue of the unacknowledged messages on each logical link, placing an LM
timeout on the acknowledgement of the first message in the queue. If, before the timeout expires, the forwarder
presents an acknowledgement indicating the message was successfully received by the receiving LM, the timeout is
canceled and a new timeout is set on the next message in the queue. However, if the timeout expires before such an
acknowledgement is received, the servers in the sending LM suspect that the virtual link is faulty and elect the next
forwarder. Note that this mechanism can be augmented to enforce a higher throughput of acknowledged messages
by placing a timeout on a batch of messages. Of course, BLink does not guarantee delivery when a site at one or
both ends of the logical link is Byzantine.

5.3 Fairness

The third technique used by the BLink protocol addresses thedependency between the evaluation of the virtual
link forwarder and the performance of the leader of the agreement protocol in the receiving LM. Intuitively, if the
leader in the receiving LM could selectively refuse to ordercertain messages or could delay them too long, then a
correct forwarder (in the sending LM) might not be able to collect an acknowledgement in time to convince the other
servers that it sent the messages correctly. We would like tosettle on a correct virtual link to the extent possible, and
thus we augment the agreement protocol with a fairness mechanism.

When a peer in a receiving LM receives an incoming message, itdisseminates the message within the site; all
servers then expect the leader of the agreement protocol to initiate the message for ordering such that it can be
executed by the LM. To ensure fairness, servers must place a timeout on the leader of the agreement protocol to
prevent the selective starvation of a particular incoming logical link. Servers within the LM maintain a queue
for each incoming logical link. When the leader receives a message to be ordered, it places the message on the
appropriate queue. The leader then attempts to order messages off of the queues in round-robin fashion. Since
incoming link messages have link-based sequence numbers, all servers know exactly which message should be the
next one ordered for each link. Thus, upon receiving the nextmessage on a link, a server places a timeout on the
message and attempts to replace the leader if the message is not ordered in time.

5.4 Other BLink Sub-protocols

We now consider the problem of inter-LM communication when one or both of the LMs is implemented using a
benign fault-tolerant state machine replication protocol. Given that we have a solution for the (Byzantine, Byzantine)
case, the simplest approach would be to modify the mapping ofvirtual links to fit the other three cases: (benign, be-
nign), (benign, Byzantine), and (Byzantine, benign). The number of virtual links in the (benign, benign) case is set
to LCM(2FA +1, 2FB +1). In the (benign, Byzantine) case, the number of virtual links is LCM(2FA +1, 3FB +1).
In the (Byzantine, benign) case, the number of virtual linksis LCM(3FA + 1, 2FB + 1).

10

We can use an argument similar to the one found in Section 5.1 to prove the existence of a correct virtual link
in each of the cases. In the (benign, benign) case, the mapping yields at least one correct virtual link. In the
(benign, Byzantine) and (Byzantine, benign) cases, the analysis shows that at least1/6 of the virtual links are
correct.

When the sending logical machine runs a benign fault-tolerant protocol, it is possible to use a different approach
to reduce the number of virtual links through which the LM must cycle before reaching a correct link. The approach
assumes that the correct servers in the sending LM can communicate equally well with the correct servers in the
receiving LM. This assumption implies that there is no need for the sending LM to replace a correct forwarder. The
sending LM thus allows its forwarder to try different peers until it establishes a correct virtual link. The forwarder
will need to cycle through at mostFB + 1 such peers before finding a correct one. The servers in the sending LM
can use a standard ping/Hello protocol to monitor the statusof the current forwarder. A server only votes to replace
the forwarder if it has not received a response from the forwarder within a timeout period. Note that this technique
is not applicable to the (Byzantine, benign) case, since theforwarder may be Byzantine faulty and cannot be trusted
to find a correct peer. We also note that we can reduce the worst-case number of virtual links through which the
logical machine must cycle via the following optimization.When a forwarder detects that a peer is faulty, it locally
broadcasts a message indicating that the peer should be skipped by other forwarders. The next forwarder then picks
up where the last forwarder left off. In this way, one can think of the logical machine as rotating through a single
sequence of peers. Note that subsequent forwarders may eventually send to peers that were previously diagnosed as
faulty, because a correct peer may be diagnosed as faulty dueto a transient network partition.

5.5 Client Updates

Our architecture guarantees that if the system is stable anda client is connected to a stable site, the client will be
able to order its update. Since BLink provides efficient communication between logical machines, it is technically
possible to treat each client as a non-replicated logical machine and use BLink to provide Byzantine fault-tolerant
communication between clients and logical machines consisting of servers. However, using BLink in this manner
requires (1) extra overhead that increases normal-case latency, (2) sending threshold-signed acknowledgements from
the LM to the client, and (3) a separate queue for each client.Therefore, our architecture includes a specialized
protocol, CLink, which guarantees that clients will be ableto efficiently and quickly inject updates into the system.
CLink only guarantees that a logical machine will order the client’s update. Once this occurs, the wide-area protocol
running on the logical machines uses techniques similar to BFT to guarantee global ordering.

CLink consists of two components. The first component, CLink-1, allows a server that receives a new, correctly
signed client update to force the update to be ordered by the server’s logical machine. CLink-1 can be used by any
server, regardless of whether the server is in the leader LM or one of the non-leader LMs. The second component,
CLink-2, is a simple optimistic forwarding protocol that typically allows a non-leader LM server to forward a client
update directly to the leader LM without requiring that the server’s LM locally order the update. This mechanism
adds as little latency as possible and requires no cryptographic operations at the client’s LM (if the LM is a non-
leader). In cases where optimistic forwarding fails because a malicious server in the forwarding path drops the
message, the client retransmits its update, and its logicalmachine will locally order the update and then use the
BLink protocol to transmit the update to the leader LM. This procedure guarantees that the client’s update will be
propagated to the leader LM, but requires additional latency and processing overhead.

The CLink-1 protocol ensures that a logical machine will locally order and process any client update received
by one of the LM’s correct servers. The leader LM uses CLink-1on all such updates, while non-leader LMs use
CLink-1 only for those updates retransmitted by a client; retransmitted updates are marked with aretransmitflag. We
now describe the actions taken when a serverr invokes CLink-1. Upon receiving an update,u, serverr generates an
Ordering Request(idr , u, seqr) message, signs it, and sends it to the other servers in the site. seqr is a local sequence
number, generated byr, that is incremented each timer sends a newOrdering Requestmessage.

When a server receives anOrdering Requestfrom r, it stores the message and forwards it to the leader. Addi-
tionally, the server sets a timeout on the message (where theserver expects the message to be ordered within the
timeout period) if it has executed allOrdering Requestmessages from serverr up to and includingseqr − 1. The

11

leader attempts to order theOrdering Requestmessages from each server in round-robin fashion; it decides whether
to propose anOrdering Requestfor a servers as follows. If the leader does not have anOrdering Requestfrom
servers, then it moves to the next server moduloN . Otherwise, letOrdering Request OR(ids, u, seqs) be theOr-
dering Requestmessage from servers with the lowest sequence number. The leader proposesOR if seqs is one
greater than the sequence number of the lastOrdering Requestexecuted or proposed froms. When a server executes
an Ordering Request(ids, u, seqs) message, it cancels the timeout associated with the execution of that message,
if one is set. If the server has the nextOrdering Requestmessage froms, it sets a timeout on that message. Note
that, if servers is Byzantine, some server might have received anOrdering Requestmessage froms with the same
sequence number (seqs) but a different update. In this case, the server cancels itstimeout but has explicit proof that
s is corrupt and can broadcast the proof to the rest of the servers. Finally, we note that CLink-1 can be optimized by
including only a digest of the update in theOrdering Requestmessage, reducing the amount of bandwidth consumed
when more than one server includes the same update in anOrdering Request.

We conclude with a brief description of the optimistic forwarding mechanism (CLink-2), and what happens when
it fails. Each client contains a randomly shuffled list of theservers in its site to which it sends updates. Similarly,
each server contains a randomly shuffled list of the servers in each of the other sites. Correct clients and servers
rotate through the entries in the lists when optimistic forwarding fails. When a client wants to submit an update,
it sends the update to a server in its site. Then the clients sets a timeout. If the server that received the update is
correct, then it forwards the update to a server in the leaderLM (based on its list of servers for the current leader
LM) and sets a timeout. The server in the leader LM, if correct, will generate anOrdering Requestmessage and
invoke CLink-1. If the client’s timeout expires, then the client generates a new signed update that is identical to the
first one, except that it contains a retransmit flag. The client sends this retransmission tof +1 servers in its local site.
Therefore, at least one correct server will invoke CLink-1,and the client’s LM will locally order the retransmitted
update. The LM will then use the BLink protocol to propagate the update to the leader site. The wide-area protocol
is responsible for replacing a malicious leader LM, if the wide-area protocol is Byzantine fault-tolerant. The next
time the client sends an update, it will attempt an optimistic send to the next server in its list. Similarly, the server
that forwarded the update also uses the next server in its list if its timeout expired.

6 Performance Optimizations

Our composable architecture has significant computationaloverhead, because each LM must order all events that
cause state transitions in the wide-area protocol. This Byzantine fault-tolerant ordering (which in our architecture
uses digital signatures) is computationally costly. In addition, each LM threshold signs all outgoing messages, which
imposes an even greater computational cost. Consequently,we use Merkle hash trees [25] to amortize the cost of
threshold signing, and we improve the performance of LM event processing via well-known aggregation techniques.
These optimizations are appliedonly to the local protocols. Thus, there is a one-to-one correspondence between
wide-area messages in an optimized, composable protocol and its unoptimized equivalent.

Merkle Tree Based Signatures: Instead of threshold signing every outgoing message, we generate a single
threshold signature, based on a Merkle hash tree, that is used to authenticate several messages. Each outgoing
message is self-contained, including everything necessary for validation (except the public key). The leaf nodes in a
Merkle hash tree contain the hashes of the messages that needto be sent. Each of the internal nodes contains a hash
of the concatenation of the two hashes in its children nodes.The signature is generated over the hash contained in
the root. When a message is sent, we include the series of hashes that can be used to generate the root hash. The
number of included hashes is log(N), whereN is the number of messages that were signed with the single signature.

Logical Machine Event Processing: We use the aggregation technique described in [7] to increase the throughput
of local event processing by the LM. The LM orders several events at once, allowing the LM to order thousands of
events per second over LANs while providing Byzantine faulttolerance. With this performance, it is likely that the
incoming wide-area bandwidth will limit throughput.

12

Protocol Rounds
Protocol Wide Area Local Area Total
Steward 2 4 6
Paxos/Paxos 2 6 8
BFT/Paxos 3 8 11
Paxos/BFT 2 11 13
BFT/BFT 3 15 18

Table 1: Number of Protocol Rounds.

Protocol Computational Costs
Protocol Threshold RSA Sign RSA Sign
Steward 1 3
Paxos/Paxos 0 2 + (S − 1)
BFT/Paxos 0 3 + 2(S − 1)
Paxos/BFT 1 3 + 2(S − 1)
BFT/BFT 2 4 + 4(S − 1)

Table 2: Number of expensive cryptographic operations thateach
server at the leader site does for one update.

7 Performance Evaluation

To evaluate the performance of our composable architecture, we implemented our protocols, including all neces-
sary communication and cryptographic functionality.

Testbed and Network Setup: We used a network topology consisting of 5 wide-area sites, each containing 16
physical machines, to quantify the performance of our system. In order to facilitate comparisons with Steward, we
chose to use the same topology and numbers of machines used in[4]. If BFT is run within a site, then the site can
tolerate up to 5 Byzantine servers. If Paxos is run within a site, then the site can tolerate 7 benign server failures.
If BFT is run on the wide area, then the system can tolerate oneByzantine site compromise. If Paxos is run on the
wide area, then the system remains available if no more than two sites are disconnected from the others.

Our experimental testbed consists of a cluster with twenty 3.2 GHz, 64-bit Intel Xeon computers. Each computer
can compute a 1024-bit RSA signature in 1.3 ms and verify it in0.07 ms. For n=16, k=6, 1024-bit threshold
cryptography which we use for these experiments, a computercan compute a partial signature and verification proof
in 3.9 ms and combine the partial signatures in 3.4 ms. The leader site was fully deployed on 16 machines, and the
other 4 sites were emulated by one computer each.

Each emulating computer performed the role of a representative of a complete 16 server site. Therefore, our
testbed is equivalent to an 80 node system distributed across 5 sites. Upon receiving a message, the emulating
computers busy-waited for the time it took a 16 server site tohandle that packet and reply to it, including intra-
site communication and computation. We also modeled the aggregation used by our composable architecture. We
determined busy-wait times for each type of packet by benchmarking the different types of ordering protocols on
a fully deployed, 16 server site. The Spines [2] messaging system was used to emulate latency and throughput
constraints on the wide-area links. We limited the capacityof wide-area links to 10 Mbps in all tests.

We compared the performance results of five protocols, four of which use our composable architecture:
Paxos/Paxos, BFT/Paxos, Paxos/BFT, BFT/BFT. The fifth is a new implementation of Steward, which includes the
option of using the same optimization techniques used in ournew architecture. The updates in our experiments
carried a payload of 200 bytes, representative of an SQL statement.

We exclusively use RSA signatures for authentication, bothfor consistency with our previous work and to provide
non-repudiation, which is valuable when identifying malicious servers. The benign fault-tolerant protocols use
RSA signatures to protect against external attackers. While it is possible to use more efficient cryptography in the
compositions based on Paxos, these changes do not significantly affect performance when our optimizations are
used. We also note that BFT can use MACs, which improves its latency and results in much better performance
when no aggregation is used. However, this change has a smaller effect on our optimized protocols, because the total
update latency is dominated by the wide-area latency.

Protocol Rounds and Cryptographic Costs: Table 1 shows the number of protocol rounds in Steward, and
in each of the four combinations of our composable architecture. The protocol rounds are classified as wide-area
when the message is sent between sites, and local-area when it is sent between two physical machines within a site.
Steward has the least rounds of any of the protocols, including Paxos/Paxos. The difference in total rounds ranges
from 6 (Steward) to 18 (BFT/BFT). However, it is important toobserve that all of the protocols listed have either
two or three wide-area rounds.

Table 2 shows the computationally expensive cryptographicoperations required for each update at the leader site

13

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 3: Throughput of Unoptimized Protocols, 50 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 4: Latency of Unoptimized Protocols, 50 ms Diameter

when the optimizations presented in Section 6 are not used. The costs are a function of the number of sites, denoted
by S. The table shows the number of threshold signatures to whicheach server in the leader must contribute and the
number of RSA signatures that each server in the leader site must compute. In the tests presented in this paper, the
unoptimized versions of our algorithm are always limited bycomputational resources. Consequently, these costs are
inversely proportional to the maximum throughput.

Architectural Comparison: To evaluate the overhead of our composable architecture compared to that of Stew-
ard, we first compare the performance of the five protocols when the optimizations presented in Section 6 are not
used. We wish to make clear that the unoptimized results do not reflect our architecture’s actual performance. We
specifically removed the optimizations to provide a clear picture of their benefits. We used a symmetric configura-
tion where all sites are connected to each other with 50 ms (emulating crossing the continental US), 10Mbps links.
Each client sends an update to a server in its site, waits for proof that the update was ordered, and then immediately
injects the next update.

Figure 3 shows update throughput as a function of the number of clients. In all of the protocols, throughput
initially increases as the number of clients increases. When the load on the CPU increases to 100%, throughput
plateaus. This graph shows the performance benefit of Steward’s architecture. In Steward, external wide-area accept
messages do not need to be ordered before the replicas can process them. Steward achieves over twice the perfor-
mance of Paxos/BFT, its equivalent composition, reflectingthe price of clean separation. Steward even outperforms
Paxos/Paxos, which has more ordering and RSA signature generation, but does not use threshold signatures. The
initial slope of these curves is most dependent on the numberof wide-area protocol rounds. The peak performance of
each of the protocols is a function of the number of cryptographic operations (see Table 2). The Paxos/BFT composi-
tion has about twice the throughput of the BFT/BFT composition, and it has approximately half of the cryptographic
costs. A similar relationship exists between Paxos/Paxos and BFT/Paxos.

Figure 4 shows average update latency measured at the clients as a function of the number of clients. In each of the
curves, the update latency remains approximately constantuntil the CPU is 100% utilized, at which point, latency
climbs as the number of clients increases. In our system, we queue client updates if the system is overburdened and
inject these updates in the order in which they were received.

Figures 5 and 6 show the results for the same tests as above with 100 ms network diameter. We observe the same
maximum bandwidth and latency trends. Additional latency on the wide-area links reduces the slope of the lines in
Figure 5 (update throughput), but has no effect on the maximum throughput that is achieved.

Performance of Optimized Protocols: We now present the performance of the five protocols with the opti-
mizations described in Section 6. In these protocols, the cost of the cryptographic operations listed in Table 2 are
amortized over several updates when CPU load is high. In contrast to the unoptimized protocols, none of our op-
timized protocols were CPU limited in the following tests. Maximum throughput was always limited by wide-area
bandwidth constraints. In all cases, the optimized protocols increased throughput by at least a factor of 4 compared
to their unoptimized versions.

In Figures 7 and 9 (discussed below), we include two theoretical throughput upper bounds of a Paxos/BFT com-
position in which LMs redundantly send physical messages over the wide area to ensure reliable inter-LM commu-

14

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 5: Throughput of Unoptimized Protocols, 100 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 6: Latency of Unoptimized Protocols, 100 ms Diameter

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Redundant Send (2f+1) Bound
Redundant Send (f+1)2 Bound

Figure 7: Throughput of Optimized Protocols, 50 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140
U

pd
at

e
La

te
nc

y
(m

s)
Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 8: Latency of Optimized Protocols, 50 ms Diameter

nication. We computed the maximum throughput by assuming that the wide-area Proposal message sent from the
leader site contains at least a signed update from the clientand an RSA signature from the LM (456 bytes total).
We present bounds based on (1) an(f + 1)2 protocol where the leader site would need to redundantly send 36 of
these messages to each of the other 4 sites per update and (2) a(2f + 1) peer protocol where the leader site would
redundantly send 11 messages to each site per update. The second protocol was included within the original Steward
system for use during view changes, but we are unaware of any other systems that use it. The upper bound is the
throughput at which the leader site’s outgoing link reachessaturation. The difference between the redundant send
upper bounds and the performance of Paxos/BFT (with BLink) attests to the importance of the BLink protocol.

Figure 7 shows the update throughput as a function of the number of clients. The relative maximum throughput
and slopes of the curves are very different from the unoptimized versions. For example, Paxos/Paxos, Steward,
and Paxos/BFT have almost the same maximum throughput. Thisattests to the effectiveness of the optimizations
in greatly reducing the performance overhead associated with clean separation. The optimization improves the
performance of the compositions more than it improves Steward because the composable architecture uses many
more local rounds. In a wide-area environment, local roundsare relatively inexpensiveif they do not consume too
much computational resources. The optimizations eliminate this computational bottleneck. Thus, performance of
the optimized version is predominantly dependent on the number of wide-area protocol rounds.

The local-area protocol has a smaller, but significant, effect on performance. The slopes of the curves are different
because of the difference in latency contributed by the local-area protocols. BFT and threshold signing contribute
the greatest latency. As a result, Steward has a steeper slope than its equivalent composition, Paxos/BFT. Here also,
we can see the benefit of Steward, but the performance difference is considerably smaller than in the unoptimized
protocols. Paxos contributes very little latency and therefore, Paxos/Paxos’s performance slightly exceeds Steward’s.
Note that Paxos/Paxos benefits slightly more than Steward from the optimizations, because Paxos/Paxos locally
orders more messages than Steward (which orders the update locally only once).

Figure 8 shows the average update latency in the same experiment. Although aggregation is commonly associated
with an increase in latency, the optimized protocols have similar or lower latency compared to the unoptimized

15

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Redundant Send (2f+1) Bound
Redundant Send (f+1)2 Bound

Figure 9: Throughput of Optimized Protocols, 100 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 10: Latency of Optimized Protocols, 100 ms Diameter

variants. An LM must locally order at least two external messages to execute a client’s update. Therefore, even
with a single client in the system, if the external accept messages arrive at about the same time, the latency can be
lower with aggregation. When there are many clients, the average latency of the optimized protocols is considerably
less than the latency of the unoptimized protocols, becausethe optimized protocols have much higher maximum
throughput. Figures 9 and 10 validate the same trends on a 100ms diameter network.

Discussion: Our optimized composable architecture achieves practicalperformance, with throughputs of hun-
dreds of updates per second, even while offering the strong security guarantees of BFT/BFT. The performance of
Paxos/BFT represents a factor of 4 improvement compared with the previous state of the art for wide-area Byzantine
replication (i.e., unoptimized Steward). The performanceof the unoptimized protocols is computationally limited
and reflects the cost associated with achieving composability and flexibility. Our results show that the optimizations
effectively eliminate this performance bottleneck.

8 Safety and Liveness Proof Sketch

Our composable architecture offers flexibility by separating the wide-area protocol, run among the logical ma-
chines, from the local-area protocol, run within the logical machine. As a direct consequence, it is possible to
use a variety of replication protocols at each level of the hierarchy. Our architecture uses Paxos and BFT, both of
which guarantee safety and liveness under certain synchrony assumptions. Therefore, we can directly use the known
properties of these protocols when proving safety and liveness of our hierarchical architecture.

Paxos and BFT do not rely on synchrony assumptions for safety. As a result, the safety of a protocol composition
follows directly from the safety of these two protocols. Thelocal state machine replication protocol used in the
ordering component ensures that all replicas in a logical machine transition through the same states and invoke the
signing component on identical outgoing messages. When running BFT in the logical machine, we use threshold
cryptography so that malicious servers cannot generate messages that are signed by the logical machine. Thus the
logical machine will not exhibit two-faced behavior assuming that it contains at mostf malicious servers. In a system
where BFT is run on the wide area, the wide area protocol guarantees safety if at mostF sites are compromised.

We now show that protocol compositions using Paxos and BFT are live if the system is stable, as described in
Section 3. Paxos and BFT guarantee liveness when the messagedelay does not grow faster than the timeout used
to detect a failed leader. In a flat system, the message delay is dominated by wide-area network latency. In our
system, message delay is a function of both network latency and the delay associated with local ordering of wide-
area protocol events. The message delay can be expressed as:∆mess = (MAXvl + 1)(L + (MAXf + 2)Tlocal),
whereMAXvl denotes the maximum value ofCmax across all logical links,L denotes the maximum latency due
to network round trip and acknowledgment timer granularity, MAXf is the maximum number of faults tolerated
by any site, andTlocal denotes the timeout used to detect a failed local leader. The(MAXvl) term reflects the
maximum number of virtual links through which a logical machine might need to rotate before reaching a correct
one. The remaining term is the BLink protocol timeout, whichis dependent onL andTlocal. Tlocal is multiplied
by (MAXf + 2) because there must be enough time to rotate through up toMAXf malicious local leaders at the

16

receiving site.
When the system is stable, all of the terms in the equation areconstant except forTlocal. Thus, if Tlocal does

not grow faster than the timeout used to detect a failed leader site in the wide-area protocol, then the composable
system is live. In a stable system, either progress occurs orwide-area protocol leaders are elected continuously
and the wide-area timeout continues to increase. The timeouts are calculated according to the following equations:
Tlocal = γαVlocal whereα is any positive constant,Vlocal is the local-area protocol view number, andγ is any constant
greater than 1;Tglobal = γβVglobal whereTglobal is the wide-area protocol timeout,β is any positive constant, and
Vglobal is the wide-area protocol view number. Ifα < β, then the timeouts will grow as required for system liveness.

9 Discussion

Our composable architecture can be extended by adding new replication protocols for use on the wide area or local
area besides Paxos and BFT. Several existing protocols provide desirable properties and are promising candidates
for use within our system. As demonstrated in Section 7, wide-area protocol rounds are very costly due both to
increased latency and increased message complexity. Therefore, if a system requires Byzantine fault tolerance
and high performance and can tolerate reduced availability, Martin and Alvisi’s two-round Byzantine fault-tolerant
replication protocol [23] is well-suited for use as our wide-area protocol. We believe that a composition that used
this protocol would approach the performance of a composition that used Paxos on the wide area, because both are
two-round protocols. The work of Yin et al. on privacy firewalls [35] can also be used effectively within a site, as
part of our local-area protocol. Verrisimo’s work on hybridarchitectures [8, 34] is another excellent candidate for
use within our architecture. Special trusted hardware thatprovides stronger guarantees within a site can be used to
strengthen the fault tolerance of our logical machines.

Finally, we note that the consistency guarantees of our wide-area protocol can be relaxed for use with systems that
do not require state machine replication semantics. For example, a composition could use a state machine replication
protocol as the local-area protocol and a benign fault-tolerant anti-entropy protocol [13] on the wide area.

10 Conclusions

This paper presented a customizable, scalable replicationarchitecture, tailored to systems that span multiple wide-
area sites. Our architecture constructs logical machines (enhanced for use on wide-area networks) out of the physical
machines in each site using the state machine approach, enabling free substitution of the fault tolerance method used
in each site and in the wide-area replication protocol. We presented BLink, a new Byzantine fault-tolerant commu-
nication protocol that provides efficient and reliable wide-area communication between logical machines. BLink
was shown to be a critical addition to the logical machine abstraction for wide-area networks, where bandwidth con-
straints limit performance. An experimental evaluation showed that our optimized architecture achieves a maximum
wide-area Byzantine replication throughput at least four times higher than the previous state of the art.

References

[1] http://www.ciphertrust.com/resources/statistics/zombie.php.
[2] The spines project, http://www.spines.org/.
[3] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage. Steward: Scaling byzantine fault-

tolerant replication to wide area networks. Technical Report CNDS-2006-2, Johns Hopkins University, www.dsn.jhu.edu,
November 2006.

[4] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru, J. Olsen, and D. Zage. Scaling byzantine fault-tolerant
replication to wide area networks. InDSN ’06: Proceedings of the International Conference on Dependable Systems and
Networks (DSN’06), pages 105–114, Washington, DC, USA, 2006. IEEE Computer Society.

[5] F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava,N. A. Speirs, and S. Tao. Implementing fail-silent nodes for
distributed systems.IEEE Transactions on Computers, 45(11):1226–1238, 1996.

[6] M. Castro and B. Liskov. Practical byzantine fault tolerance. InOSDI: Symposium on Operating Systems Design and
Implementation. USENIX Association, Co-sponsored by IEEE TCOS and ACM SIGOPS, 1999.

17

[7] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery.ACM Trans. Comput. Syst.,
20(4):398–461, 2002.

[8] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo. Efficient byzantine-resilient reliable multicast on a hybrid failure
model. InProc. of the 21st Symposium on Reliable Distributed Systems, Suita, Japan, Oct. 2002.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq replication: A hybrid quorum protocol for byzantine
fault tolerance. InProceedings of the Seventh Symposium on Operating Systems,Washington, Nov. 2006.

[10] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders, M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber,
P. Pal, R. Watro, and J. Gossett. Providing intrusion tolerance with itua. InSupplement of the 2002 International
Conference on Dependable Systems and Networks, June 2002.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.J. ACM,
32(2):374–382, 1985.

[12] R. Friedman and E. Hadad. Fts: A high-performancecorbafault-tolerance service. In7th IEEE International 10 Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS 2002), 2002; 61–68., 2002.

[13] R. A. Golding and K. Taylor. Group membership in the epidemic style. Technical Report UCSC-CRL-92-13, University
of California, Santa Cruz, CA, Mar. 1992.

[14] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing protocols for securing group communication.
In Proceedings of the IEEE 31st Hawaii International Conference on System Sciences, volume 3, pages 317–326, Kona,
Hawaii, January 1998.

[15] K. P. Kihlstrom and P. Narasimhan. The starfish system: Providing intrusion detection and intrusion tolerance for mid-
dleware systems. InWORDS, pages 191–199. IEEE Computer Society, 2003.

[16] Lamport. Paxos made simple.SIGACTN: SIGACT News (ACM Special Interest Group on Automata and Computability
Theory), 32, 2001.

[17] L. Lamport. Time, clocks, and the ordering of events in adistributed system.Commun. ACM, 21(7):558–565, 1978.
[18] L. Lamport. The part-time parliament.ACM Transactions on Computer Systems, 16(2):133–169, May 1998.
[19] D. Malkhi and M. Reiter. Byzantine quorum systems.Journal of Distributed Computing, 11(4):203–213, 1998.
[20] D. Malkhi and M. Reiter. An architecture for survivablecoordination in large distributed systems.IEEE Transactions on

Knowledge and Data Engineering, 12(2):187–202, 2000.
[21] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind. Persistent objects in the fleet system. InThe 2nd DARPA Information

Survivability Conference and Exposition (DISCEX II). (2001), June 2001.
[22] D. Malkhi and M. K. Reiter. Secure and scalable replication in phalanx. InSRDS ’98: Proceedings of the The 17th IEEE

Symposium on Reliable Distributed Systems, page 51, Washington, DC, USA, 1998. IEEE Computer Society.
[23] J.-P. Martin and L. Alvisi. Fast byzantine consensus.IEEE Trans. Dependable Secur. Comput., 3(3):202–215, 2006.
[24] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan. Thema: Byzantine-fault-tolerant

middleware forweb-service applications. InSRDS ’05: Proceedings of the 24th IEEE Symposium on ReliableDistributed
Systems (SRDS’05), pages 131–142, Washington, DC, USA, 2005. IEEE Computer Society.

[25] R. C. Merkle.Secrecy, authentication, and public key systems.PhD thesis, 1979.
[26] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. Providing support for survivable CORBA ap-

plications with the immune system. InInternational Conference on Distributed Computing Systems, pages 507–516,
1999.

[27] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders. Quantifying the cost of providing intrusion tolerance
in group communication systems. InThe 2002 International Conference on Dependable Systems and Networks (DSN-
2002), June 2002.

[28] M. K. Reiter. The Rampart Toolkit for building high-integrity services. InSelected Papers from the International Work-
shop on Theory and Practice in Distributed Systems, pages 99–110, London, UK, 1995. Springer-Verlag.

[29] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, Feb. 1978.

[30] R. Rodrigues, M. Castro, and B. Liskov. Base: using abstraction to improve fault tolerance. InSOSP ’01: Proceedings of
the eighteenth ACM symposium on Operating systems principles, pages 15–28, New York, NY, USA, 2001. ACM Press.

[31] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to designing fault-tolerant computing systems.
Computer Systems, 1(3):222–238, 1983.

[32] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial.ACM Computing
Surveys, 22(4):299–319, 1990.

[33] V. Shoup. Practical threshold signatures.Lecture Notes in Computer Science, 1807:207–223, 2000.
[34] P. Verissimo. Uncertainty and predictability: Can they be reconciled. InFuture Directions in Distributed Computing,

number 2584 in LNCS. Springer-Verlag, 2003.
[35] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating agreement from execution for byzantine

fault-tolerant services. InSOSP, 2003.

18

