Intrusion-Tolerant Group Management for
Mobile Ad-Hoc Networks

Jonathan Kirschand Brian Coah
I Johns Hopkins University, Baltimore, MD. jak@cs.jhu.edu
2 Telcordia Technologies, Piscataway, NJ. coan@resealotrdia.com

Technical Report CNDS-2009-2 - March 2009
http://www.dsn.jhu.edu

Abstract—This paper presents PICO, a generic infrastructure the confidentiality of the group communication. Second, the
for secure group communication in mobile ad-hoc networks service must bepartitionable, providing availability even if
(MANETS). PICO provides an intrusion-tolerant group manage- gome of the non-faulty nodes are partitioned away from one

ment service, allowing clients to join or leave a logical grop . . .
and enabling group members to communicate securely using another. Third, the protocols used to implement the service

a dynamically generated group encryption key. Since MANETs must be tolerant of message loss. Flna“y, the system should
are characterized by relatively high message loss and fregmt rely on weak or no synchrony assumptions from the underlying
network partitions, PICO is built around a new Byzantine fault- petwork.

tolerant agreement protocol designed to cope with these cen

ditions. The agreement protocol leverages weak (commutat)

semantics to allow multiple partitions to continue operatng in This paper presents PICO (Partitionable and Intrusion-
parallel without sacrificing correctness, and it uses thresold 141arant Communities), an intrusion-tolerant group manag
cryptography to provide efficient reconciliation and coordination . .

without the need for reliable communication links. ment protocol that meets these criteria. The key properties

of PICO are as follows. First, it uses threshold cryptogra-

I. INTRODUCTION phy and limited tamper-proof hardware to achieve intrusion

This paper addresses the problem of building a gene(tgc:)clerance. PICO uses the threshold coin-tossing scheme of

. L X achin, Kursawe, and Shoup [1], as adapted for the group
infrastructure for secure group communication in mobile a

hoc networks (MANETS). We focus on building a robus r(e):]bzfglp Eg%blieem ;X dl?'[ulzesg;eae'[th?elétgi]latgi ?t:l T‘;Tate tthe
and highly available group management system, providirg P yp Y. 9 v

. . Zheme to construct proofs that can be used to verify the
services for group membership management, cryptographi . o .
: L S ehavior of the protocol participants. Second, it uses a new
key generation, and secure key distribution. Applicatiosisag

. : . Byzantine fault-tolerant agreement protocol that explaieak
this service can join a group and encrypt messages for g . . . s
.Fommutatlve) semantics to allow multiple network paotits

gn(_)ther using the group's §hared encryption key, thus-facto provide service in parallel without sacrificing overaglstem
itating secure communication among group members. This

problem arose as part of our work on the DARPA IAMANE pns?sten.cy. Third,_ '.DICO does not rely on reliable commu-
(Intrinsically Assurable Mobile Ad-Hoc Networks) programmcatlon links, avoiding the need for acknowledgements or

In our system, ZODIAC, dynamically-formed groups of nodedueues of undelivered messages in the face of partitions and

must be able to communicate securely with one another. The >>a9¢ loss. PICO uses cumulative threshold cryptographi

system is intended to operate in a MANET with short-live ;Os?fsnzzztsjlIgvroegglggﬁ\:gfg dnC|I|at|on by requiring grthe
links, high packet loss, and transient network partitidtisiust 9 '
operate despite a limited number of compromised parti¢gpan
Given the constraints imposed by the MANET environ- The remainder of this paper is organized as follows. Section
ment, we believe any solution to this problem must hauépresents relevant related work, and Section Il provithes
several properties. First, the system musirtbeusion-tolerant, necessary background on the threshold cryptographicibgild
continuing to operate correctly even if some of the noddsocks used in the rest of the paper. In Section IV, we present
providing or using the service are compromised. Faulty sodeur system model and state the assumptions on which we
must be prevented from revealing the group encryption kegly. Section V describes the PICO system architecture and
or other private cryptographic material that would violatthe service properties that PICO provides. Section VI prisse
the PICO protocol in detail, and Section VII evaluates its
This material is based upon work supported by the Defenseadabd performance. Section VIII provides a correctness proof of
Research Projects Agency and Space and Naval Warfare Sy€§tenter, San , . . .
Diego, under Contract No. N66001-08-C-2012. Approved fablle Release; PICO's Safety and liveness properties. Section IX condude
Distribution Unlimited. the paper.

Il. RELATED WORK example, [19]-[23]). Narasimha et al. [22] discuss the use

of threshold cryptography for admission control in malico

Group communication systems provide services for mergyyironments. The current group members run a voting proto-

bership and reliable, ordered message delivery. Thered®s b, (hased on a threshold digital signature scheme) to decid

a great deal of research on group communication systems figkther or not to admit a potential group member. PICO also
tolerate benign faults, including ISIS [3], Transis [4], 16 |,qeg 4 threshold digital signature scheme, but the votingis

[5], and Spread [6]. These systems differ in the semantigg,,ng group controller processes. In addition to admission
they provide (ISIS guarantees Virtual Synchrony [3] and aggnrol, PICO requires a coordination protocol for grouy ke
sumes fail-stop processes, whereas Transis, Horus, aed®pganeration.

guarantee Extended Virtual Synchrony [7] and can cope wi The work most closely related to PICO is the Intrusion-

network partitions and process cr.ash.es and recoveries). Tolerant Enclaves protocol of Dutertre et al. [2], [24]. Weeu
Several secure group communication systems, such as Engmiiar protocol architecture as Intrusion-Tolerant [ves,
semble [8], [9] and Secure Spread [10], have been built ip4 \ve adopt the same threshold key generation scheme [1].

the so-called “fortress model,” where the group membe{ge nhighlight the differences between the two protocols in
are assumed to be correct and use cryptography to protggktion V.

their communication from external attackers. Ensembles use
group key distribution protocols to distribute a sharedugro m
key, while Secure Spread uses a contributory key agreement
protocol in which every group member contributes an equalPICO makes use of two threshold cryptosystems: a thresh-
share of the group secret. old digital signature scheme (used to enforce correct tlien
Group communication systems have also been developed#havior and facilitate efficient reconciliation) and aettrold
the Byzantine fault model [11]. In the Byzantine model, faul key generation scheme (used to generate the shared group key
processes can fail arbitrarily. The Rampart system [12]thad that group members use to encrypt application-level messag
SecureRing system [13] provide services for membership afad one other). We now describe both cryptosystems and their
ordered message delivery, and they depend on failure detecassociated security properties.
to remove faulty processes from the membership. They relyThreshold digital signatures: A (k, n) threshold digital
on synchrony for both safety and liveness, since inconsigte signature scheme allows a set bfout of n processes to
can arise if a membership is installed that has one-third generate a digital signature; any set of fewer thgrocesses
more faulty processes. is unable to generate a valid signature. When f+1, where
We emphasize that PICO is not a “group communicatighis the maximum number of processes that may be malicious,
system” as the term applies to the systems above; it dg@nerating a threshold signature on a message implies that
not provide the strong membership semantics or the reliab# least one correct process participated in the protocdl an
ordered message delivery of these systems. Rather, itqeeviassented to the content of the message.
a security infrastructure that allows applications to j@in In a typical threshold signature scheme, a private key is
logical group and encrypt messages for one another usinglieided into n key shares, where each process knows one
dynamically generated symmetric group encryption key@ICkey share. To sign a message, each process uses its key
provides security against both external and insider atagk share to generate gartial signature on m. Any process that
Rampart and SecureRing do. Unlike Rampart and SecureRingllects & partial signatures can then combine them to form
PICO guarantees safety and liveness without relying on syanthreshold signature om. An important property provided
chrony assumptions. by some threshold signature schemes, especially in magicio
At the core of PICO is a Byzantine fault-tolerant agreemernvironments, is verifiable secret sharing [25]: each m®ce
protocol. Over the last several years, much of the work #an use its key share to generate a proof of correctnessngrov
Byzantine fault-tolerant agreement has focused on Byazantithat the partial signature was properly generated usingagesh
fault-tolerant state machine replication (SMR) protodels., from the initial key split.
[14]-[16]). In the state machine approach [17], [18], a grofi Our current implementation of PICO uses the Shoup RSA
servers totally orders all updates that cause state timmsjt threshold digital signature scheme [26]. The signatures ge
and then the servers apply the updates in the agreed upoated using this scheme are standard RSA signatures [27],
order. SMR protocols provide strong consistency semantieghich can be verified using the public key corresponding to
but they allow at most one partition to continue executingpe divided private key. The scheme assumes a trusted dealer
new updates at a time. In contrast, PICO’s agreement pto-divide the private key and securely distribute the ihkigy
tocol guarantees weaker, commutative semantics but allogtsares (after which the dealer is no longer needed), and it
multiple partitions to operate in parallel, which is deblmin provides verifiable secret sharing.
MANETS. Threshold key generation: A (k, n) threshold key
PICO uses threshold cryptography to implement its securiigeneration scheme allows a set jofout of n processes to
services. Using threshold cryptography to provide segurigenerate a group encryption key, while any set of fewer than
in peer-to-peer and MANET settings is not new (see, fdrprocesses is unable to do so. Similar to the case of threshold

. BACKGROUND

digital signatures, setting > f+ 1 ensures that the group keyfaulty controllers and clients, are computationally boechd
was generated using a share from at least one correct procesgsh that they cannot subvert these cryptographic meahanis
PICO uses the Diffie-Hellman based threshold coin-tossing
scheme of Cachin, Kursawe, and Shoup [1] for key generation\We make use of two threshold cryptosystems. First, each
the coin-tossing scheme was adapted for the group memhkgmeup uses anf(+ 1, C¢) threshold digital signature scheme.
ship problem by Dutertre et al. [2]. A trusted dealer geresratEach group controller knows one share of the private key,
n shares of an initial secret (as in [28]) and securely disteb which it can use to generate partial signatures and proofs of
one share to each process (after which the dealer is no longermrectness. We assume threshold signatures are unftegeab
needed). To generate a group key, each process computegthout knowing at leastf + 1 secret shares. Second, each
key share as a function of its secret share and some commgnoup uses anf(+ 1, C¢) threshold key generation scheme.
state. In PICO, this common state is based on the currenpgrdtach group controller knows one secret share, which it can
membership. Any process that combineskey shares can use to generate key shares and proofs of correctness. We
combine them to form the group key. As in [26], the schemassume one cannot construct the group encryption key withou
provides verifiable secret sharing, allowing each process knowing at leastf + 1 key shares.
generate a proof that its key share was created using a valid
secret share. We assume that each process has tamper-proof hardware
that can hold a public/private key pair and can assemble and
verify key shares in the threshold key generation scheme.
We assume a Byzantine fault model. Processes are Eite process, even if it is Byzantine, cannot read the private
ther correct or faulty; correct processes follow the protocokey. When a controller sends a key share to a client, it
specification, while faulty processes can deviate from tlemcrypts the key share with the public key of the client’s
protocol specification arbitrarily. Processes commueiday hardware, establishing a secure channel between a correct
passing messages in an asynchronous communication netwodktroller and the trusted hardware of the receiving client
Messages can be delayed, lost, or duplicated. We assumeéTha client’s hardware decrypts the key share and verifies the
underlying routing protocol such as [29] that ensures @brrecorrectness proof. When the hardware combifies 1 valid
processes can communicate as long as there is a fault-filee @y shares, it generates the group encryption key. Clieats c
between them. use the hardware to encrypt application-level messageg usi
The network may be divided into multiplpartitions. In the group key, but they cannot read the group key, even if
an infinite execution, we say that there is a partitidh, they are Byzantine. The same physical machine can host both
if (1) P contains a subset (not necessarily proper) of treeclient process and a controller process.
processes, (2) for any two correct procesgeand b in P,
if « sends an infinite number of message$ thenb delivers Coping with Faulty Clients: Like any secure group-based
an infinite number of messages fromy and (3) there is communication system, PICO must make an assumption about
some time after which no process ihreceives any messagethe behavior of client processes. With no assumptionstyfaul
from a process outside dP. Although we define partitions group members can engage in two behaviors to compromise
in terms of properties that hold forever (beginning at sonwnfidentiality: (1) broadcasting the group encryption key
point in the execution), real executions may go through manpn-group members, and (2) decrypting application message
different partition configurations. In practice we are ietgted using the group key and then re-broadcasting them to non-
in proving that the properties of PICO hold in those pamitio group members. There are two possible approaches to dealing
that last “long enough.” with this problem. The approach taken by the Intrusion-
PICO supports secure group communication by generatifglerant Enclaves protocol [2] is to assume that all cliearts
and distributing a group encryption key. The group secorrect, in which case no enforcement is necessary. We make
vices for a group,GG, are implemented by a collection ofa different (weaker) assumption, constraining the behlavio
group controller processes. Each group has a fixed numbef faulty clients in limited ways using trusted hardware. To
of group controllers,C¢, uniquely identified from the set cope with the first problem, we assume trusted hardware for
Ra = {1,2,...,Cs}. At most f of the group controllers key manipulation, storage, and application. We believs thi
may be Byzantine. Each group can support an arbitrary lagsumption is reasonable in certain military environmants
finite number ofclients, which communicate with the groupis likely to become more generally applicable in the future
controllers to join or leave the group. Clients are uniquelisee [30] for a description of mechanisms in this directidio)
identified from the seSs = {1, 2,...}. Any number of client cope with the second problem, one can use an approach (which
processes may be Byzantine. we do not describe in this paper) that leverages host sgcurit
Each process has a public/private key pair signed byvatual machines, and non-bypassable encryption impléeten
trusted certification authority. We employ digital signas; in trusted hardware. PICO can be deployed using either set of
and we make use of a cryptographic hash function for corassumptions, although some aspects of the protocol (imgud
puting message digests. We denote a messagagned by trusted hardware) are not needed if all clients are assumed t
process as({m),,. We assume that all adversaries, includinge correct.

IV. SYSTEM MODEL AND ASSUMPTIONS

V. SYSTEM ARCHITECTURE AND DESIGN Protocol Step Entity Taking Action

In this section we describe the PICO architecture and its :c;g'rf:;i‘;?"t':gﬁ;;q“es‘ Joining or leaving client
security properties. We then discuss the design of one of the
H i 2. Request validation Eacr? group corltroller that
core algorithmic components of PICO, tigeoup controller receives the client request
coordination protocol. 3. Group Controller

. . . up C All troll
A PICO group consists of a collection of clients that | Coordination Protocol group controflers

share an encryption key, which the clients use to protect | 4. key share generation Each group controller that
their application-level data. This key is dynamically con- and dissemination accepts the operation
structed by PICO and is dynamically changed when the group | s. combining of key shares, | Trusted hardware of each
membership changes. A pre-defined set of group controllers | group key generation group member

is responsible for providing security services to the ¢hken

including handling join and leave requests according tagro Fig. 1: Outline of the PICO protocol.

policy and distributing shares of the group key to the group

members. Each group member is presented wittea of the State Machine Replication: Using state machine replica-

membership, which is a list of the processes currently in thien (SMR) for group controller coordination in PICO would

group. work as follows. The group controllers would totally order
The PICO architecture is inspired by the architecture of ttadl join and leave operations and apply them in the same

Intrusion-Tolerant Enclaves protocol [2]. It has the fallog order. After applying each operation, each group controlle

security goals: would generate a new key share, based on the membership

at that point in the execution. These key shares would be

PROPERTY5.1: VALID AUTHENTICATION — Only an combinable, because all controllers compute a key share
authorized client (as dictated by group policy) can join the after each (identical) state transition. The strong coescsy

group. semantics of SMR protocols comes at a price: the protocols

are not partitionable. At most one partition can make prsgre
PROPERTY 5.2: SECUREKEYING — If group member i is (i.e., continue accepting new join and leave requests)iate t
given f + 1 shares for group encryption key k for view v, Intrusion-Tolerant Enclaves: The lesson of state machine
only the members of v will ever generate k. replication is that we must weaken the agreement semantics
in order to achieve a protocol in which multiple partitiorenc
Figure 1 presents an outline of the PICO protocol. Whenaperate in parallel. In their Intrusion-Tolerant Enclayesto-
client wants to join or leave the group, it sends a request @0l [2], Dutertre et al. observed that the group management
the group controllers. If a group controller determinest th@roblem does not require the strong semantics of state machi
the request is authorized (i.e., if @pproves the request), replication. Rather, the servers can provide combinable ke
it proposes that the request be agreed upon by sendinghares as long as they eventually converge to a common
message in the group controller coordination protocol. ¥ew of the membership, without necessarily applying the
controller accepts the requested operation when it becomegperations in the same order.
agreed upon as a result of the coordination protocol. Once &Several factors make Intrusion-Tolerant Enclaves unisigita
controller accepts an operation, it updates its view of leeig for use in the PICO environment. First, the coordination
membership and sends a message, containing a share ofpttm¢ocol is not partitionable. Although it leverages theaker
group key, to each group member. The message is encrypedhantics to avoid synchrony assumptions, it still require
with the public key of the trusted hardware of the receivingollecting messages from all correct serve¥s-{ f) in order
group member. Each group member combines a threshaddguarantee that a new join or leave request can be accepted.
number of key shares (in its trusted hardware) to constri®econd, we identified a flaw in the coordination protocol
the group key. where, simply due to network asynchrony, there are scemario
A critical property of the threshold key generation protocan which an authorized client will never be admitted into
is that, in order for key shares to be combinable, they must the group. Due to space limitations, we describe this flaw
computed based on some common state. In PICO, the comnorAppendix A. Finally, the coordination protocol assumes
state on which the controllers compute their key shares raliable communication links between correct serveal;
the set of operations (join and leave requests) that have bgegotocol-level messages must eventually be deliveredderor
accepted. Thus, the group controller coordination prdtoc ensure that all valid operations are eventually agre@hup
must facilitate agreement, among the group controllershen In both Intrusion-Tolerant Enclaves and PICO, key shares
set of accepted operations. are only guaranteed to be combinable when the membership
In the rest of this section, we describe two approachebilizes. If join and leave requests are continuouslyrstied
that we considered using for the group controller coordimat too quickly, then there is the potential for livelock if the
protocol, and we explain why each is insufficient to meet tt@ntrollers are unable to converge on the set of accepted
requirements of PICO. operations. This is the price of forgoing the total orderafg

SMR. Note, however, that a steady stream of joins and leaves Request Proposal Rekey
would cause the encryption key to change very rapidly even if ™"
SMR were used for coordination. Therefore, in practiceahes . ==
systems must be augmented with mechanisms to rate limit the
joins and leaves from both correct and faulty processes.
To capture this requirement in PICO, we define a partition)]]])
P assiable with respect (o time if no client in P submits <5, %, B35 operston, o the PICO protoccl wip © 1, clent 1o
a new join or leave request after In practice, we want to collects f + 1 valid PROPOSALMessages, it accepts the requested operation
provide liveness during sufficiently long stable period<C® and sends ®REKEY message to the requesting client and all current group
guarantees the following liveness property: members. ThREKEY sent o Clont 1 ony contains a ke share 1 tis i
PROPERTY 5.3: PICO-LIVENESS — Let P be a partition contains an updated key share to reflect the new group mehipers
with at least f+1 correct group controllers, where P is stable
at time ¢. Let M be the set of correct clientsin P whose last Section VI-C, clients use the view number to determine which
submitted operation is a join. Then there exists atime ¢’ >t group encryption key is the most up to date.

after which the members of M share an encryption key.

Client 2

Controller 1

Controller 2

Controller 3

B. Basic Protocol Operation

VI. THE PICO PROTOCOL Figure 2 depicts the basic protocol operation of PICO. When
)))) ~a client wants to join or leave the group, it broadcasts a
In.thls section we describe the PIQO protocol in detail. IRgquesT message to the group controllers. As we describe
Section VI-A, we introduce the terminology used in our propg|gy, although the client broadcasts tReEQUEST PICO
tocol description, and we present several key data stre®turygyides liveness as long as the message is received bysat lea
In Section VI-B, we present the three basic components ¢f, 1 correct controllers in the partition to which the client
PICO: theclient protolcol,.used to join or leave the group; theoelongs. The group controllers then excharmeoPOSAL
group controller coordination protocol, used to agree upon join messages to agree to accept the requested operation. Upon
and leave requests; and thekey protocol, used to generate aaccepting the operation, the group controllers semmEREY

new group key when the membership changes. Section Viptessage to the client and all current group members. We now
addresses the problem of how a client can determine whighamine each phase of the protocol in more detail.

encryption key is the most recent, which is made difficult by cjient Protocol: When clienti wants to join or leave
the fact that operations are not totally ordered and commufie group, it broadcasts(@®EQUEST, opID, proof,,, message
cation is asynchronous. Section VI-D presents techniqoes {q the controllers. TheplD field is the operation identifier
efficient state reconciliation and garbage collection.afin chosen by the client for this operation. If this request has
Section VI_-E (_j|scusses how the PICO architecture can stippgy operation identifier of 1, then theroof field is empty.
process ejections. Otherwise, proof is a threshold-signed proof that operation
(¢, opID — 1) was legitimately accepted by at least one
controller. Thus, to request an operation with identifiethe

As mentioned above, the group controllers must agree elient must present proof that operatign- 1 was accepted.
the set of operations (join and leave requests) that have After submitting the request, the client waits ff#-1 valid
been accepted. Operations are uniquely identifieddign- REKEY messages from the group controllers, indicating that
tID, operationID) pairs. PICO enforces that clients submithey have accepted the operation. The responses contél par
operations with increasing, contiguous operation idesrsifi Signatures that can be combined to generate proof that the
beginning with 1, which must correspond to a join request. A¥peration was accepted. In addition, if the operation wasra |
explained below, this prevents faulty clients from premelu request, the responses contain key shares that can be @mbin
exhausting the space of operation identifiers, and it allimws to form the group encryption key. The client retransmits its
the use of cumulative threshold-signed proofs for efficiate request if it does not receive the necessary replies within a
reconciliation. All valid join operations have odd idergif, timeout period.
and all valid leaves have even identifiers. Group Controller Coordination Protocol: Upon receiv-

Each controller maintains the state of accepted operaiiondng REQUEST message- from clienti, controllerc performs
an array,lastOpsAccepted[], where lastOpsAcceptedd[con- the following validation steps. In each step, if the validat
tains the operation identifier of the last operation that tHails, the request is discarded.
controller has accepted for cliemt By agreeing on lastOp- 1) Verify the signature om using clienti’s public key, and
sAccepted(], the controllers implicitly agree on the cutre consult the group policy to determine if the operation is
membership of the group: Clientis currently in the group authorized.
if lastOpsAccepted] corresponds to a join operation. In 2) If » should contain a proof, confirm that one is present.
addition, the controllers implicitly agree on the total riogn 3) If r contains a proof, verify it using the group’s
of operations that have been accepted for all clients, which public key, and confirm that it proves that operation
(following [2]) we call the view number. As described in (7, opID — 1) was accepted.

A. Terminology and Data Structures

4) If ¢ has already accepted an operatign;§, j > opID, give their best guess of what the current set is and only need
discard the request, becauge j) must have already to converge eventually. This allows PICO to circumvent the
been accepted. FLP impossibility result [31] and guarantee safety andiass

If all of the above checks succeed, then contrafléroad- Wwithout relying on synchrony.

casts a(PROPOSAL clientlD, oplD, partialSij,, message Rekey Protocol: After accepting an operation, controller

to the rest of the controllers. ThelientID and opID fields generates &REKEY, partialSig, lastOpsAccepted, keyShare
uniquely identify the requested operation. TpeetialSig field message. TheartialSg field is a partial signature computed

is a partial signature computed over the hash of the (cliedver the hash ot’s lastOpsAccepted[] data structure. There
tID, opID) pair, along with a proof that the partial signagurare two cases to consider. If the operation being accepted is
was computed correctly. a join, thenkeyShare is a key share computed over the hash

A controller considers ®RoPOSALmMessage as valid if it of lastOpsAccepted[], and thREKEY message is sent to all

is properly signed and contains a partial signature withlia vacurrent group members, including the client that just jdine
correctness proof. Upon collecting + 1 valid ProPosaL If the operation being accepted is a leave, then controller
messages for operation, (§) from distinct controllers, a ¢ generates two distinaREKEY messages. The first is sent
controller accepts the operation and takes several stégs. Fonly to the leaving group member and does contain a key

it combines the partial signatures to construct a threshokhare; this message serves only to allow the leaving member
signed proof thati(j) was legitimately accepted. Since thido obtain proof that the leave operation was accepted. The
proof is on a single operation, we refer to it asiagleOp SECONdREKEY message contains a new key share and is sent
proof. As described in Section VI-D, the singleOp proofo all remaining group members. To overcome message loss,
can be passed to other controllers to convince them that thgontroller periodically retransmits tlreKEY messages for
operation was legitimately accepted. Second, the coatrollts last accepted operation.

sets lastOpsAccepted[to j and updates the view number. A client validates arREKEY message by verifying the
Finally, the controller performs the requested operatign Isignature, along with the proof of correctness of the plartia
either adding clienti to, or removing client; from, the signature and the key share (if one is present). When a client

membership list. collectsf+1 valid REKEYs for the saméastOpsAccepted data,
The group controller coordination protocol (GCCP) meefsom distinct controllers, it first combines the partialrségures
the following two correctness properties: to form a threshold-signed proof reflecting the acceptarice o
the operation. Since this proof is generated on the arragsof |
PROPERTY6.1: GCCPRVALIDITY — If some correct accepted operations, we refer to it asanayOp proof. We
controller accepts operation (i, j), then some (potentially ~denote the'” entry of proofp aspli]. If the REKEY messages
different) correct controller approved the operation. contain key shares, the client combines them to compute the
group encryption key. We refer to the sum of the entries in
PROPERTY 6.2: GCCPAGREEMENT — If some correct the arrayOp proof on which the key shares were computed as

controller in partition P accepts operation (i, j), then all the view number of the key.
correct controllersin P eventually accept the operation. , i
C. Choosing an Encryption Key
Observe that the group controller coordination protocol In this section we address the following practical problem:
requires a controller to collect onlf+1 matchingeroPosAL Given that client requests are not totally ordered, and that
messages in order to accept an operation, instead of theatyptlients collect key shares asynchronously, how does atclien
(N — f) messages required by Byzantine fault-tolerant stat@ow which group encryption key is the most up-to-date?
machine replication protocols and Intrusion-TolerantlBwes. Our solution is to leverage the threshold cryptographiofso
The implication of this difference is that PICO guarantdest t already used by the protocol so that a client can choose the
any partition with at leasf + 1 correct controllers can acceptcorrect key by using the one with the highest view number.
new join and leave operations, provided there is sufficientRecall that aBREQUEST message sent by clientfor oper-
connectivity among the controllers and clients. More fdiyna ation j contains an arrayOp proofi, wherepli] = j — 1.
More generallyp[k] contains the last accepted operation for
PROPERTY 6.3: GCCP-LIVENESS — Let P be a partition clientk at the time theREKEY messages containing the partial
with at least f + 1 correct group controllers. Then if a signatures combined to form were generated. Thus, proof
correct client in P submits an operation (¢, j), some correct p can be viewed as anapshot of the state off + 1 group
controller in P accepts the operation. controllers, at least one of which is correct. Therefore, a
controller receiving &REQUESTmessage containing knows
If N > 3f+1, then multiple partitions, operating in parallelthat, if p[m] = n, then the operatiofm, n) was legitimately
can guarantee the liveness of join and leave requests. Huoeepted in the controller coordination protocol. Furtkarce
controllers eventually agree on the set of accepted opesati we force clients to use contiguous sequence numbers, all
This is a weaker agreement problem than consensus, becapsrations(m, n’),n’ < n, have been legitimately accepted
controllers never need to make an irrevocable decisiory, th@.e., the proof iscumulative).

The preceding discussion implies that group controllers ca (¢ (e (e 3 i - (e (e S
use the proofs contained REQUESTmessages to perform rec- [I5.4.1,01 H 15,4,1,0] H 15,41, 0]] ! [0,1,1,1]] [10.1,1,1]] [1,1, 1,11]
onciliation on the set of accepted operations. Upon reggivi !
|
]
|

a (REQUEST oplID, p),, message from client, a controller [Client 1] [Kf[gfgffm Clienta] [Clienta]
performs the following two steps (in addition to those de- ki) LB YR N corrijEenty
scribed in Section VI-B). First, for each cliehf the controller Partition A : Partition B

sets lastOpsAccepted[to max(lastOpsAccepted], p[k]). Fig. 3: A PICO system with 6 group controllers and four clierEontrollers
We say that the controlleppliesthe arrayOp proof to its data 1, 2, and 3 have lastOpsAccepted [5,4,1,0], and Controllers 4, 5, and

structures. Second, if any entry in lastOpsAccepted] ghn & 1%/ SiOPACCens (0111 Clnt i 3 member of e gro
the controller updates the view number and membership liglember of the group and last had a key corresponding .1, 1, 0]; it has
and it computes a ne®EKEY message. We also impose then arrayOp proof fof5,4,1,0]. Clients 3 and 4 are currently members of
rule that a client only processe@KEY message if the view 1 9roup and share the key corresponding0td, 1, 1].
number implied by the lastOpsAccepted field is higher than .) _
the view number of the last group key it adopted. in part|t|on/_1, it mu_st have an arrayOp progf, correspondmg
Each group member periodically broadcasts the array&h @ key with a view number of at least 9. In this cage,
proof corrresponding to its current group key in gonsists of the arra.{,5,4, 1,0l and a corre.sppndlng.t.hreghold
reconciliation message,(RECONG proob,,. When a signature. When client 2 requests to join in partitibn its
controller receives ®RECONC message, it applies the proofREQUESTMEssage contains After applyingp, the controllers
to its data structures and generates a mEKEY message N partition B will quate their view ngmber to 11, since they
if it learned of new accepted operations. Thus, when cliefpMmPute the maximum of each slot in the array. Thus, when
¢ moves from one partition to another, it carries with ifli€nt2’s new join request is accepted, it will compute augro
the snapshot (i.e., the proof) corresponding to key it €Y based on the array,5, 1,1], which has a view number
currently using. Eventually, the clients in the new paotiti of 12. In addition, cI_|ents 3 and 4 receive the corresponding
will either adopt a key with the same view number as the offEXEY messages (since they are members of the group) and
¢ was using (in which case they will install the exact sam@ill adopt the same group key.
membership ag) or a greater view number (in which cas
they all converge on a new membership). We formalize thiS
property as: The constraints imposed by the MANET environment dic-
tate that PICO should meet two important properties. First,
PROPERTY 6.4 REKEY-FORWARD-PROGRESS Let P be it should not rely on reliable communication links. Given
a partition with at least f + 1 correct group controllers. If a that message loss can be high and partitions long-lived,
correct client in P ever successfully generated a group key reliable links would consume bandwidth with acknowledge-
with view number v, then there exists a time after which each ments and would require unbounded message queues. Second,
correct group controller in P only sends REKEY messages PICO must provide efficient reconciliation when two paotits
corresponding to a view number v’ > v. merge. Again, since partitions can be long-lived, PICO #thou
specifically avoid passing all of the operations that were
To help elucidate the intuition behind the mechanism daeccepted in one partition to the other partition when the
scribed above, we conclude this section with an examphetwork heals.
Figure 3 depicts a system with four clients, where the nétwor We now describe how we use the threshold-signed proofs
is split into two partitions,A and B. Suppose all controllers already in PICO to build a simple and efficient reconciliatio
in A agree on the set of accepted operations (with a lastGmd garbage collection mechanism. Each group controller
sAccepted array of5, 4,1,0]), all controllers inB agree on maintains a data structure calledRaconciliation Vector, or
a different set of accepted operation8, (,1,1]), and no RV. The RV is simply an array of proofs, wher&V[i]
new join or leave requests are submitted. Clients 1 andc@ntains the proof reflecting the latest accepted operdtion
are currently in partitionA. Client 1 is using a group key client i. For convenience, we denote the operation identifier
corresponding to the arrajp, 4,1,0] (with a view number of this operation asRV[i].opID. Note that a proof might
of 10). Client 2 is not currently a member of the groughe a singleOp proof (constructed during the group controlle
and last had a group key corresponding[303,1,0] (with coordination protocol) or an arrayOp proof (constructedaby
a view number of 9). It has an arrayOp proof correspondirdjent during the rekey protocol and passed to the controlle
to [5,4, 1,0], which it collected after completing the operationn either aREQUESTOr a RECONC message).
(2, 4) (i.e., after it left the group). Clients 3 and 4 are in Each controller¢, periodically broadcasts the contents of its
partition B and are using a group key corresponding to thRV, wrapping each proofp, in a (RECONG p),, message.
array [0, 1, 1, 1] (with a view number of 3). Upon receiving aRECONC message, a controller appligs
Now suppose client 2 moves to partitidh We would like updatingRV and lastOpsAccepted][] j reflects more knowl-
the client to be able to share a group key with clients 3 andédge than what it currently has in its data structures. More
Since client 2 was last using a group key with view numberf@rmally, if p is a singleOp proof for operation,(j), then

. Reconciliation and Garbage Collection

if j > lastOpsAccepted], the controller replace®V[i] with accepted operations). To facilitate this convergencetieje

p and sets lastOpsAcceptéffo j. If p is an arrayOp proof, messages can be periodically transmitted by extending the
then for each slok in p, if p[k] > lastOpsAccepted], then Reconciliation Vector to include the ejection status ofteac
the controller set®V [k] to p and lastOpsAcceptek to p[k]. process.

Since proofs are cumulative, PICO requires only ths PICO supports the ejection of group controllers in the same
reconciliation message to be received for each client irordvay. A correct process will ignore messages sent by an ejecte
to reconcile all of that client's accepted operations. Thiontroller. However, if too many group controllers are &gelc
facilitates efficient reconciliation when two partitionseerge; then PICO will no longer guarantee liveness. That is, PICO
rather than requiring state proportional to the number of opnly guarantees liveness in partitions with at leastl correct
erations that were accepted in each partition to be tramesfer (i.e., not faulty and not ejected) controllers.
each controller must transfer at most one message per client
(multiple slots may have the same proof, which can be sent
only once). This also makes the coordination protocol ssler The PICO protocol is being implemented as part of
of message loss: once any correct controller in a partitfan, DARPASs Intrinsically Assurable Mobile Ad-Hoc Networks
collects f + 1 PROPOSALmMessages for an operatiofi, j), program. Although integration with our full system, ZODIAC
all subsequenPrROPOSAL messages fofi, j) need not be is not yet complete, in this section we briefly comment on
delivered in order for all controllers i to accept it. some of the implementation and performance considerations

Observe that PICO avoids the need for unbounded messafi®1CO. We first evaluate the cryptographic overhead of our
gueues. Each controller must retransmit at most one praofplementation. We then describe a simple optimization tha
per client, and oldPROPOSAL messages do not need to be&an be used to reduce the computational load.
reliably delivered. Thus, garbage collection in PICO islicip Our implementation is written in C and uses the OpenSSL
and is done simply by updating th&V and discarding library [32]. We measured the latency of the different typés
PROPOSALMessages for operations () if RV [i].opID > j. cryptographic operations when running on a 3.2 GHz, 64-bit
In contrast, protocols requiring reliable links operatimga Intel Xeon computer. Each computer can generate a 1024-bit
partitionable environment would require an explicit gayba standard RSA signature in 1.3 ms and verify a signature in
collection mechanism to determine which messages had b&®/ ms.
delivered to all processes and could be deleted. Threshold RSA Signatures: As described in Section VI,

a group controller combineg + 1 partial signatures when
it accepts an operation, and a client combirfes 1 partial

In this section we briefly discuss how PICO can be extendsifjnatures when its operation completes. We used the OpenTC
to support the ejection (irreversible revocation) of botin¢ implementation of Shoup’s threshold RSA signature scheme
troller and client processes. We do not consider how a detis{26]. The cost of generating a partial signature, along with
to eject a process is made; such decisions are policy-depéndts proof of correctness, was measured to be 3.9 ms. This
and constitute an important practical problem for realayst, cost remains fixed as the number of tolerated faults inceease
but they are beyond the scope of this paper. because the number of exponentiations required to compute

We first consider the ejection of faulty clients. We assuntbe partial signature remains the same.
that some trusted entity generates and signs an ejection me®©n the other hand, the cost of combinifig- 1 partial signa-
sage, which contains the process identifier of the cliemdeitures grows ag increases. We optimized for the common-case
ejected. This entity can be made fault-tolerant via thrEshooperation by attempting to combine partial signatures avith
cryptographic techniques. Ejection messages impact whetfirst verifying their correctness proofs. If the resultifgesh-
or not (1) a controller sendBEKEY messages to a client, andold signature verifies, then the shares were correct. Haweve
(2) a controller processesrEQUESTmessage from a client. if the signature does not verify, then we check each proof
A correct controller never sendsREKEY message to a client and can detect which shares were invalid. Since all messages
it knows to be ejected, and it ignores subsequeBQUEST are digitally signed, the invalid share can be broadcast as
messages from clients it knows to be ejected. a proof that the corresponding controller is compromised,

Note, however, that correct controllers continue to acceand the controller can subsequently be blacklisted. Ugiig t
join and leave operations for ejected clients when knowdedtechnique, we measured the latency for combining to be 1.3 ms
of these operations comes from any other source (i.e.,vifen f =1, 2.1 ms whenf = 3, and3.4 ms whenf = 5.
proofs received from other processes). In this way, theiefec Threshold Key Generation: We implemented the thresh-
does not impact the properties guaranteed by the rest of tid key generation scheme of Cachin, Kursawe, and Shoup
protocol. The join/leave status agreed upon for an ejectfld. We generated a 1024-bit safe prime and performed op-
client does not matter because clients are treated as grewgtions in its prime order subgroup. We measured the cost
members only if (1) their last operation is a join and (2) thegf generating a key share in this setting to be 11.3 ms. This
have not been ejected. cost is independent of the number of tolerated faults. Tts¢ co

Group controllers within a partition must also convergef combining the key shares into the group key increases as
on the set of ejected processes (in addition to the set pfincreases. We measured the latency for combining to be

VIl. PERFORMANCE CONSIDERATIONS

E. Support for Process Ejection

23.7 ms whenf = 1, 50 ms whenf = 3, and 91 ms when of accepted operations.
f=05.

Aggregating Membership Changes: In many settings, Proof of Lemma 8.1:SinceP is stable, no new join or leave
join and leave operations are not likely to require reaktinrequests are submitted. BgCCP-LIVENESS, any pending
latencies. Therefore, we believe the latencies presettedea operation from a correct client will eventually be accepted
are likely to be acceptable for many applications. Nevéed® by some correct controller i®, and byGCCP-AGREEMENT,
if membership changes are frequent, the cost of generatithg all correct controllers will eventually accept these opierss.
combining partial signatures and key shares can become hijlany pending operation from a faulty client is accepted by a
To help reduce this cost, a controller can aggregate sevegairect controller, all correct controllers iR will accept it.
membership change operations before generatirRgREY For each client, let i. be the highest operation identifier
message, which contains its partial signature and key shdoe which a correct process i has a proof, and let; be
This amortizes the cryptographic cost over several opmrati the highest operation identifier for which a faulty process i
reducing the average load per operation. P has a proof. Ifi. > iz, then letr be a correct process in
P that has proof thati, i.) was accepted. Any other correct
VIIl. PROOF OF CORRECTNESS . . .

controller, s, will eventually accept this operation because
A. Proof of Liveness Properties continues to retransmit the proof.

Proof Strategy: We first proveGCCP-AGREEMENT (Prop- If iy > i., then for each operatiop, with i, < j < iy,
erty 6.2) andGccrLIVENESS (Property 6.3) of the group a faulty process can either choose to make the proof of
controller coordination protocol. Using these propertiwe (i, j) known to a correct process (in which case it will
prove Lemma 8.1, which states that all correct controllebe accepted by all correct controllers) or it never makes the
in a stable partition eventually converge on the set of aproof known. Thus, there exists some maximum sgdhat
cepted operations (i.e., their lastOpsAccepted[] dateckires a faulty process makes known, which implies that the correct
become identical). Once the correct controllers convergmntrollers eventually agree on the set of operations fackvh
we proverREKEY-FORWARD-PROGRESS(Property 6.4), which only faulty processes had proof of acceptance. Therefbee, t
shows that correct controllers will eventually genemikEY correct controllers eventually agree on the set of accepted
messages for a view number that will be adopted by the corregerations for each client.
group members. The liveness of the overall PICO protocol, Proof of Rekey-Forward-Progress: By Lemma 8.1, all
PICO-LIVENESS (Property 5.3), follows directly from thesecorrect group controllers in partitio® eventually agree on
two properties. the set of accepted operations. When each correct comtrolle

Proof of GCCP-Agreement: When a correct controller, in P accepts the last operation, it generatee&a EY message
¢, in partition P accepts operatiofi, j), it obtains a proof, with a key share based on the same membership as each other
p, that (4, j) was legitimately accepted. We must show thatorrect controller inP. Letvy;,q.; be the view number implied
all correct controllers inP eventually accepti, j). If ¢ never by the lastOpsAccepted field,, of theseREKEY messages.
accepts a later operation farthen it continues to periodically We must show thaty;,, will be at least as high as the
retransmitp, which will eventually be received by all correctview numberyp, of the key currently being used by any of the
controllers inP. If ¢ does accept a later operation it will correct group members. We can prove this by showing that no
replaceRV [i] with a new proofyp’, for some operatiofi, ;). correct group member has proof of an operatfifinj) where
In turn, ¢ may replacep’ with a later proof,p”, and so on. j > L[i]. The proof is by contradiction. If any correct group
Eventually, a correct controller will receive one of thesegfs member had this proof, then it would eventually be received
(call it p*, for operation;*), at which point it will implicitly in a RECONC message by a correct controller, which would
accept all operation&, ;") with j” < j*, including (¢, j), cause the controller to increase its view number and gemerat
because proofs are cumulative. a REKEY message with a higher view number, which violates

Proof of GCCP-Liveness: We must show that if client the assumption thats;,; is the convergence point established
submits requesti, j) in a partition, P, with at leastf + 1 by Lemma 8.1.
group controllers, ther(:, j) will eventually be accepted. Proof of PICO-Liveness: By Lemma 8.1, all group
Client ¢ periodically retransmits the request until it receivesontrollers in a partition? eventually converge on the set of
proof that (i, j) was accepted. The request is eventuallgccepted operations and generaRExXEY message based on
received by at leasff + 1 correct group controllers, eachthe same membership. Since there are at Igastl correct
of which will approve it and send @aroposALfor (i, j). controllers inP, and since correct controllers periodically re-
Each correct controller thus eventually receives at lg¢astl transmit their lasREKEY message, all correct group members
valid PRoOPOSAIS from distinct controllers and will thereforewill eventually collect f + 1 combinableREKEY messages
accept the operation. based on the stable membership. By Property 6.4, the view

number of this keywyina, Will be at least as high as the

Lemma 8.1: Let P be a partition with at least f + 1 one currently being used by any correct group member. Any
correct group controllers, where P is stable at time t. Then group member inM that previously had a group key with
all correct group controllers in P eventually agree on the set a view v < vyinq Will adopt the group key corresponding

9

t0 vrina. Any group member already using a key with avith the public key of the trusted hardware of the receiving
view numberv = v¢;nq Must already be using this groupgroup member. Thus, a faulty client notdrwill never be sent
key, since otherwise there exists some operation that hias the necessary + 1 REKEY messages. Faulty clients cannot
been converged upon. Since the convergence view;is,;, decrypt the key shares aGfEKEY messages sent to correct
no correct controller sends REKEY message correspondingclients. Further, since they cannot learn the decryption ke
to a higher view number, so all members /af will continue of their own trusted hardware, even faulty group members
using the established group key. cannot divulge their own key shares to processes nat. in
The security of the keying process thus follows from the fact
that only processes in are able to generafg and no process
Proof Strategy: We first proveGCcCPVALIDITY (Property is able to learnk.
6.1), the validity property of the group controller cooraiion
protocol. We then use this to provaLID -AUTHENTICATION IX. CONCLUSION
(Property 5.1), which states that only authorized clients a
able to join the group. Finally, we provBECUREKEYING
(Property 5.2), the security of the keying process.
Proof of GCCP-Validity: A correct controller accepts
an operation(i, j) after (1) collectingf + 1 PROPOSAL

B. Proof of Security Properties

This paper presented PICO, a generic infrastructure facil-
itating secure group communication in mobile ad-hoc net-
works. PICO uses a weakly consistent Byzantine fault-éoler
agreement protocol to provide a partitionable service, iand
! ! - leverages threshold cryptographic proofs to tolerate aggEss
messages, (2) collecting a singleOp proof for operatioty), . -) L :

ges, (2) g glevp p peraion) loss and avoid requiring reliable communication links. We

or (3) collet_:tlng an arrayop progf with pli] > j. In the highlighted several pragmatic issues associated witlgiate
first case, since at mogt controllers are faulty, at least one.

correct controller sent aBRoPOsALand therefore approved thed PICO as a component in a secure system, which must be
. . : ?ddressed in practical deployments.

operation. In the second case, a singleOp proof is constiuc

by collecting f + 1 PROPOSALMessages, each with a partial

signature on the hash dfi, j). Again, since at mostf

controllers are faulty, at least one correct controller ningve [1] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles instan-

sent aPROPOSALMessage that contributed to the construction tipole: Practical asynchronous byzantine agreement usyfography

fth ingleO f (extended abstract),” iRroceedings of the nineteenth annual ACM sym-

of the sing e p proot. posium on Principles of distributed computing (PODC '00), Portland,
In the third case, the arrayOp proof was constructed by Oregon, 2000, pp. 123-132.

Collectlng f + 1 REKEY messages |n each message me [2] B. Dutertre, V. Crettaz, and V. Stavridou, “Intrusiobl¢rant enclaves,”
’ in Proceedings of the 2002 |EEE Symposium on Security and Privacy

REFERENCES

entry of the lastOpsAccepted field contamjédz.j. Thl_Js, at (S °02), 2002, p. 216.

least one correct controller had lastOpsAccepiedE j'. In [3] K. Birman and T. Joseph, “Exploiting virtual synchrony distributed
order for (i, j/) to have been accepted, clientmust have systems,’ _i”F_’floceedi“QS of the 11th ACM Q’mpo_s“am on Operating
submitted aREQUEST containing proof tha(i, ;' — 1) was %%ﬂi;”nc'p%(sosj 87). Austin, Texas, United States, 1987, pp.
accepted, which implies that at least one correct controllg4] v. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A camunication
had IastOpsAccepteﬂ[_ j' —1. Using a simple induction, subsystem for high availability,” iProceedings of the 22nd Annual

. . . International Symposium on Fault Tolerant Computing (FTCS '92),
each operation fron(, 1) through(i, j') was accepted by at Boston, Massachusetts, 1992, pp. 76-84.

least one correct controller, includitg j). Consider the first [5] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: Aillexgroup
correct controller to acceqt, j). This controller must have communication systemCommun. ACM, vol. 39, no. 4, pp. 76-83, 1996.

: : Y. Amir, C. Danilov, and J. Stanton, “A low latency, losslérant
done so throth either Case 1 or Case 2, since no array architecture and protocol for wide area group communiogdtion

proof, p, with p[i] > j, can yet exist. By Case 1 and Case proceedings of the 30th Annual International Symposium on Fault

2 above, some correct controller must have seRRa@POSAL - Tolerant Computing (FTCS '00), 2”000, pp-h 327—d336- "

. 7] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarda“Ex-
message fo(z, j) L tended virtual synchrony,” iRroceedings of the 14th |EEE Inter national
Proof of Valid-Authentication: By GCCPRVALIDITY, a Conference on Distributed Computing Systems (ICDCS '94), 1994, pp.

client can only join the group if its operation was approved 56-65.

8] O. Rodeh, K. P. Birman, and D. Dolev, “The architectured goer-
by some correct controller. A correct controller consutsup formance of security profocols in the ensemble group comgation

policy in deciding Whether .to approve a client join request. system: Using diamonds to guard the casteCM Trans. Inf. Syst.
Thus, only an authorized client can join the group. Secur., vol. 4, no. 3, pp. 289-319, 2001.

. PR [9] ——, “Using avl trees for fault tolerant group key managsmy’
Proof of Secure Keying: We show that Only members International Journal on Information Security, vol. 1, pp. 84-99, 2002.

of a given view,v, can generate the group keéy Group [10] Y. Amir, C. Nita-rotaru, J. Stanton, and G. Tsudik, “Bee spread:
member; uses its trusted hardware to encrypt messages with An integrated architecture for secure group communicgtidEEE

k. Wheni adoptedk, it obtained an arrayOp proof, from g%ins?gg%ns on Dependable and Secure Computing, vol. 2, pp. 248—

which the current group view can be deduced. To obtgin [11] L. Lamport, R. Shostak, and M. Pease, “The Byzantineegaa prob-

a process must combing 4+ 1 key shares all based on the lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382-401,

same lastOpsAccepted data, which is the same data ps in _ 1982. _ o _ _

A I I d .~ . [12] M. K. Reiter, “The Rampart Toolkit for building high-iegrity services,”
correct controller only sends REKEY message containing in Sclected Papers from the International Workshop on Theory and

a key share to the members of EachREKEY is encrypted Practice in Distributed Systems, 1995, pp. 99-110.

10

[13] K. P. Kihilstrom, L. E. Moser, and P. M. Melliar-Smith, KB SecureRing
protocols for securing group communication,” Rroceedings of the
|EEE 31st Hawaii International Conference on System Sciences, vol. 3,
Kona, Hawaii, January 1998, pp. 317-326.

M. Castro and B. Liskov, “Practical Byzantine fault ¢échnce,” in
Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI '99). USENIX Association, Co-sponsored by
IEEE TCOS and ACM SIGOPS, 1999, pp. 173-186.

J.-P. Martin and L. Alvisi, “Fast Byzantine consenSu&EE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 3, pp. 202-215,
2006.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. WongZyzzyva:
speculative Byzantine fault tolerance,” iroceedings of 21st ACM
S GOPS Symposium on Operating Systems Principles (SOSP '07),
Stevenson, Washington, USA, 2007, pp. 45-58.

L. Lamport, “Time, clocks, and the ordering of eventsairdistributed
system,”Commun. ACM, vol. 21, no. 7, pp. 558-565, 1978.

F. B. Schneider, “Implementing fault-tolerant seedcusing the state
machine approach: A tutorial ACM Computing Surveys, vol. 22, no. 4,
pp. 299-319, 1990.

L. Zhou and Z. J. Haas, “Securing ad hoc networkEEE Network,
vol. 13, pp. 24-30, 1999.

J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Proviglirobust and
ubiquitous security support for mobile ad-hoc networks,Proceedings
of the 9th International Conference on Network Protocols (ICNP ’01),
2001, pp. 251-260.

H. Luo, P. Zefros, J. Kong, S. Lu, and L. Zhang, “Selfigéeg ad hoc
wireless networks,” irProceedings of the Seventh |EEE Symposium on
Computers and Communications (ISCC '02), 2002.

M. Narasimha, G. Tsudik, and J. H. Yi, “On the utility ofsttibuted
cryptography in p2p and manets: the case of membershipatdnitr
Proceedings of the 11th International Conference on Network Protocols
(ICNP '03), 2003, pp. 336—345.

N. Saxena, G. Tsudik, and J. H. Yi, “Efficient node adnussfor
short-lived mobile ad hoc networks,” iRroceedings of the 13th IEEE
International Conference on Network Pratocols (ICNP '05), 2005, pp.
269-278.

B. Dutertre, H. Sadi, and V. Stavridou, “Intrusiondcint group man-
agement in enclaves,” itn International Conference on Dependable
Systems and Networks (DSN '01), 2001, pp. 203-212.

P. Feldman, “A practical scheme for non-interactiveifible secret
sharing,” inProceedings of the 28th Annual Symposium on Foundations
of Computer Science. Los Angeles, CA, USA: IEEE Computer Society,
October 1987, pp. 427-437.

V. Shoup, “Practical threshold signature&gcture Notes in Computer
Science, vol. 1807, pp. 207-223, 2000.

R. L. Rivest, A. Shamir, and L. Adleman, “A method for albting digital
signatures and public-key cryptosysten@gmmun. ACM, vol. 26, no. 1,
pp. 96-99, 1983.

A. Shamir, “How to share a secretCommun. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru,daH. Rubens,
“ODSBR: An on-demand secure byzantine resilient routingtquol for
wireless ad hoc networksACM Trans. Inf. Syst. Secur., vol. 10, no. 4,
pp. 1-35, 2008.

“Trusted platform module (TPM)
http://www.trustedcomputinggroup.org/specs/tpm/.”
M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impog#jb of
distributed consensus with one faulty procesk,ACM, vol. 32, no. 2
pp. 374-382, 1985.

“The openssl project, http://www.openssl.org.”

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30] specifications,

[31]

(32]

APPENDIXA
INTRUSION-TOLERANT ENCLAVES

structuresn;, the current view number (incremented each time
L; accepts a new member or removes an existing member from
the group), andV/;, its local view of the current group mem-
bership. Leader; runs the following coordination protocol:

« After successfully authenticating clied, L; sends a
(PROPOSEI, A, n;),, message to all leaders. The leader
is said toannounce client A.

o After receiving f + 1 valid (PROPOSEj, A, 1),
messages from different leadersl; sends a
(PROPOSEI, A, n;),, message to all leaders if it
has not already done so. We call this ttescade step.

o When L; receivesN — f valid (PROPOSEj, A,n;)o,
messages fronV — f distinct leaders[; accepts4 as a
new member.

A (PROPOSEj, A,n;),, Message is considered valid at
leaderL; if it meets three conditions:

1) The signature is valid

2) nj Z n;

3) A is not a member of\/;

The liveness property claimed
Enclaves is:

by Intrusion-Tolerant

PROPERTY A.1l: ENCLAVES-LIVENESS— If f+ 1 nonfaulty
leaders announce A, then A is eventually accepted by all
nonfaulty leaders.

We now construct a simple scenario in which a correct
client, B, will not be accepted into the group by any correct
leader despite being announced by at legst 1) correct
leaders, thus violatingNCLAVES-LIVENESS. When the sys-
tem starts, all leaders have = 0 and M; = (). Suppose one
correct leader,S, has added client to the group; thenS
hasn, = 1 and My = {A}. The other correct leaders (we'll
collectively call them.J) will eventually addA to the group,
but due to network asynchrony they have not yet done so (i.e.,
the necessarpROPOSEmMessages have not arrived yet).

Now suppose useB authenticates witl2f correct leaders
in J and one faulty leader. The correct leaders/isend out
messages of the forfPROPOSE}, B,0),,, since they have
not yet accepted any operations. Suppose the faulty leagsr d
not send ePROPOSEMessage. Then when thedg PROPOSE
messages arrive at lead8r they will be considered invalid
becaused < 1 (i.e., n; < n,). Thus, S does not send a
PROPOSEmMessage to ad# to the group. The correct leaders
in J will receive at mosRf valid PROPOSEmMessages adding
B, and no leader will add3 to the group.

Although f + 1 correct leaders authenticatdgl and sent

PROPOSEmMessages, these messages were considered invalid
In this section we provide background on the Intrusiorby S becauseS was in a later view (i.e., it had accepted
Tolerant Enclaves protocol [2]. After describing the pamilh more operations). Note that we can construct a similar saena
we present a scenario in which, just due to network asyrelated to the third validity check (which requires ttats not
chrony, the protocol fails to admit an authorized membey inh member ofM; when thePROPOSEmMessage is received).
the group. Suppose all correct leaders have addetb the group. Then
The group controller processes in Intrusion-Tolerant EfeaderS is partitioned away, and the remaining leaders (with
claves are calletieaders. Each leader; maintains two data the help of one of the faulty leaders) all accept an operation

11

removing B from the group. Now supposB wants to join
the group again. It authenticates wi2lf correct leaders from
J and one faulty leader. TherROPOSEmMessages sent by the
leaders inJ are considered invalid & becauseB is already
a member ofM;.

In both cases, the problem occurs in the cascade step.
The cascade technique is commonly used in Byzantine fault-
tolerant protocols; once a correct process is convinceditha
is valid to take some action, it can take the action to move the
protocol forward. The problem in Intrusion-Tolerant Enea
is that additional validity checks are imposed on the messag
involved in the cascade (i.e., tEROPOSAL message). This
can prevent the cascade from occurring, even though the
threshold number of processes 1) approved the request.

12

