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Abstract

This paper presents a complete specification of the Paxos replication protocol such
that system builders can understand it and implement it. We evaluate the performance
of a prototype implementation and detail the safety and liveness properties guaranteed
by our specification of Paxos.

1 Introduction

State machine replication [15, 22] is a well-known technique for implementing distributed
services (e.g., information access systems and database systems) requiring high performance
and high availability. Typically, the service is implemented by a group of server replicas,
which run a protocol to globally order all actions that cause state transitions. The servers
begin in the same initial state, and they execute the actions in the agreed upon order, thus
remaining replicas of one another.

In this work, we consider the Paxos [16, 17] state machine replication protocol. Paxos
is a robust protocol in which global ordering is coordinated by an elected leader. Normal-
case operation of Paxos requires two rounds of server-to-server communication for ordering.
Although the original Paxos algorithm was known in the 1980’s and published in 1998, it is
difficult to understand how the algorithm works from the original specification. Further, the
original specification had a theoretical flavor and omitted many important practical details,
including how failures are detected and what type of leader election algorithm is used. Filling
in these details is critical if one wishes to build a real system that uses Paxos as a replication
engine.

The goal of this work is to clearly and completely specify the Paxos algorithm such that
system builders can understand it and implement it. We provide complete pseudocode, in C-
like notation, for our interpretation of the protocol. We specify the leader election algorithm
used, in addition to mechanisms for reconciliation and flow control. We clearly specify the
safety and liveness guarantees provided by our specification, and we provide intuition as to
the environments for which Paxos is particularly well-suited compared to other approaches.
In particular, we show the liveness implications of using different leader election protocols.

We implemented our specification and provide performance results for our implementa-
tion. Our results show that Paxos is capable of achieving high throughput and low latency



without disk writes or when writes are asynchronous, but that it suffers from significant
performance degradation compared to other approaches if disk writes are synchronous. We
show how aggregation can be used to mitigate this degradation, improving performance by
more than an order of magnitude.

The remainder of this paper is presented as follows. In Section 2, we describe relevant
related work. In Section 3, we present the system model assumed by Paxos, and we describe
the service properties guaranteed by Paxos. Section 4 presents the Paxos consensus protocol,
which can be seen as a version of the replication protocol in which only one value needs to
be agreed upon. In Section 5, we present the replication protocol, with detailed pseudocode.
Section 6 discusses the liveness guarantee of Paxos, both from a theoretical and a practical
standpoint. In Section 7, we evaluate the performance of our implementation. Section 8
concludes.

2 Related Work

State machine replication [15, 22] allows a set of servers to remain replicas of one another
by ordering the actions that cause state transitions. It is assumed that the actions are
deterministic. Servers begin in the same initial state and execute updates according to the
agreed upon order.

State machine replication can be used to replicate information systems such as databases.
A replicated database should appear to the user as if there is only one copy of the database.
Further, concurrent transactions that span multiple sites should be serializable, meaning
their execution should be equivalent to some serial execution. The Two-Phase Commit
(2PC) protocol [8] is a well-known tool for achieving this property of one-copy serializability.
While simple, 2PC is forced to block forward progress if the coordinator of a transaction
fails; the other participants need to hold their locks on the database until they can resolve
the outcome of the transaction, limiting availability and potential concurrency in the case
of failure. The Three-Phase Commit (3PC) protocol [23] overcomes some of the blocking
problems associated with 2PC, at the cost of an additional round of communication. 3PC
allows a majority of servers to make forward progress in the face of one failure. However,
if failures cascade, a majority of servers may still be forced to block in order to preserve
consistency. The Enhanced Three-Phase Commit (e3PC) protocol [14] allows any majority
of participants to make forward progress, regardless of past failures, at the negligible cost of
two additional counters.

This paper focuses on Paxos [16, 17]. Paxos is a state machine replication protocol that
allows a set of distributed servers, exchanging messages via asynchronous communication,
to totally order client requests in the benign-fault, crash-recovery model. Paxos assumes a
static membership, and it uses an elected leader to coordinate the agreement protocol. The
normal-case operation of Paxos resembles the 2PC protocol, while its robustness is simlar to
that of e3PC. For each update, the leader constructs an explicit write quorum consisting of
a majority of servers. If the leader crashes or becomes unreachable, the other servers elect a
new leader; a view change occurs, allowing progress to safely resume in the new view under
the reign of the new leader. Paxos requires at least 2f +1 servers to tolerate f faulty servers.

Several papers have been published which have attempted to specify and clarify the Paxos
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algorithm since its original presentation by Lamport. De Prisco, Lampson, and Lynch [21]
specify and prove the correctness of the protocol using Clocked General Timed automata to
model the processes and channels in the system. Their specification makes use of a failure
detector for leader election, and they provide a theoretical analysis of the performance of
Paxos. Dutta, Guerraoui, and Boichat [4] use two main abstractions to modularize the
functionality of the Paxos protocol: a weak leader election abstraction (implemented by a
failure detector) and a round-based register abstraction. They also show four variants of
Paxos that make different assumptions and are thus useful in different settings. Lampson
[18] presents an abstract version of Paxos and then shows how the different versions of Paxos
(i.e., Byzantine Paxos [5] and Disk Paxos [10]) can be derived from the abstract version. Li,
et al. [19] specify Paxos using a register abstraction; the protocol consists of how reads and
writes to the Paxos register are implemented. A concurrent work by Chandra, et al. [6]
describes the authors’ experience in using Paxos to build a fault-tolerant database. They
highlight the systems-related problems they encountered, many of which were not addressed
by previous specifications of Paxos.

The current work takes the same practical approach as [6] and seeks to remedy the short-
comings of previous specifications by including complete pseudocode for those components
needed to implement Paxos in practice. Rather than approaching Paxos from a theoretical
point of view, or using abstractions to modularize the protocol, we aim to give the reader the
tools needed to build a useful system that uses Paxos as a replication engine. This requires
a precise specification of message structure, protocol timeouts, how messages are recovered,
etc. To the best of our knowledge, our work is the first to provide such a systems-based speci-
fication. At the same time, we highlight important theoretical differences, related to liveness,
between our specification and previous work in Section 6. Finally, we provide the most ex-
tensive experimental evaluation of Paxos to date and describe the practical implications of
our results.

Other existing state machine replication protocols (e.g., COReL [12] and Congruity [1])
operate above a group communication system, which provides services for membership and
reliable, ordered delivery. COReL has a similar message pattern to Paxos (using end-to-end
acknowledgements and disk writes per update) but uses the local total order provided by the
underlying group communication system to assign a tentative ordering (whereas Paxos uses
an elected leader). Both Paxos and COReL allow any majority of servers to make forward
progress, regardless of past failures. However, they differ in the degree of network stability
required as a prerequisite for ordering. We discuss this in more detail in Section 6.

Congruity leverages the safe delivery service of the Extended Virtual Synchrony (EVS)
semantics [20] to remove the need for end-to-end acknowledgements and per-server disk writes
on a per-update basis. Congruity trades higher normal-case performance for lower worst-case
availability. If all servers crash before any of them installs the next primary component, then
forward progress is blocked until one server (directly or indirectly) completes reconciliation
with all other servers. As originally specified, this blocking behavior can also result if all
servers partition such that they deliver all installation attempt messages, but they all deliver
the last attempt message during a membership transition. This partition vulnerability can
be removed, and we show how to do so in a related paper [2].
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3 System Model

We assume a system of N replication servers, which communicate by passing messages in a
communication network. Communication is asynchronous and unreliable; messages may be
duplicated, lost, and can take an arbitrarily long time to arrive, but those that do arrive are
not corrupted. The network can partition into multiple disjoint components, and components
can subsequently remerge.

We assume a benign fault model for servers. Servers can crash and subsequently recover,
and they have access to stable storage, which is retained across crashes. We assume that all
servers follow the protocol specification; they do not exhibit Byzantine behavior.

Servers are implemented as deterministic state machines. All servers begin in the same
initial state. A server transitions from one state to the next by applying an update to its
state machine; we say that the server executes the update. The next state is completely
determined by the current state and the update being executed. Paxos establishes a global,
persistent, total order on client updates. By executing the same updates in the same order,
the servers remain consistent replicas of each other.

Clients introduce updates for execution by sending them to the Paxos servers. Each
update is distinguished by the identifier of the initiating client and a client-based, monoton-
ically increasing sequence number. We assume that each client has at most one outstanding
update at a time; a client c only submits an update with client sequence number ic +1 when
it has received the reply for update ic.

The correctness of the Paxos protocol is encapsulated in the following consistency re-
quirement:

Definition 3.1 S1 - Safety: If two servers execute the ith update, then these updates
are identical.

To ensure that meeting Safety is non-trivial, we also use the following requirement:

Definition 3.2 S2 - Validity: Only an update that was introduced by a client (and sub-
sequently initiated by a server) may be executed.

We also require that each update be executed at most once:

Definition 3.3 S3 - At-Most Once: If a server executes an update on sequence number
i, then the server does not execute the update on any other sequence number i′ > i.

Since no asynchronous, fault-tolerant replication protocol tolerating even one failure can
always be both safe and live [9], Paxos provides a liveness, or progress, guarantee, only under
certain synchrony and connectivity conditions. We defer a discussion of these conditions until
Section 6. We note, however, that Paxos meets requirements S1, S2, and S3 even when the
system is asynchronous; that is, it does not rely on synchrony assumptions for safety.
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Figure 1: Paxos normal-case operation. Client C sends an update to the leader (Server 0). The leader sends
a proposal containing the update to the other servers, which respond with an accept message. The client
receives a reply after the update has been executed.

4 The Consensus Protocol

4.1 The Concept

From a high-level perspective, the consensus protocol proceeds as follows. One server is
elected as the leader ; the leader coordinates the protocol by proposing a client update for
execution. The other servers accept the leader’s proposal and tell each other that they
have done so. A server learns that an update has been agreed upon when it learns that a
majority of servers have accepted the corresponding proposal; the server can then execute
the update. The server that originally received the client’s update sends a reply to the client
after executing the update. The protocol is depicted in Figure 1.

This simple, two-round protocol (which we call the Proposal phase) is the heart of the
consensus algorithm. Some complexity needs to be introduced, however, to ensure agreement
in the face of crashes and recoveries. The leader may crash, resulting in the election of a
new leader, or more than one server may believe they are the leader at a given time. The
algorithm must guarantee that, even if multiple leaders propose different updates, at most
one update is agreed upon for execution.

We first define a total ordering on the reigns of different leaders by assigning each reign a
unique number, which we call a view number. The system proceeds through a series of views,
with a view change occurring each time a new leader is elected. Each view has exactly one
leader, which makes at most one proposal in the context of this view (although the proposal
may be retransmitted if necessary).1 Since multiple proposals (from different views) may
be made, we define a total ordering on all proposals by attaching the corresponding view
number to each one. We say that a proposal with a lower (resp. higher) view number
occurred earlier (resp. later) than one with a higher (resp. lower) view number.

With these mechanisms in place, Paxos ensures agreement by introducing another round
of communication – the Prepare phase – before the Proposal phase. In the Prepare phase,
the leader asks the servers to respond with the latest proposal (if any) they have accepted.

1In the context of the replication algorithm, we allow multiple proposals to be made within a given view,
and we distinguish proposals by pairs consisting of view numbers and sequence numbers, as explained below.
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Upon receiving responses from a majority of servers, the leader has either learned that (1)
no update has been ordered (if no accepted proposals were reported among the majority)
or (2) an update may have been ordered (if at least one server reported its corresponding
proposal). In the former case, the leader can propose any update for execution, while in the
latter, the leader is constrained to propose the update from the latest accepted proposal.
Besides constraining the updates that can be proposed, the Prepare phase also restricts the
proposals that can be accepted. By responding to a Prepare message, a server promises not
to accept any proposal from a previous view (i.e., with a smaller view number).

4.2 The Protocol

We now present the consensus protocol in more detail. We assume that a leader has just
been elected; we defer discussion of leader election, reconciliation, and other mechanisms
until Section 5, where we detail the complete replication protocol.

Upon being elected, the new leader initiates the Prepare phase. The leader prepares the
proposal it will make by sending a prepare message, containing the current view number,
to the other servers. The leader waits for responses from ⌊N/2⌋ servers. If it does not receive
the necessary responses, and it still believes it is the leader, it tries to prepare a proposal
with a higher view number.

A server can respond to a prepare message if it has not already responded to one with a
higher view number. The server responds by sending a prepare ok message to the leader,
containing the view number and the most recent proposal it has accepted, if any. If the
leader collects ⌊N/2⌋ prepare ok messages for the current view, the update it can propose
is either constrained (if one or more prepare ok messages reported an earlier accepted
proposal) or unconstrained (if no accepted proposal was reported). Note that the leader is
unconstrained in this case for the following reason: If any update was ordered, it must have
been accepted by a majority of servers, one of which sent a prepare ok (since any two
majorities intersect).

The leader sends out a proposal message to the other servers, containing the current
view number and the update being proposed. Again, the update is either the most recent
constraining update, or any update if none was reported. A server receiving a proposal

message can accept it, as long as it is has not already shifted to a later view. A server accepts
a proposal by sending an accept message, containing the current view number. Finally,
a server orders an update when it receives the proposal message and ⌊N/2⌋ corresponding
accept messages.

4.3 Disk Writes

To preserve safety in the face of crashes, servers need to write to stable storage at key places
during the protocol. We briefly consider each of these in turn and describe why they are
necessary.

Sending a prepare ok. Before responding to a prepare message with a prepare ok,
a server must write the view number to stable storage. Since the response is a promise
not to accept earlier proposals, the server must remember this promise across crashes.
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Accepting a proposal. Before sending an accept messsage, a server must write the
corresponding proposal message to disk. Since other servers use the accept in
determining whether to order an update, this server must remember the proposal so
that it can correctly respond to future prepare messages, which in turn will correctly
constrain future proposals. If the leader’s proposal is used as an implicit accept

message, it must write to disk before sending the proposal.

Making the first proposal in a new view. In the context of the replication protocol,
the prepare message will contain, in addition to the current view number, a sequence
number. For simplicity of the pseudocode, we enforce that the leader never send two
different prepare messages for the same view. Thus, in our code the leader writes to
disk before sending the prepare message. We note, however, that to preserve safety,
the leader need not sync at this time, provided it syncs its view number to disk at
some point before sending a proposal in the new view.

Initiating a client update. To ensure that updates are consistently named across crashes,
either the client or the server must sync the update to disk before initiating it into the
system. In our specification, the server assumes this responsibility.

4.4 Protocol Variants

We discuss two variants of the core protocol that reflect different tradeoffs regarding message
complexity, latency, and availability.

In the version of the protocol described above, the leader’s proposal messsage is used
as an implicit accept message for the purpose of ordering. This requires that the leader
sync to disk before sending the proposal, resulting in two sequential disk writes during the
ordering (one for the proposal and one for the accept). One variation is that the leader
can send an accept message as well, in which case it could write to disk in parallel with the
other servers. If disk writes are expensive with respect to the overall latency of the ordering,
then this results in a reduction of the ordering latency at the cost of one additional incoming
message per non-leader (and N − 1 additional sends by the leader).

Another interesting variation on the core protocol is to have the non-leader servers send
their accept messages only to the leader, which will collect ⌊N/2⌋ responses and then
broadcast the ordering decision to all servers. This adds an extra round of latency but reduces
the number of messages from O(N2) to O(N). This version is also less fault-tolerant, since
if the leader fails, the update will not be ordered until a new leader is elected. To remedy
this, the non-leaders can send to a group of servers, trading off fault tolerance for higher
message complexity.

5 The Replication Protocol

5.1 Overview

The Paxos replication protocol extends the consensus protocol to assign a global, persistent,
total order to a sequence of client updates. Intuitively, the replication protocol runs multiple
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instances of the consensus protocol in parallel; the update ordered in the ith instance is
assigned the ith sequence number in the global order. A server executes an update after it
has executed all previous updates in the global order.

The communication pattern of the replication protocol is almost identical to that of the
consensus protocol. The protocol elects a leader, which assigns sequence numbers to client
updates. The leader’s assignment is encapsulated in a proposal message, and the non-
leaders respond by sending accept messages. As before, a server orders an update when
it collects the proposal and ⌊N/2⌋ accept messages. Since the leader might crash, we
specify a timeout-based failure detection mechanism, which allows a new leader to be elected
when insufficient progress is being made.

The leader remains in power while progress is being made. Therefore, it will usually make
multiple proposals in the same view. Thus, we can no longer differentiate proposals by their
view number alone, as we could in the consensus protocol; we now distinguish proposal

messages by the combination of their view number and a sequence number. Note that the
earlier/later temporal relationship is still solely defined by view number.

We present the replication protocol in the form of a deterministic state machine with
three states:

leader election. A server is attempting to install a new leader. It participates in the
leader election algorithm.

reg leader. The leader completes the Prepare phase, after which it can assign global
sequence numbers to incoming updates and propose them to the rest of the servers.

reg nonleader. A non-leader forwards client updates to the leader for sequencing and
responds to proposals made by the leader.

There are two types of events that produce an action in the state machine. The first is
a message reception event, which occurs when the transport layer delivers a message to the
server application. The server handles the event according to the protocol specification. The
second type of event is a timer event, which occurs under certain conditions after some time
elapses without the server taking some action.

In the remainder of this section, we first present the data structures and message types
used in the rest of the protocol. We then present the leader election protocol, followed
by the Prepare phase of the algorithm. We then describe the global ordering protocol used
during normal-case operation, followed by our mechanisms for reconciliation, client handling,
recovery, message retransmission, and flow control.

5.2 Data Structures and Message Types

Each server maintains data structures to track its state during each phase of the protocol. As
seen in Figure 2, this state includes variables relating to leader election (Block B), the Prepare
phase (Block C), and the global ordering protocol (Block D). The server’s Global History is
an array, indexed by sequence number, used to maintain proposal and accept messages
for each instance of the consensus protocol (i.e., for each sequence number). Each server
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Data Structures:
/* Server State variables */
A1. int My server id - a unique identifier for this server
A2. State - one of {LEADER ELECTION, REG LEADER, REG NONLEADER}

/* View State variables */
B1. int Last Attempted - the last view this server attempted to install
B2. int Last Installed - the last view this server installed
B3. VC[] - array of View Change messages, indexed by server id

/* Prepare Phase variables */
C1. Prepare - the Prepare message from last preinstalled view, if received
C2. Prepare oks[] - array of Prepare OK messages received, indexed by server id

/* Global Ordering variables */
D1. int Local Aru - the local aru value of this server
D2. int Last Proposed - last sequence number proposed by the leader
D3. Global History[] - array of global slots, indexed by sequence number, each containing:
D4. Proposal - latest Proposal accepted for this sequence number, if any
D5. Accepts[] - array of corresponding Accept messages, indexed by server id
D6. Globally Ordered Update - ordered update for this sequence number, if any

/* Timers variables */
E1. Progress Timer - timeout on making global progress
E2. Update Timer - timeout on globally ordering a specific update

/* Client Handling variables */
F1. Update Queue - queue of Client Update messages
F2. Last Executed[] - array of timestamps, indexed by client id
F3. Last Enqueued[] - array of timestamps, indexed by client id
F4. Pending Updates[] - array of Client Update messages, indexed by client id

Figure 2: Data Structures

also maintains timers used for failure detection (Block E), as well as variables to ensure each
client update is executed at most once (Block F).

The message types used by the replication protocol are presented in Figure 3. The glob-

ally ordered update type (Block H) is used during reconciliation, which is described in
Section 5.6. Upon receiving a message, each server first runs a conflict check (Figure 4)
to determine if the message should be applied to the server’s data structures. The conflict
tests are simple; for example, a server only handles a proposal message if it is in the
reg nonleader state. If a message does not cause a conflict, the server applies it to its
data structures according to a set of update rules (Figure 5).
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Message Types:
A1. Client Update - contains the following fields:
A2. client id - unique identifier of the sending client
A3. server id - unique identifier of this client’s server
A4. timestamp - client sequence number for this update
A5. update - the update being initiated by the client

B1. View Change - contains the following fields:
B2. server id - unique identifier of the sending server
B3. attempted - view number this server is trying to install

C1. VC Proof - contains the following fields:
C2. server id - unique identifier of the sending server
C3. installed - last view number this server installed

D1. Prepare - contains the following fields:
D2. server id - unique identifier of the sending server
D3. view - the view number being prepared
D4. local aru - the local aru value of the leader

E1. Prepare OK - contains the following fields:
E2. server id - unique identifier of the sending server
E3. view - the view number for which this message applies
E4. data list - list of Proposals and Globally Ordered Updates

F1. Proposal - contains the following fields:
F2. server id - unique identifier of the sending server
F3. view - the view in which this proposal is being made
F4. seq - the sequence number of this proposal
F5. update - the client update being bound to seq in this proposal

G1. Accept - contains the following fields:
G2. server id - unique identifier of the sending server
G3. view - the view for which this message applies
G4. seq - the sequence number of the associated Proposal

H1. Globally Ordered Update - contains the following fields:
H2. server id - unique identifier of the sending server
H3. seq - the sequence number of the update that was ordered
H4. update - the client update bound to seq and globally ordered

Figure 3: Message Types
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boolean Conflict(message):
case message:

A1. View Change VC(server id, attempted):
A2. if server id = My server id
A3. return TRUE
A4. if State 6= leader election

A5. return TRUE
A6. if Progress Timer is set
A7. return TRUE
A8. if attempted ≤ Last Installed
A9. return TRUE
A10. return FALSE

B1. VC Proof V(server id, installed):
B2. if server id = My server id
B3. return TRUE
B4. if State 6= leader election

B5. return TRUE
B6. return FALSE

C1. Prepare(server id, view, leader aru):
C2. if server id = My server id
C3. return TRUE
C4. if view 6= Last Attempted
C5. return TRUE
C6. return FALSE

D1. Prepare OK(server id, view, data list):
D2. if State 6= leader election

D3. return TRUE
D4. if view 6= Last Attempted
D5. return TRUE
D6. return FALSE

E1. Proposal(server id, view, seq, update):
E2. if server id = My server id
E3. return TRUE
E4. if State 6= reg nonleader

E5. return TRUE
E6. if view 6= Last Installed
E7. return TRUE
E8. return FALSE

F1. Accept(server id, view, seq):
F2. if server id = My server id
F3. return TRUE
F4. if view 6= Last Installed
F5. return TRUE
F6. if Global History[seq] does not contain a Proposal from view
F7. return TRUE
F8. return FALSE

Figure 4: Conflict checks to run on incoming messages. Messages for which a conflict exists are discarded.
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Update Data Structures(message):
case message:

A1. View Change V(server id, view):
A2. if VC[server id] is not empty
A3. ignore V
A4. VC[server id] ← V

B1. Prepare P(server id, view, leader aru):
B2. Prepare ← P

C1. Prepare OK P(server id, view, data list):
C2. if Prepare OK[server id] is not empty
C3. ignore P
C4. Prepare OK[server id] ← P
C5. for each entry e in data list
C6. Apply e to data structures

D1. Proposal P(server id, view, seq, update):
D2. if Global History[seq].Globally Ordered Update is not empty
D3. ignore Proposal
D4. if Global History[seq].Proposal contains a Proposal P’
D5. if P.view > P’.view
D6. Global History[seq].Proposal ← P
D7. Clear out Global History[seq].Accepts[]
D8. else
D9. Global History[seq].Proposal ← P

E1. Accept A(server id, view, seq):
E2. if Global History[seq].Globally Ordered Update is not empty
E3. ignore A
E4. if Global History[seq].Accepts already contains ⌊N/2⌋ Accept messages
E5. ignore A
E6. if Global History[seq].Accepts[server id] is not empty
E7. ignore A
E8. Global History[seq].Accepts[server id] ← A

F1. Globally Ordered Update G(server id, seq, update):
F2. if Global History[seq] does not contain a Globally Ordered Update
F3. Global History[seq] ← G

Figure 5: Rules for updating the Global History.
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Leader Election():
A1. Upon expiration of Progress Timer:
A2. Shift to Leader Election(Last Attempted+1)

B1. Upon receiving View Change(server id, attempted) message, V:
B2. if attempted > Last Attempted and Progress Timer not set
B3. Shift to Leader Election(attempted)
B4. Apply V to data structures
B5. if attempted = Last Attempted
B6. Apply V to data structures
B7. if Preinstall Ready(attempted)
B8. Progress Timer ← Progress Timer∗2
B9. Set Progress Timer
B10. if leader of Last Attempted
B11. Shift to Prepare Phase()

C1. Upon receiving VC Proof(server id, installed) message, V:
C2. if installed > Last Installed
C3. Last Attempted ← installed
C4. if leader of Last Attempted
C5. Shift to Prepare Phase()
C6. else
C7. Shift to Reg Non Leader()

D1. bool Preinstall Ready(int view):
D2. if VC[] contains ⌊N/2⌋ + 1 entries, v, with v.attempt = view
D3. return TRUE
D4. else
D5. return FALSE

E1. Shift to Leader Election(int view):
E2. Clear data structures: VC[], Prepare, Prepare oks, Last Enqueued[]
E3. Last Attempted ← view
E4. vc ← Construct VC(Last Attempted)
E5. SEND to all servers: vc
E6. Apply vc to data structures

Figure 6: Leader Election

5.3 Leader Election

As described above, Paxos is coordinated by a leader server, which assigns sequence numbers
to client updates and proposes the assignments for global ordering. The servers use a leader
election protocol to elect this leader; we use a protocol similar to the one described in [5],
adapted for use in benign environments.

From a high-level perspective, servers vote, or attempt, to install a new view if insufficient
progress is being made – that is, when their Progress Timer expires. Each view is associated
with an integer; the leader of view i is the server such that My server id ≡ i mod N , where
N is the total number of servers in the system. When a server receives a majority of votes
for the view it is trying to install, we say that the server preinstalls the view. When a server
completes the Prepare Phase for the preinstalled view (see Section 5.4), we say that the
server installs the view. The server tracks its last attempted view and its last installed view
with the Last Attempted and Last Installed variables, respectively (Figure 2, Block B).

The complete leader election protocol is listed in Figure 6. When a server’s Progress Timer
expires, it invokes the Shift to Leader Election procedure (Block E), clearing its view-related
variables and sending a view change message to the other servers. The server waits for one
of two cases to occur. First, if the server receives a view change message for a view higher
than the one it attempted to install, then the server jumps to the higher view and sends out a
corresponding view change message (lines B2-B4). On the other hand, if a server collects
a majority of corresponding view change messages from distinct servers for the view it
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attempted to install (i.e., when it preinstalls the view), the server sets its Progress Timer. If
the server is the leader, it triggers the Prepare phase. In addition, each server periodically
transmits a vc proof message, which contains the value of its Last Installed variable. Upon
receiving a vc proof message for a later view, a server in the leader election state can
immediately join the installed view.

The protocol relies on two techniques to ensure synchronization:

1. A server sets its Progress Timer to twice its previous value. This is essentially a probing
mechanism, allowing more time for the leader election protocol to complete. It also
gives a newly established leader more time to complete the global ordering protocol.

2. A server only jumps to a higher view if two conditions both hold. First, the server must
already suspect the current leader to have failed. This condition removes the power of
an unstable server to disrupt progress once a stable majority has already established
a view. Second, the server’s Progress Timer must not already be set (see Figure 4,
line A6). This condition gives the leader election protocol the greatest opportunity
to run to completion, without being interrupted by an unstable server. Recall that a
server starts its Progress Timer when it receives a majority of view change messages
for the view it is currently attempting to install. Thus, while a server is waiting for
progress to occur, it ignores anything from the unstable server.

5.4 Prepare Phase

The Prepare phase is run after the leader election algorithm completes; it is the critical
mechanism used to ensure safety across view changes. The Prepare phase is run once for all
future instances of the consensus protocol (i.e., for all sequence numbers) that will be run in
the context of the new view. This key property makes normal-case operation very efficient,
requiring only two rounds of communication. The newly elected leader collects ordering
information from ⌊N/2⌋ servers, which it uses to constrain the updates it may propose in
the new view. Pseudocode for the Prepare phase is listed in Figures 7 and 8.

Upon preinstalling the new view, the new leader shifts to the Prepare phase, sending to
all servers a prepare message. The prepare message contains the new view number and
the leader’s Local Aru value, which is the sequence number through which it has executed
all updates. In the new view, the leader will make proposals for sequence numbers above
its Local Aru. Thus, to preserve safety, the leader must learn about any accepted proposals
for these sequence numbers. By collecting information from ⌊N/2⌋ servers, the leader is
guaranteed to learn about any update that may have been ordered.

Upon receiving a prepare message, a server that has preinstalled the leader’s new view
builds a prepare ok message and sends it to the leader. Each prepare ok message
contains the new view number and a data list. The data list is a (possibly empty) list
of proposal and/or globally ordered update messages, and is constructed as seen
in Figure 8, Block A: For each sequence number above the leader’s Local Aru, the server
includes either (1) a globally ordered update, if the server has globally ordered that
sequence number or (2) the latest proposal message that the server has accepted for that
sequence number, if any. After responding to the prepare message, the server shifts to the
reg nonleader state (Figure 9, Block B).
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A1. Shift To Prepare Phase()
A2. Last Installed ← Last Attempted
A3. prepare ← Construct Prepare(Last Installed, Local Aru)
A4. Apply prepare to data structures
A5. data list ← Construct DataList(Local Aru)
A6. prepare ok ← Construct Prepare OK(Last Installed, data list)
A7. Prepare OK[My Server id] ← prepare ok
A8. Clear Last Enqueued[]
A9. **Sync to disk
A10. SEND to all servers: prepare

B1. Upon receiving Prepare(server id, view, aru)
B2. if State = leader election /* Install the view */
B3. Apply Prepare to data structures
B4. data list ← Construct DataList(aru)
B5. prepare ok ← Construct Prepare OK(view, data list)
B6. Prepare OK[My server id] ← prepare ok
B7. Shift to Reg Non Leader()
B8. SEND to leader: prepare ok
B9. else /* Already installed the view */
B10. SEND to leader: Prepare OK[My server id]

C1. Upon receiving Prepare OK(server id, view, data list)
C2. Apply to data structures
C3. if View Prepared Ready(view)
C4. Shift to Reg Leader()

Figure 7: Prepare Phase

A1. datalist t Construct DataList(int aru)
A2. datalist ← ∅
A3. for each sequence number i, i > aru, where Global History[i] is not empty
A4. if Global History[i].Ordered contains a Globally Ordered Update, G
A5. datalist ← datalist ∪ G
A6. else
A7. datalist ← datalist ∪ Global History[i].Proposal
A8. return datalist

B1. bool View Prepared Ready(int view)
B2. if Prepare oks[] contains ⌊N/2⌋ + 1 entries, p, with p.view = view
B3. return TRUE
B4. else
B5. return FALSE

Figure 8: Prepare Phase Utility Functions

When the leader collects ⌊N/2⌋ prepare ok messages (i.e., when it prepares the new
view), it is properly constrained and can begin making proposals. It shifts to the reg leader

state (Figure 9, Block A).

5.5 Global Ordering

Once it has prepared the new view, the leader can begin to propose updates for global
ordering (Figure 10). If the leader receives any updates before this, it stores them in its
Update Queue. Non-leader servers forward client updates to the leader. The leader creates
and sends new proposal messages using the Send Proposal() procedure (Figure 11, Block
A). Recall that if the leader’s proposal is used as an implicit accept for ordering purposes,
the leader must sync to disk before sending the proposal. For a given unordered sequence
number, the leader proposes either (1) the last known accepted proposal (if the sequence
number is constrained) or (2) the first update on the Update Queue, if any.

Upon receiving a proposal message from the current view, a server constructs an ac-

cept message, syncs the accepted proposal to disk, and sends the accept to all servers.
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A1. Shift to Reg Leader()
A2. State ← reg leader

A3. Enqueue Unbound Pending Updates()
A4. Remove Bound Updates From Queue()
A5. Last Proposed ← Local Aru
A6. Send Proposal()

B1. Shift to Reg Non Leader()
B2. State ← reg nonleader

B3. Last Installed ← Last Attempted
B4. Clear Update Queue
B5. **Sync to disk

Figure 9: Shift to Reg Leader() and Shift to Reg Non Leader() Functions

Global Ordering Protocol:
A1. Upon receiving Client Update(client id, server id, timestamp, update), U:
A2. Client Update Handler(U)

B1. Upon receiving Proposal(server id, view, seq, update):
B2. Apply Proposal to data structures
B3. accept ← Construct Accept(My server id, view, seq)
B4. **Sync to disk
B5. SEND to all servers: accept

C1. Upon receiving Accept(server id, view, seq):
C2. Apply Accept to data structures
C3. if Globally Ordered Ready(seq)
C4. globally ordered update ← Construct Globally Ordered Update(seq)
C5. Apply globally ordered update to data structures
C6. Advance Aru()

D1. Upon executing a Client Update(client id, server id, timestamp, update), U:
D2. Advance Aru()
D3. if server id = My server id
D4. Reply to client
D5. if U is in Pending Updates[client id]
D6. Cancel Update Timer(client id)
D7. Remove U from Pending Updates[]
D8. Last Executed[client id] ← timestamp
D9. if State 6= leader election

D10. Restart Progress Timer
D11. if State = reg leader

D12. Send Proposal()

Figure 10: Global Ordering Protocol

accept messages are very small, containing only the view number and the sequence number;
it is not necessary to include the update (or even a digest of the update), since a leader will
make at most one (unique) proposal for a given view and sequence number.

When a server collects the proposal and ⌊N/2⌋ accept messages for the same view
and sequence number, it orders the update (Figure 11, Block B), advancing its Local Aru if
possible (Figure 11, Block C). A server executes an update with a given sequence number
when its Local Aru reaches that sequence number. The server to which the client originally
sent the update sends a reply to the client.

5.6 Reconciliation

The original Paxos algorithm fails to specify a reconciliation protocol for bringing servers
up to date. As a result, the algorithm may allow a server to order updates quickly, without
allowing the server to execute these updates, due to gaps in the global sequence. This is a
serious problem, since there is little use in continuing to order without being able to transition
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A1. Send Proposal()
A2. seq ← Last Proposed + 1
A3. if Global History[seq].Globally Ordered Update is not empty
A4. Last Proposed++
A5. Send Proposal()
A6. if Global History[seq].Proposal contains a Proposal P
A7. u ← P.update
A8. else if Update Queue is empty
A9. return
A10. else
A11. u ← Update Queue.pop()
A12. proposal ← Construct Proposal(My server id, view, seq, u)
A13. Apply proposal to data structures
A14. Last Proposed ← seq
A15. **Sync to disk
A16. SEND to all servers: proposal

B1. bool Globally Ordered Ready(int seq)
B2. if Global History[seq] contains a Proposal and ⌊N/2⌋ Accepts from the same view
B3. return TRUE
B4. else
B5. return FALSE

C1. Advance Aru()
C2. i← Local Aru +1

C3. while (1)
C4. if Global History[i].Ordered is not empty
C5. Local Aru++
C6. i++
C7. else
C8. return

Figure 11: Global Ordering Utility Procedures

to the next state. This section addresses this problem. For clarity of presentation, we do
not provide pseudocode for reconciliation.

Our mechanism is built upon a peer-to-peer, sliding-window, nack-based, selective repeat
protocol. Reconciliation is triggered in three ways. First, if a server receives a proposal

message for a sequence number more than a threshold amount above its Local Aru, it at-
tempts to reconcile with a random server, trying a different server if the selected server is
unavailable or indicates that it cannot complete reconciliation up to the desired sequence
number. Second, if a server globally orders an update “out of order” (i.e., the ordering does
not increase the server’s Local Aru), the server again tries to reconcile with a random peer.
Finally, we use periodic anti-entropy sessions [11] to recover missed updates. Each server
periodically sends out a message containing its Local Aru. If a server receives a message
containing a sequence number higher than its own Local Aru, the server sets a timer and
records the sequence number as a potential target for reconciliation. If the timer expires and
the server’s Local Aru is still less than the target, the server initiates a reconciliation session.
The timer is set to avoid triggering reconciliation unnecessarily, when “missing” messages
are actually in the server’s buffer.

In addition to the above reconciliation mechanism, we also modify he Prepare phase
such that a non-leader server only sends a prepare ok message if the leader’s Local Aru,
contained in the prepare message, is at least as high as this server’s Local Aru. If the
leader is trailing behind, the non-leader server tables the prepare message and performs
pair-wise reconciliation with the leader to bring it up to date.
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Client Update Handler(Client Update U):
A1. if(State = leader election)
A2. if(U.server id != My server id)
A3. return
A4. if(Enqueue Update(U))
A5. Add to Pending Updates(U)
A6. if(State = reg nonleader)
A7. if(U.server id = My server id)
A8. Add to Pending Updates(U)
A9. SEND to leader: U
A10. if(State = reg leader)
A11. if(Enqueue Update(U))
A12. if U.server id = My server id
A13. Add to Pending Updates(U)
A14. Send Proposal()

B1. Upon expiration of Update Timer(client id):
B2. Restart Update Timer(client id)
B3. if(State = reg nonleader)
B4. SEND to leader: Pending Updates[client id]

Figure 12: Client Update Handling

5.7 Client Handling

In a practical Paxos implementation, we must ensure that each client update is not executed
more than once. One approach to achieving this goal would be to allow updates to be ordered
without restriction, checking at execution time if an update has already been executed and, if
so, ignoring it. We take a different approach: once an update is bound to a sequence number,
we prevent the leader from binding the update to any other sequence number (unless it learns
that the update could not have been ordered with the first sequence number).

In the following discussion, we refer to the clients that send updates to a given server as
that server’s local clients. Each server assumes responsibility for updates received from its
local clients. Note that a leader will receive updates from other clients, as well, since non-
leaders forward updates from their local clients to the leader. By assuming responsibility, a
server will continue to take action on behalf of the client (as described below) until the update
is globally ordered. Each server stores the updates for which it is currently responsible in
its Pending Updates data structure.

During normal-case operation, a non-leader server that receives a new update from a
local client adds the update to Pending Updates, writes it to disk, and then forwards the
update to the leader (see Figure 12, lines A6-A9, and Figure 13, Block B). Since pending
updates are stored on disk, a server will re-assume responsibility for a pending update upon
recovery. In addition, the server sets a timer on globally ordering the update. If the timer
expires, the update may have been lost on the link to the leader, and the server resends the
update to the leader. The server cancels the timer when it executes the update (Figure 10,
line D6).

When the leader receives an update, it attempts to place the update on its Update Queue
(Figure 13, Block A). Each server maintains two additional data structures to ensure the
Update Queue is managed correctly. The Last Executed data structure stores the timestamp
of the last executed update from each client; the leader does not enqueue an update that has
already been executed (Figure 13, lines A2-A3). The Last Enqueued data structure stores
the timestamp of the last enqueued update from each client for the current view; the leader
does not enqueue updates that have already been enqueued (Figure 13, lines A4-A5). If the
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A1. bool Enqueue Update(Client Update U)
A2. if(U.timestamp ≤ Last Executed[U.client id])
A3. return false
A4. if(U.timestamp ≤ Last Enqueued[U.client id])
A5. return false
A6. Add U to Update Queue
A7. Last Enqueued[U.client id] ← U.timestamp
A8. return true

B1. Add to Pending Updates(Client Update U)
B2. Pending Updates[U.client id] ← U
B3. Set Update Timer(U.client id)
B4. **Sync to disk

C1. Enqueue Unbound Pending Updates()
C2. For each Client Update U in Pending Updates[]
C3. if U is not bound and U is not in Update Queue
C4. Enqueue Update(U)

D1. Remove Bound Updates From Queue()
D2. For each Client Update U in Update Queue
D3. if U is bound or U.timestamp ≤ Last Executed[U.client id] or

(U.timestamp ≤ Last Enqueued[U.client id] and U.server id 6= My server id)
D4. Remove U from Update Queue
D5. if U.timestamp > Last Enqueued[U.client id]
D6. Last Enqueued[U.client id] ← U.timestamp

Figure 13: Client Update Handling Utility Functions

leader enqueues the update, it adds the update to Pending Updates if it originated from a
local client.

It is easy to see that, within an established view, the leader will enqueue each update at
most once, and all forwarded updates will eventually reach the leader (assuming the link be-
tween a non-leader and the leader does not repeatedly drop the update). Care must be taken,
however, to ensure correct behavior across view changes. While in the leader election

state, a server enqueues updates from its local clients, and, if necessary, takes responsibility
for them. We now consider the state transitions that might occur across view changes, and
we show how updates are managed in each case.

1. A server that shifts from leader election to reg nonleader may have updates
in its Update Queue; these updates should be forwarded to the new leader. The server
is only responsible for updates from its local clients. These updates are already in
Pending Updates, and thus when the Update Timer on these updates expires, the
server will now correctly forward them to the new leader (Figure 12, Block B). As a
result, all updates can be removed from the Update Queue (Figure 9, line B4).

2. A server that shifts from leader election to reg leader must ensure that pending
updates from its local clients are placed in the Update Queue, so that they may be
proposed in the new view. However, some of these pending updates (in addition to
updates from non-local clients left over from a previous view) may already be bound to
a sequence number, in which case they will be replayed as constrained updates in the
new view; these updates should not be enqueued. After completing the Prepare Phase,
the server (i) enqueues any pending updates that are not bound and not already in the
queue (Figure 13, Block C) and (ii) removes any bound updates from the Update Queue
(Figure 13, Block D).

3. A server that shifts from reg nonleader to leader election will have an empty
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Recovery:
A1. if no data exist on stable storage /* Initialization */
A2. Create stable storage files
A3. Last Attempted ← 0
A4. Last Installed ← 0
A5. Local Aru ← 0
A6. Last Proposed ← 0
A7. Progress Timer ← default timer value
A8. **Sync to disk
A9. else
A10. Read State from stable storage
A11. Read Last Attempted and Last Installed from stable storage
A12. Rebuild Global History from message log
A13. For each pending update U
A14. Add to Pending Updates(U)
A15. Compute Local Aru from Global History[]
A16. Shift to Leader Election(Last Attempted + 1)

Figure 14: Recovery Procedure

Update Queue but may have pending updates, which will be handled when the server
shifts in one of the above two cases.

4. A server that shifts from reg leader to leader election may have both local
updates and non-local updates in its Update Queue. Local updates are handled via
the Pending Updates mechanism, while other updates will either be retained (if they
are not bound and the server shifts to reg leader) or discarded (if the server shifts
to reg nonleader).

To ensure that updates are properly queued, the Last Enqueued data structure is reset
upon shifting to the leader election state. Updates from local clients are only received
once, and thus only new, unexecuted updates from local clients are enqueued.

5.8 Recovery

We provide a simple recovery mechanism for allowing crashed servers to return to correct
operating status. As seen in Figure 14, a recovering server that has no information stored
on stable storage initializes its data structures and creates a file for maintaining its log
and other protocol meta-state. If the recovering server finds these files, it rebuilds its data
structures from the log. In both cases, the server shifts to the leader election state,
where it attempts to install a new view.

We note that there are some cases in which a crashed server can return to normal-case
operation without installing a new view. For example, if the server was a non-leader server, it
might recover to find that updates are still being ordered in the same view. In this case, the
server could begin responding to proposal messages, but it would need to recover missing
updates before it could begin executing.

5.9 Message Retransmission

We employ several message retransmission mechanisms to overcome message loss during the
course of the algorithm.

1. Messages handled with a receiver-based mechanism are only retransmitted upon recep-
tion of some “trigger” message:
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• prepare ok - sent in response to a prepare message.

• accept - sent in response to a proposal message.

2. Messages handled with a sender-based mechanism are retransmitted by the sender after
a timeout period:

• prepare - retransmitted when the view is not prepared within a timeout period.

• proposal - retransmitted if the associated update has not been globally ordered
within a timeout period.

• client update - retransmitted by the originating server if it has not been glob-
ally ordered within a timeout period.

3. The leader election messages are sent periodically.

5.10 Flow Control

In a practical implementation, one must avoiding putting too many updates into the pipeline
such that messages are lost. Our implementation imposes a sending window on the leader,
limiting the number of unexecuted proposals that can be outstanding at a given time. The
leader sets the size of the window dynamically, gradually increasing the window until it
detects a loss (via a proposal retransmission), at which point it cuts the size of the window
in half. In addition, we impose the requirement that a non-leader server only responds to
a proposal message if it is within its receiving window – that is, if the sequence number
of the proposal is within a threshold amount of the server’s Local Aru. This throttles the
leader such that it can proceed with ⌊N/2⌋ other servers.

We note, however, that this is not a true flow control mechanism when there are more
than (⌊N/2⌋+1) connected servers. While the system can proceed with (⌊N/2⌋+1) up-
to-date servers, a real system should keep all connected servers as up-to-date as possible.
Thus, in addition to the mechanism described above, we employ a loose membership service.
Each server periodically sends an alive message, which contains the server’s Local Aru. The
leader only sends a new proposal when (1) there is space in the window and (2) all connected
servers have reported a Local Aru value within some threshold range of the beginning of the
window.

As we discuss in greater detail in Section 6, Paxos is theoretically able to make forward
progress as long as there is a stable set of connected servers, even if other servers come and
go very rapidly. We wish to make clear that the flow control mechanism described above may
not meet this property, since it attempts to slow down if more than (⌊N/2⌋+1) servers are
present. An unstable server may repeatedly “fool” the leader into waiting for it, preventing
progress from being made. It is easy to modify our implementation to remove this mechanism
and meet the theoretical guarantee, at the cost of potentially leaving some servers far behind
during normal-case operation (they would essentially proceed at the speed of reconciliation
but may always lag behind). This issue highlights the tension between allowing a majority
of servers to make progress and providing a useful service in practice.
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6 Liveness: Theory and Practice

Throughout this work, we have referred in passing to the liveness of Paxos. The liveness of
a protocol reflects its ability to make forward progress. The liveness of a protocol impacts
its availability, since while a protocol that is forced to block may still allow read queries to
be handled, it disallows write updates. Blocking is thus one of the major costs associated
with maintaining replica consistency.

Given sufficient network stability, Paxos allows any majority of servers to make forward
progress, regardless of past failures. That is, the combined knowledge of any majority of
servers is sufficient to allow the servers to act in a way that respects previous ordering
decisions such that safety is preserved. The liveness of Paxos, then, is primarily dependent
on its network stability requirement. The network stability requirement defines the properties
of the communications links between some subset of the servers in the system. For example, a
network stability requirement might describe which servers are connected, how many servers
are connected, and whether or not messages can pass between them (and with what delay).

It is not entirely straightforward to specify the network stability requirement of the Paxos
protocol, in part because it is difficult to define what exactly “the Paxos protocol” is. Many
of the important details, some of which play a large role in determining the liveness of the
overall protocol, were not originally specified. Even in our own treatment of Paxos, presented
in this work, we noted that there were several variants of the protocol that could be used.
Thus, in our specification of the liveness of Paxos, we take these variants into consideration
and explain their impact.

6.1 Normal-case Operation

We assume a system with 2f + 1 servers in which a leader has been elected. To order
an update, the leader must be able to send a proposal to f other servers, which must
currently be in the leader’s view. These servers will then send an accept messsage back to
the leader, at which point the leader will globally order the update. Thus, if our goal is for
the leader to globally order a single update, it must remain connected with a majority of
servers (including itself) long enough for them to receive the proposal and for the leader
to receive the accept messages.

In practice, the reason to have 2f + 1 servers is for availability and performance; all
servers should globally order the updates if possible. To see how this goal impacts the
network stability requirement, we must look at the two possible communication patterns
that we specified in Section 4.4. First, upon receiving a proposal, each server can send its
accept message to all other servers. If the accept messages do not contain the update
itself, then a server must be connected to the leader to receive the proposal and then
connected to f accepting servers to globally order the update. If the accept messages
contain the update, a server need not be connected to the leader at all to order the update,
provided it can receive accept messages from f + 1 servers. The second approach allows
the leader to send notification of the ordered update to the other servers, either as a separate
message or by piggybacking the information on its next proposal. In this case, we need
only pairwise connections with the leader to keep a majority of servers up to date; the other
servers do not need to be connected to each other at all.
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In our implementation, we chose the approach in which the accept messages are very
small (i.e., they do not contain the update itself) and are sent all-to-all. In this setting, the
leader must be able to communicate with a majority of servers, where the servers other than
the leader can come and go very rapidly.

Observe, however, that we must take care to distinguish the theoretical network stability
requirement for ordering (as described above) from the practical network stability require-
ments for execution. In practice, we are primarily interested in the ability of the servers to
execute new updates (i.e., to globally order new updates with no holes). There seems to be
little value in having servers order updates very quickly if execution must be delayed due
to gaps in the global sequencing. In our implementation, servers maintain a window, based
on their current Local aru value; a server ignores (or tables) a proposal message with a
sequence number beyond the end of the window. In order to continue making progress at
full speed, a majority of servers must be able to increase their Local aru values, by executing
and globally ordering without holes. This means that they must be continuously connected.
While in theory the members of the majority can switch very rapidly (with the exception of
the leader), this only allows continual progress if reconciliation occurs sufficiently quickly so
that it is as if they were connected to the majority for each proposal.

Thus, in practice, we essentially need a stable set of at least (⌊N/2⌋+1) servers. We
define a stable set as follows:

Definition 6.1 Stable Set: A stable set is a set of processes that are eventually alive and
connected to each other, and which can eventually communicate with each other with some
(unknown) bounded message delay.

We highlight the fact that the definition of a stable set differs from the definition of a
stable component, which is the network stability requirement needed by group communication
based replication protocols (e.g., COReL [12, 13] and Congruity [1, 3]). A stable component
is defined in [7] as follows:

Definition 6.2 stable component: A stable component is a set of processes that are
eventually alive and connected to each other and for which all the channels to them from all
other processes (that are not in the stable component) are down.

The stable set allows servers in the set to receive messages from servers outside of the
set, whereas the stable component requires an isolated majority. Thus, our specification of
Paxos requires less stability than group communication based protocols during normal-case
operation, which require a stable component for the membership algorithm to complete.
Paxos allows servers outside the majority to come and go without impacting overall system
liveness.

6.2 Leader Election

The leader election algorithm presented in Section 5.3 requires a majority of servers to be
able to communicate with each other. The algorithm minimizes the ability of an unstable
server to disrupt a stable majority set: once a majority is in the same view, no unstable
server can cause a view change until a majority of servers decide to switch views. Thus, the
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network stability requirement is for a majority of servers to be able to communicate with
each other; that is, our leader election component requires a stable set.

We wish to make clear that the choice of leader election algorithm has a significant impact
on the overall liveness of the system. We show this by comparing our own network stability
requirement to that of the leader election failure detectors used in [21] and [4].

In the specification of Paxos presented in [21], the leader election failure detector is im-
plemented as follows. Each server periodically sends an i-am-alive message to each other
server. Each server maintains a list of the servers it currently believes is alive, removing a
server if no i-am-alive message is received within a timeout period. The failure detector
returns the identifier of the server, from the set of those believed to be alive, with the highest
identifier. We can formally specify the network stability requirement of this protocol as:

Stable Set with Partial Crash/Partition Isolation. Let S be a stable set that can
communicate with bounded delay ∆, and let max stable id be the maximum server identi-
fier in S. Let unstable crash be the set of servers that perpetually crash and recover, and
let unstable partition be the set of servers that are eventually alive but whose communi-
cation with at least one member of S is not always bounded at ∆. There is a time after
which (1) S exists and (2) the members of S do not receive any messages from servers in
unstable crash ∪ unstable partition whose identifiers are greater than max stable id.

Observe that this network stability requirement does not permit certain unstable servers
to repeatedly crash or recover, or to come in and out of a network partition, since this might
perpetually prevent the stable servers from agreeing on the identity of the leader.

A similar issue arises with respect to the leader election algorithm specified in [4]. This
failure detector is based on an implementation of the Ω failure detector in the crash-recovery
model with partial synchrony assumptions. The algorithm guarantees that, given a global
stabilization time (i.e., a time after which correct processes stop crashing, remain always up,
and can communicate with bounded message delay), there is a time after which exactly one
correct process is always trusted by every correct process. The algorithm chooses this pro-
cess as the leader. As specified, each server maintains a trustlist, containing the servers from
which it has received an i-am-alive message within a timeout period. When an i-am-alive

message is received from a currently untrusted server, the server is added to the trustlist
and its timeout incremented. When a server recovers, it sends a recovery message to the
other servers. Upon receiving a recovery message, the recovering server is added to the
trustlist, and a record of the recovery is taken. The leader is chosen as the server from the
trustlist with the lowest number of recoveries and the highest server identifier. The network
stability requirement of this protocol is:

Stable Set with Partial Partition Isolation. Let S be a stable set that can communi-
cate with bounded delay ∆, and let max stable id be the maximum server identifier in S.
Let unstable partition be the set of servers that are eventually alive but whose communi-
cation with at least one member of S is not always bounded at ∆. There is a time after
which (1) S exists and (2) the members of S do not receive any messages from servers in
unstable partition whose identifiers are greater than max stable id.
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The use of recovery messages prevents unstable servers that repeatedly crash and
recover from perpetually preventing agreement on a leader. However, it does not ensure
agreement if certain unstable servers repeatedly partition away (without crashing) and then
re-merge with the group. In this case, the stable servers would not increment the recovery
counters for the unstable servers, allowing some stable server to elect one of the unstable
servers at “the wrong time,” preventing agreement.

We observe that there is a scale of network stability requirements resulting from the
three leader election protocols. The failure detector specified in [21] requires the strongest
stability from the network, requiring the stable set to be isolated from particular servers that
repeatedly crash and recover or partition. The failure detector specified in [4] requires strictly
less stability, requiring only isolation from particular servers that repeatedly partition. The
protocol in our own specification is not vulnerable to disruption by any unstable servers.
However, in certain cases, our specification requires a longer time to settle on a leader in
the stable set than [4], since our elections are not based on which servers are believed to be
alive.

The preceding discussion should make it clear that, while it is generally stated that Paxos
requires less stability than group communication-based replication protocols, such a claim
only makes sense in the context of a complete specification of the Paxos algorithm and all
its components.

6.3 Liveness Properties

We now present the liveness properties provided by our specification of Paxos:

Paxos-L1 (Progress). If there exists a stable set consisting of a majority of servers, then
if a server in the set initiates an update, some member of the set eventually executes
the update.

Paxos-L2 (Eventual Replication). If server s executes an update and there exists a set
of servers containing s and r, and a time after which the set does not experience any
communication or process failures, then r eventually executes the update.

To gain a deeper understanding of the implications of Paxos-L1, we specify the following
two alternative progress requirements:

Strong L1 (Majority Set). If there exists a time after which there is always a set of
running servers S, where |S| is at least (⌊N/2⌋+1), then if a server in the set initiates
an update, some member of the set eventually executes the update.

Weak L1. If there exists a stable component consisting of a majority of servers, and a time
after which the set does not experience any communication or process failures, then if
a server in the set initiates an update, some member of the set eventually executes the
update.

Strong L1 requires that progress be made even in the face of a (rapidly) shifting major-
ity. We believe that no Paxos-like algorithm will be able to meet this requirement. If the
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majority shifts too quickly, then it may never be stable long enough to complete the leader
election protocol. Weak L1, on the other hand, reflects the stability required by many group
communication based protocols, as described above. It requires a stable majority compo-
nent, which does not receive messages from servers outside the component. Since the leader
election protocol specified in Section 5.3 meets Paxos-L1, it also meets Weak L1. We note
that group communication based protocols can most likely be made to achieve Paxos-L1 by
passing information from the application level to the group comunication level, indicating
when new membership should be permitted (i.e., after some progress has been made).

7 Experimental Results

We implemented the Paxos replication protocol described in Section 5. The code is available
for download at http://www.dsn.jhu.edu. In this section we evaluate our implementation to
provide some intuition as to the level of performance that one can achieve.

As mentioned in Section 6, it is difficult to define exactly what is “the Paxos algorithm.”
This problem is even more prominent when one tries to evaluate its performance. Should
an evaluation of Paxos allow the use of IP multicast, or should links be point-to-point?
Should an implementation use aggregation or some other packing technique that can increase
throughput? Is such an algorithm still “Paxos?” What type of flow control or reliability
mechanisms should be used?

Our approach is to find a balance such that we can evaluate our implementation in a
useful way. We first present results without any aggregation at all. The throughput results
(measured in updates per second, as is standard) can be thought of as the number of proposals
that can be ordered per second. We then present results for a version of our implementation
that uses aggregation. These results show that aggregation can result in significantly higher
throughputs, without paying a high cost in latency. In fact, latency is actually lower in many
cases.

To evaluate the performance of our implementation with respect to other system-related
issues, we benchmark two versions of our implementation, which we refer to as Paxos-clean
and Paxos-complete. Paxos-clean implements the essential normal-case operations of the
Paxos protocol, without additional overhead needed to build a full system. All communi-
cation is point-to-point via UDP, and no reconciliation mechanisms are implemented. Flow
control consists of a window at the leader, which limits the number of outstanding propos-
als at any given time. We tuned this window for each configuration to achieve the highest
performance without losing any messages. Paxos-complete, on the other hand, incorporates
reconciliation, a dynamically adjusted flow control window, and garbage collection. Servers
sync updates from their local clients to disk to ensure they are not lost across crashes. They
also use IP-multicast for messages sent to all servers.

7.1 Network Setup

Our experimental setup consists of a cluster of twenty 3.2 GHz 64-bit, dual processor Intel
Xeon computers, connected via a Gigabit switch. We tested our implementation on configu-
rations ranging from 4 to 20 servers, varying the number of clients initiating write updates.
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Figure 15: Paxos-clean Throughput, No Disk Writes
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Figure 16: Paxos-clean Latency, No Disk Writes

Each update is 200 bytes long, representative of an SQL statement. Clients are spread as
evenly across the servers as possible. Clients connect to the server on their local machine
via TCP. Each client has at most one outstanding update at a time, waiting for the reply
from its last update before initiating a new update.

7.2 Memory Tests (No Disk Writes)

We first evaluated the performance of our Paxos implementation without the use of disk
writes; that is, all operations were performed in memory, and no information was logged on
stable storage. While such an implementation is not resilient to crashes, it shows the type
of performance that can be achieved strictly when considering the messaging and processing
overhead associated with normal-case operation.

Figure 15 shows the throughput achieved by Paxos-clean in configurations ranging from
4 to 20 servers. The results are the average of two trials, where there servers order 300,000
updates in each trial. In all configurations, we observe a steady increase in throughput until
the system reaches its saturation point (i.e., when the leader becomes CPU-limited), at which
point throughput levels off. We achieve a maximum throughput of 26,401 updates per second
when using 4 servers, with a plateau around 6000 updates per second when using 20 servers.
In all cases, we observe a slight drop-off as the number of clients continues to increase past
the saturation point. This is most noticeable in the case of 4 servers, since the overhead
associated with processing more clients is only spread over the 4 servers. We also note that
the slope of the lines decreases as more servers are added, since each server must process
more incoming messages per update. For the same reason, the number of clients required to
bring the system to its saturation point decreases as the number of servers increases.

Figure 16 shows the latency of Paxos-clean without disk writes. Each client first outputs
its own average latency and the number of updates it initiated. We then plot the latency
as the weighted average taken across all clients. In all configurations, latency increases
very slightly until the system reaches its saturation point, at which point latency begins to
increase linearly. The slope of the increase is impacted by the size of the flow control window
used (14, 9, 6, 4, and 3 for configurations of size 4, 8, 12, 16, and 20, respectively). This
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Figure 18: Paxos-complete Latency, No Disk Writes

reflects the amount of pipelining that can be used, which affects how long an update will
wait in the leader’s queue before being initiated in a proposal message.

Figures 17 and 18 show the same tests for Paxos-complete. Paxos-complete achieves
slightly lower throughput compared to Paxos-clean in the 4-server and 8-server configura-
tions (with maximum throughputs of 22,116 and 14,980 updates/sec compared to 26,401 and
15,330 updates/sec, respectively). This reflects the overhead associated with dynamically
adapting the flow control window (which results in triggering some timeouts) and the associ-
ated reconciliation, as well as additional overhead needed for garbage collection. Paxos-clean
and Paxos-complete show roughly the same throughput in the case of 12 servers, and Paxos-
complete achieves slightly higher throughput than Paxos-clean in the 16-server and 20-server
configurations. This shows the benefit of using IP-multicast in larger configurations, reducing
the number of system calls needed for sending.

Both results indicate that Paxos can achieve very low latency when a relatively small
number of clients is used, remaining below 5 ms at 30 clients for all configurations, below
8 ms at 50 clients for all configurations, and roughly 35 ms with 200 clients.

7.3 Synchronous Disk Writes

We next evaluated the performance of our implementation when using synchronous (forced)
disk writes. The use of synchronous writes is necessary to preserve safety across crashes.
As described in Section 4, Paxos requires all servers to write to disk on each update. To
minimize the latency associated with writes, we use the variant of Paxos in which the leader
sends an accept message, paying the cost of one extra message for the ability to write to
disk in parallel with the other servers.

Our stable storage consists of a log file, where proposals, ordered updates, local data
structure information, and pending updates are stored. The log file is written synchronously
before a server sends an accept message, and asynchronously when a server globally orders
an update.

Figures 19 and 20 show the throughput and latency of Paxos-clean using synchronous
disk writes. The results are the average of two trials, where the servers order 1500 updates
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Figure 21: Paxos-complete Throughput, Syn-
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Figure 22: Paxos-complete Latency, Synchronous
Disk Writes

in each trial. As seen in Figure 19, Paxos-clean achieves a throughput between 33 and 35
updates per second in all of the configurations tested, reaching saturation at 2 clients in all
cases. The throughput is limited by the speed at which a single server can sync to disk. As
seen in Figure 20, the update latency increases linearly after the system reaches saturation,
reaching one second at roughly 35 clients.

Figures 21 and 22 show the results for Paxos-complete. Recall that servers in Paxos-
complete sync updates from their local clients to disk on origination. Paxos-complete
achieves between 25 and 35 updates per second in all configurations tested, which is slightly
lower than the throughput of Paxos-clean, with slightly higher latency.

7.4 Asynchronous Disk Writes

Since the price of faster disk technology (e.g., flash disks, battery-backed-up RAM disks)
continues to decrease, it is useful to consider the performance of Paxos when disk writes are
less costly. For this reason, we tested our implementation using asynchronous disk writes.
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Figure 26: Paxos-complete Latency, Asynchronous
Disk Writes

Figures 23 and 24 show the update throughput and latency of Paxos-clean when using
asynchronous writes. We observe the same general trend as the tests without disk writes,
but achieve lower plateaus, reflecting the overhead associated with the writes.

Figures 25 and 26 show the same trends for Paxos-complete. Paxos-complete achieves
slightly lower throughput and slightly higher latency than Paxos-clean, reflecting the addi-
tional overhead of dynamically adapting the window and performing reconciliation.

7.5 Scalability

Finally, we tested the scalability of our implementation, without disk writes, when the num-
ber of clients is kept constant. We maintain 25 clients and vary the number of servers.

In Figure 27, we plot the number of updates per second Paxos-clean achieves as a function
of the number of servers. For each number of servers, we adjusted the flow control window
at the leader to the highest value possible while remaining stable. The more rapid initial
decrease in throughput (from 4 servers to 6 servers, and from 6 servers to 8 servers) is caused
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Figure 28: Paxos-clean, Latency vs. Servers, No
Disk Writes, 25 Clients

by the need to shrink the flow control window a significant amount between configurations,
from 17 to 14, and then from 14 to 10. We contrast this with the smaller decrease between 16
servers, 18 servers, and 20 servers, where the window was decreased from 5 to 4 to 3. Figure
28 shows the average latency achieved by Paxos-clean as a function of the number of servers.
Figures 29 and 30 show the same trends when running Paxos-complete. The curves show
slightly more variability than those for Paxos-clean (i.e., they are not as smooth), reflecting
the use of the dynamic window and the need for retransmissions as loss is created.

We observe that, in Paxos-clean, as the number of servers is doubled, the maximum
throughput achieved is cut roughly in half, implying a linear decrease in performance. This
is contrary to what one might expect, given that doubling the number of servers results in
four times as many messages (since communication among all servers in the Accept phase
is all-to-all). Note, however, that doubling the number of servers only requires the leader to
processes twice as many accept messages per update, not four times. Thus, the decrease
in maximum performance is a function of the number of messages processed, not the total
number of messages in the network. This is validated by the fact that Paxos-complete shows
the same trend: although the number of message sends is reduced by using IP-multicast, the
number of message receives is the same for Paxos-clean as for Paxos-complete.

7.6 The Impact of Aggregation

We now present results for the version of our implementation that uses aggregation. Without
disk writes, we aggregate in several ways. First, the leader packs multiple updates into
a single proposal message. Second, non-leader servers sends a single accept message
for several proposals, greatly reducing the number of messages that must be processed
(although each accept is now larger, since it contains a list of the sequence numbers that
it covers).

As seen in Figures 31 and 32, aggregation significantly changes the trend of the through-
put and latency graphs. Instead of throughput degrading as the number of servers increases,
it increases, reaching a maximum of over 40,000 updates per second. Reducing the num-
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tion, No Disk Writes

 14

 12

 10

 8

 6

 4

 2

 0
 0  50  100  150  200  250  300  350  400

U
pd

at
e 

L
at

en
cy

 (
m

s)

Number of Clients

4 servers
8 servers

12 servers
16 servers
20 servers
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ber of accept messages being sent greatly reduces the overhead associated with adding
more servers. It also allows more of the CPU to be devoted to processing new update

and proposal messages, rather than extra acknowledgements. At small numbers of clients,
aggregation results in slightly higher latency than when it is not used. However, given that
the system can support a much higher maximum throughput, latency is signficantly reduced
at higher numbers of clients.

When using synchronous disk writes, we sync several proposal messages to disk at
once, while sending back a single accept message. We also sync several updates from local
clients at once, amortizing the cost of syncing upon initiation over several updates. The
results are shown in Figures 33 and 34. Comparing Figures 21 and 33, we can see that
aggregation dramatically increases the maximum throughput for all configurations of servers
(from roughly 35 updates per second to about 1500 updates per second). Again, this higher
throughput results in signficantly lower latency compared to when aggregation is not used.
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8 Conclusions

In this paper, we completely specified the Paxos algorithm in system builder language such
that one can implement it. Our analysis of the liveness and performance of Paxos leads us
to several conclusions. First, Paxos is a very robust algorithm, allowing any majority of
servers to make safe progress regardless of past failures, and requiring only a stable set of
connected servers. This makes it suitable for environments in which the network stability
required for group membership protocols to complete may not be achievable (i.e., when one
may not have a stable component).

Second, when using asynchronous disk writes (or when writing to disk is not required),
Paxos is able to provide low update latency when the number of clients is reasonably small;
this is due to the fact that only two communication rounds among the servers are needed
during normal-case operation. We have also shown that aggregation greatly improves the
performance of Paxos when synchronous disk writes are used. With a difference of almost
two orders of magnitude, it seems clear that a practical system using Paxos as a replication
engine should employ aggregation techniques.

Finally, we comment that a practical implementation of Paxos must address many real
issues addressed by group communication based replication protocols such as COReL and
Congruity. These include reliability, flow control, and reconciliation. Both COReL and
Congruity build reliability and efficient reconciliation into their protocols, making it easier
to integrate them into a real system. Paxos, on the other hand, must handle these issues
with additional mechanisms not specified in the original algorithm. This work was a first
step towards specifying Paxos such that system builders can implement it, which required
specifying precisely these missing system mechanisms, and filling in details such as which
leader election algorithm is used. We observed that how these details are specified can greatly
impact both the theoretical guarantees that can be offered and the practical performance of
the replication system.
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