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Abstract
This paper presents the first architecture for large-scale,
wide-area intrusion-tolerant state machine replication
that is specifically designed to perform well even when
some of the servers are Byzantine. The architecture
is hierarchical and runs attack-resilient state machine
replication protocols within and among the wide-area
sites. Given the constraints of the wide-area environ-
ment, we explore the challenges and tradeoffs of build-
ing inter-site communication protocols that use wide-
area bandwidth efficiently yet can resist attempts to de-
grade performance. The paper provides evidence that the
optional use of simple dependable components, whose
compromise or malfunction cannot cause inconsistency
in the replicated service, can significantly improve per-
formance when the system is under attack.

1 Introduction

Much of our critical infrastructure is controlled by
large software systems whose participants are distributed
across the Internet. As our dependence on these crit-
ical systems grows, we require them to meet more
and more stringent availability and performance require-
ments, even in the face of attacks, including those
mounted by malicious insiders. This paper is about how
to architect large-scale, survivable replication systems
that guarantee correctness, availability, and good perfor-
mance even when some of the servers are compromised.

The last decade has seen the introduction of two
distinct generations of intrusion-tolerant state machine
replication protocols. The first generation of protocols
focused on achievingsafety(i.e., consistency) as long
as the system’s fault assumptions hold, andliveness
(i.e., the eventual execution of each submitted operation)
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when the network is sufficiently synchronous. Beginning
with Castro and Liskov’s BFT protocol [14] in 1999 and
continuing throughout the 2000s (e.g., [17, 18, 20, 33]),
protocols in this class were shown to be capable of
providing good performance in fault-free executions in
small-scale, local-area network settings. In parallel, the
Steward system [8] and customizable replication archi-
tecture in [6] showed how to leverage a hierarchical ar-
chitecture to improve the scalability of these systems in
large wide-area deployments.

All of the protocols described above share a common
problem: While they perform well when all of the servers
behave correctly, their performance can be made dra-
matically worse when one or more servers actually has
a Byzantine fault. For this reason, the next generation
of protocols has focused on achieving stronger perfor-
mance guarantees than liveness when the system is under
attack; we call such protocolsattack-resilient. The Prime
system [7] was the first intrusion-tolerant replication pro-
tocol to provide a meaningful performance guarantee in
the face of Byzantine servers by bounding the amount
of delay that they can cause. The Aardvark protocol of
Clement et al. [15] can guarantee meaningful through-
puts over sufficiently long periods, and it provides impor-
tant system engineering techniques that can significantly
improve robustness to flooding-based attacks. New pro-
tocols in this direction, such as the Spinning protocol of
Veronese et al. [32], continue to explore the terrain.

Despite their attack resilience, these second-
generation protocols employ flat architectures that
are not well-suited to the large-scale, wide-area de-
ployments needed by our critical infrastructure. This
paper presents the first architecture for large-scale,
wide-area intrusion-tolerant state machine replication
that is specifically designed to perform well even
when some of the servers are Byzantine, thus unify-
ing the first-generation large-scale systems with the
second-generation attack-resilient systems.

Our system uses a hierarchical architecture and is



suited to wide-area deployments consisting of several
sites, each with a cluster of replication servers, all of
which participate in a system-wide replication protocol.
Unfortunately, achieving system-wide attack resilience
is not as simple as deploying attack-resilient protocols
in each level of the hierarchy (i.e., within each site and
on the wide area). As the paper demonstrates, a criti-
cal component of the architecture that must be hardened
against performance degradation is the mechanism by
which two sites communicate, which we call thelogical
link protocol. The logical link protocol defines which
physical machines pass wide-area messages on behalf
of the site and to which machines they send. Given
that the performance of wide-area replication tends to be
constrained by the limited wide-area bandwidth between
sites, the challenge is to build a logical link that is attack-
resilientandthat uses wide-area bandwidth efficiently so
that performance remains acceptably high both when the
system does and does not exhibit Byzantine faults. Ex-
isting approaches achieve one but not the other: Having
many servers send on behalf of the site (e.g., [12, 23])
masks the behavior of faulty senders but can be ineffi-
cient, while having one elected server pass messages on
behalf of the site (e.g., [6]) is efficient but vulnerable to
performance degradation when the server is faulty.

If each site had access to a hardened forwarding device
capable of sending wide-area messages exactly once and
in a timely manner, it would be relatively straightforward
to achieve attack resilience while using wide-area band-
width efficiently. However, if the compromise of such a
device can cause inconsistency in the replicated service
(as in [28]), then deploying such a trusted forwarder can
improve performance but potentially decrease the sys-
tem’s robustness. Therefore, this paper explores the de-
sign space of how to build efficient, attack-resilient log-
ical linkswithout increasing the system’s vulnerabilty to
safety violations. In essence, we consider how close one
can get to the benefits of a trusted forwarder without suf-
fering its drawbacks.

We explore the tradeoffs of deploying three logical
link protocols, each offering different levels of per-
formance and requiring different levels of assumptions
about the environment. The first approach is an era-
sure encoding based logical link that does not require any
special components or additional assumptions but which
has the highest bandwidth overhead of the three proto-
cols we consider. The second approach demonstrates
that by assuming a functional broadcast hub in each site
(where each local server receives a copy of any message
that passes through the hub), one can significantly im-
prove throughput both in fault-free and under-attack exe-
cutions. The third approach shows that by assuming each
correct site has access to a simple forwarding device ca-
pable of counting and sending messages, the system can

achieve optimal wide-area bandwidth usage without de-
creasing robustness. Because of the cryptographic pro-
tection (i.e., threshold signatures) used on inter-site mes-
sages, the compromise of the simple forwarding devices
cannot lead to safety violations (although it can impact
performance negatively).

We discuss the tradeoffs and practicality of the logi-
cal links and evaluate their performance in a prototype
implementation, both in fault-free and under-attack sce-
narios. Our results provide evidence that it is possible to
construct a large-scale wide-area replication system that
achieves reasonable performance under attack, and that
leveraging dependable components implementing fairly
limited functionality can significantly improve the per-
formance of a fault-tolerant distributed system.

We note that all three logical link protocols are generic
and can be of use in any application where sets of ma-
chines need to pass messages to each other in an attack-
resilient way. Thus, they may shed some insight relevant
to constructing intrusion-tolerant systems that goes be-
yond state machine replication.

The remainder of this paper is presented as follows.
Section 2 describes our system model. Section 3 presents
our hierarchical architecture and describes the compo-
nents that must be hardened against performance degra-
dation. In Section 4 we describe three mechanisms for
achieving attack-resilient wide-area (inter-site) commu-
nication. Section 5 shows how all of the pieces fit to-
gether and describes the service properties achieved by
the resulting system. In Section 6 we evaluate the perfor-
mance of our prototype implementation. Section 7 de-
scribes related work, and Section 8 concludes the paper.

2 System Model

We assume a Byzantine fault model in which servers and
clients are eithercorrector faulty; correct processes fol-
low their protocol specification exactly, while faulty pro-
cesses can deviate from the protocol arbitrarily. We con-
sider a system withN sites, denotedS1 throughSN , dis-
tributed across a wide-area network. Each site,Si, has
3fi + 1 servers. IfSi is a correct site, then no more
thanfi of its servers are faulty; ifSi is a Byzantine site,
then any number of its servers may be faulty, modeling
situations where entire sites can be compromised. We
denoteF as an upper bound on the number of Byzantine
sites and assume that the total number of sites is equal
to 3F + 1. For simplicity, we assume in what follows
that all sites tolerate the same number of faults,f , and
have the same number of servers,3f + 1. The solutions
presented can be extended to the more general setting,
where sites may have different numbers of servers.

Servers communicate by passing messages. Messages
may be delayed, lost, or duplicated. All messages sent
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between servers are digitally signed. We assume that
digital signatures are unforgeable without knowing a
server’s private key. We use an(f +1, 3f +1) threshold
digital signature scheme for generating threshold signa-
tures on inter-site (wide-area) messages. Each site has
a public key, and each server within a site is given a se-
cret share that can be used to generate partial signatures.
We assume threshold signatures are unforgeable without
knowing the secret shares off + 1 servers within a site.
We also employ a cryptographic hash function for com-
puting message digests.

Clients submit read-only (query) and read/write (up-
date) operations to the system by communicating with
the servers in their local site. Any number of clients may
be faulty. Our system totally orders the submitted opera-
tions so that the servers can execute them in the same or-
der and remain consistent.1 The system as a whole meets
the modified linearizability condition specified in [14],
which states that the replicated service acts like a central-
ized implementation that atomically executes operations
one at a time. This safety property holds in all execu-
tions in which there are at mostF Byzantine sites. We
state the liveness and performance guarantees of our sys-
tem in Section 5.

Our system can be deployed with one of several log-
ical link protocols for inter-site communication, two of
which rely ondependable components. In the hub based
logical link (see Section 4.2), each site is equipped with
a broadcast hub through which incoming and outgoing
wide-area traffic passes. In the dependable forwarder
based logical link (see Section 4.3), each site is equipped
with a dependable forwarding (DF) device that sends and
receives inter-site messages on behalf of the site. We as-
sume each DF shares a symmetric key with each other
DF and with each local server for computing message
authentication codes. The failure (crash or compromise)
of the dependable components can impact performance
and liveness but cannot lead to safety violations.

3 Building an Attack-Resilient
Architecture for Wide-Area Replication

In this section we describe the components of an attack-
resilient architecture for large-scale wide-area replica-
tion. Our architecture builds on our previous work on
wide-area Byzantine replication [6, 8], which demon-
strated the performance benefit of using hierarchy to re-
duce wide-area message complexity. We first provide
background on the hierarchical architecture and then dis-
cuss how to harden it against performance degradation.

1As in BFT [14], an optimistic protocol can be used to respond to
queries without totally ordering them. The optimistic protocol may
fail if there are concurrent updates, in which case the querycan be
resubmitted as an update operation and totally ordered.

3.1 Background: Logical Machines

The physical machines in each site are converted into a
logical machinethat is capable of processing protocol
events (i.e., message reception and timeout events) just
as a physical machine would. Each logical machine acts
as a single participant in a global, wide-area replication
protocol that runs among the logical machines. Thus, the
logical machines process wide-area protocol events.

In order to support the abstraction of a logical ma-
chine, the physical machines in each site run a local state
machine replication protocol to totally order any event
that would change the state of the logical machine. Thus,
the local state machine replication protocol orders events
corresponding to either the reception of a message or the
firing of a timeout by the logical machine. A physical
machine processes a global protocol event when itlo-
cally executesit, which occurs after the machine learns
of the event’s local ordering and after it has locally exe-
cuted all previous events. The local and global protocols
are cleanly separated, allowing one to plug in different
protocols in each site and on the wide area.

When the logical machine processes an event, it may
generate and send a message in the global protocol. Be-
fore the message can be sent on the wide area, the phys-
ical machines implementing the logical machine run a
protocol to generate a threshold signature on the mes-
sage. The threshold signature proves that at least one
correct physical machine in the site assents to the content
of the associated message, preventing faulty machines in
correct sites from sending spurious messages that pur-
port to be from the logical machine. Once a message
is threshold signed, it can be sent to its destination sites
according to the communication patterns of the global
replication protocol; we say that the message is sent over
a logical link that exists between each pair of sites.

3.2 Components of the Architecture

There are four pieces of our attack-resilient architecture
that must be hardened against performance degradation:
the global state machine replication protocol, the local
state machine replication protocol, the threshold signa-
ture protocol, and the logical links that connect the log-
ical machines. Making the logical links attack-resilient
is of critical importance, and we defer a discussion of
this topic until Section 4. The threshold signature proto-
col can be hardened by using a scheme in which partial
signatures areverifiable, meaning they carry proofs of
correctness that can be used to detect (and subsequently
blacklist) faulty servers that submit invalid partial sig-
natures. Subsequent messages from blacklisted servers
are ignored, preventing them from repeatedly disrupting
threshold signature generation. A representative example
of such a scheme (and the one used in our implementa-
tion) is Shoup’s threshold RSA signature scheme [26].

3



In the remainder of this section, we describe the impli-
cations of deploying different local and global state ma-
chine replication protocols, both to motivate the choices
we made in our implementation and to point out how the
choices impact the attack resilience of the system as a
whole. Our goal is not to invent new attack-resilient state
machine replication protocols but rather to illustrate the
tradeoffs of deploying different existing protocols.

We know of two state machine replication protocols
that do not rely on trusted components and which offer
provable performance guarantees even when some par-
ticipants are Byzantine: Prime [7] and Aardvark [15].
Informally, Prime bounds the latency of operations sub-
mitted to and subsequently introduced by correct servers,
while Aardvark guarantees that over sufficiently long pe-
riods, system throughput will be within a constant factor
of what it would be with only correct servers participat-
ing in the protocol. While other protocols (e.g., [22,32])
may be difficult to attack in practice, in this paper we re-
strict our attention to Prime and Aardvark, because com-
paring the differences between them is enough to give
the flavor of the various design choices at issue.

Global State Machine Replication Protocol: Since
we explicitly allow that some of the logical machines
can be Byzantine, the global replication protocol must be
attack-resilient, just as if it were running among physical
machines instead of logical machines.

We chose to use Prime as our global protocol, rather
than Aardvark, because Prime makes more efficient use
of wide-area bandwidth, which is likely to be the per-
formance bottleneck in wide-area replication systems.
In Aardvark, the primary is responsible for disseminat-
ing client requests (by batching them intoPRE-PREPARE

messages), limiting throughput when performance is
bandwidth-limited to the number of requests that can
be disseminated by the primary per second. In con-
trast, each Prime participant disseminates requests from
its own clients. Therefore, assuming the majority of out-
going bandwidth is used to disseminate requests (which
we expect to be the case for all but very small request
sizes), the peak throughput of Prime has the potential to
be larger by a factor of the number of sites in the system.2

We note that in evironments where the risk of total
site compromise is small, the global protocol can be be-
nign fault-tolerant rather than Byzantine fault-tolerant
and attack-resilient; this was the approach taken in Stew-
ard [8]. This results in a more efficient protocol that re-
quires only two wide-area crossings. The logical link

2One might try to close this gap by relying on clients to disseminate
requests and having the primary propose an order on batches of digests
(as in [13]). However, if faulty clients disseminate their requests to only
f +1 correct servers, they can cause the otherf correct servers to learn
the order of a request without having the request itself. These servers
cannot execute subsequent requests until they fill this hole, which may
lead to repeated performance degradation.

protocols described in Section 4 remain an integral part
of the architecture to avoid performance degradation,
even when a benign fault-tolerant global protocol is used.

Local State Machine Replication Protocol:The per-
formance of the local state machine replication protocol
determines the processing capability of the logical ma-
chine. Put another way, attacks that degrade the through-
put or increase the request latency of the local proto-
col can result in a logical machine that takes longer to
process global protocol events. Such attacks have both
practical and theoretical implications. Practically, they
result in performance degradation in the global replica-
tion service, even if enough sites are correct and the net-
work is sufficiently stable. Theoretically, they may cause
the timing assumptions of the global protocol to be vi-
olated, which may threaten system-wide liveness or per-
formance guarantees. Therefore, it is important to deploy
a local state machine replication protocol that will result
in a logical machine with the performance and timing
properties needed by the global protocol.

As we discuss in Section 5, when Prime is deployed
as the global replication protocol, it requires that the log-
ical machine be able to process certain messages in a
bounded time; this is precisely the property that a Prime-
based logical machine provides when (1) all events are
introduced by at least one correct server, which our archi-
tecture guarantees, and (2) there is sufficient local band-
width to avoid queuing, which is likely to be the case in
well-provisioned LANs.

Despite the strong throughput guarantee that Aardvark
makes over sufficiently long intervals, it has the poten-
tial for institutionalized periods of low throughput dur-
ing the grace periods that begin views with faulty pri-
maries. This means that Aardvark does not guarantee
that individual requestsare executed in a timely man-
ner, even though long-term overall throughput is high.
This can enable faulty local primaries incorrect sitesto
cause the global protocol to take more expensive exe-
cution paths (i.e., cause a correct leader site to be sus-
pected). Although individual requests may also be de-
layed in Prime when the local leader is faulty, the key
difference is that Prime will eventually settle on leaders
that do not cause delay, while Aardvark will perpetually
be vulnerable to periods in which latency is temporar-
ily increased. While the global instance of Prime can be
configured to tolerate latency variability, increasing this
variability increases the attacker’s ability to cause delay
and should be avoided if possible. Therefore, we chose
Prime as our local state machine replication protocol.

4 Attack-Resilient Logical Links

The physical machines within a site construct and thresh-
old sign global protocol messages after locally executing
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global protocol events. This raises the question of how to
pass the threshold-signed message from the sending log-
ical machine to a destination logical machine. Each cor-
rect server that generates the threshold-signed message
is capable of passing it to any server in the destination
site. We must define alogical link protocol to dictate
which local server or servers send, what they send, and
to which server or servers they send it.

The challenge in designing a logical link protocol is to
simultaneously achieve attack resilience and efficiency.
Existing approaches used in logical machine architec-
tures (e.g., [6, 12, 23]) achieve one but not the other.
For example, iff + 1 physical machines in the sending
site each transmit the threshold-signed message tof + 1
physical machines in the receiving site, then at least one
correct machine in the receiving site is guaranteed to re-
ceive a copy of the message – at least one of the senders
is correct, and at least one of that correct machine’s re-
ceivers is correct. Such a logical link is attack-resilient,
because faulty machines cannot prevent a message from
being successfully transmitted in a timely manner, but
the protocol pays a high cost in wide-area bandwidth,
transmitting each message up to(f + 1)2 times.

Due to the overhead of sending messages redundantly,
our previous work [6] adopted a different approach,
called the BLink protocol, whereby the physical ma-
chines in each site elect one machine to act as asite
forwarder, charged with the responsibility of sending
messages on behalf of the site. The physical machines
also choose the identifier of the machine in the receiv-
ing site with which the forwarder should communicate.
The non-forwarders use timeouts, coupled with acknowl-
edgements from the receiving site, to monitor the for-
warder and ensure that it passes messages at some min-
imal rate. If the current (forwarder, receiver) pair is
deemed faulty, a new pair is elected.

BLink is efficient but not attack-resilient: the for-
warder and receiver can collude to remain in power as
long as they ensure that the forwarder collects acknowl-
edgements just before the timeout expires, resulting in
much lower throughput and higher latency on the logi-
cal link than correct machines would provide. Using a
more aggressive approach to monitoring (by attempting
to determine how fast the forwarder should be sending
messages) requires additional timing and bandwidth as-
sumptions which may be difficult to realize in practice.

Note that BLink struggles in the presence of Byzan-
tine faults because it was built to ensure liveness, not to
achieve attack resilience. Liveness requires the logical
link to make minimal progress – and, for this purpose, a
coarse-grained timeout works well. BLink obtains high
normal-case performance by depending on the site for-
warder to pass messages, but giving a single machine this
power is precisely what makes the protocol vulnerable to

performance degradation by a malicious forwarder.
In the remainder of this section, we present and com-

pare three new attack-resilient logical link protocols. The
design of the three protocols brings to light a tradeoff be-
tween the strength of one’s assumptions and the result-
ing performance that one can achieve, with each proto-
col representing a different point in the design space. All
three protocols share the same goals:

Attack Resilience. Like the local and global state ma-
chine replication protocols, the logical link protocol
should limit or remove the power of the adversary
to cause performance degradation, without unduly
sacrificing normal-case performance.

Modularity. It should be possible to substitute one log-
ical link protocol for another without impacting the
correctness of the global replication protocol, al-
lowing deployment flexibility based on what system
components one wishes to depend on. Conversely,
the logical link protocol should be generic enough
so that it can be used with different wide-area repli-
cation protocols.

Simplicity. Given the inherent complexity of intrusion-
tolerant replication protocols, the logical link proto-
cols should be easy to reason about and straightfor-
ward to implement.

Section 4.1 presents a logical link that requires no de-
pendable components and that erasure encodes outgoing
messages to reduce the cost of sending redundantly. Sec-
tion 4.2 shows how augmenting the erasure encoding ap-
proach with a broadcast hub can improve performance in
fault-free and under-attack executions. Section 4.3 de-
scribes how relying on a dependable forwarder can yield
an optimal use of wide-area bandwidth without making
it easier to cause inconsistency. Table 1 at the end of this
section summarizes our results. We evaluate the perfor-
mance of the logical links in Section 6.

4.1 Erasure Encoding Based Logical Link

We first present a simple, software-based logical link
protocol. In what follows, we consider how a sending
site, S, passes a threshold-signed message to a receiv-
ing site,R. We definevirtual link i as the ordered pair
(si, ri), wheresi andri refer to the physical machines
with identifieri in sitesS andR, respectively. We callsi

andri peers. Communication over the logical link takes
place between peers using the set of3f + 1 virtual links.

Instead of having each physical machine inS trans-
mit the full threshold-signed message to its peer inR,
the physical machines first encode the message using an
MDS(3f + 1, f + 1) maximum distance separable era-
sure encoding [11, 24]. The message is encoded into
f + 1 message partsand2f redundant partssuch that
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Figure 1: An example erasure encoding based logical link, with f = 1.

any combination off + 1 parts can be used to decode
and recover the original message. We number the parts1
through3f + 1. To transmit an encoded message across
the logical link, machinei in siteS sends parti to its peer
on the corresponding virtual link. The erasure-encoded
parts are locally ordered inR as they arrive. When the
physical machines inR locally executef + 1 parts, they
decode them to recover the original message, which can
then be processed by the logical machine. The procedure
is depicted in Figure 1.

The erasure encoding based logical link allows mes-
sages to be passed correctly and without delay. To under-
stand why, observe that if bothS andR are correct sites,
then since at mostf physical machines can be faulty in
each site, at leastf + 1 of the3f + 1 virtual links will
have two correct peers (see Figure 2); we call such virtual
links correct. Erasure encoded parts passed on correct
virtual links cannot be dropped or delayed by faulty ma-
chines. Therefore, when a message is encoded, at least
f + 1 correctly generated parts will be sent in a timely
manner and subsequently received and introduced for lo-
cal ordering inR. Sincef + 1 parts are necessary and
sufficient to decode, the physical machines inR will be
able to decode successfully.

Each erasure encoded part is1/(f + 1) the size of the
original message. Since each of the3f + 1 servers in
S sends a part, the bandwidth overhead is approximately
(3f + 1)(1/f + 1), which approaches 3 asf increases
to infinity. The overhead is slightly greater than this be-
cause each parti carries a digital signature from serveri
in siteS. Therefore, in the worst case,3f + 1 signatures
must be sent for each outgoing message, compared to
one if a single server were sending. In practice, the sig-
nature overhead can be amortized over several outgoing
messages by packing erasure encoded parts for several
messages into a single digitally signed physical message.

The erasure encoding approach also has a higher com-
putational cost than an approach in which a single server
sends messages on behalf of the site. The receiving site
locally orders the incoming parts as they arrive, meaning
that the reception of a message by the logical machine re-
quires the local ordering of up to3f + 1 events per mes-
sage. Section 5 describes implementation optimizations
that can be used to mitigate this computational overhead.

Figure 2: An erasure encoding based logical link is composedof 3f+1
virtual links; in this example,f = 2. The adversary can block at most
f virtual links by corrupting servers in the sending site andf virtual
links by corrupting servers in the receiving site. Thus, at leastf + 1
virtual links have two correct endpoints and can freely passmessages.

4.1.1 Blacklisting Servers that Send Invalid Parts

The preceding discussion assumed that erasure encoded
parts were generated correctly. However, faulty servers
may generate invalid parts in an attempt to disrupt the
decoding process. Unlike partial signatures, erasure en-
coded parts are not individually verifiable: they do not
carry proofs that they were created correctly. If a server
attempts to decode a message usingf + 1 parts but ob-
tains an invalid message (i.e., one whose threshold signa-
ture does not verify correctly), it cannot, without further
information, determine which (if any) of the parts are in-
valid. There are two possible cases: (1) one or more
of the parts is invalid, or (2) all of the parts are valid,
but the site that sent the message is faulty and encoded
a message with an invalid threshold signature. Even if
the server waits for additional parts to arrive, there is
no efficient way for it to find a set off + 1 valid parts
out of a larger set. Without a mechanism for determin-
ing which parts are faulty, malicious servers can repeat-
edly cause the correct servers to expend computational
resources (i.e., by exhaustive search) to determine which
parts should be used in the decoding. If the site that
sent the message is indeed faulty, then no combination
of parts may decode to a valid message.

To overcome these difficulties, we augment the basic
erasure encoding scheme with a blacklisting mechanism
that can be used to prevent faulty servers from contin-
ually causing the message decoding to fail by submit-
ting invalid parts. We employ both site-level and server-
level blacklists. When a site is blacklisted, subsequent
messages from all servers in the site are ignored. When
a server is blacklisted, only messages originating from
that server are ignored; messages from non-blacklisted
servers in the same site continue to be processed.

In the description that follows, we consider a message
being sent between two sites,S andR, whereS sends
an erasure-encoded message toR that results in a failed
decoding. The blacklisting protocol guarantees that:
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A1. Upon server i in site R executing a failed decoding for message from site S:
A2. inquirySeqR,S++
A3. decodedSet ← set of f + 1 parts used in failed decoding
A4. erasureSeqS,R ← sequence number of message in question (generated by S)
A5. unsignedInquiry ← 〈INQUIRY, inquirySeqR,S, decodedSet, erasureSeqS,R, R〉
A6. Invoke THRESHOLD-SIGN(unsignedInquiry, i)
A7. Stop handling messages from S except next expected INQUIRY and INQUIRY-RESPONSE

B1. Upon THRESHOLD-SIGN returning signedInquiry at server i in site R:
B2. Send to server i in site S: signedInquiry

C1. Upon server i in site S executing 〈INQUIRY, inquirySeqR,S, decodedSet, erasureSeqS,R, R〉:
C2. if all parts in decodedSet are valid:
C3. SiteBlacklist ← SiteBlacklist ∪ {R}
C4. else
C5. invalidSet ← identifiers of local servers whose parts were invalid
C6. fullMessage ← original message encoded with sequence number erasureSeqS,R

C7. unsignedInquiryResponse ← 〈INQUIRY-RESPONSE, inquirySeqR,S, erasureSeqS,R, fullMessage, S〉
C8. Invoke THRESHOLD-SIGN(unsignedInquiryResponse, i)
C9. ServerBlacklist[S] ← ServerBlacklist[S] ∪ invalidSet

D1. Upon THRESHOLD-SIGN returning signedInquiryResponse at server i in site S:
D2. Send to server i in site R: signedInquiryResponse

E1. Upon server i in site R executing 〈INQUIRY-RESPONSE, inquirySeqR,S, erasureSeqS,R, fullMessage, S〉:
E2. expectedSet ← computed parts from fullMessage
E3. if all parts from expectedSet match parts in decodedSet
E4. SiteBlacklist ← SiteBlacklist ∪ {S}
E5. else
E6. invalidSet ← identifiers of servers from S whose parts were invalid in decodedSet
E7. ServerBlacklist[S] ← ServerBlacklist[S] ∪ invalidSet
E8. if |ServerBlacklist[S]| > f
E9. SiteBlacklist ← SiteBlacklist ∪ {S}
E10. else
E11. Resume executing messages from site S

Figure 3: Blacklisting Protocol.

• If both S andR are correct, then a server inS will
be proven faulty and subsequently blacklisted af-
ter generating just one invalid erasure encoded part;
from then on, the server will not be able to disrupt
the decoding at any receiving site.

• If S is faulty, then each faulty server inS can dis-
rupt the decoding at most once in each receiving site
before it is blacklisted by that site. IfS fails to take
part in the blacklisting protocol, messages from all
of its servers will be ignored, except for those mes-
sages that would implicate eitherS as a whole or
one or more faulty servers.

The intuition behind the blacklisting protocol is that a
server in siteR can deduce which party is at fault when
a decoding fails (i.e., one or more servers inS or siteS
as a whole) if it has access to the original message that
was encoded. The server can generate the correct parts
and compare them to the parts it received and used in
the decoding. There are two possible cases. If all of the
parts are correct, then at leastf + 1 servers in siteS
encoded a message with an invalid threshold signature.
Since a correct server only encodes a message if it has
a valid threshold signature, this indicates that siteS is
faulty. If one or more parts are invalid, then because each
part is digitally signed by a server inS, the server inR
can determine exactly which servers inS submitted the
invalid parts and blacklist them.

Pseudocode for the blacklisting protocol is pre-

sented in Figure 3. When a serveri in site
R executes a failed decoding on a message sent
from site S, it attempts to generate a threshold
signature on an〈INQUIRY, inquirySeqR,S, decoded-
Set, erasureSeqS,R, R〉 message, where inquirySeqR,S is
a sequence number incremented each time siteR sends
an INQUIRY message to siteS, decodedSet is the set of
(f + 1) parts that were used in the failed decoding, and
erasureSeqS,R is the sequence number assigned by siteS
to the erasure encoded message for which the decoding
failed. In addition, the server stops handling all messages
from S, except for the next expectedINQUIRY message
or theINQUIRY-RESPONSEcorresponding to the current
inquiry (see below). When serveri in site R gener-
ates the threshold signature for theINQUIRY message,
it sends the message to serveri in siteS (Figure 3, Block
B). Note that this message is not erasure encoded, pre-
venting a circular dependency that could occur if theIN-
QUIRY message itself were not properly encoded (poten-
tially causing an inquiry for theINQUIRY message).

When the servers inS locally execute siteR’s IN-
QUIRY message, they first examine the set of encoded
parts to determine if any of the parts are actually invalid.
If none of the parts is invalid, then siteR is faulty, and
site S blacklistsR and stops all communication with
it (Figure 3, lines C2-C3). This prevents faulty sites
from generating spuriousINQUIRY messages. If one or
more parts are invalid, then siteS generates anINQUIRY-
RESPONSEmessage, which contains the full message
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that was originally encoded. The combination of the
INQUIRY message and itsINQUIRY-RESPONSEproves
that one or more of the servers inS is faulty; therefore,
servers inS can present this proof to an administrator,
who can shut down the faulty servers to prevent them
from continuing to send invalid parts. Note that if siteS
is faulty, it may never generate anINQUIRY-RESPONSE

message at all. Although siteR will not be able to black-
list any servers fromS in this case,R will only handle
the next expectedINQUIRY or INQUIRY-RESPONSE; all
other messages will be dropped before being locally or-
dered.

Upon locally executing theINQUIRY-RESPONSEmes-
sage from siteS, the servers in siteR use the full mes-
sage to determine which of the decoded parts were in-
valid. If none of the parts is invalid, then siteS is faulty
and can be blacklisted (Figure 3, lines E3-E4). This
prevents faulty sites from generating spuriousINQUIRY-
RESPONSEmessages. Otherwise, siteR blacklists those
servers whose parts were invalid and resumes handling
messages from siteS. If the number of servers black-
listed from siteS exceedsf , then siteS is known to be
faulty and can be blacklisted as a whole.

We impose one additional constraint on the processing
of an INQUIRY message to prevent servers in a faulty re-
ceiving site from wasting the resources of correct servers
in a correct sending site. Suppose siteS is correct but has
a faulty serverp that has sent invalid parts for multiple
messages, and suppose siteR is faulty. SiteR may gen-
erate multipleINQUIRY messages, each implying thatp
is faulty. This causesS to use up resources unnecessarily
in order to generateINQUIRY-RESPONSEmessages. For
this reason, siteS will only respond to anINQUIRY mes-
sage if (1) it is for the next expected inquiry sequence
number fromR, and (2) it implicates a new faulty server.
A correct site will not send anINQUIRY message with
inquiry sequence number(i + 1) until it has processed
an INQUIRY-RESPONSEmessage for sequence numberi.
Therefore, if siteS receives twoINQUIRY messages that
ultimately implicate the same faulty server, then siteR is
faulty and can be blacklisted.

4.2 Hub Based Logical Link

In this section we describe how we can improve upon
the basic erasure encoding scheme presented in Section
4.1 by placing the servers within a site on a broadcast
Ethernet hub.3 Figure 4 shows the network configura-
tion within and between two wide-area sites when the
hub based logical link is deployed. The servers in each
site have two network interfaces. The first interface con-

3Some newer devices are called “hubs” but actually perform learn-
ing by examining source MAC addresses to map addresses to ports,
subsequently forwarding frames only to their intended destination. We
explicitly refer to broadcast hubs that do not employ this optimization.

Figure 4: Network configuration of the hub based logical link.

nects each server to a LAN switch and is used for intra-
site communication. The second interface connects each
server to a site hub and is used for sending and receiving
wide-area messages. This interface is configured to op-
erate in promiscuous mode so that the server receives a
copy of any message passing through the hub.

The hub based implementation of the logical link ex-
ploits the following two properties of a broadcast hub:

Uniform Reception: Any incoming wide-area message
received by one local server will be received by all
other local servers.

Overhearing: Any outgoing wide-area message sent by
a local server will be received by all local servers.

When integrated with the basic erasure encoding
scheme, a broadcast hub yields several benefits. The
Uniform Reception property implies that as long as the
physical machine that sends an erasure encoded part is
correct, all of the correct physical machines in the re-
ceiving site will receive the part. This means that any
virtual link whose sender is correct will behave like a
correct virtual link, even if the peer is faulty, provided at
least one correct physical machine in the receiving site
assumes responsibility for introducing the part for local
ordering. Since there are at least2f +1 correct servers in
the sending site, a threshold-signed message can be en-
coded into2f + 1 message parts andf redundant parts,
where each part is(1/(2f + 1)) the size of the original
message. This improves the worst-case overhead to ap-
proximately(3f +1)(1/(2f +1)), which approaches an
overhead factor of 1.5 asf tends towards infinity, com-
pared to an overhead factor of 3 with the basic erasure
encoding scheme.

The Overhearing property enables local servers to
monitor which erasure encoded parts were already sent
through the hub; if enough parts were already sent, a lo-
cal server need not send its own part, saving wide-area
bandwidth. Of course, some of the parts that the server
overhears on the hub may be faulty, and so the blacklist-
ing protocol described in Section 4.1.1 remains a critical
component of the logical link.
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To leverage the Overhearing property, we map each
outgoing message to two disjoint sets, the first with
2f + 1 members and the second withf members. When
a server encodes an outgoing message, it decides to send
its part based on which set it is in. If the server is in
the first set, then it sends its erasure-encoded part to its
peer immediately. If the server is in the second set, then
it schedules the sending of its part after a local timeout
period. If, before the timeout expires, the server over-
hears2f + 1 parts on the hub from the encoding of the
current message, then the server cancels transmission of
its part. If the timeout expires, the server sends the part
to its peer. When all of the members of the first set are
correct and the timeout values are set correctly, exactly
2f + 1 parts will be sent, each(1/(2f + 1)) the size
of the message, which is nearly optimal; as before, the
overhead is slightly higher due to the signature overhead
on each part. In the worst case, all of the parts will be
sent, yielding an overhead factor approaching 1.5. The
overhead in practice will depend on the number of faulty
servers and how well the site’s timing assumptions hold.

There are two potential costs of deploying the hub
based logical link: local computation and bandwidth,
and latency. Since incoming wide-area messages are re-
ceived on the hub, many servers in the receiving site will
receive a copy of each erasure encoded part. This raises
the question of which server in the receiving site should
be responsible for introducing a part for local ordering.
The approach we take is to assign a set off + 1 servers
to each incoming part, ensuring that at least one correct
server will introduce each part for ordering. Duplicate
copies of a part are ignored upon local execution. Thus,
while the hub improves wide-area bandwidth efficiency,
it increases local computation and bandwidth usage in
the receiving site because it requires more events to be
locally ordered. We believe this tradeoff is desirable in
wide-area systems, whose performance is usually limited
by wide-area bandwidth constraints.

The other potential cost of the hub based logical link
is higher latency compared to the basic erasure encoding
scheme. If any of the2f + 1 servers in the first group
do not send their parts when they are supposed to, then
the servers in the second set will wait a local timeout pe-
riod before transmitting their parts. In the worst case,
this timeout is incurred in each round of the wide-area
protocol. A system administrator whose focus is on min-
imizing latency may opt to configure the system so that
all servers send their parts immediately, reducing delay
under attack but paying a higher cost in wide-area band-
width (yielding a fixed overhead approaching 1.5).

Finally, we note that while broadcast hubs are a natural
fit for our architecture, they are somewhat dated pieces
of hardware that are often replaced in favor of switches.
Our system can achieve the same benefit as a hub by us-

ing any device meeting the Uniform Reception and Over-
hearing properties, such as network taps.

4.3 Dependable Forwarder Based Logical Link

We now consider the implications of equipping each site
with a dependable forwarder(DF), a dedicated device
that sits between the servers in a site and the wide-
area network and is responsible for sending and receiv-
ing wide-area messages on the site’s behalf. The basic
premise is as follows. When the physical machines in a
site generate a threshold-signed message, they send it to
the site’s dependable forwarder. When the DF receives
f + 1 copies of the message, it sends exactly one copy
of the message to the DF at each destination site. Upon
receiving an incoming wide-area message, a DF dissem-
inates it to the physical machines in the local site.

We designed the dependable forwarder to be neutral to
the wide-area replication protocol being deployed. This
makes it simpler to implement and reason about (by
avoiding protocol-specific configuration and dependen-
cies), as well as more generally applicable. Each local
server communicates with the local DF via TCP, tag-
ging each message with a message authentication code
(MAC). The DFs send messages to each other using
UDP, just as the servers would if they were communicat-
ing directly. Messages sent between DFs contain MACs.

After generating a threshold-signed wide-area mes-
sage, a local server simply sends it to the DF, prepending
a short header that contains (1) a sequence number, (2) a
destination bitmap, and (3) the message length. The se-
quence number is a 64-bit integer incremented each time
the server wants to send a wide-area message; since lo-
cal servers generate wide-area messages in the same or-
der, they will consistently assign sequence numbers to
outgoing messages. The destination bitmap is a short bit
string used to indicate to which sites the message should
be sent. The header is stripped off before the DF sends
the message on the wide-area network. Note that the DF
does not need to verify threshold signatures or know any-
thing about the content of the wide-area messages.

Since it is depended upon to be available, the DF
should be deployed using best practices, including pro-
tecting it from tampering via physical security and ac-
cess control, and configuring it to run only necessary ser-
vices to reduce its vulnerability to software-based com-
promise. A primary-backup approach can also be used to
fail-over to a backup DF in case the primary DF crashes.

As stated in Section 2, any number of dependable
forwarders can be compromised without threatening the
consistency of the global replication service. Thus, we
rely on the DFs to run correct code and remain avail-
able, but not at the risk of making it easier to violate
safety. A site whose DF has been compromised but in
which f or fewer servers have been compromised can
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only exhibit faults in the time and performance domains,
not in the value domain. The reason this property holds
is that the DF passes threshold-signed messages, which
even a compromised DF cannot forge. We believe re-
lying on DFs whose compromise cannot cause incon-
sistency, rather than on devices the system requires to
be impenetrable in order to guarantee safety, is the cor-
rect approach given the strong consistency semantics re-
quired by systems that use a state machine replication
service. Systems with weaker consistency requirements
might relax this constraint to gain efficiency.

In order to justify the fact that system liveness and
performance is placed in the hands of the dependable
forwarders, it is important that their implementation be
simple and straightforward so that the code can be ver-
ified for correctness. We now describe such an imple-
mentation. Each DF maintains several counters. First,
the DF maintains a single counter,lastSent, which stores
the sequence number of the last message sent on behalf
of the site. The DF also maintains one counter per local
server, lastReceivedi, which stores the sequence num-
ber of the last message received from serveri. To keep
track of which messages (and how many copies of them)
have been received from local servers, the DF uses a two-
level hash table. The first level maps message sequence
numbers into a second hash table, which maps the entire
message (including the prepended header) to aslot data
structure. The slot contains a single copy of the message
(stored the first time the message is received) as well as
a tally of the number of copies that have been received.

Local Message Handling Protocol:Each DF is con-
figured with a parameter,LOCAL-THRESHOLD, indicat-
ing how many copies of a message must be received from
local servers before the message should be sent on the
wide area. This value can be set betweenf + 1 and
2f +1 (inclusive). SettingLOCAL-THRESHOLDto f +1
ensures that at least one correct server wants to send a
message with the given content, while settingLOCAL-
THRESHOLD to 2f + 1 ensures that a majority of the
correct servers want to send the given message.

The DF must be designed to use a bounded amount of
memory so that faulty local servers cannot cause it to run
out of resources. The DF expects to receive messages
from each local server in sequence number order. A
WINDOW parameter dictates how many messages above
lastSentthe DF will accept from a local server before it
(temporarily) stops reading from the corresponding ses-
sion, which will eventually cause the session to block
until enough servers catch up and more messages can be
sent (i.e., untillastSentincreases). This guarantees that
at mostWINDOW slots will be allocated at any point in
time.

Remote Message Handling Protocol: A strategy
similar to the one described above must be used to bound

the amount of resources needed by the dependable for-
warder to handle messages from remote sites. The DF
maintains a queue per incoming wide-area link; each
queue has a bounded size. Incoming messages are placed
in the appropriate queue and must be delivered to the
servers in the local site; an incoming message is dis-
carded if the corresponding queue is full. Since faulty
local servers may fail to read the messages sent by the de-
pendable forwarder, bounding the memory requirements
of the DF implies that the DF must be able to “forget”
about a message (i.e., perform garbage collection) before
it has successfully sent it to all local servers. The DF can
be configured to perform garbage collection when it has
successfully written the message to betweenf + 1 and
2f+1 local servers, depending on the requirements of the
replication protocol; the former guarantees that at least
one correct local server will receive the message, while
the latter guarantees that a majority of correct servers will
receive the message. Prime works correctly as long as
one correct server receives the message, so we set the
parameter tof + 1.

5 Putting It All Together

In this section we show how the pieces of our architec-
ture fit together and describe the service properties pro-
vided by the resulting system. Figure 5 depicts the inter-
nal organization of a replication server. As mentioned in
Section 3, although the architecture supports the deploy-
ment of different local and global replication protocols,
we chose to use Prime in both levels of the hierarchy (de-
noted Local Prime and Global Prime in the figure).

When a Global Prime message arrives on the network
(Fig. 5, bottom left), it is dispatched to Local Prime so
that it can be locally ordered. Once the message has been
locally executed, it is dispatched to Global Prime for pro-
cessing by the logical machine. If the erasure encoded or
hub based logical link is deployed, then the locally ex-
ecuted erasure-encoded parts are passed to the Erasure
Code Services module so that they can be decoded when
enough parts have been collected. The decoded event is
then passed to Global Prime for processing by the logical
machine. When the server generates a threshold-signed
message, the message is passed to the Logical Link (Fig.
5, bottom right) so that it can be sent on the wide area.

To amortize the computational overhead of generat-
ing digital and threshold signatures, each server makes
use of a Merkle Tree [21], a cryptographic data struc-
ture that can be used to sign multiple messages at once.
Our previous work [6] also employed Merkle trees but
only for wide-area messages; we use it here for both lo-
cal and global protocol messages. Using a Merkle tree
to threshold-sign wide-area messages actually increases
their size slightly, because a logarithmic number of di-
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Technique
Bandwidth Overhead Local Orderings Per Message Delay Per Message

Best Case Worst Case Minimum Maximum Best Case Worst Case

Erasure Codes 3f+1

f+1

3f+1

f+1
3f + 1 3f + 1 None None

Hub Optimistic,
1 3f+1

2f+1
(f + 1)(2f + 1) (f + 1)(3f + 1) None Local Timeout

(2f + 1, 3f + 1)

Hub Immediate, 3f+1

2f+1

3f+1

2f+1
(f + 1)(3f + 1) (f + 1)(3f + 1) None None

(2f + 1, 3f + 1)

Dependable Forwarder 1 1 f + 1 f + 1 None None

Table 1: Summary of Inter-site Communication Techniques. In the Hub-Optimistic(2f + 1, 3f + 1) approach, a message is encoded into3f + 1
parts,2f + 1 of which are required to decode.2f + 1 parts are sent immediately, and the remainingf parts may be sent after a local timeout.
Hub-Immediate(2f + 1, 3f + 1) is the same as Hub-Optimistic, except that all3f + 1 parts are sent immediately.

Figure 5: Internal server organization.

gests must be appended to enable signature verification.
The ability to aggregate signatures is what makes the log-
ical machine throughput high enough so that the system
is bandwidth-constrained, rather than CPU constrained.
Thus, it is worth paying the cost in digests to achieve
much higher system throughputs.

5.1 Liveness and Performance Properties

We now present the liveness and performance proper-
ties provided by our system. We first consider the per-
formance characteristics of correct logical machines and
then describe the system-wide performance guarantee.

The local instance of Prime guarantees a property
calledBounded-Delay(originally defined in [7] but re-
stated below). We begin by specifying the local net-
work stability requirements needed to meet this prop-
erty. We define two classes of network traffic:timely
andbounded. Messages in the bounded traffic class are
assumed to arrive in some unknown bounded time. This
is the degree of synchrony commonly assumed in Byzan-
tine fault-tolerant replication systems (e.g., [15, 18]).A
small subset of messages (the timely messages) require a
stronger degree of synchrony:

ASSUMPTION5.1 LOCAL-PRIME-STABILITY : There is
a time after which the following condition holds for a set
of at least2f + 1 correct servers in the site. This set of

servers is called thestable servers.

• For each pair of stable servers s and r, there
exists a value MinLat(s, r), unknown to the
servers, such that if s sends a timely mes-
sage to r, it will arrive with delay∆s,r, where
Min Lat(s, r)≤ ∆s,r ≤ Min Lat(s, r)∗ KLocal.

In other words, the ratio of the maximum to the mini-
mum message delay for any timely message sent froms
to r is no more thanKLocal, a known network-specific
constant accounting for latency variability. We believe
LOCAL-PRIME-STABILITY can be made to hold in well-
provisioned local-area networks, where latency is of-
ten predictable and bandwidth is plentiful. In addition,
timely messages can be processed with higher priority to
give the assumption better coverage.

When local bounded messages arrive in bounded time
and Assumption 5.1 holds, the local instance of Prime
makes the following performance guarantee:

DEFINITION 5.1 LOCAL-BOUNDED-DELAY : There ex-
ists a time after which the latency for any operation in-
troduced by a stable server is upper-bounded.

In Prime, the upper bound is a function of the network
roundtrip times (including processing delays) between
correct servers, as long as the system is not saturated.
Because the number of messages that need to be ordered
by the logical machine is limited by the wide-area band-
width, a well-engineered logical machine is likely to be
capable of doing much more processing than it needs to
do and is unlikely to become overloaded.4

Thus, sites in whichLOCAL-PRIME-STABILITY holds
and local bounded messages arrive in bounded time
will eventually be able to process global protocol events
within a bounded time. This is the behavior that one
would expect from a single physical machine running
Prime. Therefore, we can achieve a performance guaran-
tee analogous toLOCAL-BOUNDED-DELAY at the global
level by making an identical network stability assump-
tion to Assumption 5.1, except that servers are replaced

4Indeed, in our own tests, performance was limited by wide-area
bandwidth rather than the processing capability of the logical machine.
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with sites and we use a different variability constant (i.e.,
KGlobal instead ofKLocal):

ASSUMPTION5.2 GLOBAL-PRIME-STABILITY : There
is a time after which the following condition holds for
a set of at least2F + 1 correct sites. This set of sites is
called thestable sites.

• For each pair of stable sites S and R, there
exists a value MinLat(S, R), unknown to
servers in the sites, such that if a server in S
sends a timely message to a server in R, the
message will arrive with delay∆S,R, where
Min Lat(S, R)≤ ∆S,R ≤ Min Lat(S, R)∗ KGlobal.

Since GLOBAL-PRIME-STABILITY requires a rela-
tively strong degree of timeliness, it is important to jus-
tify how it can be made to hold in practical wide-area
networks. The messages requiring timeliness all have
small bounded size and are only sent periodically. In
practice, the system can be tuned so that the timely mes-
sages consume a small, fixed amount of bandwidth. The
bounded messages (which account for almost all of the
traffic) will consume any “extra” bandwidth not used for
performance-critical protocol steps. To realize this sepa-
ration, one can use a quality of service mechanism such
as DiffServ [10], with one low-volume class for timely
messages and another class for bounded messages.

Note that achieving the necessary network synchrony
is not enough to meetGLOBAL-PRIME-STABILITY . The
local state machine replication protocol and the logical
link protocol also must not introduce unbounded delay.
Fortunately, running Prime produces a sufficient degree
of timeliness from the logical machine: whenLOCAL-
PRIME-STABILITY holds, the logical machine provides
LOCAL-BOUNDED-DELAY . All three logical link proto-
cols also provide sufficient timeliness. In the erasure en-
coding and dependable forwarder based logical links, the
faulty servers cannot delay a message from being sent on
time. In the hub based logical link, the faulty servers
can only introduce a small, bounded amount of delay
into the link (i.e., the value of the local timeout). There-
fore, our protocols supply sufficient timeliness to achieve
GLOBAL-PRIME-STABILITY .

When GLOBAL-PRIME-STABILITY holds and
bounded messages arrive within a bounded time, the
system makes the following performance guarantee:

DEFINITION 5.2 GLOBAL-BOUNDED-DELAY : There
exists a time after which the latency between a stable
server in a stable site receiving a client request and all
stable servers in all stable sites executing that request is
upper-bounded.

The system requires weaker synchrony conditions for
liveness. The following liveness guarantee is met as long

as GLOBAL-PRIME-STABILITY holds, even if global
bounded messages arrive completely asynchronously:

DEFINITION 5.3 GLOBAL-LIVENESS: If a stable server
in a stable site receives a client request, then all stable
servers in all stable sites eventually execute the request.

6 Performance Evaluation

In this section we evaluate a prototype implementation
of our attack-resilient architecture, focusing on the per-
formance implications of deploying the logical link pro-
tocols described in Section 4.

6.1 Testbed and Network Setup

We performed our experiments on a cluster of twenty
3.2 GHz, 64-bit Intel Xeon computers. We emulated
a wide-area system consisting of 7 sites, each with 7
servers. Such a system can tolerate the complete com-
promise of 2 sites and can tolerate 2 Byzantine faults in
each of the other 5 sites. We ran one fully deployed site
on 7 machines (with one server per machine) and emu-
lated the other 6 wide-area sites using one machine per
site. The remaining machines were used to run client
processes and to emulate the wide-area topology. We
used the Spines [4] messaging system to place bandwidth
and latency constraints on the links between sites. We
limited the aggregate outgoing bandwidth from each site
to 10Mbps and placed 50ms delay between wide-area
sites. No constraints were placed on the links between
the servers in the fully-deployed site (which communi-
cated via a Gigabit switch) or between clients and their
local servers. Clients submit one update operation (con-
taining 200 bytes of data, representative of a typical SQL
query) and wait for proof that the operation was ordered
before submitting their next operation. Clients were dis-
tributed as evenly as possible among the sites.

The emulated sites emulate the local ordering of wide-
area protocol events based on the ordering delays mea-
sured in the non-emulated site. The wide-area messages
generated by the emulated sites are exactly the same as
if the sites were not emulated, except that they are not
threshold signed; the messages contain 128 filler bytes to
emulate the bandwidth cost of a signature, and the emu-
lated sites busy-waited for the time required to generate
partial signatures and combine them in order to emulate
the computational overhead.

We used OpenSSL [2] for generating and verifying
RSA signatures and for computing message digests. We
used the OpenTC implementation [3] of Shoup’s thresh-
old RSA signature scheme for generating threshold sig-
natures. We used Luby’s implementation of the Cauchy-
based Reed-Solomon erasure encoding scheme [1,11,24]
for performing erasure coding operations.
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6.2 Test Configurations

Erasure Encoded Logical Link: In the erasure en-
coded logical link, the servers encode threshold-signed
messages into 7 parts, and each server sends a part to its
peer in the receiving site. The emulated sites send and
receive all erasure encoded parts on behalf of the servers
they emulate. To evaluate the performance of the logical
link under attack, the faulty servers delayed sending their
erasure encoded parts by 300 ms.

Hub Based Logical Link: We emulated the use of
a hub by having servers (1) locally broadcast outgoing
wide-area messages before sending them and (2) locally
broadcast incoming wide-area messages before process-
ing them. Servers were assigned to either the first or sec-
ond sending group based on their server identifiers and
sequence numbers contained in the messages. We used a
similar strategy to assign the responsibility of proposing
incoming messages for local ordering to 3 servers.

We tested the hub based logical link in four configura-
tions. The first is designated as Hub-Optimistic. Wide-
area messages are encoded into 7 parts, 5 of which are
needed to decode. 5 servers send their parts immediately,
and the other 2 only send their parts if they do not over-
hear enough parts before their local timeout expires. All
servers were assumed to be correct. Servers in the sec-
ond group used a local timeout of 25 ms. This value was
chosen after experimentation as one that would not allow
faulty servers to cause too much delay when the system
is under attack, but which was usually long enough so
that correct servers in the second group would not have
to send their parts. We observed correct servers to send
their parts between0% and10% of the time. Emulated
sites conservatively sent additional parts10% of the time.

In the second configuration, Hub-Immediate, all
servers were correct and sent their parts immediately.
Thus, this configuration does not utilitize the monitor-
ing of outgoing wide-area messages. In the third config-
uration, we ran an attack on the Hub-Optimistic logical
link. Faulty servers in the first group delayed sending

their parts by 100 ms, causing correct servers in the sec-
ond group to have to send their parts because their local
timeouts expired. Finally, we tested the performance in
a hypothetical scenario when all servers are assumed to
be correct and the timeout is set perfectly, so that extra
parts are never sent. This configuration is denoted Hub-
Optimistic-Minimum-Parts.

Dependable Forwarder Based Logical Link: We
emulated the wide-area message patterns of a DF by hav-
ing one chosen server send and receive wide-area mes-
sages on behalf of the site. As above,f + 1 servers pro-
pose incoming messages for local ordering based on their
server identifiers and the message sequence numbers.

6.3 Evaluation

Figure 6 shows system throughput, measured in update
operations per second, as a function of the number of
clients. Figure 7 shows the corresponding latency, mea-
sured in seconds. As expected, the dependable for-
warder deployment achieves the best performance, be-
coming bandwidth-constrained at a peak throughput of
2100 updates/sec. Latency remains relatively stable and
is below 1.5 seconds with 3000 clients. Hub-Optimistic-
Minimum-Parts and Hub-Optimistic achieve the next
best performance, reaching peak throughputs at 1730
and 1600 updates/sec, respectively. Hub-Optimistic-
Minimum-Parts demonstrates how the hub based log-
ical link performs with no faults and a perfect time-
out. Since the emulated sites in Hub-Optimistic acted
conservatively and sent an extra part (beyond the re-
quired 5) with10% probability, a more accurate emula-
tion would bring its performance slightly closer to Hub-
Optimistic-Minimum-Parts. The difference between
Hub-Optimistic-Minimum-Parts and the dependable for-
warder configuration is due to the bandwidth overhead
for digital signatures. An average of roughly 2.5 encoded
parts were packed into each physical message; more ag-
gressive packing would further reduce the overhead.

Figures 8 and 9 show the performance of the hub con-
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figurations in isolation so that the effects can be seen
more clearly. The Hub-Immediate and Hub-Optimistic-
Under-Attack configurations achieved a bandwidth-
constrained throughput plateau at 1120 updates/sec. We
expected these two configurations to reach the same
peak throughput because all servers send a part for
each message in both configurations, thus consuming
the same amount of outgoing bandwidth. Note that
Hub-Optimistic-Under-Attack has a slightly lower slope
than Hub-Immediate, reflecting the additional latency in-
curred by a local timeout per wide-area round. The ef-
fect can be seen in Figure 9, as the latency in the at-
tack scenario is between 150 and 200ms higher than in
Hub-Immediate until the curves meet when the system
becomes saturated. Using a higher local timeout value
would increase the peak throughput of Hub-Optimistic
slightly, but it would also create additional latency and
decrease the slope of the Hub-Optimistic-Under-Attack
curve. This reflects the tradeoff between obtaining bet-
ter fault-free performance and making the protocol more
vulnerable to performance degradation under attack.

Finally, the erasure encoded logical link configura-
tions obtained bandwidth-constrained peak throughputs
at around 620 updates/sec. As expected, the attack on
the erasure encoded logical link had almost no impact on
performance. The fact that faulty servers delay the send-
ing of their parts does not prevent 5 correct parts (only 3
of which are needed to decode) from being sent to the re-
ceiving site in a timely manner. In fact, the under-attack
performance is slightly higher because a larger percent-
age of the site’s outgoing bandwidth is dedicated to parts
from correct servers.

Discussion: Our results demonstrate two main points.
First, the logical links are effective in mitigating perfor-
mance attacks on the hierarchical architecture’s inter-site
communication, while still allowing reasonable fault-
free and under-attack performance by using wide-area
bandwidth efficiently. Second, making slightly stronger

assumptions about the resources available for building a
logical link can significantly improve performance. A
simple broadcast hub can yield fault-free performance
close to the performance achieved when a dependable
forwarder sends parts on behalf of the site. Even when
under attack, the peak throughput of the hub based log-
ical link only degrades by between 30 and 40 percent,
while resulting in a relatively small increase in latency.

Attacks on a flat deployment of Prime (whose effects
were shown in [7]) can be mounted against both levels of
the hierarchy. In one attack, a faulty leader can add two
message delays, plus an aggregation delay. In another
attack, the faulty servers can cause the correct servers to
consume bandwidth for message reconciliation (i.e., to
bring each other up to date). When the delay attack is
mounted in the local site, the logical machine processing
time increases by a delay whose duration is dominated by
the aggregation constant (30ms in our implementation).
Since local bandwidth is plentiful, the reconciliation at-
tacks do not have a significant impact on performance
within the local site. The same attacks can be mounted
on the wide area and have an impact similar to when they
are mounted against physical machines. The attacks can
decrease throughput by approximately a factor of 2 and
can increase update latency by two wide-area message
delays plus an aggregation constant (roughly 200ms in
our implementation).

7 Related Work

Attack-Resilient State Machine Replication: Recent
work has focused on protocols that can perform well
even in uncivil executions. Aiyer et al. [5] suggested
rotating the primary to mitigate its attacks. The Prime
system [7] formalized the need for more performance-
oriented correctness criteria to augment traditional live-
ness properties. The Aardvark system of Clement et
al. [15] proposed building robust Byzantine fault-tolerant
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systems that sacrifice some normal-case performance
to guarantee acceptable performance when under at-
tack. Aardvark incorporates important system engineer-
ing techniques that can be used to improve robustness.
Such techniques can also be applied to our Prime-based
logical machines. The Spinning protocol of Veronese et
al. [32] constantly rotates the primary to reduce the im-
pact of faulty servers. Singh et al. [27] demonstrate how
the performance of different protocols can degrade under
unfavorable network conditions.

Wide-Area Intrusion-Tolerant Replication: Stew-
ard [8] used a hierarchical architecture to scale intrusion-
tolerant replication to large, multi-site deployents. The
customizable architecture in [6] generalized Steward by
using a local state machine replication protocol in each
site to cleanly separate the local and global protocols.
The use of state machine based logical machines has
been well-studied in the literature (e.g., [12, 30]). Our
current architecture builds on the customizable architec-
ture, running Prime in both levels of the hierarchy. How-
ever, we show how to harden the architecture by building
attack-resilient logical links. The ShowByz system of
Rodrigues et al. [25] supports a large deployment con-
sisting of many replicated objects. ShowByz adjust the
BFT quorum size to decrease the likelihood that the fault
assumptions of any replicated group are violated.

Protocols in a Hybrid Failure Model: Verı́ssimo
[29] formalized the notion of a hybrid failure model in
which different parts of the system operate under differ-
ent failure and timing assumptions. Correia et al. [16]
developed a wormhole-based intrusion-tolerant state ma-
chine replication protocol. The protocol makes use of
a Trusted Multicast Ordering (TMO) service that runs
between trusted components, collecting hashes of atom-
ically multicast messages. When the TMO receives
enough copies of the hash, it assigns an ordering to
the message. Our dependable forwarder implementation
uses a somewhat similar idea, sending the message over
the wide-area network when it receives enough copies,
but it can be compromised without violating safety.

Bessani et al. [9] build a protection service for critical
infrastructure systems. When a message passes from an
unprotected to a protected realm, it must be approved by
f + 1 replicas to ensure that it conforms to policy. Each
replica has access to a trusted component that stores a
shared symmetric key. The component will only gener-
ate a MAC on a message when it collectsf + 1 copies
from different replicas. The system also uses a hub to al-
low messages to be received by all replicas without mod-
ifying legacy components.

Survivable Spread [28] provides an intrusion-tolerant
replication service for wide-area networks where at least
one node per site is assumed to be impenetrable. Inter-
site communication is handled by trusted forwarders run-

ning on secure servers. The RAM system of Mao et
al. [19] deploys one server in each site and assumes each
server is equipped with a trusted attested append-only
memory device that signs outgoing messages, allowing
other sites to verify the correctness of the messages’ con-
tents and enabling reductions in latency. The EBAWA
protocol of Veronese et al. [31] uses a trusted Unique Se-
quential Identifier Generator to constrain the behavior of
faulty servers, allowing fewer wide-area rounds.

8 Conclusions

This paper presented an attack-resilient architecture for
large-scale intrusion-tolerant replication. We described
three logical link protocols for efficient, attack-resilient
inter-site communication, and we considered the prac-
tical and theoretical implications of deploying different
state machine replication protocols in the hierarchical ar-
chitecture. Our experimental results showed the perfor-
mance benefits that can be realized by making slightly
stronger assumptions about one’s environment, without
making it easier for faulty servers to cause inconsistency.
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