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Abstract—Existing Byzantine-resilient replication protocols satisfy two standard correctness criteria, safety and liveness, in the
presence of Byzantine faults. In practice, however, faulty processors can, in some protocols, significantly degrade performance by
causing the system to make progress at an extremely slow rate. While “correct” in the traditional sense, systems vulnerable to such
performance degradation are of limited practical use in adversarial environments. This paper argues that techniques for mitigating
such performance attacks are needed to bridge this “practicality gap” for intrusion-tolerant replication systems. We propose a new
performance-oriented correctness criterion, and we show how failure to meet this criterion can lead to performance degradation. We
present a new Byzantine replication protocol that achieves the criterion and evaluate its performance in fault-free configurations and
when under attack.

✦

1 INTRODUCTION

E XISTING Byzantine-resilient state machine replica-
tion (SMR) protocols satisfy two standard correct-

ness criteria in the presence of Byzantine faults: safety
and liveness. Safety means that two servers remain
consistent replicas of one another, while liveness means
that each update is executed eventually. Since no asyn-
chronous Byzantine agreement protocol can always be
both safe and live [1], systems requiring strong consis-
tency semantics are usually designed to meet safety in
all executions, while guaranteeing liveness only during
periods of sufficient synchrony and connectivity [2] or
in a probabilistic sense [3], [4].

Designers of practical Byzantine-resilient replication
systems recognize that real systems are not completely
asynchronous. Rather, these systems exhibit extended
periods of stability (synchrony), possibly interspersed
with periods of instability. Realistic Byzantine-resilient
replication systems generally guarantee liveness in a
sufficiently stable subset of the set of all asynchronous
executions. In this paper we observe that during stable
periods, the system can satisfy much stronger perfor-
mance guarantees. Thus, when the network is stable,
there is a potential gap in the type of performance that is
promised by existing protocols (i.e., eventual execution
of each update) and the type of performance that is
attainable.

In Byzantine environments, faulty processors can ex-
ploit this gap to degrade system performance to a level
far below what would be achievable with only correct
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processors. Specifically, a small number of faulty pro-
cessors can cause the system to make progress at an
extremely slow rate. While “correct” in the traditional
sense (both safety and liveness are met), systems vul-
nerable to such performance degradation are of limited
practical use in adversarial environments.

We experienced this problem first hand during a red-
team experiment conducted on our Steward system [5].
Although the system survived all of the tests according
to the metrics of safety and liveness, we observed that it
was slowed down to twenty percent of its potential per-
formance in one experiment. After analyzing the attack,
we found that we could in fact slow the system down
to roughly one percent of its potential performance.
Thus, our provably correct system, which achieves high
performance in fault-free configurations, could be made
effectively unusable in practice under a relatively simple
attack. This experience led us to conclude that liveness
is a necessary but insufficient correctness criterion for
achieving high performance Byzantine replication under
attack. This paper argues that new performance-oriented
criteria are needed.

Preventing the type of performance degradation ex-
perienced by Steward requires addressing what we call
Byzantine performance failures. Previous work focused on
Byzantine failures in the value domain (where faulty
processors send incorrect or conflicting messages) and
the time domain (where messages from faulty processors
do not arrive within protocol timeouts, if at all). Pro-
cessors exhibiting performance failures, however, send
correct messages slowly but without triggering protocol
timeouts; they are thus correct in both of the traditional
domains, despite having the potential to significantly
degrade performance. Performance failures have been
considered in benign environments [6], [7]. To the best
of our knowledge, we are the first to (1) propose a useful
performance-oriented metric to evaluate Byzantine pro-
tocols and (2) present a SMR protocol that performs well
according to this metric.
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Byzantine protocols whose progress is driven by mes-
sages from a large number of correct processors (e.g.,
[3], [8]) are less vulnerable to performance degradation
due to performance failures. The voting in such protocols
masks performance failures, in addition to value and
timing failures, because no collection of faulty processors
can prevent the correct processors from moving forward.
For efficiency, however, other protocols rely on select
processors to perform certain tasks correctly and in a
timely manner, reducing the number of messages that
must be sent in the common case. These protocols typi-
cally use cryptographic tools and timeouts to restrict the
adversary in the value and time domains, respectively,
but they do not address performance failures.

In this paper we focus on this latter class of Byzantine
SMR protocols, which we refer to as leader-based proto-
cols. These protocols (e.g., [5], [9], [10], [11], [12], [13],
[14]) rely on a leader to coordinate the global ordering
and are thus vulnerable to performance degradation
caused by a slow leader. The problem is magnified in
environments (such as wide-area networks) where it is
difficult to predict the type of performance that should
be expected of the leader. We demonstrate this vulner-
ability through analysis and experimental evaluation of
BFT [9], the first leader-based Byzantine fault-tolerant
SMR protocol to achieve practical performance in fault-
free executions.

By applying the understanding gained from our expe-
rience with BFT, we developed a new Byzantine fault-
tolerant SMR protocol, Prime (Performance-oriented
Replication In Malicious Environments) [15], resilient
to performance degradation under attack. Prime has
two key properties: (1) The resources required by the
leader for global ordering are bounded and independent
of system throughput, enabling non-leader servers to
aggressively monitor the leader’s performance, and (2)
Non-leader servers compute a threshold level of accept-
able performance, which is a function of current network
latencies, against which they judge the leader. Prime
meets a new performance-oriented correctness criterion,
BOUNDED-DELAY, which makes a stronger guarantee
than traditional liveness criteria. We present experimen-
tal results showing that Prime performs competitively
with BFT in fault-free configurations and performs an or-
der of magnitude better when under attack. Our results
show that the performance of Prime when under attack
is within a reasonable factor of its fault-free performance.

The remainder of this paper is presented as follows.
Section 2 presents our system model and describes the
service properties provided by our system. Section 3
describes the vulnerabilities of existing leader-based pro-
tocols to performance degradation under attack, using
BFT as a case study. We present the Prime protocol
in Section 4 and the Prime view change protocol in
Section 5. In Section 6, we sketch the proof that Prime
meets BOUNDED-DELAY. Section 7 presents experimental
results for our new system. Section 8 details related
work, and Section 9 concludes the paper.

2 SYSTEM MODEL AND SERVICE PROPERTIES

We consider a system consisting of N servers, which
communicate by passing messages. Each server is
uniquely identified from the set R = {1, 2, . . . , N}. We
assume a Byzantine fault model. Servers are either correct
or faulty; correct servers follow the protocol specifica-
tion, while faulty servers can deviate from the protocol
specification arbitrarily. We employ digital signatures,
and we make use of a cryptographic hash function
to compute message digests. We denote a message m
signed by server i as 〈m〉σi

, and we denote a digest of
m as D(m). We assume that all adversaries, including
faulty servers, are computationally bounded such that
they cannot subvert these cryptographic mechanisms.

The consistency of our new protocol, Prime, is given
in the following two properties:

DEFINITION 2.1: SAFETY: If two correct servers
execute the ith update, then these updates are identical.

DEFINITION 2.2: VALIDITY: Only an update that was
proposed by a client may be executed.

Prime guarantees safety and validity in all executions,
including those in which the network is asynchronous
and may drop or duplicate messages. Like existing
leader-based Byzantine replication protocols, Prime
guarantees liveness only in executions in which the
network eventually meets certain stability conditions,
which we now state. In what follows, KLat is a
known network-specific constant accounting for latency
variability.

DEFINITION 2.3: PRIME-STABILITY: There is a time af-
ter which the following condition holds for a set of at
least 2f + 1 correct servers (the stable servers):

• For each pair of stable servers r and s, there
exists a value Min Lat(r, s), unknown to
the servers, such that if r sends a message
to s, it will arrive with delay ∆r,s, where
Min Lat(r, s) ≤ ∆r,s ≤ Min Lat(r, s) ∗ KLat.

In those executions in which PRIME-STABILITY is met,
Prime guarantees the following liveness property:

DEFINITION 2.4: PRIME-LIVENESS: If a stable server
initiates an update, all stable servers will eventually
execute the update.

PRIME-LIVENESS is similar to the liveness guarantees
provided by existing leader-based protocols (except that
PRIME-LIVENESS contains a stronger degree of stability).
While it is critical to guarantee that in those executions
that are sufficiently stable each update is eventually
executed, such liveness properties do not guarantee how
quickly the updates are executed when the network is
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stable. Systems that solely meet liveness thus provide a
very weak performance-related guarantee.

For this reason, in those executions in which
PRIME-STABILITY is met, Prime also provides a stronger
performance guarantee, which we call BOUNDED-DELAY:

DEFINITION 2.5: BOUNDED-DELAY: There exists a
time after which the update latency for any update
initiated by a stable server is upper-bounded.

Prime achieves BOUNDED-DELAY in those executions
in which PRIME-STABILITY is met, assuming the system
is not overloaded (i.e., given load beyond its maximum
throughput) and when correct servers have sufficient
bandwidth with which to communicate. Indeed, no sys-
tem (even in benign environments) can provide latency
guarantees when these conditions are not met due to
necessary queuing delays. Our current protocol requires
knowledge of this minimal level of bandwidth to en-
sure that these assumptions are met. We believe that
adaptively setting the bandwidth consumed by correct
servers is an important open problem for Byzantine-
resilient systems. Section 6 provides an analysis of the
bound provided by Prime.

We remark that resource exhaustion denial of service
attacks may cause PRIME-STABILITY to be violated for
the duration of the attack. However, such attacks fun-
damentally differ from the attacks that are the focus
of this paper, where malicious leaders can slow down
the system without triggering defense mechanisms (see
Section 3). Handling resource exhaustion attacks is a
difficult problem that is orthogonal and complementary
to the solution strategies considered in this paper.

3 CASE STUDY: BFT UNDER ATTACK

In this section we present a theoretical analysis of BFT
[9], a leader-based Byzantine SMR protocol, when under
attack. We chose BFT because (1) it is the standard
protocol to which other Byzantine protocols are often
compared, (2) many of the attacks that can be applied
to BFT (and the corresponding lessons learned) also
apply to other leader-based protocols, and (3) its im-
plementation was publicly available. BFT achieves high
throughputs in fault-free configurations or when servers
exhibit only benign faults. We first provide background
on BFT and then describe two attacks that can be used to
significantly degrade its performance when under attack.
We present experimental results validating the analysis
in Section 7.

BFT assigns a total order to client updates. The pro-
tocol requires 3f + 1 servers, where f is the maximum
number of servers that may be Byzantine. An elected
leader coordinates the protocol by assigning sequence
numbers to updates. If a server suspects that the leader
has failed, it votes to replace it. When 2f +1 servers vote
to replace the leader, a view change occurs, in which
a new leader is elected and servers collect information

regarding pending updates so that progress can safely
resume in a new view.

A client sends its updates directly to the leader. The
leader assigns a sequence number to the update and
proposes the assignment to the rest of the servers. It
sends a PRE-PREPARE message, which contains the view
number, the assigned sequence number, and the update
itself. Upon receiving the PRE-PREPARE, a non-leader
server accepts the proposed assignment by broadcasting
a PREPARE message. The PREPARE message contains the
view number, the assigned sequence number, and a
digest of the update. When a server collects the PRE-
PREPARE and 2f corresponding PREPARE messages, it
broadcasts a COMMIT message. A server globally orders
the update when it collects 2f + 1 COMMIT messages.
Each server executes globally ordered updates according
to sequence number. A server sends a reply to the client
after executing the update.

3.1 Attack 1: Pre-Prepare Delay

A malicious leader can introduce latency into the global
ordering path simply by waiting some amount of time
after receiving an update before sending it in a PRE-
PREPARE message.The amount of delay a leader can add
without being detected as faulty is dependent on (1) the
way in which non-leaders place timeouts on updates
they have not yet executed and (2) the duration of these
timeouts.

A malicious leader can ignore updates sent directly
by clients. If a client’s timeout expires before receiving a
reply to its update, it broadcasts the update to all servers,
which forward the update to the leader. Each non-leader
server maintains a FIFO queue of pending updates (i.e.,
those updates it has forwarded to the leader but not yet
executed). A server places a timeout on the execution of
the first update in its queue; that is, it expects to execute
the update within the timeout period. If the timeout
expires, the server suspects the leader is faulty and votes
to remove it from power. When a server executes the first
update in the queue, it restarts the timer if the queue is
not empty. Note that a server does not stop the timer if
it executes a pending update that is not the first in the
queue. The duration of the timeout is dependent on its
initial value (which is implementation and configuration
dependent) and the history of past view changes. Servers
double the value of their timeout each time a view
change occurs. The specification of BFT does not provide
a mechanism for reducing timeout values.

BFT’s queueing mechanism ensures fairness by guar-
anteeing that each update is eventually ordered. How-
ever, it also allows the leader to significantly delay the
ordering of an update without being replaced. To stay
in power, the leader must prevent f + 1 correct servers
from voting to replace it. Thus, assuming a timeout value
of TO, a malicious leader can use the following attack:
(1) Choose a set S of f + 1 correct servers, (2) For each
server r ∈ S, maintain a FIFO queue of the updates
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forwarded by r, and (3) For each such queue, send a PRE-
PREPARE containing the first update on the queue every
TO − ǫ time units. This guarantees that the f +1 correct
servers in S execute the first update on their queue each
timeout period. If these updates are all different, the
fastest the leader would need to introduce updates is
at a rate of f + 1 per timeout period. In the worst case,
the f + 1 servers would have identical queues, and the
leader could introduce one update per timeout.

This attack exploits the fact that non-leader servers
place timeouts only on the first update in their queues.
To understand the ramifications of placing a timeout
on all pending updates, consider the following scenario:
Non-leader server s simultaneously initiates n updates.
If server s sets a timeout on all n updates, then s will
suspect the leader if the system fails to execute n updates
per timeout period. Since the system has a maximal
throughput, if n is sufficiently large, s will suspect a
correct leader. The fundamental problem is that correct
servers have no way to assess the rate at which a correct
leader can coordinate global ordering.

3.2 Attack 2: Timeout Manipulation

One of the main benefits of BFT is that it ensures safety
regardless of synchrony assumptions. The authors justify
the need for this property by noting that denial of service
attacks can be used by a malicious adversary to violate
timing assumptions. While a DoS attack cannot impact
safety, it can be used to increase the timeout value used
to detect a faulty leader. During the attack, the timeout
doubles with each view change. If the adversary stops
the attack when a malicious leader is in power, then
that leader will be able to slow the system down to a
throughput of roughly f +1 updates per TO, where TO
is potentially very large, using the attack described in
the previous section. This vulnerability stems from the
inability of BFT to reduce the timeout and adapt to the
network conditions after the system stabilizes.

4 THE PRIME PROTOCOL

In this section we present Prime, a new Byzantine fault-
tolerant state machine replication protocol designed to
mitigate the types of attacks described in Section 3.
Prime requires 3f + 1 servers to tolerate f Byzantine
faults.

4.1 Prime Ordering Protocol

Prime uses a rotating coordinator protocol to assign a
total order to client updates. The servers execute the up-
dates according to this total order, and they thus remain
replicas of one another. Prime establishes the total order
in two phases. In the first phase, each server dissemi-
nates its updates to the other servers and coordinates
an agreement protocol, which preorders those updates
that it originated. Each preordering agreement protocol
coordinated by a different server operates independently

and in parallel. A preordered update, u, is bound to
a preorder identifier, (o, i), where u is the ith update
preordered by server o. Thus, the preordering phase
enables correct servers to consistently refer to updates
using their preorder identifiers. In the second phase, an
elected leader coordinates a global ordering protocol,
which establishes a total order on batches of preordered
updates. The final total order on updates is achieved by
deterministically assigning an order to the updates in
each batch based on their preorder identifiers.

Preordering Phase: When originating server o re-
ceives update u from one of its clients, it sends a
〈PO-REQUEST, seq, u, o〉σo

message, req, to all servers,
where seq is a local sequence number that o increments
each time it sends a new PO-REQUEST. We refer to
this local sequence number as a preorder sequence num-
ber. Upon receiving req, each correct server, i, sends a
〈PO-ACK, seq, D(u), o, i〉σi

message to all other servers
if i has not previously received a PO-REQUEST from o
with sequence number seq. A set consisting of req and
2f matching PO-ACK messages constitutes a preorder-
certificate, which is proof that the correct servers agree
that preorder identifier (o,seq) is uniquely bound to u.

Each server, i, maintains a vector, PO Aru[], where
PO Aru[o] contains the maximum sequence number, n,
such that i has preorder-certificates for all preordered
updates with identifiers (o,j), with j ≤ n. Each server,
i, periodically broadcasts a 〈PO-ARU, vec, i〉σi

message,
where vec is its local PO Aru vector. The PO-ARU mes-
sage serves as a cumulative acknowledgement for pre-
ordered updates. Given two PO-ARU messages, m1 and
m2, Figure 1 defines what it means for m1 to be at least as
up-to-date as m2, more up-to-date than m2, and consistent
with m2. Each server stores the most up-to-date, consis-
tent PO-ARU message received from each other server in
a vector, Last PO Aru[], indexed by server identifier. We
describe how we blacklist faulty servers that send PO-
ARU messages that are not consistent when we present
the SUSPECT-LEADER protocol, below.

Global Ordering Phase: Prime’s global ordering phase
is similar to BFT and uses three message rounds (see
Section 3). While BFT establishes a total order on PRE-
PREPARE messages containing updates, Prime’s global
ordering phase establishes a total order on PRE-PREPARE

messages containing proof matrices. Each proof matrix is
a vector of PO-ARU messages. A correct leader, l, peri-
odically sends a 〈PRE-PREPARE, v, seq, pm, l〉σl

message,
where v is the current view number, seq is a global
sequence number, and pm is the leader’s Last PO Aru
vector (which is a proof matrix). pm[o] is either a PO-ARU

message signed by server o or a null vector of length |R|,
indicating that o has not yet cumulatively acknowledged
any preorder-certificates.

We now explain how a server obtains a total order on
updates from the totally ordered stream of PRE-PREPARE

messages. Call this stream of PRE-PREPARE messages
T = 〈T1, T2, . . .〉. Intuitively, globally ordering a PRE-
PREPARE message expands the set of preordered updates
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1. For m1 = 〈PO-ARU, vec1, i〉σi
and m2 = 〈PO-ARU, vec2, i〉σi

, we
say that:

• m1 is at least as up-to-date as m2 when
(∀j ∈ R)[vec1[j] ≥ vec2[j]].

• m1 is more up-to-date than m2 when m1 is at least as up to
date as m2 ∧ (∃j ∈ R)[vec1[j] > vec2[j]].

• m1 and m2 are consistent when m1 is at least as up to date
as m2, or m2 is at least as up to date as m1.

2. For originating server o and preorder sequence number po seq,
Preorder Proof Exists(o, po seq, 〈PRE-PREPARE,*,*,pm,l〉σl

) is true iff:

• |{i : i ∈ R ∧ pm[i][o] ≥ po seq}| ≥ 2f + 1

3. M(pp = 〈PRE-PREPARE,∗, seq,∗, ∗〉σ∗
) =

{(o, s) : o ∈ R ∧ s ∈ N ∧ Preorder Proof Exists(o,s,pp)}

4. B is a set of blacklisted servers.

5. For pp = 〈PRE-PREPARE,∗, ∗, ppp, ∗〉σ∗
and

pm = 〈PROOF-MATRIX,ppm, ∗〉σ∗
, where ppp and ppm denote

proof matrices, we say that:

• pp covers pm if ∀i ∈ R− B, ppp[i] is at least as up-to-date as
ppm[i].

6. Preordered update (o,s) is eligible (for execution) iff ∃ a globally
ordered PRE-PREPARE, pp, such that (o,s) ∈ M(pp)

Fig. 1: Definitions and terminology used by the Prime ordering
protocol.

that are eligible for execution. Let M map a globally
ordered PRE-PREPARE, pp, to a set of preordered updates,
P , where P contains those preordered updates, (o, s), for
which Preorder Proof Exists(o, s, pp) is true (see Figure
1). Let L be a function that lexicographically orders the
elements of P by their preorder identifiers. Then the
final total order, U , on updates is obtained by U =
L(M(T1)) || L(M(T2)−M(T1)) || L(M(T3)−M(T2)) . . .,
where || denotes concatenation and − denotes set differ-
ence.

Prime guarantees that for all pairs of globally ordered
PRE-PREPARE messages, 〈PRE-PREPARE, ∗, seq, pm, ∗〉σ∗

and 〈PRE-PREPARE, ∗, seq′, pm′, ∗〉σ∗
, where seq > seq′,

(∀i ∈ R)[pm[i] is at least as up-to-date as pm′[i]] ∧
(pm 6= pm′). This constraint ensures that Prime’s global
ordering phase correctly establishes a global order on
preordered updates. The correct servers enforce this
guarantee by performing a validity check on each PRE-
PREPARE before sending a corresponding PREPARE.

Part A of Figure 2 summarizes the path of an up-
date, u, through the system in the fault-free case. The
update is preordered in two rounds, after which its
preordering is cumulatively acknowledged in PO-ARU

messages. When the network is stable, faulty servers
cannot delay the preordering of u because correct servers
need only wait for PO-ACK messages from each other
to collect a preorder-certificate for u. In turn, the faulty
servers cannot delay how quickly the preordering of u
is cumulatively acknowledged in the PO-ARU messages
of correct servers. A correct leader sends a PRE-PREPARE,
pp, whose proof matrix includes these PO-ARU messages.
u will be executed when pp is globally ordered.

Reconciliation: In Prime, a server sends PREPARE and
COMMIT messages for a PRE-PREPARE message, pp, even
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Fig. 2: Common case operation of Prime (f = 1). Part A
shows the messages and protocol rounds when the leader is
correct. Part B shows the delay added by a malicious leader
that performs well enough to stay in power. The malicious
leader ignores PO-ARU messages and sends its PRE-PREPARE

to only one correct server.

if it has not received those updates that will become
eligible for execution when pp is globally ordered. Con-
sequently, although Prime guarantees that at least f + 1
correct servers receive each eligible update, it makes no
guarantees regarding which correct servers have received
a particular eligible update. Malicious servers can at-
tempt to exploit this behavior to block execution.

To understand how this is possible, note that a correct
server can only execute the gap-free prefix of the totally
ordered eligible updates that it possesses. Each time a
malicious server originates and preorders update u, it
can intentionally fail to send u to f correct servers. If
u becomes eligible, these servers will block until they
recover u. Note that, without a reconciliation mechanism,
each malicious server can block execution at f correct
servers. Therefore, when f ≥ 3, all correct servers can
be blocked, because the number of servers that can
be blocked (f2) exceeds the number of correct servers
(2f +1). In order to prevent these kinds of attacks, Prime
incorporates a bandwidth-efficient and timely update
reconciliation mechanism. Together, Prime’s preordering
phase and its reconciliation procedure provide a reliable
broadcast service; if update u becomes eligible for exe-
cution, reconciliation guarantees that all correct servers
will receive u. Pseudocode for Prime’s reconciliation
procedure is contained in Figure 3.

Conceptually, the reconciliation procedure operates on
the ordered sequence of updates defined by the total
order U = U1 || U2 || . . .. Recall that each Ui is a
sequence of preordered updates that became eligible
for execution with the global ordering of ppi, the PRE-
PREPARE globally ordered with sequence number i. From
the way Ui is created, for each preordered update (o, s) in
Ui, there exists a set, Ro,s, of at least 2f +1 servers whose
PO-ARU messages cumulatively acknowledged (o, s) in
ppi. Prime’s reconciliation procedure operates by having
2f+1 servers in Ro,s send erasure-coded parts of the PO-
REQUEST containing (o, s) to those servers that have not
cumulatively acknowledged preordering it. Note that if
|Ro,s| > 2f + 1, the set of 2f + 1 senders is chosen
deterministically. Since f of the senders may be faulty,
Prime uses an MDS(2f + 1,f + 1) maximum distance
separable erasure encoding [16], such that a server needs
to receive f + 1 out of 2f + 1 reconciliation messages to
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/* Reconciliation Procedure run at server i */
Reconcile( seq )
A1. pp ← 〈PRE-PREPARE,*,seq,pm,l〉σl
A2. pp’ ← 〈PRE-PREPARE,*,seq-1,*,l’〉σ

l′

A3. For each PO identifier (o,s) in L(M(pp) - M(pp’))
A4. c ← 0
A5. For j = 1 to N
A6. if pm[j][o] ≥ s
A7. c ← c + 1
A8. if ( j = i and c ≤ 2f + 1 )
A9. req = 〈PO-REQUEST,s,*,o〉σo
A10. part ← Erasure_Encoded_Part( req, c )
A11. For r = 1 to N
A12. if Last_PO_Aru[r][o] < s
A13. SEND to server r:
A14. 〈RECONCILIATION,o,s,c,part,i〉σi

Fig. 3: Reconciliation Procedure, used to send erasure-coded
reconciliation messages. 2f + 1 servers (at least f + 1 of which
are correct) send erasure-coded parts for each preordered
update (o, s). M (line A3) is defined in Figure 1. L (line A3)
is a function that lexicographically orders a set of preordered
updates.

decode the associated PO-REQUEST. This guarantees that
a correct server will receive enough parts to be able to
decode the PO-REQUEST.

To improve efficiency, each server runs the reconcili-
ation procedure speculatively; instead of waiting for a
PRE-PREPARE message, pp, to be globally ordered, each
server runs Reconcile upon first receiving pp. This proac-
tive approach allows updates to be recovered in parallel
with the remainder of the global ordering protocol.

Since a correct server will not send a reconciliation
message unless at least 2f +1 servers have cumulatively
acknowledged the corresponding PO-REQUEST message,
reconciliation messages for a given update are sent to
a maximum of f servers. Assuming an update size of
su, the 2f + 1 erasure-coded parts have a total size of
(2f + 1)su/(f + 1). Since these parts are sent to at most
f servers, the amount of reconciliation data sent per
update across all links is at most f(2f + 1)su/(f + 1) <
(2f + 1)su. During preordering, an update is sent to
between 2f and 3f servers, which requires at least 2fsu.
Therefore, reconciliation uses approximately the same
amount of aggregate bandwidth as update dissemina-
tion. Note that a single server needs to send at most one
reconciliation part per update, which guarantees that at
least f +1 correct servers share the cost of reconciliation.

4.2 Detecting Malicious Leaders

A malicious leader can mount two types of performance
attacks against Prime. First, it can propose a global
ordering on preordered updates slowly by sending PRE-
PREPARE messages at a slow rate. Some strategies for the
leader to slow down the sending of its PRE-PREPAREs
are illustrated in Part B of Figure 2. Prime uses the
SUSPECT-LEADER protocol, described below, to detect
slow leaders. Second, even if it sends timely PRE-
PREPARE messages, a malicious leader can intentionally
send a PRE-PREPARE, pp, whose proof matrix does not
contain the most up-to-date PO-ARU messages that it
has received. This can prevent preordered updates that
would have become eligible for execution when pp
is globally ordered from becoming eligible. Defending

against these two performance attacks allows Prime to
meet BOUNDED-DELAY (see Definition 2.5).

Enforcing up-to-date Pre-Prepare messages: To sim-
plify this section, we first assume that all PO-ARU mes-
sages from the same server are consistent. The section on
blacklisting (below) describes subtle issues regarding PO-
ARU messages that are not consistent. Each non-leader
server, i, periodically sends a 〈PROOF-MATRIX, pm, i〉σi

message to the leader, where pm is i’s Last PO Aru[].
Server i expects the leader to include PO-ARU messages
that are at least as up-to-date as those in pm in its
next PRE-PREPARE. To understand why a non-leader
server is justified in this expectation, note that the leader
can simply adopt any of the PO-ARU messages in pm
that are more up-to-date than what it currently has
in its Last PO Aru[]. Thus, a correct leader will send,
in its next PRE-PREPARE, a proof matrix with PO-ARU

messages that are at least as up-to-date as those in
pm. We say that such a PRE-PREPARE covers pm (see
Figure 1). A critical property of Prime, which differs from
existing leader-based solutions, is that the leader requires
a bounded amount of bandwidth and computational re-
sources, independent of system throughput, to perform
its role as leader; the size of a PRE-PREPARE is dependent
only on the number of servers, and a single PRE-PREPARE

can propose a global ordering on an arbitrary number of
preordered updates.

Blacklisting Servers: A correct server always sends
consistent PO-ARU messages. Therefore, a pair of incon-
sistent PO-ARU messages (i.e., two messages that are
not consistent) from server r constitutes proof that r
is malicious. A correct server that collects this proof
adds r to a set of blacklisted servers, B, and broadcasts
the proof, causing all correct servers to blacklist r. As
shown in Figure 1, when we test if a PRE-PREPARE

message covers a PROOF-MATRIX message, we do not
compare PO-ARU messages from blacklisted servers. This
is important because, in order to stay in power, a correct
leader may need to send a PRE-PREPARE message that
covers all PROOF-MATRIX messages that it has received.
If the leader receives PROOF-MATRIX messages that con-
tain inconsistent PO-ARU messages from server r, then
it may need to include one of these in its PRE-PREPARE.
By definition, neither inconsistent PO-ARU is at least as
up-to-date as the other, and therefore, the leader may fail
to include the most up-to-date PO-ARU message from r
in its PRE-PREPARE.

Without a blacklisting mechanism, this can cause a
correct server, c, to suspect a correct leader, l, as follows:
Let m1 and m2 be two inconsistent PO-ARU messages
from the same malicious server. Suppose that: (1) l
receives m1 in a PROOF-MATRIX message, pm, from c,
(2) l receives m2 in a PROOF-MATRIX from a server
other than c, and (3) then, l includes m2 (instead of
m1) in PRE-PREPARE pp. When server c receives pp, it
assesses whether the leader has performed as expected
by checking if pp covers pm. Since pp does not cover
pm, c will view the leader as performing worse than it
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should. From the way that the Suspect-Leader protocol
works (described below), this can cause a correct leader
to be suspected when it should not be.

Our blacklisting mechanism mitigates attacks in
which a malicious server sends inconsistent PO-ARU

messages. Before a correct server checks if 〈PRE-
PREPARE, ∗, ∗, ppp, ∗〉σ∗

covers 〈PROOF-MATRIX, ppm, ∗〉σ∗
,

where ppp and ppm denote proof matrices, it first per-
forms the following procedure: for each server i in R−B,
if ppp[i] is not consistent with ppm[i], add i to B. This
procedure blacklists any servers whose inconsistent PO-
ARU messages may have otherwise caused the correct
server to falsely suspect a correct leader. Intuitively,
when testing if a PRE-PREPARE message covers a PROOF-
MATRIX message, correct servers are able to ignore in-
consistent PO-ARU messages before they cause a correct
leader to appear malicious.

Pre-Prepare Flooding: Prime’s mechanism for detect-
ing malicious leaders requires a simple addition to the
global ordering phase to ensure timely global ordering.
Upon receiving a PRE-PREPARE, pp, a correct server
broadcasts it. This guarantees that all correct servers
receive pp within one round from the time that the first
correct server receives it, at which point no faulty server
can delay the correct servers from globally ordering
pp. Flooding PRE-PREPAREs forces a malicious leader to
delay sending PRE-PREPAREs to all correct servers in
order to add unbounded delay to the global ordering
phase. In practice, the rate at which the leader sends
PRE-PREPAREs can be configured so that this flooding
requires a small bandwidth overhead.

Suspect-Leader Protocol: Since the leader requires
bounded resources to perform its role as leader, if the
network is stable, the leader can be expected to send
up-to-date PRE-PREPAREs in a timely manner. To lever-
age this, we require a mechanism whereby non-leader
servers can (1) dynamically determine how fast a timely
leader should perform, (2) monitor the performance of
the current leader, and (3) suspect the leader if it is
not performing fast enough. Each time a server sends
a PROOF-MATRIX message, pm, it computes the delay
between sending pm and receiving a PRE-PREPARE cover-
ing pm. We call this delay the turn-around-time (abbrevi-
ated TAT) provided by the leader. The goal of SUSPECT-
LEADER is to force any leader that stays in power to
provide a timely TAT to at least one correct server.

Each correct server, i, locally decides whether to sus-
pect the leader by computing two values, TAT acceptable
and TAT leader. TAT acceptable is a standard against
which server i judges the current leader, and TAT leader
is a measure of the current leader’s performance. Server
i suspects the leader if TAT leader > TAT acceptable.

TAT acceptable and TAT leader are computed so
that, when PRIME-STABILITY holds, SUSPECT-LEADER

meets two key properties. L∗ is the maximum latency
between any two correct servers after the network
stabilizes. ∆pp is a value greater than the maximum
time between a correct server sending successive PRE-

PREPARE messages. KLat (see Section 2) accounts for
latency variability. Let B = 2KLatL

∗ + ∆pp. We now
state the properties.

PROPERTY 4.1: Any server that retains a role as leader
must provide a turn-around time to at least one correct
server that is no more than B.

PROPERTY 4.2: There exists a set of at least f + 1
correct servers (the permanent leaders) that will not be
suspected by any correct server if elected leader.

Intuitively, Property 4.1 ensures that a faulty leader
will be suspected unless it provides a timely TAT to at
least one correct server. We consider a TAT, t ≤ B, to be
timely because B is within a constant factor of the TAT
that the slowest correct server might provide. This factor
is a function of the latency variability that SUSPECT-
LEADER is configured to tolerate. Note that malicious
servers cannot affect the value of B. Property 4.2 ensures
that view changes cannot occur indefinitely. Prime does
not guarantee that the slowest f correct servers will
not be suspected because slow faulty leaders cannot be
distinguished from slow correct leaders.

Figure 4 contains pseudocode for SUSPECT-LEADER.
Server i initializes its data structures at the beginning
of each new view (Block A). The remaining blocks run
in parallel. In Block B, server i uses a simple ping
protocol to measure the RTT to each other server, j.
Server i sends this measured RTT to j. Using this value,
j computes the maximum TAT that i would compute for
j if j were the leader, and stores it in TATs If Leader[i].
In Block C, server i uses TATs If Leader[] to compute
an upper bound, α, on the value of TAT Leader that
any correct server will compute for i if it were leader.
Each server broadcasts its value of α and stores the
values that it receives in TAT Leader UBs[]. In Block
D, each non-leader server broadcasts the maximum TAT
that the leader has provided it in the current view and
stores the values that it receives in Reported TATs[].
In Block E, each server computes TAT acceptable us-
ing TAT Leader UBs[], computes TAT Leader using Re-
ported TATs[], and compares these values to decide
whether to suspect the leader.

Proof of Property 4.1: From Block B of Figure 4, at
least 2f + 1 cells in server i’s TATs If Leader[] vector
eventually contain values, v, sent by correct servers. By
definition, each v ≤ B. Since at most f servers are faulty,
at least one of the f + 1 highest values in Sorted TATs
(line C2) is from a correct server and thus less than or
equal to B. Server i computes α as the minimum of these
f + 1 highest values (line C3), and thus α ≤ B. Figure 5
(left side) depicts this argument graphically.

Server i stores the values of α computed by each other
server. Thus, at least 2f + 1 of the cells in server i’s
TAT Leader UBs[] vector eventually contain α values
from correct servers (each of which is no more than B).
Using a parallel argument as above, at least one of the
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/* Initialization, run at start of new view */
A1. For i = 1 to N, TATs_If_Leader[i] ←∞
A2. For i = 1 to N, TAT_Leader_UBs[i] ←∞
A3. For i = 1 to N, Reported_TATs[i] ← 0
A4. ping_seq ← 0

/* RTT Measurement Task, run at server i */
B1. Periodically:
B2. BROADCAST: 〈RTT-PING, view, ping_seq, i〉σi
B3. ping_seq++
B4. Upon receiving 〈RTT-PING, view, seq, j〉σj

:
B5. SEND to server j: 〈RTT-PONG, view, seq, i〉σi
B6. Upon receiving 〈RTT-PONG, view, seq, j〉σj

:
B7. rtt ← Measured RTT for pong message
B8. SEND to server j: 〈RTT-MEASURE, view, rtt, i〉σi
B9. Upon receiving 〈RTT-MEASURE, view, rtt, j〉σj

:
B10. t ← rtt * KLat + ∆pp

B11. if t < TATs_If_Leader[j]
B12. TATs_If_Leader[j] ← t

/* TAT_Leader Upper Bound Task, run at server i */
C1. Periodically:
C2. Sorted_TATs ← SORT-ASCENDING TATs_If_Leader[]
C3. α← Sorted_TATs[2f+1]
C4. BROADCAST: 〈TAT-UB, view, α, i〉σi
C5. Upon receiving 〈TAT-UB, view, tat_ub, j〉σj

:
C6. if tat_ub < TAT_Leader_UBs[j]
C7. TAT_Leader_UBs[j] ← tat_ub

/* TAT Measurement Task, run at server i */
D1. Periodically:
D2. max_tat ← Maximum TAT measured this view
D3. BROADCAST: 〈TAT-MEASURE, view, max_tat, i〉σi
D4. Upon receiving 〈TAT-MEASURE, view, tat, j〉σj

D5. if tat > Reported_TATs[j]
D6. Reported_TATs[j] ← tat

/* Suspect Leader Task */
E1. Periodically:
E2. Sorted_TAT_UBs ← SORT-ASCENDING TAT_Leader_UBs[]
E3. TAT_acceptable ← Sorted_TAT_UBs[2f+1]
E4. Sorted_TATs ← SORT-ASCENDING Reported_TATs[]
E5. TAT_leader ← Sorted_TATs[f+1]
E6. if TAT_leader > TAT_acceptable
E7. Suspect Leader

Fig. 4: SUSPECT LEADER Protocol, used to determine
whether a server should suspect the leader. View numbers refer
to the view in the global ordering protocol.

f +1 highest values in Sorted TAT UBs (line E2) is from
a correct server and thus less than or equal to B. Server i
computes TAT acceptable as the minimum of these f +1
highest values (line E3), and thus TAT acceptable ≤ B.
The preceding argument is illustrated on the right side
of Figure 5.

If a malicious leader remains in power, there are at
least f + 1 servers (at least one of which is correct)
for which TAT leader ≤ TAT acceptable always holds.
Thus, at least one correct server collects TAT-MEASURE

messages from f + 1 servers (at least one of which is
correct) with values v such that v ≤ TAT acceptable.
Therefore, the malicious leader is providing a TAT, t,
such that t ≤ TAT Acceptable ≤ B, to at least one correct
server.

Proof of Property 4.2: Since TAT acceptable is
the (2f + 1)st lowest value in TAT Leader UBs[],
at least f + 1 correct servers sent values for α
such that α ≤ TAT acceptable. Each permanent
leader, l, has a set of at least f + 1 correct
servers that, if l is elected, will report TATs, t, with
t ≤ α ≤ TAT acceptable. Thus, any correct server
will compute TAT leader ≤ TAT acceptable and will not
suspect l.

f12f

α

1 f2f

τ

M P

TATs If Leader[] (Sorted) TAT Leader UBs[] (Sorted)

• (∃r ∈ M)[r ≤ B]

• α is the minimum value in M

• Therefore, α ≤ B

• (∃p ∈ P )[p ≤ B]

• τ is the minimum value in P

• Therefore, τ ≤ B

Fig. 5: The value of TAT acceptable (τ ) computed at any correct
server converges to a value where τ ≤ B. The sets M (left
side) and P (right side) contain the f + 1 highest values in
their respective vectors. M must eventually contain at least
one value, v, reported by a correct server, where v ≤ B. Thus,
α ≤ B. Using a parallel argument, the right side shows that
τ ≤ B.

5 THE PRIME VIEW CHANGE PROTOCOL

In order for the BOUNDED-DELAY property to be useful
in practice, the time at which it begins to hold (after
the network stabilizes) should not be able to be set
arbitrarily far into the future by the faulty servers. As we
now illustrate, achieving this requirement necessitates a
different style of view change protocol than the one used
by BFT (and other existing leader-based protocols).

5.1 BFT’s View Change Protocol

To facilitate a comparison between Prime’s view change
protocol and the ones used by existing protocols, we
review the BFT view change protocol. A newly elected
leader collects state from 2f + 1 servers in the form
of VIEW-CHANGE messages, processes these messages,
and subsequently broadcasts a NEW-VIEW message. The
NEW-VIEW contains the set of 2f + 1 VIEW-CHANGE

messages, as well as a set of PRE-PREPARE messages that
replay pending updates that may have been ordered by
some, but not all, correct servers in a previous view; the
VIEW-CHANGE messages allow the non-leader servers to
verify that the leader constructed the set of PRE-PREPARE

messages properly. We refer to the contents of the NEW-
VIEW as the constraining state for this view.

Although the VIEW-CHANGE and NEW-VIEW messages
are logically single messages, they may be large, and
thus the non-leader servers cannot determine exactly
how long it should take for the leader to receive and
disseminate the necessary state. A non-leader server sets
a timeout on suspecting the leader when it learns of the
leader’s election, and it expires the timeout if it does
not receive the NEW-VIEW or does not execute the first
update on its queue within the timeout period. The time-
out used for suspecting the current leader doubles with
every view change, guaranteeing that correct leaders
eventually have enough time to complete the protocol.

5.2 Motivation and Protocol Overview

The view change protocol outlined above is insufficient
for Prime. Doubling the timeouts greatly increases the
power of the faulty servers; if the timeout grows very
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high during unstable periods, then a faulty leader can
cause the view change to take much longer than it would
take with a correct leader. If Prime were to use such a
protocol, then the faulty servers could delay the time at
which BOUNDED-DELAY begins to hold by increasing the
duration of the view changes in which they are leader.
The amount of the delay would be a function of how
many view changes occurred in the past, which can be
manipulated by causing view changes during unstable
periods (e.g., by using a denial of service attack).

To overcome this issue, Prime uses a fundamentally
different approach for its view change protocol: whereas
BFT’s protocol is entirely coordinated by the leader,
Prime’s view change protocol is designed to rely on
the leader as little as possible. The key observation is
that the leader neither needs to collect view change
state from (2f + 1) servers nor disseminate constraining
state to the non-leader servers in order to fulfill its role
as leader. Instead, the leader can constrain non-leader
servers simply by sending a single physical message
that identifies which view change state messages should
constitute the constraining state. Thus, instead of being
responsible for state collection, processing, and dissemi-
nation, the leader is only responsible for making a single
decision and sending a single message (which we call the
leader’s REPLAY message). The challenge is to construct
the view change protocol in a way that will allow non-
leader servers to force the leader to send a valid REPLAY

message in a timely manner.
How can a single physical message identify the many

view change state messages that constitute the constrain-
ing state? Each server disseminates its view change state
using a Byzantine fault-tolerant reliable broadcast proto-
col (e.g., [17]). The reliable broadcast protocol guarantees
that all servers that collect view change state from any
server i in view v collect exactly the same state; in
addition, if any correct server collects view change state
from server i in view v, then all correct servers even-
tually will do so. Given these properties, the leader’s
REPLAY message simply needs to contain a list of 2f + 1
server identifiers in order to unambiguously identify the
constraining state. For example, if the leader’s REPLAY

message contains the list 〈1, 3, 4〉, then the view change
state disseminated by servers 1, 3, and 4 should be used
to become constrained. As described below, the REPLAY

message also contains a proof that all of the referenced
view change state messages will eventually be delivered
to all correct servers.

A critical property of the reliable broadcast protocol
used for view change state dissemination is that it
cannot be slowed down by the faulty servers. Correct
servers only need to send and receive messages from
one another in order to complete the protocol. Therefore,
the state dissemination phase takes as much time as
is required for correct servers to pass the necessary
information between one another, and no more.

If the leader is faulty, it can send a REPLAY message
whose list contains faulty servers, from which it may be

impossible to collect view change state. Thus, the pro-
tocol requires that the leader’s list be verifiable, which
we achieve by using a threshold signature protocol.
Once a server finishes collecting view change state from
2f +1 servers, it announces a list containing their server
identifiers. A server submits a partial signature on a list
L if it has finished collecting view change state from
the 2f + 1 servers in L. The servers combine 2f + 1
matching partial signatures into a threshold signature on
L; we refer to the pair consisting of L and its threshold
signature as a VC-Proof. At least one correct server (in
fact, f +1 correct servers) must have submitted a partial
signature on L, which, by the properties of reliable
broadcast, implies that all correct servers will eventually
finish collecting view change state from the servers in
L. Thus, by including a VC-Proof in its REPLAY, the
leader can convince the non-leader servers that they will
eventually collect the state from the servers in the list.

The last remaining challenge is to ensure that the
leader sends its REPLAY message in a timely manner.
The key property of the protocol is that the leader can
immediately use a VC-Proof to generate the REPLAY

message, even if it has not yet collected view change state
from the servers in the list. Thus, after a non-leader server
sends a VC-Proof to the leader, it can expect to receive
the REPLAY message in a timely fashion. We integrate
the computation of this turnaround time (i.e., the time
between sending a VC-Proof to the leader and receiving
a valid REPLAY message) into the normal-case SUSPECT-
LEADER protocol to monitor the leader’s behavior. By
using SUSPECT-LEADER to ensure that the leader termi-
nates the view change in a timely manner, we avoid the
use of a timeout and its associated vulnerabilities. Table
1 summarizes Prime’s view change protocol.

5.3 Detailed Protocol Description
Preliminaries: When a server learns that a new leader
has been elected in view v, we say that it preinstalls view
v. As described above, the Prime view change protocol
uses an asynchronous Byzantine fault-tolerant reliable
broadcast protocol for state dissemination. We assume
that the identifiers used in the reliable broadcast are
of the form 〈i, v, seq〉, where v is the preinstalled view
number and seq = j means that this message is the jth

message reliably broadcast by server i in view v. Using
these tags guarantees that all correct servers agree on
the messages reliably broadcast by each server in each
view. We refer to the last global sequence number that a
server has executed as that server’s execution ARU.

State Dissemination Phase: A server’s view change
state consists of the server’s execution ARU and a set
of Prepare-Certificates for global sequence numbers for
which the server has sent a COMMIT message but which
it has not yet globally ordered. We refer to this set as
the server’s PC-Set. Upon preinstalling view v, server i
reliably broadcasts a 〈REPORT, v, execARU, numSeq, i〉σi

message, where v is the preinstalled view number, ex-
ecARU is server i’s execution ARU, and numSeq is
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Phase Action Phase Completed Upon
Action Taken Upon
Phase Completion

Progress Driven By

State Dissemination
All: Reliably broadcast REPORT and PC-

SET messages
Collecting complete state
from 2f + 1 servers

Broadcast VC-LIST Correct Servers

Proof Generation
All : Upon collecting complete state

from servers in VC-LIST, broadcast
VC-PARTIAL-SIG (up to N times)

Combining 2f + 1

matching partial signatures
Broadcast VC-PROOF,
Run SUSPECT-LEADER

Correct Servers

Replay
Leader: Upon receiving VC-PROOF, broad-

cast REPLAY message
Committing REPLAY and
collecting associated state

Execute all updates in
replay window

Leader, monitored
by SUSPECT-LEADER

All: Agree on REPLAY

TABLE 1: Summary of Prime’s view change protocol.

the size of server i’s PC-Set. Server i then reliably
broadcasts each Prepare-Certificate in its PC-Set in a
〈PC-SET, v, pc, i〉σi

message, where v is the preinstalled
view number and pc is the Prepare-Certificate being
disseminated.

A server will accept a REPORT message from server i
in view v as valid if the message’s tag is 〈i, v, 0〉; that is,
the REPORT message must be the first message reliably
broadcast by server i in view v. The numSeq field in the
REPORT tells the receiver how many Prepare-Certificates
to expect. These must have tags of the form 〈i, v, j〉,
where 1 ≤ j ≤ numSeq.

Each server stores REPORT and PC-SET messages as
they are reliably delivered. We say that server i has
collected complete state from server j in view v when i
has (1) reliably delivered j’s REPORT message, (2) reliably
delivered the numSeq PC-SET messages described in j’s
report, and (3) executed a global sequence number at
least as high as the one contained in j’s report. To meet
the third condition, we assume that a reconciliation pro-
tocol runs in the background. In practice, correct servers
will reserve some amount of their outgoing bandwidth
for fulfilling reconciliation requests from other servers.
Upon collecting complete state from a set S of 2f + 1
servers, server i broadcasts a 〈VC-LIST, v, L, i〉σi

message,
where v is the preinstalled view number and L is the list
of server identifiers of the servers in S.

Proof Generation Phase: Each server stores VC-LIST

messages as they are received. When server i has a 〈VC-
LIST, v, ids, j〉σj

message in its data structures for which
it has collected complete state from all servers in ids, it
broadcasts a 〈VC-PARTIAL-SIG, v, ids, startSeq, pSig, i〉σi

message, where v is the preinstalled view number, ids
is the list of server identifiers, startSeq is the global
sequence number at which the leader should begin
ordering in view v, and pSig is a partial signature
computed on the tuple 〈v, ids, startSeq〉. startSeq is the
sequence number directly after the replay window. It
can be computed deterministically as a function of the
REPORT messages collected from the servers in ids.

Upon collecting (2f + 1) matching VC-PARTIAL-SIG

messages, server i take the following steps. First, it
combines the partial signatures to generate a VC-
Proof, p, which is a threshold signature on the tu-
ple 〈v, ids, startseq〉. Second, it broadcasts a 〈VC-
PROOF, v, ids, startSeq, p, i〉σi

message. Third, it begins
running SUSPECT-LEADER, treating the VC-PROOF mes-

sage just as it would a PROOF-MATRIX in computing the
maximum turnaround time provided by the leader in the
current view (see Figure 4, Block D); specifically, server
i starts a timer to compute the turnaround time between
sending the VC-PROOF to the leader and receiving a valid
REPLAY message (see below) for view v. Thus, the leader
is forced to send the REPLAY message in a timely fashion,
in the same way that it is forced to send timely PRE-
PREPARE messages during normal-case operation.

Replay Phase: When the leader, l, receives a
VC-PROOF message for view v, it broadcasts a
〈REPLAY, v, ids, startSeq, p, l〉σl

message. By sending a
REPLAY message, the leader proposes an ordering on
the entire replay set implied by the contents of the VC-
PROOF message. Specifically, for each sequence number,
seq, between the maximum execution ARU found in the
report messages of the servers in ids and startSeq, seq
is either (1) bound to the Prepare-Certificate for that
sequence number from the highest view, if one or more
Prepare-Certificates were reported by the servers in ids,
or (2) bound to a No-op, if no Prepare-Certificate for
that sequence number was reported. It is critical to note
that the leader itself may not yet have collected complete
state from the servers in ids. Nevertheless, it can commit
to using the state sent by the servers in ids in order to
complete the replay phase.

When a non-leader server receives a valid REPLAY

message for view v, it floods it to the other servers,
treating the message as it would a typical PRE-PREPARE

message. The REPLAY message is then agreed upon using
REPLAY-PREPARE and REPLAY-COMMIT messages, whose
functions parallel those of typical PREPARE and COMMIT

messages. The REPLAY message does not carry a global
sequence number because only one may be agreed upon
(and subsequently executed) within each view. A correct
server does not send a REPLAY-COMMIT message until it
has collected complete state from all servers in the list
contained in the REPLAY message. Finally, when a server
commits the REPLAY message, it executes all sequence
numbers in the replay window in one batch.

Besides flooding the REPLAY message upon receiving
it, a non-leader server also stops the timer on computing
the turnaround time for the VC-PROOF, if one was set.
Note that a non-leader server stops its timer as long as
it receives some valid REPLAY message, not necessarily
one containing the VC-Proof it sent to the leader. The
properties of reliable broadcast ensure that the server
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will eventually collect complete state from those servers
in the list contained in the REPLAY message.

One subtle consequence of the fact that “any REPLAY

message will do” is that a faulty leader that sends con-
flicting REPLAY messages might be able to convince two
different correct servers to stop their timers, even though
neither REPLAY will ever be executed. In this case, since
the REPLAY messages are flooded, all correct servers will
eventually receive the conflicting messages. Since the
messages are signed, the two messages constitute proof
of corruption and can be broadcast. A correct server will
suspect the leader upon collecting this proof. Thus, the
system will not remain in a view with such a faulty
leader forever, and the detection time is a function of
the latency between correct servers.

6 PROOF SKETCH OF BOUNDED-DELAY

In this section we show that in those executions in which
PRIME-STABILITY holds, Prime meets the BOUNDED-
DELAY property (see Definition 2.5). L∗ and B are as
defined in Section 4.2. ∆agg is a value greater than the
maximum time between a correct server sending any
of the following messages successively: PO-ARU, PROOF-
MATRIX, and PRE-PREPARE.

We first consider the maximum amount of delay that
can be added by a malicious leader that performs well
enough to stay in power. As discussed in Section 4, the
time between a correct server initiating an update, u,
and all correct servers sending PROOF-MATRIX messages
containing at least 2f + 1 PO-ARUs that cumulatively
acknowledge the preordering of u is at most three rounds
plus 2∆agg . The malicious servers cannot increase this
time beyond what it would take if only correct servers
were participating. By Property 4.1, a leader that stays
in power must provide a TAT, t ≤ B, to at least one
correct server. By definition, ∆agg ≥ ∆pp. Thus, B ≤
2KLatL

∗+∆agg . Since correct servers flood PRE-PREPARE

messages, all correct servers receive the PRE-PREPARE

within three rounds and one aggregation delay of when
the PROOF-MATRIX messages are sent. All correct servers
globally order the PRE-PREPARE in two rounds from the
time, t, the last correct server receives it. Reconciliation
guarantees that all correct servers receive the update
within one round of time t. Summing the total delays
yields a maximum latency of β = 6L∗+2KLatL

∗+3∆agg.
If a malicious leader delays an update by more than B,

it will be suspected and a view change will occur. View
changes require a finite (and, in practice, small) amount
of state to be exchanged among correct servers, and thus
they complete in finite time. As described in Section 5,
faulty leaders will quickly be suspected if they do not
terminate the view change in a timely manner. SUSPECT-
LEADER guarantees that at most 2f view changes can
occur before the system settles on a leader that will
remain in power forever. Therefore, there is a time after
which the bound of β holds for any update initiated by
a stable server.

7 PERFORMANCE EVALUATION

To evaluate the performance of Prime, we implemented
the protocol and compared it to an available implemen-
tation of BFT. We show results for configurations with
4 servers (f = 1) and 7 servers (f = 2). Prime has
similar performance to BFT when the systems are run
in a benign environment, which is commonly the only
environment in which Byzantine fault-tolerant replica-
tion systems are benchmarked. When strong attacks are
mounted against both systems, Prime outperforms BFT
by more than an order of magnitude.

Testbed and Network Setup: We used a system con-
sisting of 7 servers, organized in a fully connected graph.
Each server ran on a 3.2 GHz, 64-bit Intel Xeon com-
puter. RSA signatures provided authentication and non-
repudiation. Each computer can compute a 1024-bit RSA
signature in 1.3 ms and verify it in 0.07 ms. We emulated
the overhead of Cauchy-based Reed-Solomon erasure
codes [16] used for reconciliation. Servers and clients
sent unicast messages. We used the netem utility to place
delay and bandwidth constraints on the links between
the servers. We added 50 ms delay (emulating a US-
wide deployment) to each link and limited the aggregate
outgoing bandwidth of each server to 10 Mbps. Clients
were evenly distributed among the servers and no delay
or bandwidth constraints were set between the client and
its server.

Attack Strategies: Our experimental results during
attack show the minimum performance that must be
achieved in order for a malicious leader to remain in
power. Our measurements do not reflect the time re-
quired for view changes, during which a new leader
is installed. Since a view change takes a finite, and,
in practice, relatively small, amount of time, malicious
leaders must cause performance degradation without
being detected in order to have a prolonged effect on
throughput. Therefore, we focus on the attack scenario
where a malicious leader stays in power indefinitely
while degrading performance.

We use the first attack on BFT described in Section
3. We present results for a very aggressive yet possible
timeout (300 ms), yielding the most favorable perfor-
mance for BFT under attack. To attack Prime, (1) the
leader adds as much delay as possible (without be-
ing suspected) to the protocol, and (2) faulty servers
force as much reconciliation as possible. A malicious
leader can add approximately two rounds of delay to
the global ordering phase (see Figure 2). The malicious
servers force reconciliation by not sending their PO-
REQUEST messages to f of the correct servers. Therefore,
all updates originating from the faulty servers must be
sent to these f correct servers using the reconciliation
mechanism (Section 4). Moreover, the malicious servers
only acknowledge each other’s PO-REQUEST messages,
forcing the correct servers to send reconciliation mes-
sages to them for all messages originating from correct
servers. Thus, all messages undergo a reconciliation



12

 1300
 1200
 1100
 1000

 900
 800
 700
 600
 500
 400
 300
 200
 100

 0
 0  100  200  300  400  500

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Number of Clients

BFT Fault-Free
Prime Fault-Free

Prime Attack, KL=1
Prime Attack, KL=2

BFT Attack
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Fig. 9: 4 servers, Latency (ms) vs. number of clients, 50 ms
Diameter

step, which consumes approximately the same outgoing
bandwidth as update dissemination during preordering.
This reduces the maximum achievable throughput by
approximately half.

Performance Results: Figure 6 shows system through-
put in updates per second as a function of the number
of clients in the 7-server configuration. The clients send
one write update (containing 512 bytes of data), wait for
proof that the update has been ordered, and then sub-
mit their next update. BFT uses an optimization where
clients send updates directly to all of the servers, and the
BFT PRE-PREPARE message contains batches of update
digests. When both protocols are not under attack, the
throughput of BFT increases at a faster rate than the
throughput of Prime, because BFT has fewer protocol
rounds. BFT’s performance plateaus due to bandwidth
constraints at slightly less than 850 updates per second
with about 250 clients. Prime reaches a similar plateau
with about 350 clients.

Throughput results are much different when the two
protocols are attacked. With an aggressive timeout of
300 ms, BFT can order less than 30 updates per second.
With the default timeout of 5 sec, BFT can only order 2
updates per second (not shown). Prime plateaus at about
400 updates per second due to the bandwidth overhead
of reconciliation. The slope of the curve corresponding
to Prime under attack is less steep than when it is not

under attack due to the delay added by the malicious
leader. We include results with KLat = 1 and KLat = 2.
KLat accounts for variabilities in latency (Section 2). As
KLat increases, a malicious leader can add more delay
to the turn-around time without being detected. Prime’s
throughput continues to increase until it becomes band-
width constrained. BFT reaches its maximum through-
put when there is one client per server. This throughput
limitation, which occurs when only a small amount of
the available bandwidth is used, is a consequence of
judging the leader conservatively.

Figure 8 shows similar throughput trends in the 4-
server configuration. When not under attack, both pro-
tocols plateau at higher throughputs than those shown
in the 7-server configuration (Figure 6). Prime reaches a
plateau of 1140 updates per second when there are 600
clients. In the 4-server configuration, each server sends
a higher fraction of the executed updates than in the
7-server configuration. This places a relatively higher
computational burden (due to RSA cryptography) on
the servers in the 4-server configuration. Thus, there is a
larger difference in performance when not under attack
between Prime and BFT. When under attack, Prime
outperforms BFT by a factor of 30.

Figure 7 shows update latency, at the client, as a
function of the number of clients in the 7-server con-
figuration. When the protocols are not under attack,
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BFT has a lower latency than Prime, due to the differ-
ences in the number of protocol rounds. The latency of
both protocols increases at different points before the
plateau due to overhead associated with aggregation.
The latency begins to climb steeply when the throughput
plateaus due to update queueing at the servers. When
under attack, the latency of Prime increases due to the
two extra protocol rounds added by the leader. When
KLat = 2, the leader can add approximately 100 ms more
delay than when KLat = 1. The latency of BFT under
attack climbs as soon as more than one client is added
to each server, because the leader can order one update
per server per timeout without being suspected. Figure
9 shows a similar trend in the 4-server configuration.

8 RELATED WORK

The protocols considered in this paper use the state ma-
chine approach [18], [19] to achieve replication, in which
replicas execute a totally ordered stream of updates. This
paper focused on leader-based Byzantine fault-tolerant
SMR protocols. Other approaches are possible, such
as using randomization, quorum systems, and hybrid
architectures. A thorough analysis of how resilient these
systems are to performance failures is an interesting
avenue for future research.

Many Byzantine fault-tolerant SMR systems rely on a
leader to coordinate the ordering protocol [5], [9], [10],
[11], [12], [13], [14]. The consistency of these systems
does not rely on synchrony assumptions, while liveness
is guaranteed assuming the network meets certain sta-
bility properties. To ensure that the stability properties
are eventually met in practice, they use exponentially
growing timeouts during view changes. This makes
these systems vulnerable to the type of performance
degradation when under attack described in Section 3.2.
In contrast, Prime uses the SUSPECT-LEADER protocol
to allow correct servers to collectively decide whether
the leader is performing fast enough by adapting to the
network conditions once the system stabilizes.

Rampart [20] implements Byzantine atomic multicast
over a reliable group multicast protocol. This is similar
to how Prime uses preordering followed by global order-
ing. Both protocols disseminate updates to 2f +1 servers
before a coordinator assigns the global order. Drabkin et
al. [21] observe the difficulty of setting protocol timeouts
in the context of group communication in malicious
settings.

Other Byzantine fault-tolerant protocols [3], [4], [8],
[22] use randomization to circumvent the FLP impossi-
bility result, guaranteeing termination with probability 1.
These protocols incur a high number of communication
rounds during normal-case operation (even those that
terminate in an expected constant number of rounds).
However, they do not rely on a leader to coordinate
the ordering protocol, and thus may not suffer the
same kinds of performance vulnerabilities when under
attack. We believe it is an interesting open question

to consider (1) whether their performance in fault-free
configurations is sufficiently high, especially in high
latency environments and (2) how resilient they are to
performance degradation when under attack.

Byzantine quorum systems [23], [24], [25], [26] can
also be used for replication. While early work in this
area was restricted to a read/write interface, recent work
uses quorum systems to provide SMR. The Q/U protocol
[25] of Abd-El-Malek et al. requires 5f + 1 replicas for
this purpose and suffers performance degradation when
write contention occurs. The HQ protocol [26] showed
how to mitigate this cost by reducing the number of
replicas to 3f + 1. Since HQ uses BFT to resolve con-
tention when it arises, it is vulnerable to the same types
of performance degradation as BFT.

A different approach to SMR is to use a hybrid ar-
chitecture in which different parts of the system rely
on different fault and/or timing assumptions [27], [28],
[29]. The different components are therefore resilient to
different types of attacks. We believe leveraging stronger
timing assumptions may allow for more aggressive per-
formance monitoring.

The Θ-Model [30] assumes that messages in transit
simultaneously experience a bounded ratio of end-to-
end delays. PRIME-STABILITY assumes an eventual ratio
of delays on each link between correct servers.

9 CONCLUSIONS

In this paper we brought to light the vulnerability of
current leader-based Byzantine fault-tolerant SMR pro-
tocols to performance degradation when under attack.
We proposed the BOUNDED-DELAY correctness criterion
to complement current liveness criteria by requiring
the leader to act timely in order to stay in power. We
presented Prime, a new Byzantine fault-tolerant SMR
protocol, which meets BOUNDED-DELAY and is a first
step towards making intrusion-tolerant replication re-
silient to performance attacks in malicious environments.
Our experimental results show that Prime performs
competitively with BFT in fault-free configurations and
an order of magnitude better when under attack.
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