
Intrusion-Tolerant Group Management for
Mobile Ad-Hoc Networks

Jonathan Kirsch1 and Brian Coan2
1 Johns Hopkins University, Baltimore, MD. jak@cs.jhu.edu

2 Telcordia Technologies, Piscataway, NJ. coan@research.telcordia.com

Technical Report CNDS-2009-2 - March 2009
http://www.dsn.jhu.edu

Abstract—This paper presents PICO, a generic infrastructure
for secure group communication in mobile ad-hoc networks
(MANETs). PICO provides an intrusion-tolerant group manage-
ment service, allowing clients to join or leave a logical group
and enabling group members to communicate securely using
a dynamically generated group encryption key. Since MANETs
are characterized by relatively high message loss and frequent
network partitions, PICO is built around a new Byzantine fault-
tolerant agreement protocol designed to cope with these con-
ditions. The agreement protocol leverages weak (commutative)
semantics to allow multiple partitions to continue operating in
parallel without sacrificing correctness, and it uses threshold
cryptography to provide efficient reconciliation and coordination
without the need for reliable communication links.

I. INTRODUCTION

This paper addresses the problem of building a generic
infrastructure for secure group communication in mobile ad-
hoc networks (MANETs). We focus on building a robust
and highly available group management system, providing
services for group membership management, cryptographic
key generation, and secure key distribution. Applicationsusing
this service can join a group and encrypt messages for one
another using the group’s shared encryption key, thus facil-
itating secure communication among group members. This
problem arose as part of our work on the DARPA IAMANET
(Intrinsically Assurable Mobile Ad-Hoc Networks) program.
In our system, ZODIAC, dynamically-formed groups of nodes
must be able to communicate securely with one another. The
system is intended to operate in a MANET with short-lived
links, high packet loss, and transient network partitions.It must
operate despite a limited number of compromised participants.

Given the constraints imposed by the MANET environ-
ment, we believe any solution to this problem must have
several properties. First, the system must beintrusion-tolerant,
continuing to operate correctly even if some of the nodes
providing or using the service are compromised. Faulty nodes
must be prevented from revealing the group encryption key
or other private cryptographic material that would violate

This material is based upon work supported by the Defense Advanced
Research Projects Agency and Space and Naval Warfare Systems Center, San
Diego, under Contract No. N66001-08-C-2012. Approved for Public Release;
Distribution Unlimited.

the confidentiality of the group communication. Second, the
service must bepartitionable, providing availability even if
some of the non-faulty nodes are partitioned away from one
another. Third, the protocols used to implement the service
must be tolerant of message loss. Finally, the system should
rely on weak or no synchrony assumptions from the underlying
network.

This paper presents PICO (Partitionable and Intrusion-
Tolerant Communities), an intrusion-tolerant group manage-
ment protocol that meets these criteria. The key properties
of PICO are as follows. First, it uses threshold cryptogra-
phy and limited tamper-proof hardware to achieve intrusion
tolerance. PICO uses the threshold coin-tossing scheme of
Cachin, Kursawe, and Shoup [1], as adapted for the group
membership problem by Dutertre et al. [2], to generate the
group encryption key, and it uses a threshold digital signature
scheme to construct proofs that can be used to verify the
behavior of the protocol participants. Second, it uses a new
Byzantine fault-tolerant agreement protocol that exploits weak
(commutative) semantics to allow multiple network partitions
to provide service in parallel without sacrificing overall system
consistency. Third, PICO does not rely on reliable commu-
nication links, avoiding the need for acknowledgements or
queues of undelivered messages in the face of partitions and
message loss. PICO uses cumulative threshold cryptographic
proofs that allow efficient reconciliation by requiring only the
“last” message to be delivered.

The remainder of this paper is organized as follows. Section
II presents relevant related work, and Section III providesthe
necessary background on the threshold cryptographic building
blocks used in the rest of the paper. In Section IV, we present
our system model and state the assumptions on which we
rely. Section V describes the PICO system architecture and
the service properties that PICO provides. Section VI presents
the PICO protocol in detail, and Section VII evaluates its
performance. Section VIII provides a correctness proof of
PICO’s safety and liveness properties. Section IX concludes
the paper.



II. RELATED WORK

Group communication systems provide services for mem-
bership and reliable, ordered message delivery. There has been
a great deal of research on group communication systems that
tolerate benign faults, including ISIS [3], Transis [4], Horus
[5], and Spread [6]. These systems differ in the semantics
they provide (ISIS guarantees Virtual Synchrony [3] and as-
sumes fail-stop processes, whereas Transis, Horus, and Spread
guarantee Extended Virtual Synchrony [7] and can cope with
network partitions and process crashes and recoveries).

Several secure group communication systems, such as En-
semble [8], [9] and Secure Spread [10], have been built in
the so-called “fortress model,” where the group members
are assumed to be correct and use cryptography to protect
their communication from external attackers. Ensemble uses
group key distribution protocols to distribute a shared group
key, while Secure Spread uses a contributory key agreement
protocol in which every group member contributes an equal
share of the group secret.

Group communication systems have also been developed in
the Byzantine fault model [11]. In the Byzantine model, faulty
processes can fail arbitrarily. The Rampart system [12] andthe
SecureRing system [13] provide services for membership and
ordered message delivery, and they depend on failure detectors
to remove faulty processes from the membership. They rely
on synchrony for both safety and liveness, since inconsistency
can arise if a membership is installed that has one-third or
more faulty processes.

We emphasize that PICO is not a “group communication
system” as the term applies to the systems above; it does
not provide the strong membership semantics or the reliable,
ordered message delivery of these systems. Rather, it provides
a security infrastructure that allows applications to joina
logical group and encrypt messages for one another using a
dynamically generated symmetric group encryption key. PICO
provides security against both external and insider attacks, as
Rampart and SecureRing do. Unlike Rampart and SecureRing,
PICO guarantees safety and liveness without relying on syn-
chrony assumptions.

At the core of PICO is a Byzantine fault-tolerant agreement
protocol. Over the last several years, much of the work in
Byzantine fault-tolerant agreement has focused on Byzantine
fault-tolerant state machine replication (SMR) protocols(e.g.,
[14]–[16]). In the state machine approach [17], [18], a group of
servers totally orders all updates that cause state transitions,
and then the servers apply the updates in the agreed upon
order. SMR protocols provide strong consistency semantics,
but they allow at most one partition to continue executing
new updates at a time. In contrast, PICO’s agreement pro-
tocol guarantees weaker, commutative semantics but allows
multiple partitions to operate in parallel, which is desirable in
MANETs.

PICO uses threshold cryptography to implement its security
services. Using threshold cryptography to provide security
in peer-to-peer and MANET settings is not new (see, for

example, [19]–[23]). Narasimha et al. [22] discuss the use
of threshold cryptography for admission control in malicious
environments. The current group members run a voting proto-
col (based on a threshold digital signature scheme) to decide
whether or not to admit a potential group member. PICO also
uses a threshold digital signature scheme, but the voting isrun
among group controller processes. In addition to admission
control, PICO requires a coordination protocol for group key
generation.

The work most closely related to PICO is the Intrusion-
Tolerant Enclaves protocol of Dutertre et al. [2], [24]. We use
a similar protocol architecture as Intrusion-Tolerant Enclaves,
and we adopt the same threshold key generation scheme [1].
We highlight the differences between the two protocols in
Section V.

III. BACKGROUND

PICO makes use of two threshold cryptosystems: a thresh-
old digital signature scheme (used to enforce correct client
behavior and facilitate efficient reconciliation) and a threshold
key generation scheme (used to generate the shared group key
that group members use to encrypt application-level messages
for one other). We now describe both cryptosystems and their
associated security properties.

Threshold digital signatures: A (k, n) threshold digital
signature scheme allows a set ofk out of n processes to
generate a digital signature; any set of fewer thank processes
is unable to generate a valid signature. Whenk ≥ f +1, where
f is the maximum number of processes that may be malicious,
generating a threshold signature on a message implies that
at least one correct process participated in the protocol and
assented to the content of the message.

In a typical threshold signature scheme, a private key is
divided into n key shares, where each process knows one
key share. To sign a message,m, each process uses its key
share to generate apartial signature on m. Any process that
collectsk partial signatures can then combine them to form
a threshold signature onm. An important property provided
by some threshold signature schemes, especially in malicious
environments, is verifiable secret sharing [25]: each process
can use its key share to generate a proof of correctness, proving
that the partial signature was properly generated using a share
from the initial key split.

Our current implementation of PICO uses the Shoup RSA
threshold digital signature scheme [26]. The signatures gen-
erated using this scheme are standard RSA signatures [27],
which can be verified using the public key corresponding to
the divided private key. The scheme assumes a trusted dealer
to divide the private key and securely distribute the initial key
shares (after which the dealer is no longer needed), and it
provides verifiable secret sharing.

Threshold key generation: A (k, n) threshold key
generation scheme allows a set ofk out of n processes to
generate a group encryption key, while any set of fewer than
k processes is unable to do so. Similar to the case of threshold

2



digital signatures, settingk ≥ f +1 ensures that the group key
was generated using a share from at least one correct process.

PICO uses the Diffie-Hellman based threshold coin-tossing
scheme of Cachin, Kursawe, and Shoup [1] for key generation;
the coin-tossing scheme was adapted for the group member-
ship problem by Dutertre et al. [2]. A trusted dealer generates
n shares of an initial secret (as in [28]) and securely distributes
one share to each process (after which the dealer is no longer
needed). To generate a group key, each process computes a
key share as a function of its secret share and some common
state. In PICO, this common state is based on the current group
membership. Any process that combinesk key shares can
combine them to form the group key. As in [26], the scheme
provides verifiable secret sharing, allowing each process to
generate a proof that its key share was created using a valid
secret share.

IV. SYSTEM MODEL AND ASSUMPTIONS

We assume a Byzantine fault model. Processes are ei-
ther correct or faulty; correct processes follow the protocol
specification, while faulty processes can deviate from the
protocol specification arbitrarily. Processes communicate by
passing messages in an asynchronous communication network.
Messages can be delayed, lost, or duplicated. We assume an
underlying routing protocol such as [29] that ensures correct
processes can communicate as long as there is a fault-free path
between them.

The network may be divided into multiplepartitions. In
an infinite execution, we say that there is a partition,P ,
if (1) P contains a subset (not necessarily proper) of the
processes, (2) for any two correct processesa and b in P ,
if a sends an infinite number of messages tob thenb delivers
an infinite number of messages froma, and (3) there is
some time after which no process inP receives any message
from a process outside ofP . Although we define partitions
in terms of properties that hold forever (beginning at some
point in the execution), real executions may go through many
different partition configurations. In practice we are interested
in proving that the properties of PICO hold in those partitions
that last “long enough.”

PICO supports secure group communication by generating
and distributing a group encryption key. The group ser-
vices for a group,G, are implemented by a collection of
group controller processes. Each group has a fixed number
of group controllers,CG, uniquely identified from the set
RG = {1, 2, . . . , CG}. At most f of the group controllers
may be Byzantine. Each group can support an arbitrary but
finite number ofclients, which communicate with the group
controllers to join or leave the group. Clients are uniquely
identified from the setSG = {1, 2, . . .}. Any number of client
processes may be Byzantine.

Each process has a public/private key pair signed by a
trusted certification authority. We employ digital signatures,
and we make use of a cryptographic hash function for com-
puting message digests. We denote a messagem signed by
processi as〈m〉σi

. We assume that all adversaries, including

faulty controllers and clients, are computationally bounded
such that they cannot subvert these cryptographic mechanisms.

We make use of two threshold cryptosystems. First, each
group uses an (f +1, CG) threshold digital signature scheme.
Each group controller knows one share of the private key,
which it can use to generate partial signatures and proofs of
correctness. We assume threshold signatures are unforgeable
without knowing at leastf + 1 secret shares. Second, each
group uses an (f + 1, CG) threshold key generation scheme.
Each group controller knows one secret share, which it can
use to generate key shares and proofs of correctness. We
assume one cannot construct the group encryption key without
knowing at leastf + 1 key shares.

We assume that each process has tamper-proof hardware
that can hold a public/private key pair and can assemble and
verify key shares in the threshold key generation scheme.
The process, even if it is Byzantine, cannot read the private
key. When a controller sends a key share to a client, it
encrypts the key share with the public key of the client’s
hardware, establishing a secure channel between a correct
controller and the trusted hardware of the receiving client.
The client’s hardware decrypts the key share and verifies the
correctness proof. When the hardware combinesf + 1 valid
key shares, it generates the group encryption key. Clients can
use the hardware to encrypt application-level messages using
the group key, but they cannot read the group key, even if
they are Byzantine. The same physical machine can host both
a client process and a controller process.

Coping with Faulty Clients: Like any secure group-based
communication system, PICO must make an assumption about
the behavior of client processes. With no assumptions, faulty
group members can engage in two behaviors to compromise
confidentiality: (1) broadcasting the group encryption keyto
non-group members, and (2) decrypting application messages
using the group key and then re-broadcasting them to non-
group members. There are two possible approaches to dealing
with this problem. The approach taken by the Intrusion-
Tolerant Enclaves protocol [2] is to assume that all clientsare
correct, in which case no enforcement is necessary. We make
a different (weaker) assumption, constraining the behavior
of faulty clients in limited ways using trusted hardware. To
cope with the first problem, we assume trusted hardware for
key manipulation, storage, and application. We believe this
assumption is reasonable in certain military environmentsand
is likely to become more generally applicable in the future
(see [30] for a description of mechanisms in this direction). To
cope with the second problem, one can use an approach (which
we do not describe in this paper) that leverages host security,
virtual machines, and non-bypassable encryption implemented
in trusted hardware. PICO can be deployed using either set of
assumptions, although some aspects of the protocol (including
trusted hardware) are not needed if all clients are assumed to
be correct.

3



V. SYSTEM ARCHITECTURE AND DESIGN

In this section we describe the PICO architecture and its
security properties. We then discuss the design of one of the
core algorithmic components of PICO, thegroup controller
coordination protocol.

A PICO group consists of a collection of clients that
share an encryption key, which the clients use to protect
their application-level data. This key is dynamically con-
structed by PICO and is dynamically changed when the group
membership changes. A pre-defined set of group controllers
is responsible for providing security services to the clients,
including handling join and leave requests according to group
policy and distributing shares of the group key to the group
members. Each group member is presented with aview of the
membership, which is a list of the processes currently in the
group.

The PICO architecture is inspired by the architecture of the
Intrusion-Tolerant Enclaves protocol [2]. It has the following
security goals:

PROPERTY 5.1: VALID AUTHENTICATION – Only an
authorized client (as dictated by group policy) can join the
group.

PROPERTY 5.2: SECURE-KEYING – If group member i is
given f + 1 shares for group encryption key k for view v,
only the members of v will ever generate k.

Figure 1 presents an outline of the PICO protocol. When a
client wants to join or leave the group, it sends a request to
the group controllers. If a group controller determines that
the request is authorized (i.e., if itapproves the request),
it proposes that the request be agreed upon by sending a
message in the group controller coordination protocol. A
controller accepts the requested operation when it becomes
agreed upon as a result of the coordination protocol. Once a
controller accepts an operation, it updates its view of the group
membership and sends a message, containing a share of the
group key, to each group member. The message is encrypted
with the public key of the trusted hardware of the receiving
group member. Each group member combines a threshold
number of key shares (in its trusted hardware) to construct
the group key.

A critical property of the threshold key generation protocol
is that, in order for key shares to be combinable, they must be
computed based on some common state. In PICO, the common
state on which the controllers compute their key shares is
the set of operations (join and leave requests) that have been
accepted. Thus, the group controller coordination protocol
must facilitate agreement, among the group controllers, onthe
set of accepted operations.

In the rest of this section, we describe two approaches
that we considered using for the group controller coordination
protocol, and we explain why each is insufficient to meet the
requirements of PICO.

4. Key share generation
and dissemination

1. Client submits request 
to group controllers

2. Request validation

Entity Taking Action

5. Combining of key shares, 
group key generation

Joining or leaving client

Each group controller that 
receives the client request

All group controllers

Each group controller that
accepts the operation

Trusted hardware of each 
group member

Protocol Step

3. Group Controller 
Coordination Protocol

Fig. 1: Outline of the PICO protocol.

State Machine Replication: Using state machine replica-
tion (SMR) for group controller coordination in PICO would
work as follows. The group controllers would totally order
all join and leave operations and apply them in the same
order. After applying each operation, each group controller
would generate a new key share, based on the membership
at that point in the execution. These key shares would be
combinable, because all controllers compute a key share
after each (identical) state transition. The strong consistency
semantics of SMR protocols comes at a price: the protocols
are not partitionable. At most one partition can make progress
(i.e., continue accepting new join and leave requests) at a time.

Intrusion-Tolerant Enclaves: The lesson of state machine
replication is that we must weaken the agreement semantics
in order to achieve a protocol in which multiple partitions can
operate in parallel. In their Intrusion-Tolerant Enclavesproto-
col [2], Dutertre et al. observed that the group management
problem does not require the strong semantics of state machine
replication. Rather, the servers can provide combinable key
shares as long as they eventually converge to a common
view of the membership, without necessarily applying the
operations in the same order.

Several factors make Intrusion-Tolerant Enclaves unsuitable
for use in the PICO environment. First, the coordination
protocol is not partitionable. Although it leverages the weaker
semantics to avoid synchrony assumptions, it still requires
collecting messages from all correct servers (N − f ) in order
to guarantee that a new join or leave request can be accepted.
Second, we identified a flaw in the coordination protocol
where, simply due to network asynchrony, there are scenarios
in which an authorized client will never be admitted into
the group. Due to space limitations, we describe this flaw
in Appendix A. Finally, the coordination protocol assumes
reliable communication links between correct servers;all
protocol-level messages must eventually be delivered in order
to ensure that all valid operations are eventually agreed upon.

In both Intrusion-Tolerant Enclaves and PICO, key shares
are only guaranteed to be combinable when the membership
stabilizes. If join and leave requests are continuously submitted
too quickly, then there is the potential for livelock if the
controllers are unable to converge on the set of accepted
operations. This is the price of forgoing the total orderingof

4



SMR. Note, however, that a steady stream of joins and leaves
would cause the encryption key to change very rapidly even if
SMR were used for coordination. Therefore, in practice these
systems must be augmented with mechanisms to rate limit the
joins and leaves from both correct and faulty processes.

To capture this requirement in PICO, we define a partition
P as stable with respect to timet if no client in P submits
a new join or leave request aftert. In practice, we want to
provide liveness during sufficiently long stable periods. PICO
guarantees the following liveness property:

PROPERTY 5.3: PICO-LIVENESS – Let P be a partition
with at least f +1 correct group controllers, where P is stable
at time t. Let M be the set of correct clients in P whose last
submitted operation is a join. Then there exists a time t′ > t

after which the members of M share an encryption key.

VI. THE PICO PROTOCOL

In this section we describe the PICO protocol in detail. In
Section VI-A, we introduce the terminology used in our pro-
tocol description, and we present several key data structures.
In Section VI-B, we present the three basic components of
PICO: theclient protocol, used to join or leave the group; the
group controller coordination protocol, used to agree upon join
and leave requests; and therekey protocol, used to generate a
new group key when the membership changes. Section VI-C
addresses the problem of how a client can determine which
encryption key is the most recent, which is made difficult by
the fact that operations are not totally ordered and communi-
cation is asynchronous. Section VI-D presents techniques for
efficient state reconciliation and garbage collection. Finally,
Section VI-E discusses how the PICO architecture can support
process ejections.

A. Terminology and Data Structures

As mentioned above, the group controllers must agree on
the set of operations (join and leave requests) that have
been accepted. Operations are uniquely identified by(clien-
tID, operationID) pairs. PICO enforces that clients submit
operations with increasing, contiguous operation identifiers,
beginning with 1, which must correspond to a join request. As
explained below, this prevents faulty clients from prematurely
exhausting the space of operation identifiers, and it allowsfor
the use of cumulative threshold-signed proofs for efficientstate
reconciliation. All valid join operations have odd identifiers,
and all valid leaves have even identifiers.

Each controller maintains the state of accepted operationsin
an array,lastOpsAccepted[], where lastOpsAccepted[i] con-
tains the operation identifier of the last operation that the
controller has accepted for clienti. By agreeing on lastOp-
sAccepted[], the controllers implicitly agree on the current
membership of the group: Clienti is currently in the group
if lastOpsAccepted[i] corresponds to a join operation. In
addition, the controllers implicitly agree on the total number
of operations that have been accepted for all clients, which
(following [2]) we call the view number. As described in

Request Proposal Rekey

Client 1

Controller 1

Controller 2

Controller 3

Client 2

Fig. 2: Basic operation of the PICO protocol, withf = 1. Client 1 is
requesting a new operation; Client 2 is already in the group.When a controller
collectsf + 1 valid PROPOSALmessages, it accepts the requested operation
and sends aREKEY message to the requesting client and all current group
members. TheREKEY sent to Client 1 only contains a key share if this is
a join request. TheREKEY sent to existing group members (i.e., Client 2)
contains an updated key share to reflect the new group membership.

Section VI-C, clients use the view number to determine which
group encryption key is the most up to date.

B. Basic Protocol Operation

Figure 2 depicts the basic protocol operation of PICO. When
a client wants to join or leave the group, it broadcasts a
REQUEST message to the group controllers. As we describe
below, although the client broadcasts theREQUEST, PICO
provides liveness as long as the message is received by at least
f + 1 correct controllers in the partition to which the client
belongs. The group controllers then exchangePROPOSAL

messages to agree to accept the requested operation. Upon
accepting the operation, the group controllers send aREKEY

message to the client and all current group members. We now
examine each phase of the protocol in more detail.

Client Protocol: When client i wants to join or leave
the group, it broadcasts a〈REQUEST, opID, proof〉σi

message
to the controllers. TheopID field is the operation identifier
chosen by the client for this operation. If this request has
an operation identifier of 1, then theproof field is empty.
Otherwise,proof is a threshold-signed proof that operation
(i, opID − 1) was legitimately accepted by at least one
controller. Thus, to request an operation with identifierj, the
client must present proof that operationj − 1 was accepted.

After submitting the request, the client waits forf +1 valid
REKEY messages from the group controllers, indicating that
they have accepted the operation. The responses contain partial
signatures that can be combined to generate proof that the
operation was accepted. In addition, if the operation was a join
request, the responses contain key shares that can be combined
to form the group encryption key. The client retransmits its
request if it does not receive the necessary replies within a
timeout period.

Group Controller Coordination Protocol: Upon receiv-
ing REQUEST messager from client i, controllerc performs
the following validation steps. In each step, if the validation
fails, the request is discarded.

1) Verify the signature onr using clienti’s public key, and
consult the group policy to determine if the operation is
authorized.

2) If r should contain a proof, confirm that one is present.
3) If r contains a proof, verify it using the group’s

public key, and confirm that it proves that operation
(i, opID − 1) was accepted.

5



4) If c has already accepted an operation (i, j), j > opID,
discard the request, because(i, j) must have already
been accepted.

If all of the above checks succeed, then controllerc broad-
casts a〈PROPOSAL, clientID, opID, partialSig〉σc

message
to the rest of the controllers. TheclientID and opID fields
uniquely identify the requested operation. ThepartialSig field
is a partial signature computed over the hash of the (clien-
tID, opID) pair, along with a proof that the partial signature
was computed correctly.

A controller considers aPROPOSAL message as valid if it
is properly signed and contains a partial signature with a valid
correctness proof. Upon collectingf + 1 valid PROPOSAL

messages for operation (i, j) from distinct controllers, a
controller accepts the operation and takes several steps. First,
it combines the partial signatures to construct a threshold-
signed proof that (i, j) was legitimately accepted. Since this
proof is on a single operation, we refer to it as asingleOp
proof. As described in Section VI-D, the singleOp proof
can be passed to other controllers to convince them that the
operation was legitimately accepted. Second, the controller
sets lastOpsAccepted[i] to j and updates the view number.
Finally, the controller performs the requested operation by
either adding clienti to, or removing clienti from, the
membership list.

The group controller coordination protocol (GCCP) meets
the following two correctness properties:

PROPERTY 6.1: GCCP-VALIDITY – If some correct
controller accepts operation (i, j), then some (potentially
different) correct controller approved the operation.

PROPERTY 6.2: GCCP-AGREEMENT – If some correct
controller in partition P accepts operation (i, j), then all
correct controllers in P eventually accept the operation.

Observe that the group controller coordination protocol
requires a controller to collect onlyf +1 matchingPROPOSAL

messages in order to accept an operation, instead of the typical
(N − f) messages required by Byzantine fault-tolerant state
machine replication protocols and Intrusion-Tolerant Enclaves.
The implication of this difference is that PICO guarantees that
any partition with at leastf +1 correct controllers can accept
new join and leave operations, provided there is sufficient
connectivity among the controllers and clients. More formally:

PROPERTY 6.3: GCCP-LIVENESS – Let P be a partition
with at least f + 1 correct group controllers. Then if a
correct client in P submits an operation (i, j), some correct
controller in P accepts the operation.

If N > 3f+1, then multiple partitions, operating in parallel,
can guarantee the liveness of join and leave requests. The
controllers eventually agree on the set of accepted operations.
This is a weaker agreement problem than consensus, because
controllers never need to make an irrevocable decision; they

give their best guess of what the current set is and only need
to converge eventually. This allows PICO to circumvent the
FLP impossibility result [31] and guarantee safety and liveness
without relying on synchrony.

Rekey Protocol: After accepting an operation, controllerc

generates a〈REKEY, partialSig, lastOpsAccepted, keyShare〉σc

message. ThepartialSig field is a partial signature computed
over the hash ofc’s lastOpsAccepted[] data structure. There
are two cases to consider. If the operation being accepted is
a join, thenkeyShare is a key share computed over the hash
of lastOpsAccepted[], and theREKEY message is sent to all
current group members, including the client that just joined.
If the operation being accepted is a leave, then controller
c generates two distinctREKEY messages. The first is sent
only to the leaving group member and doesnot contain a key
share; this message serves only to allow the leaving member
to obtain proof that the leave operation was accepted. The
secondREKEY message contains a new key share and is sent
to all remaining group members. To overcome message loss,
a controller periodically retransmits theREKEY messages for
its last accepted operation.

A client validates aREKEY message by verifying the
signature, along with the proof of correctness of the partial
signature and the key share (if one is present). When a client
collectsf+1 valid REKEYs for the samelastOpsAccepted data,
from distinct controllers, it first combines the partial signatures
to form a threshold-signed proof reflecting the acceptance of
the operation. Since this proof is generated on the array of last
accepted operations, we refer to it as anarrayOp proof. We
denote theith entry of proofp asp[i]. If the REKEY messages
contain key shares, the client combines them to compute the
group encryption key. We refer to the sum of the entries in
the arrayOp proof on which the key shares were computed as
the view number of the key.

C. Choosing an Encryption Key

In this section we address the following practical problem:
Given that client requests are not totally ordered, and that
clients collect key shares asynchronously, how does a client
know which group encryption key is the most up-to-date?
Our solution is to leverage the threshold cryptographic proofs
already used by the protocol so that a client can choose the
correct key by using the one with the highest view number.

Recall that aREQUEST message sent by clienti for oper-
ation j contains an arrayOp proof,p, wherep[i] = j − 1.
More generally,p[k] contains the last accepted operation for
clientk at the time theREKEY messages containing the partial
signatures combined to formp were generated. Thus, proof
p can be viewed as asnapshot of the state off + 1 group
controllers, at least one of which is correct. Therefore, a
controller receiving aREQUESTmessage containingp knows
that, if p[m] = n, then the operation(m, n) was legitimately
accepted in the controller coordination protocol. Further, since
we force clients to use contiguous sequence numbers, all
operations(m, n′), n′ < n, have been legitimately accepted
(i.e., the proof iscumulative).

6



The preceding discussion implies that group controllers can
use the proofs contained inREQUESTmessages to perform rec-
onciliation on the set of accepted operations. Upon receiving
a 〈REQUEST, opID, p〉σi

message from clienti, a controller
performs the following two steps (in addition to those de-
scribed in Section VI-B). First, for each clientk, the controller
sets lastOpsAccepted[k] to max(lastOpsAccepted[k], p[k]).
We say that the controllerapplies the arrayOp proof to its data
structures. Second, if any entry in lastOpsAccepted[] changed,
the controller updates the view number and membership list,
and it computes a newREKEY message. We also impose the
rule that a client only processes aREKEY message if the view
number implied by the lastOpsAccepted field is higher than
the view number of the last group key it adopted.

Each group member periodically broadcasts the arrayOp
proof corrresponding to its current group key in a
reconciliation message,〈RECONC, proof〉σi

. When a
controller receives aRECONC message, it applies the proof
to its data structures and generates a newREKEY message
if it learned of new accepted operations. Thus, when client
c moves from one partition to another, it carries with it
the snapshot (i.e., the proof) corresponding to key it is
currently using. Eventually, the clients in the new partition
will either adopt a key with the same view number as the one
c was using (in which case they will install the exact same
membership asc) or a greater view number (in which case
they all converge on a new membership). We formalize this
property as:

PROPERTY 6.4: REKEY-FORWARD-PROGRESS: Let P be
a partition with at least f + 1 correct group controllers. If a
correct client in P ever successfully generated a group key
with view number v, then there exists a time after which each
correct group controller in P only sends REKEY messages
corresponding to a view number v′ ≥ v.

To help elucidate the intuition behind the mechanism de-
scribed above, we conclude this section with an example.
Figure 3 depicts a system with four clients, where the network
is split into two partitions,A and B. Suppose all controllers
in A agree on the set of accepted operations (with a lastOp-
sAccepted array of[5, 4, 1, 0]), all controllers inB agree on
a different set of accepted operations ([0, 1, 1, 1]), and no
new join or leave requests are submitted. Clients 1 and 2
are currently in partitionA. Client 1 is using a group key
corresponding to the array[5, 4, 1, 0] (with a view number
of 10). Client 2 is not currently a member of the group,
and last had a group key corresponding to[5, 3, 1, 0] (with
a view number of 9). It has an arrayOp proof corresponding
to [5, 4, 1, 0], which it collected after completing the operation
(2, 4) (i.e., after it left the group). Clients 3 and 4 are in
partition B and are using a group key corresponding to the
array [0, 1, 1, 1] (with a view number of 3).

Now suppose client 2 moves to partitionB. We would like
the client to be able to share a group key with clients 3 and 4.
Since client 2 was last using a group key with view number 9

Controller 1

[5, 4, 1, 0]

Controller 2

[5, 4, 1, 0]

Controller 3

[5, 4, 1, 0]

Controller 4

[0, 1, 1, 1]

Controller 5

[0, 1, 1, 1]

Controller 6

[0, 1, 1, 1]

Client 2

K = [5, 3, 1, 0]

P = [5, 4, 1, 0]

Client 3

K = [0, 1, 1, 1]

Client 4

K = [0, 1, 1, 1]

Partition A Partition B

Client 1

K = [5, 4, 1, 0]

Fig. 3: A PICO system with 6 group controllers and four clients. Controllers
1, 2, and 3 have lastOpsAccepted= [5, 4, 1, 0], and Controllers 4, 5, and
6 have lastOpsAccepted= [0, 1, 1, 1]. Client 1 is a member of the group
and is using the key corresponding to the array[5, 4, 1, 0]. Client 2 is not a
member of the group and last had a key corresponding to[5, 3, 1, 0]; it has
an arrayOp proof for[5, 4, 1, 0]. Clients 3 and 4 are currently members of
the group and share the key corresponding to[0, 1, 1, 1].

in partitionA, it must have an arrayOp proof,p, corresponding
to a key with a view number of at least 9. In this case,p

consists of the array[5, 4, 1, 0] and a corresponding threshold
signature. When client 2 requests to join in partitionB, its
REQUESTmessage containsp. After applyingp, the controllers
in partitionB will update their view number to 11, since they
compute the maximum of each slot in the array. Thus, when
client 2’s new join request is accepted, it will compute a group
key based on the array[5, 5, 1, 1], which has a view number
of 12. In addition, clients 3 and 4 receive the corresponding
REKEY messages (since they are members of the group) and
will adopt the same group key.

D. Reconciliation and Garbage Collection

The constraints imposed by the MANET environment dic-
tate that PICO should meet two important properties. First,
it should not rely on reliable communication links. Given
that message loss can be high and partitions long-lived,
reliable links would consume bandwidth with acknowledge-
ments and would require unbounded message queues. Second,
PICO must provide efficient reconciliation when two partitions
merge. Again, since partitions can be long-lived, PICO should
specifically avoid passing all of the operations that were
accepted in one partition to the other partition when the
network heals.

We now describe how we use the threshold-signed proofs
already in PICO to build a simple and efficient reconciliation
and garbage collection mechanism. Each group controller
maintains a data structure called aReconciliation Vector, or
RV . The RV is simply an array of proofs, whereRV [i]
contains the proof reflecting the latest accepted operationfor
client i. For convenience, we denote the operation identifier
of this operation asRV [i].opID. Note that a proof might
be a singleOp proof (constructed during the group controller
coordination protocol) or an arrayOp proof (constructed bya
client during the rekey protocol and passed to the controller
in either aREQUESTor a RECONC message).

Each controller,c, periodically broadcasts the contents of its
RV , wrapping each proof,p, in a 〈RECONC, p〉σc

message.
Upon receiving aRECONC message, a controller appliesp,
updatingRV and lastOpsAccepted[] ifp reflects more knowl-
edge than what it currently has in its data structures. More
formally, if p is a singleOp proof for operation (i, j), then

7



if j > lastOpsAccepted[i], the controller replacesRV [i] with
p and sets lastOpsAccepted[i] to j. If p is an arrayOp proof,
then for each slotk in p, if p[k] > lastOpsAccepted[k], then
the controller setsRV [k] to p and lastOpsAccepted[k] to p[k].

Since proofs are cumulative, PICO requires only thelast
reconciliation message to be received for each client in order
to reconcile all of that client’s accepted operations. This
facilitates efficient reconciliation when two partitions merge;
rather than requiring state proportional to the number of op-
erations that were accepted in each partition to be transferred,
each controller must transfer at most one message per client
(multiple slots may have the same proof, which can be sent
only once). This also makes the coordination protocol tolerant
of message loss: once any correct controller in a partition,P ,
collectsf + 1 PROPOSALmessages for an operation,(i, j),
all subsequentPROPOSAL messages for(i, j) need not be
delivered in order for all controllers inP to accept it.

Observe that PICO avoids the need for unbounded message
queues. Each controller must retransmit at most one proof
per client, and oldPROPOSAL messages do not need to be
reliably delivered. Thus, garbage collection in PICO is implicit
and is done simply by updating theRV and discarding
PROPOSALmessages for operations (i, j) if RV [i].opID > j.
In contrast, protocols requiring reliable links operatingin a
partitionable environment would require an explicit garbage
collection mechanism to determine which messages had been
delivered to all processes and could be deleted.

E. Support for Process Ejection

In this section we briefly discuss how PICO can be extended
to support the ejection (irreversible revocation) of both con-
troller and client processes. We do not consider how a decision
to eject a process is made; such decisions are policy-dependent
and constitute an important practical problem for real systems,
but they are beyond the scope of this paper.

We first consider the ejection of faulty clients. We assume
that some trusted entity generates and signs an ejection mes-
sage, which contains the process identifier of the client being
ejected. This entity can be made fault-tolerant via threshold
cryptographic techniques. Ejection messages impact whether
or not (1) a controller sendsREKEY messages to a client, and
(2) a controller processes aREQUESTmessage from a client.
A correct controller never sends aREKEY message to a client
it knows to be ejected, and it ignores subsequentREQUEST

messages from clients it knows to be ejected.
Note, however, that correct controllers continue to accept

join and leave operations for ejected clients when knowledge
of these operations comes from any other source (i.e., in
proofs received from other processes). In this way, the ejection
does not impact the properties guaranteed by the rest of the
protocol. The join/leave status agreed upon for an ejected
client does not matter because clients are treated as group
members only if (1) their last operation is a join and (2) they
have not been ejected.

Group controllers within a partition must also converge
on the set of ejected processes (in addition to the set of

accepted operations). To facilitate this convergence, ejection
messages can be periodically transmitted by extending the
Reconciliation Vector to include the ejection status of each
process.

PICO supports the ejection of group controllers in the same
way. A correct process will ignore messages sent by an ejected
controller. However, if too many group controllers are ejected,
then PICO will no longer guarantee liveness. That is, PICO
only guarantees liveness in partitions with at leastf+1 correct
(i.e., not faulty and not ejected) controllers.

VII. PERFORMANCE CONSIDERATIONS

The PICO protocol is being implemented as part of
DARPA’s Intrinsically Assurable Mobile Ad-Hoc Networks
program. Although integration with our full system, ZODIAC,
is not yet complete, in this section we briefly comment on
some of the implementation and performance considerations
of PICO. We first evaluate the cryptographic overhead of our
implementation. We then describe a simple optimization that
can be used to reduce the computational load.

Our implementation is written in C and uses the OpenSSL
library [32]. We measured the latency of the different typesof
cryptographic operations when running on a 3.2 GHz, 64-bit
Intel Xeon computer. Each computer can generate a 1024-bit
standard RSA signature in 1.3 ms and verify a signature in
0.07 ms.

Threshold RSA Signatures: As described in Section VI,
a group controller combinesf + 1 partial signatures when
it accepts an operation, and a client combinesf + 1 partial
signatures when its operation completes. We used the OpenTC
implementation of Shoup’s threshold RSA signature scheme
[26]. The cost of generating a partial signature, along with
its proof of correctness, was measured to be 3.9 ms. This
cost remains fixed as the number of tolerated faults increases,
because the number of exponentiations required to compute
the partial signature remains the same.

On the other hand, the cost of combiningf+1 partial signa-
tures grows asf increases. We optimized for the common-case
operation by attempting to combine partial signatures without
first verifying their correctness proofs. If the resulting thresh-
old signature verifies, then the shares were correct. However,
if the signature does not verify, then we check each proof
and can detect which shares were invalid. Since all messages
are digitally signed, the invalid share can be broadcast as
a proof that the corresponding controller is compromised,
and the controller can subsequently be blacklisted. Using this
technique, we measured the latency for combining to be 1.3 ms
whenf = 1, 2.1 ms whenf = 3, and3.4 ms whenf = 5.

Threshold Key Generation: We implemented the thresh-
old key generation scheme of Cachin, Kursawe, and Shoup
[1]. We generated a 1024-bit safe prime and performed op-
erations in its prime order subgroup. We measured the cost
of generating a key share in this setting to be 11.3 ms. This
cost is independent of the number of tolerated faults. The cost
of combining the key shares into the group key increases as
f increases. We measured the latency for combining to be

8



23.7 ms whenf = 1, 50 ms whenf = 3, and 91 ms when
f = 5.

Aggregating Membership Changes: In many settings,
join and leave operations are not likely to require real-time
latencies. Therefore, we believe the latencies presented above
are likely to be acceptable for many applications. Nevertheless,
if membership changes are frequent, the cost of generating and
combining partial signatures and key shares can become high.
To help reduce this cost, a controller can aggregate several
membership change operations before generating aREKEY

message, which contains its partial signature and key share.
This amortizes the cryptographic cost over several operations,
reducing the average load per operation.

VIII. PROOF OF CORRECTNESS

A. Proof of Liveness Properties

Proof Strategy: We first proveGCCP-AGREEMENT (Prop-
erty 6.2) andGCCP-LIVENESS (Property 6.3) of the group
controller coordination protocol. Using these properties, we
prove Lemma 8.1, which states that all correct controllers
in a stable partition eventually converge on the set of ac-
cepted operations (i.e., their lastOpsAccepted[] data structures
become identical). Once the correct controllers converge,
we proveREKEY-FORWARD-PROGRESS(Property 6.4), which
shows that correct controllers will eventually generateREKEY

messages for a view number that will be adopted by the correct
group members. The liveness of the overall PICO protocol,
PICO-LIVENESS (Property 5.3), follows directly from these
two properties.

Proof of GCCP-Agreement: When a correct controller,
c, in partition P accepts operation(i, j), it obtains a proof,
p, that (i, j) was legitimately accepted. We must show that
all correct controllers inP eventually accept(i, j). If c never
accepts a later operation fori, then it continues to periodically
retransmitp, which will eventually be received by all correct
controllers inP . If c does accept a later operation fori, it will
replaceRV [i] with a new proof,p′, for some operation(i, j′).
In turn, c may replacep′ with a later proof,p′′, and so on.
Eventually, a correct controller will receive one of these proofs
(call it p∗, for operationj∗), at which point it will implicitly
accept all operations(i, j′′) with j′′ ≤ j∗, including (i, j),
because proofs are cumulative.

Proof of GCCP-Liveness: We must show that if clienti
submits request(i, j) in a partition,P , with at leastf + 1
group controllers, then(i, j) will eventually be accepted.
Client i periodically retransmits the request until it receives
proof that (i, j) was accepted. The request is eventually
received by at leastf + 1 correct group controllers, each
of which will approve it and send aPROPOSAL for (i, j).
Each correct controller thus eventually receives at leastf + 1
valid PROPOSALs from distinct controllers and will therefore
accept the operation.

Lemma 8.1: Let P be a partition with at least f + 1
correct group controllers, where P is stable at time t. Then
all correct group controllers in P eventually agree on the set

of accepted operations.

Proof of Lemma 8.1:SinceP is stable, no new join or leave
requests are submitted. ByGCCP-LIVENESS, any pending
operation from a correct client will eventually be accepted
by some correct controller inP , and byGCCP-AGREEMENT,
all correct controllers will eventually accept these operations.
If any pending operation from a faulty client is accepted by a
correct controller, all correct controllers inP will accept it.

For each clienti, let ic be the highest operation identifier
for which a correct process inP has a proof, and letif be
the highest operation identifier for which a faulty process in
P has a proof. Ific ≥ if , then letr be a correct process in
P that has proof that(i, ic) was accepted. Any other correct
controller,s, will eventually accept this operation becauser

continues to retransmit the proof.
If if > ic, then for each operationj, with ic < j ≤ if ,

a faulty process can either choose to make the proof of
(i, j) known to a correct process (in which case it will
be accepted by all correct controllers) or it never makes the
proof known. Thus, there exists some maximum suchj that
a faulty process makes known, which implies that the correct
controllers eventually agree on the set of operations for which
only faulty processes had proof of acceptance. Therefore, the
correct controllers eventually agree on the set of accepted
operations for each client.

Proof of Rekey-Forward-Progress: By Lemma 8.1, all
correct group controllers in partitionP eventually agree on
the set of accepted operations. When each correct controller
in P accepts the last operation, it generates aREKEY message
with a key share based on the same membership as each other
correct controller inP . Let vfinal be the view number implied
by the lastOpsAccepted field,L, of theseREKEY messages.
We must show thatvfinal will be at least as high as the
view number,v, of the key currently being used by any of the
correct group members. We can prove this by showing that no
correct group member has proof of an operation(i, j) where
j > L[i]. The proof is by contradiction. If any correct group
member had this proof, then it would eventually be received
in a RECONC message by a correct controller, which would
cause the controller to increase its view number and generate
a REKEY message with a higher view number, which violates
the assumption thatvfinal is the convergence point established
by Lemma 8.1.

Proof of PICO-Liveness: By Lemma 8.1, all group
controllers in a partitionP eventually converge on the set of
accepted operations and generate aREKEY message based on
the same membership. Since there are at leastf + 1 correct
controllers inP , and since correct controllers periodically re-
transmit their lastREKEY message, all correct group members
will eventually collectf + 1 combinableREKEY messages
based on the stable membership. By Property 6.4, the view
number of this key,vfinal, will be at least as high as the
one currently being used by any correct group member. Any
group member inM that previously had a group key with
a view v < vfinal will adopt the group key corresponding

9



to vfinal. Any group member already using a key with a
view numberv = vfinal must already be using this group
key, since otherwise there exists some operation that has not
been converged upon. Since the convergence view isvfinal,
no correct controller sends aREKEY message corresponding
to a higher view number, so all members ofM will continue
using the established group key.

B. Proof of Security Properties

Proof Strategy: We first proveGCCP-VALIDITY (Property
6.1), the validity property of the group controller coordination
protocol. We then use this to proveVALID -AUTHENTICATION

(Property 5.1), which states that only authorized clients are
able to join the group. Finally, we proveSECURE-KEYING

(Property 5.2), the security of the keying process.
Proof of GCCP-Validity: A correct controller accepts

an operation(i, j) after (1) collectingf + 1 PROPOSAL

messages, (2) collecting a singleOp proof for operation(i, j),
or (3) collecting an arrayOp proofp with p[i] ≥ j. In the
first case, since at mostf controllers are faulty, at least one
correct controller sent aPROPOSALand therefore approved the
operation. In the second case, a singleOp proof is constructed
by collectingf + 1 PROPOSALmessages, each with a partial
signature on the hash of(i, j). Again, since at mostf
controllers are faulty, at least one correct controller must have
sent aPROPOSALmessage that contributed to the construction
of the singleOp proof.

In the third case, the arrayOp proof was constructed by
collecting f + 1 REKEY messages. In each message, theith

entry of the lastOpsAccepted field containedj′ ≥ j. Thus, at
least one correct controller had lastOpsAccepted[i] = j′. In
order for (i, j′) to have been accepted, clienti must have
submitted aREQUEST containing proof that(i, j′ − 1) was
accepted, which implies that at least one correct controller
had lastOpsAccepted[i] = j′ − 1. Using a simple induction,
each operation from(i, 1) through(i, j′) was accepted by at
least one correct controller, including(i, j). Consider the first
correct controller to accept(i, j). This controller must have
done so through either Case 1 or Case 2, since no arrayOp
proof, p, with p[i] ≥ j, can yet exist. By Case 1 and Case
2 above, some correct controller must have sent aPROPOSAL

message for(i, j).
Proof of Valid-Authentication: By GCCP-VALIDITY , a

client can only join the group if its operation was approved
by some correct controller. A correct controller consults group
policy in deciding whether to approve a client join request.
Thus, only an authorized client can join the group.

Proof of Secure-Keying: We show that only members
of a given view,v, can generate the group keyk. Group
memberi uses its trusted hardware to encrypt messages with
k. When i adoptedk, it obtained an arrayOp proof,p, from
which the current group view can be deduced. To obtaink,
a process must combinef + 1 key shares all based on the
same lastOpsAccepted data, which is the same data as inp.
A correct controller only sends aREKEY message containing
a key share to the members ofv. EachREKEY is encrypted

with the public key of the trusted hardware of the receiving
group member. Thus, a faulty client not inv will never be sent
the necessaryf + 1 REKEY messages. Faulty clients cannot
decrypt the key shares ofREKEY messages sent to correct
clients. Further, since they cannot learn the decryption key
of their own trusted hardware, even faulty group members
cannot divulge their own key shares to processes not inv.
The security of the keying process thus follows from the fact
that only processes inv are able to generatek, and no process
is able to learnk.

IX. CONCLUSION

This paper presented PICO, a generic infrastructure facil-
itating secure group communication in mobile ad-hoc net-
works. PICO uses a weakly consistent Byzantine fault-tolerant
agreement protocol to provide a partitionable service, andit
leverages threshold cryptographic proofs to tolerate message
loss and avoid requiring reliable communication links. We
highlighted several pragmatic issues associated with integrat-
ing PICO as a component in a secure system, which must be
addressed in practical deployments.

REFERENCES

[1] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constan-
tipole: Practical asynchronous byzantine agreement usingcryptography
(extended abstract),” inProceedings of the nineteenth annual ACM sym-
posium on Principles of distributed computing (PODC ’00), Portland,
Oregon, 2000, pp. 123–132.

[2] B. Dutertre, V. Crettaz, and V. Stavridou, “Intrusion-tolerant enclaves,”
in Proceedings of the 2002 IEEE Symposium on Security and Privacy
(SP ’02), 2002, p. 216.

[3] K. Birman and T. Joseph, “Exploiting virtual synchrony in distributed
systems,” inProceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP ’87), Austin, Texas, United States, 1987, pp.
123–138.

[4] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A communication
subsystem for high availability,” inProceedings of the 22nd Annual
International Symposium on Fault Tolerant Computing (FTCS ’92),
Boston, Massachusetts, 1992, pp. 76–84.

[5] R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: A flexible group
communication system,”Commun. ACM, vol. 39, no. 4, pp. 76–83, 1996.

[6] Y. Amir, C. Danilov, and J. Stanton, “A low latency, loss tolerant
architecture and protocol for wide area group communication,” in
Proceedings of the 30th Annual International Symposium on Fault
Tolerant Computing (FTCS ’00), 2000, pp. 327–336.

[7] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal, “Ex-
tended virtual synchrony,” inProceedings of the 14th IEEE International
Conference on Distributed Computing Systems (ICDCS ’94), 1994, pp.
56–65.

[8] O. Rodeh, K. P. Birman, and D. Dolev, “The architecture and per-
formance of security protocols in the ensemble group communication
system: Using diamonds to guard the castle,”ACM Trans. Inf. Syst.
Secur., vol. 4, no. 3, pp. 289–319, 2001.

[9] ——, “Using avl trees for fault tolerant group key management,”
International Journal on Information Security, vol. 1, pp. 84–99, 2002.

[10] Y. Amir, C. Nita-rotaru, J. Stanton, and G. Tsudik, “Secure spread:
An integrated architecture for secure group communication,” IEEE
Transactions on Dependable and Secure Computing, vol. 2, pp. 248–
261, 2005.

[11] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982.

[12] M. K. Reiter, “The Rampart Toolkit for building high-integrity services,”
in Selected Papers from the International Workshop on Theory and
Practice in Distributed Systems, 1995, pp. 99–110.

10



[13] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The SecureRing
protocols for securing group communication,” inProceedings of the
IEEE 31st Hawaii International Conference on System Sciences, vol. 3,
Kona, Hawaii, January 1998, pp. 317–326.

[14] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in
Proceedings of the 3rd Symposium on Operating Systems Design and
Implementation (OSDI ’99). USENIX Association, Co-sponsored by
IEEE TCOS and ACM SIGOPS, 1999, pp. 173–186.

[15] J.-P. Martin and L. Alvisi, “Fast Byzantine consensus,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 3, pp. 202–215,
2006.

[16] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
speculative Byzantine fault tolerance,” inProceedings of 21st ACM
SIGOPS Symposium on Operating Systems Principles (SOSP ’07),
Stevenson, Washington, USA, 2007, pp. 45–58.

[17] L. Lamport, “Time, clocks, and the ordering of events ina distributed
system,”Commun. ACM, vol. 21, no. 7, pp. 558–565, 1978.

[18] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,”ACM Computing Surveys, vol. 22, no. 4,
pp. 299–319, 1990.

[19] L. Zhou and Z. J. Haas, “Securing ad hoc networks,”IEEE Network,
vol. 13, pp. 24–30, 1999.

[20] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing robust and
ubiquitous security support for mobile ad-hoc networks,” in Proceedings
of the 9th International Conference on Network Protocols (ICNP ’01),
2001, pp. 251–260.

[21] H. Luo, P. Zefros, J. Kong, S. Lu, and L. Zhang, “Self-securing ad hoc
wireless networks,” inProceedings of the Seventh IEEE Symposium on
Computers and Communications (ISCC ’02), 2002.

[22] M. Narasimha, G. Tsudik, and J. H. Yi, “On the utility of distributed
cryptography in p2p and manets: the case of membership control,” in
Proceedings of the 11th International Conference on Network Protocols
(ICNP ’03), 2003, pp. 336–345.

[23] N. Saxena, G. Tsudik, and J. H. Yi, “Efficient node admission for
short-lived mobile ad hoc networks,” inProceedings of the 13th IEEE
International Conference on Network Protocols (ICNP ’05), 2005, pp.
269–278.

[24] B. Dutertre, H. Sadi, and V. Stavridou, “Intrusion-tolerant group man-
agement in enclaves,” inIn International Conference on Dependable
Systems and Networks (DSN ’01), 2001, pp. 203–212.

[25] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” inProceedings of the 28th Annual Symposium on Foundations
of Computer Science. Los Angeles, CA, USA: IEEE Computer Society,
October 1987, pp. 427–437.

[26] V. Shoup, “Practical threshold signatures,”Lecture Notes in Computer
Science, vol. 1807, pp. 207–223, 2000.

[27] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,”Commun. ACM, vol. 26, no. 1,
pp. 96–99, 1983.

[28] A. Shamir, “How to share a secret,”Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[29] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“ODSBR: An on-demand secure byzantine resilient routing protocol for
wireless ad hoc networks,”ACM Trans. Inf. Syst. Secur., vol. 10, no. 4,
pp. 1–35, 2008.

[30] “Trusted platform module (TPM) specifications,
http://www.trustedcomputinggroup.org/specs/tpm/.”

[31] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,”J. ACM, vol. 32, no. 2,
pp. 374–382, 1985.

[32] “The openssl project, http://www.openssl.org.”

APPENDIX A
INTRUSION-TOLERANT ENCLAVES

In this section we provide background on the Intrusion-
Tolerant Enclaves protocol [2]. After describing the protocol,
we present a scenario in which, just due to network asyn-
chrony, the protocol fails to admit an authorized member into
the group.

The group controller processes in Intrusion-Tolerant En-
claves are calledleaders. Each leaderLi maintains two data

structures:ni, the current view number (incremented each time
Li accepts a new member or removes an existing member from
the group), andMi, its local view of the current group mem-
bership. LeaderLi runs the following coordination protocol:

• After successfully authenticating clientA, Li sends a
〈PROPOSE, i, A, ni〉σi

message to all leaders. The leader
is said toannounce client A.

• After receiving f + 1 valid 〈PROPOSE, j, A, nj〉σj

messages from different leaders,Li sends a
〈PROPOSE, i, A, ni〉σi

message to all leaders if it
has not already done so. We call this thecascade step.

• When Li receivesN − f valid 〈PROPOSE, j, A, nj〉σj

messages fromN − f distinct leaders,Li acceptsA as a
new member.

A 〈PROPOSE, j, A, nj〉σj
message is considered valid at

leaderLi if it meets three conditions:

1) The signature is valid
2) nj ≥ ni

3) A is not a member ofMi

The liveness property claimed by Intrusion-Tolerant
Enclaves is:

PROPERTY A.1: ENCLAVES-LIVENESS – If f +1 nonfaulty
leaders announce A, then A is eventually accepted by all
nonfaulty leaders.

We now construct a simple scenario in which a correct
client, B, will not be accepted into the group by any correct
leader despite being announced by at least(f + 1) correct
leaders, thus violatingENCLAVES-LIVENESS. When the sys-
tem starts, all leaders haveni = 0 andMi = ∅. Suppose one
correct leader,S, has added clientA to the group; thenS
hasns = 1 and Ms = {A}. The other correct leaders (we’ll
collectively call themJ) will eventually addA to the group,
but due to network asynchrony they have not yet done so (i.e.,
the necessaryPROPOSEmessages have not arrived yet).

Now suppose userB authenticates with2f correct leaders
in J and one faulty leader. The correct leaders inJ send out
messages of the form〈PROPOSE, j, B, 0〉σj

, since they have
not yet accepted any operations. Suppose the faulty leader does
not send aPROPOSEmessage. Then when these2f PROPOSE

messages arrive at leaderS, they will be considered invalid
because0 < 1 (i.e., nj < ns). Thus, S does not send a
PROPOSEmessage to addB to the group. The correct leaders
in J will receive at most2f valid PROPOSEmessages adding
B, and no leader will addB to the group.

Although f + 1 correct leaders authenticatedB and sent
PROPOSEmessages, these messages were considered invalid
by S becauseS was in a later view (i.e., it had accepted
more operations). Note that we can construct a similar scenario
related to the third validity check (which requires thatB is not
a member ofMi when thePROPOSEmessage is received).
Suppose all correct leaders have addedB to the group. Then
leaderS is partitioned away, and the remaining leaders (with
the help of one of the faulty leaders) all accept an operation

11



removingB from the group. Now supposeB wants to join
the group again. It authenticates with2f correct leaders from
J and one faulty leader. ThePROPOSEmessages sent by the
leaders inJ are considered invalid atS becauseB is already
a member ofMs.

In both cases, the problem occurs in the cascade step.
The cascade technique is commonly used in Byzantine fault-
tolerant protocols; once a correct process is convinced that it
is valid to take some action, it can take the action to move the
protocol forward. The problem in Intrusion-Tolerant Enclaves
is that additional validity checks are imposed on the message
involved in the cascade (i.e., thePROPOSAL message). This
can prevent the cascade from occurring, even though the
threshold number of processes (f + 1) approved the request.

12


