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Abstract—The increasing number of cyber attacks against
critical infrastructures, which typically require large state and
long system lifetimes, necessitates the design of systems that are
able to work correctly even if part of them is compromised.

We present the first practical survivable intrusion tolerant
replication system, which defends across space and time using
compiler-based diversity and proactive recovery, respectively.
Our system supports large-state applications, and utilizes the
Prime BFT protocol (providing performance guarantees under
attack) with a compiler-based diversification engine. We devise a
novel theoretical model that computes how resilient the system is
over its lifetime based on the rejuvenation rate and the number
of replicas.

This model shows that we can achieve a confidence in the
system of 95% over 30 years even when we transfer a state of 1
terabyte after each rejuvenation.

I. INTRODUCTION

Critical infrastructures such as financial, transport, or
SCADA systems play an important role in everyday life. In
this world, availability, reliability, and security are paramount.
However, it is well known that exploits exist in software archi-
tectures and that attackers use these exploits to compromise
systems. As a consequence, critical systems must be built to
tolerate intrusions: they need to support consistent, large state
across the infrastructure, employing algorithms that guarantee
correct distributed operation over long system lifetimes even
in the face of intrusions, where part of the infrastructure is
controlled by the adversary.

To this end, Byzantine Fault Tolerant (BFT) protocols (e.g.
[1]) can be considered a building block for the design of
intrusion tolerant systems, because they are able to work
correctly even if f out of 3f+1 replicas behave in an arbitrary
manner. However, BFT protocols alone do not provide a solid
basis for the construction of intrusion tolerant replication
systems with long lifetime (e.g. years): if a smart attacker
is able to compromise f replicas, it is likely that with time
he will be able to compromise the f -+ 1! replica, enabling
the attacker to cause inconsistencies. This is particularly true
if all the replicas are identical, as is common in real-world
deployments, because an identical attack surface allows an
attacker to successfully compromise all the replicas in the
system with the same attack. As such, it is important to

diversify replicas as much as possible [2]-[4]. We refer to
this approach as defending the system across space.

However, defense across space only increases the attacker’s
workload linearly by requiring the attacker to develop f + 1
distinct attacks. The attacker can still spend the time to develop
these attacks, especially if the system is long-lived. Hence, pe-
riodic rejuvenation of replicas is necessary to clean potentially
undetected intrusions. The rejuvenated replica should restart
as non-compromised to ensure any intrusion is cleaned, and
should be diverse from all currently and previously existing
replicas to ensure that the attacker has no advantage of prior
knowledge. This forces the attacker to act quickly, otherwise
any progress he or she has made in compromising system
components will be undone. We refer to this approach as de-
fending the system across time. Some of the current approaches
in the field of intrusion tolerant systems [1], [5], [6] offer weak
solutions to defend systems across space and time: they either
do not diversify replicas after rejuvenation, or they use coarse-
grained diversity (e.g. at the operating system level) where the
strength of such a system is limited by the small number of
different copies available.

Practical deployments of proactive rejuvenation raise the
issue of how often to refresh replicas in order to maintain
system correctness over its lifetime. Rejuvenating too often
can reduce system availability, limit the size of the replicated
state, and incur unnecessary overhead. In contrast, rejuvenating
too infrequently can increase the likelihood that the attacker
will succeed.

In this paper, we present the first practical survivable intru-
sion tolerant replication system that provides defense across
space and time, a term first used in [7]. Our main contributions
are:

e The first proactive recovery protocol that supports large
state. We devise two novel state transfer strategies: one that
prioritizes fast data retrieval and one that minimizes bandwidth
usage, which can be used to restart a replica from a clean state;
e A theoretical model that computes the resiliency of the
system over its lifetime (e.g. 30 years) based on the rejuvena-
tion rate, the number of replicas, and the strength of a single
replica; and

e The first integration of subsystems that support the assump-



tions of a practical survivable data replication system: the
Prime BFT protocol [8], which ensures performance guar-
antees even while under attack, and that recently has been
integrated into the Siemens corporation commercial SCADA
product for the power grid [9]; and the MultiCompiler [10]
that produces different versions of the system, such that no
two versions present an identical attack surface. This does
not mean that the exploits have vanished, but rather that the
attacker must craft a new attack for each replica. A new version
of a replica is produced after its rejuvenation.

In this way, the system is protected unless the attacker is
able to compromise more than f components in a limited
amount of time (the time for the entire system to be rejuve-
nated). This time is chosen so that the probability the attacker
will succeed is low.

In a previous work [4], Schneider et al. presented a
framework that periodically rejuvenates replicas, using built-in
operating system tools to generate diverse copies. In our work,
we generate diverse versions of Prime replicas by augmenting
the built-in operating system tools with a compiler-based
diversification engine.

A theoretical model for proactive rejuvenations has also
been presented in [11]. While this model applies to stateless
systems, in our work we define the rejuvenation rate taking
into account the size of the state that may need to be
transferred and the time to transfer it.

It is worthwhile to note that proactive recovery and diversity
do not protect against protocol flaws. If the protocol has a flaw
that makes it vulnerable to attacks (e.g. SQL injection), then
proactive recovery and diversity have no effect. In addition,
proactive recovery and diversity do not protect against DDoS
attacks. Handling resource exhaustion attacks is an orthogonal
and complementary problem to the one described in this paper.

The remainder of the paper is organized as follows: Section
IT introduces Prime and software diversity. Section III presents
the system model. Section IV describes the proactive recovery
algorithm. Section V presents the experimental evaluation of
the proposed approach. Section VI illustrates the theoretical
rejuvenation model. Section VII discusses previous works, and
Section VIII concludes the paper.

II. BACKGROUND
A. Prime, a BFT protocol with performance guarantees

In this paper we focus on Prime as the baseline to build
a long-lived intrusion tolerant system. Unlike previous BFT
protocols, Prime bounds the amount of performance degra-
dation that can be caused by a malicious leader. To do so,
Prime extends the typical pre-prepare, prepare, and commit
phases for global ordering with a pre-ordering phase, where
a correct replica that receives a client operation broadcasts
that operation in the system together with a locally generated
sequence number (see Figure 1).

If the operations injected by the leader during the pre-
prepare phase do not match those in the pre-ordering phase,
the leader is suspected by correct replicas and replaced. In
addition, Prime replicas run a background protocol to estimate

PO PO PO PRE
| REQUEST _ACK ARU PREPARE _PREPARE COMMIT
L = Leader
3 0 = Originator
z [ = Aggregation
20 Defy
PO PO PO PROOF PRE
L REQUEST ACK ARU MATRIX PREPARE PREPARE COMMIT
x
%
2
o

Fig. 1. The pre-ordering phase in Prime helps to detect a delay attack and
replace a malicious leader.

the round-trip time to each other in order to compute how fast
the leader should inject client operations for global ordering. If
the leader fails to respect timeliness constraints, it is suspected
by correct replicas and replaced. With respect to other BFT
protocols, the pre-ordering phase and the round-trip time
estimation in Prime introduce a small performance hit during
normal operations. However, these are necessary to monitor
the behavior of the leader and replace it quickly to guarantee
that even under attack the client operations introduced by
correct replicas are executed within a bounded-delay that
depends on the current network conditions (see Section III).
This allows Prime to perform an order of magnitude better
than previous BFT protocols in the presence of an attack.

B. Software diversity

Software diversity, such as N-version programming [12],
[13], was originally introduced for software reliability. More
recently, cheaper software diversity solutions [2], [3] (i.e. not
involving humans in the loop) have been used to defend
software systems from code reuse attacks, in which an attacker
exploits knowledge of the code by using snippets or entire
functions from the application itself to perform an attack. The
goal of software diversity is to evolve programs into different
but semantically identical versions, such that it is unlikely that
the same attack will succeed on any two variants [14].

In this paper we use the compiler presented in [10] to diver-
sify Prime replicas. This MultiCompiler is based on the LLVM
3.1 compiler and makes use of no-operation insertion, stack
padding, shuffling the stack frames, substituting instructions
for equivalent instructions, randomizing the register allocation,
and randomizing instruction scheduling to obfuscate the code
layout of an application. After each rejuvenation the Multi-
Compiler takes the Prime bitcode, i.e. a compiler-generated
intermediate representation of the source code, and a 64-bit
random seed and generates a diverse copy of a Prime replica
from a large entropy space. Hence, if an adversary attacks
all replicas in parallel, the probability to defeat more than f
replicas is low. Diversity obtainable with the MultiCompiler
complements diversity obtainable at the operating system
level, e.g. using different distributions or different versions
of the same distribution.



III. SYSTEM MODEL AND PROPERTIES

The system is composed of n replicas, which run the Prime
BFT protocol and communicate by exchanging messages.
Replicas may suffer from Byzantine or benign faults. We
characterize replicas based on their behavior:

e Correct replica: a replica that follows the algorithm, is
consistent, and is not being partitioned or rejuvenated.

e Malicious (or compromised) replica: a replica that exhibits
arbitrary (i.e. Byzantine) behavior not according to the
algorithm.

e Crashed replica: a replica that stops working. A crashed
replica can restart the application from the state on the disk.
e Rejuvenating replica: a replica that is experiencing a benign
fault. In particular, even if the replica was malicious, during
rejuvenation it switches to a crashed replica.

e Partitioned replica: replica that cannot communicate with
at least y correct replicas (see Sections III-B and III-C).

Replicas are periodically rejuvenated to clean any intru-
sions. A fundamental condition for success is that a correct
replica completes recovery before the rejuvenation of the
next replica. We define the time between two consecutive
rejuvenations of any replicas as the inter-rejuvenation period.
A rejuvenation cycle is n times the inter-rejuvenation period.
In addition, we require that client operations, also referred to
as updates, are not injected into the system faster than correct
replicas can execute them. In this way, we ensure that a correct
replica that rejuvenates eventually catches up.

All messages sent among replicas are digitally signed. We
assume that digital signatures are unforgeable without knowing
a replica’s private key. We also make use of a collision-
resistant hash function for computing message digests. In
addition, we require that each replica is equipped with tamper-
proof cryptographic material to generate and store the replica’s
private key and sign messages without revealing that key.
To this end, we use the Trusted Platform Module (TPM).
The TPM also comes with a random number generator and
a monotonically increasing counter. Many modern computers
are sold with a TPM module built-in.

In the following, we first specify the attack model, and
then we describe the system model in the presence of 3f + 1
replicas, as in typical BFT protocols, and in the presence of
3f + 2k + 1 replicas [5], where k is the maximum number
of crashed, rejuvenating, and partitioned replicas tolerated
in the presence of f malicious replicas. In the presence of
3f 4+ 2k + 1 replicas the algorithm is guaranteed to make
progress despite malicious/benign failures and the rejuvenation
of correct replicas.

A. Attack model

We allow for a very powerful adversary that can exploit
vulnerabilities of the operating system and the application to
compromise and control a replica. The adversary can delay
the sending and receipt of messages of malicious replicas,
but it cannot affect communication among correct replicas. In
addition, the adversary can leak the private key of a malicious

replica and disseminate that key to other malicious replicas
in order to send forged messages. The adversary can also
compromise the state of a malicious replica. However, we
assume that the adversary has no physical access to the system
and is computationally bounded, such that it cannot subvert the
cryptographic mechanisms described above.

B. n=3f +1 replicas

We consider f to be the maximum number of replicas that
can concurrently experience malicious and/or benign faults (in-
cluding recovering, crashed, and partitioned replicas) within a
vulnerability window, i.e. the maximum time 1" between when
a replica fails and when it recovers from that fault [1]. We also
assume that the network may experience temporary partitions.
If the number of faulty plus partitioned replicas exceeds f,
then the system halts until the partitioned replicas reconnect
and catch up. In the presence of 3f + 1 replicas we define a
partitioned replica as a replica that cannot communicate with
another v = 2f correct replicas. In the following, we discuss
how Prime properties presented in [8] change with proactive
recovery.

Property 1: SAFETY: If two correct replicas execute the i'"
update, then these updates are identical.

To guarantee SAFETY in presence of proactive recovery,
a correct replica has to implement a persistent memory that
survives across rejuvenations, whose content has to be val-
idated after each rejuvenation. We require that each correct
Prime replica stores on the disk all messages that it sends
to or accepts from other replicas. This prevents a correct
replica from sending the same message twice or accepting
two different messages with the same sequence number. After
rejuvenation, the replica can reload the messages into main
memory.

Property 2: NETWORK-STABILITY: There is a time after
which the following condition holds for a set S of at least
2f 4+ 1 correct replicas (stable replicas): for each pair of
replicas r and s, there exists a value Min_Lat(r, s), unknown
to the replicas, such that if r sends a message to s, it will
arrive with a delay A, 5, where Min_Lat(r,s) < A, , <
Min_Lat(r,s) - Kpq, with K, a known network-specific
constant accounting for latency variability.

In those executions in which NETWORK-STABILITY is met,
Prime guarantees the following LIVENESS property.

Property 3: LIVENESS: If a stable replica initiates an up-
date, all stable replicas eventually execute the update.

This property guarantees that if the network is sufficiently
stable each update is eventually executed by all correct repli-
cas. To meet LIVENESS we must guarantee that recovery
eventually completes and partitions eventually heal. Because
we require that updates are not injected into the system faster
than correct replicas can execute them, we guarantee that
eventually a recovering replica will catch up. The LIVENESS



property does not specify how fast the updates need to be ex-
ecuted. When NETWORK-STABILITY is met, Prime provides
a stronger performance guarantee:

Property 4: BOUNDED-DELAY: There exists a time after
which the latency for any update initiated by a stable replica
is upper bounded.

In the presence of proactive recovery even a correct and
fast leader will be eventually rejuvenated. In this case we
can still guarantee BOUNDED-DELAY, but for at most 3f
occurrences the worst-case bound on BOUNDED-DELAY be-
comes t = 2f - a+ 3, with « the time to detect and replace a
malicious or slow leader, and 3 the time for a correct replica
to complete recovery. We calculate ¢ will be approximately
hours for real systems with large state, with ¢ dominated by
(. Under normal operations (i.e. no recovery in progress), if
in the presence of f failures an additional replica partitions
away for a while and then rejoins, we are not able to guarantee
BOUNDED-DELAY until the partitioned replica catches up. In
this case we are only able to guarantee LIVENESS.

C. n=3f+ 2k + 1 replicas

In this section we investigate how to reduce ¢, the worst-
case bound on BOUNDED-DELAY after the rejuvenation of
the leader. We avoid waiting for the complete recovery after
the rejuvenation of a correct replica by adding other replicas
in the system. Specifically, we need 3f + 2k + 1 replicas,
as previously described in [5]. £ is the maximum number
of crashed, recovering, and partitioned replicas tolerated in
the presence of f malicious replicas during a vulnerability
window T'. In the presence of 3 f + 2k + 1 replicas we define a
partitioned replica as a replica that cannot communicate with
another v = 2f + k correct replicas. Augmenting the number
of replicas requires at least 2 f + k1 replicas to order updates.
Hence, certificates collected during pre-ordering and ordering
phases are composed of 2f + k + 1 messages.

The definitions of SAFETY and LIVENESS do not change
in the presence of 3f + 2k + 1 replicas. The only difference
in NETWORK-STABILITY is that at any time the set S of
stable replicas can be populated by any 2f + k + 1 correct
replicas, i.e. the minimum number required to order updates
and elect a new leader. Hence, in a system with 3f 4+ 2k 4 1
replicas, if NETWORK-STABILITY holds, we can still guaran-
tee BOUNDED-DELAY over the rejuvenation cycle, but for at
most 3 f+2k occurrences the worst-case bound on BOUNDED-
DELAY becomes t = (2f + k) - a. We calculate ¢ will be
subsecond for real systems with large state.

Compared to the case of 3 f+1, in the presence of 3 f+2k+1
replicas we have a higher number of occurrences in which the
worst-case bound on BOUNDED-DELAY is ¢. However, the
rejuvenation cycle is longer, and we also expect that the time
(2f+k)-«a to settle on a correct and fast leader is much smaller
than the time (3 to complete recovery after the rejuvenation of
a correct replica.

In addition, under normal operations (i.e. no recovery in
progress), in the presence of f faults we can tolerate the tem-

porary partition of at most k replicas, while still guaranteeing
BOUNDED-DELAY. Unlike the 3f + 1 replicas case, where
the protocol can ensure only LIVENESS, the system does not
need to wait for the partitioned replicas to catch up to also
guarantee BOUNDED-DELAY.

IV. PROACTIVE RECOVERY ALGORITHM

The proactive recovery algorithm depends on a component
trusted to periodically initiate proactive recovery in a round
robin manner. We describe in Section V how this component
can be implemented. After each rejuvenation we diversify
replicas as described before. The main operations the protocol
executes are:

1) Replica rejuvenation: the server that hosts a replica is
periodically rebooted;

2) Key replacement: the private/public keys of the rejuvenated
replica are refreshed with the help of the TPM, invalidating
all previous keys that could be compromised;

3) State validation: we assume the presence of a database
to maintain replicated state. It needs to be validated before
applying new updates;

4) State transfer: if the state is compromised, a clean copy of
the state must be transferred from the other correct replicas;
5) Prime certificate validation: Prime messages are persistently
stored on the disk to ensure SAFETY across rejuvenations.
They are reloaded into main memory and validated before
accepting or sending new Prime messages; and

6) Prime certificate transfer: if some certificate is compromised
or missing, it must be retrieved from the other correct replicas.

Next, we describe each operation of the proactive recovery
protocol for a system with 3 f 41 replicas. The modifications
for a system with 3 f 42k +1 replicas are described in Section
IV-F.

A. Replica rejuvenation

Periodically, the trusted component that runs a proactive
recovery scheduler selects one replica to rejuvenate. Each
replica is equipped with a physical read-only medium (e.g.
CD-ROM) that stores a clean copy of the operating system,
the Prime bitcode, the MultiCompiler, and the public keys of
the TPMs of the other servers. Note that periodically a system
administrator can replace the operating system with the latest
version, including security patches. Hence, the rejuvenated
replica restarts the application from a correct version of the
operating system and recompiles the Prime bitcode with the
MultiCompiler, which takes as input a random seed generated
by the TPM. The replica is then ready to restart Prime and
execute the next steps of the proactive recovery protocol.
During recovery the replica does not execute pre-ordering and
ordering operations.

B. Key replacement

Each Prime replica has two private/public key pairs: one pair
is generated by the TPM at deployment time, the other one
is generated after each rejuvenation and used to sign/verify
Prime messages. The private key generated by the TPM is



stored in the TPM itself and cannot be leaked or deleted unless
the adversary has physical access to the system and clears
the TPM internal registers (we assume the adversary has no
physical access to the system). The public key is disseminated
to other replicas, so they can decrypt what this TPM signs.

Private/public keys to sign/verify Prime messages, also
referred to as session keys, are refreshed after rejuvenation.
Indeed, a replica can be impersonated if the attacker leaks the
private session key and sends it to other malicious replicas.
Session key replacement is the first operation to execute. If the
replica was malicious before rejuvenation, after invalidating
old keys we consider that replica to be experiencing a benign
fault. Specifically, the rejuvenated replica generates a new
private/public session key pair; then it uses the TPM to sign
a message containing the new public key. The TPM also
generates and attaches a monotonically increasing sequence
number to that message before signing it to avoid replay
attacks. The message is then sent to all other replicas in the
system.

A correct replica accepts (and appends on a file) a new key
if and only if the sequence number generated by the sending
TPM is higher than the sequence numbers associated with the
old public session keys of the same replica. From this moment
until the next rejuvenation, the recovering replica will sign all
messages with the new private session key. When at least f+1
correct replicas (at least 2 f+1 replicas in total) accept the new
key, all the previous keys of the rejuvenated replica are invalid.
At this point, updates injected by an impersonator and signed
with the old private key cannot be ordered by Prime. To ensure
that a new key reaches all correct replicas, we use a forwarding
mechanism: the first time a correct replica receives a new key it
propagates the message to all other replicas. Note that a correct
replica accepts a message signed with the TPM if and only if
it contains a new public session key. Other messages signed
with the TPM that could be injected by malicious replicas are
dropped.

Since old public keys may be required to decrypt older pre-
ordering and ordering messages during certificates validation
(see Section IV-E), the file with session keys must be val-
idated after rejuvenation. Because we expect this file to be
small in size (e.g. 70 MB in a system with 10 replicas, a
rejuvenation rate of one replica per day, and a system lifetime
of 30 years), this operation is straightforward: the rejuvenated
replica computes a digest of the file, and broadcasts a message
to request the digest of the same file stored by other replicas.
The rejuvenated replica waits for f + 1 replies with the same
digest: if this value matches the one computed locally, then
the file is correct. Otherwise, the replica requests the file from
those f + 1 replicas one by one until it receives a file that
matches the digest.

C. State validation

We assume that each Prime replica applies updates to a
database. The content of the database represents the replicated
state, which must be validated after rejuvenation. Correct
replicas take a checkpoint of the state every x updates. This

operation can be executed in several ways: modern databases
allow users to take periodical snapshots using copy-on-write
techniques, or dumping the database content to a text file.
In addition, third party tools also allow users to execute
checkpointing operation efficiently. In this work we do not
specify the technique used to take a database snapshot, we only
consider the output of a checkpointing operation, i.e. a blob
of data. Replicas maintain ck checkpoints on the disk, with ck
a parameter of the algorithm. Each checkpoint is logged in a
file, which contains, for each checkpoint, the sequence number
of the last executed operation and a digest of the state.

After rejuvenation and key replacement, the fresh replica
reads the state at the most recent checkpoint, e.g. ck;, and
computes the digest. Then, a request for the digest of ck;,
together with the sequence number of the last operation
executed before ck;, is sent to all other replicas. A correct
replica that receives such a request replies back with the
digest of that checkpoint if it has that digest, otherwise it
replies with a null value (the requested checkpoint may be
too old or may refer to an invalid or non existing checkpoint
if the rejuvenated replica was compromised). The rejuvenated
replica waits for f 4+ 1 replies with the same sequence number
and digests, or f+1 null replies. In the former case, the replica
compares the received digests with the one computed locally:
if they match, the state at checkpoint ck; is correct, otherwise
state transfer is necessary. In the case of f + 1 null replies,
instead, the rejuvenated replica selects from the log file an
older checkpoint, e.g. ck;_1, and repeats the state validation
process.

If the rejuvenated replica has no valid checkpoints, it
broadcasts a request for the most recent checkpoint taken by
other replicas. The replica waits for 2 f + 1 replies and selects
the checkpoint ck* with the f+ 1" highest sequence number.

D. State transfer

In a system with a potentially large state, the state transfer
mechanism must be efficient to guarantee that the recovery
of a compromised replica completes as quickly as possible
to allow the system to rejuvenate more often, to support the
assumption that the adversary does not have enough time to
compromise more than one third of the entire system. In
the following, we propose two different strategies, one that
prioritizes fast recovery at the cost of bandwidth overhead, and
one that minimizes bandwidth usage. A system administrator
can choose the strategy that best satisfies the application
requirements. We logically partition the state into several data
blocks of fixed size. The rejuvenated replica recovers correct
state by transferring these data blocks.

1) State transfer reducing latency: The recovering replica
requests a data block b; of f + 1 replicas, while another f
replicas are selected to send just a digest of that block. The
recovering replica then computes a digest for each received
copy of the data block until a correct copy is found, that
is the one whose digest matches at least another f digests.
After that, the recovering replica moves on to recover data
block b;41. This approach reduces the time to complete state



transfer, because each block is collected in a single round (we
are guaranteed that at least one copy out of f + 1 is correct),
at the cost of bandwidth overhead because each block is sent
f+ 1 times.

2) State transfer reducing bandwidth usage: This strategy
reduces the impact of malicious replicas that try to hamper the
state transfer process by using a blacklisting mechanism: when
a replica is blacklisted it is not contacted anymore during state
transfer. The recovering replica requests a data block b; from
one replica, while another f replicas are selected to send just
a digest of that block. The recovering replica then computes
the digest of the received block and compares this value with
the f received digests. If they match, the data block is correct.
This represents the best case: the data block is retrieved in a
single round, with no bandwidth overhead (i.e. just a single
copy of that block is sent). If digests do not match at least one
more round is required. We propose two different variations.

a) Variant 1: An additional replica, different from the
previous f + 1, is selected to send another copy of the data
block. This process repeats until the recovering replica finds
a correct copy of the data block (at most f — 1 times). This
minimizes the bandwidth usage at the cost of additional delay.
The received responses (copies of the block and digests) are
also used to identify and blacklist malicious replicas that sent
invalid information.

b) Variant 2: f additional replicas, different from the
previous f + 1, are selected to send a copy of the data block.
Then, the recovering replica has 2f + 1 responses (i.e. f+ 1
blocks and f digests) and uses the same approach described
in Section IV-D1 to find a valid block. In addition, these
responses are also used to identify and blacklist malicious
replicas that sent invalid information. This approach ensures
that in at most two rounds the recovering replica finds a correct
data block, optimizing latency compared with the previous
variant, at the cost of a higher bandwidth overhead.

When a valid copy of the data block is found, the recovering
replica moves on to recover block b, ;. It is worthwhile to note
that the blacklisting mechanism ensures that variants 1 or 2
are executed no more that f — 1 times during a state transfer
instance. Because we expect f to be much smaller than the
number of data blocks, the impact of malicious replicas on
state transfer is negligible.

The strategies we propose aim to efficiently retrieve a
large state in the expected scenario: when a replica under the
control of an adversary has state that is entirely compromised.
However, one can implement more conservative strategies, in
which a data block is retrieved only if it is compromised.
In this case, the recovering replica will collect the digest
from f other replicas first, compare this value to the digest
of the same block stored locally, and then transfer the block
if necessary. We extend these techniques to retrieve multiple
blocks in parallel and balance the load across the other correct
replicas.

Finally, note that modern database systems implement state
transfer strategies (typically in a client-server or publish-
subscribe manner) to maintain up-to-date consistent copies of

the same database. However, these solutions are not intrusion
tolerant and hence not suitable for our system.

E. Prime certificates validation

Pre-order and order certificates, combined with the state,
represent the memory of the system. A pre-order certificate is
composed of 2f + 1 messages: a client operation o and 2f
acknowledgments with a digest of that operation. Each oper-
ation is uniquely identified by the pair (id, seq_num), where
id is the identifier of the replica that injected the update in the
system, and seq_num is a local sequence number generated
at that replica. As in other BFT protocols, an order certificate
in Prime is composed of: (i) a prepare certificate, with a pre-
prepare message sent by the leader and 2 f prepare messages;
(i) a commit certificate, with 2f + 1 commit messages. A
pre-prepare message in Prime contains a summary matrix that
assigns an order to client operations, while prepare and commit
messages contain a digest of that matrix. In addition, a pre-
prepare message is uniquely identified by the pair (view, i),
where view is the current view number and i is the i* pre-
prepare during that view. During Prime operations, when a
certificate is ready, a correct replica saves that certificate on
the disk. These messages are reloaded into main memory after
rejuvenation. In particular, pre-order certificates contain the
updates that a rejuvenated replica has to apply to a correct
copy of the state at some checkpoint in order to catch up the
same execution point as before rejuvenation, if that replica
was correct. Order certificates, instead, specify in which order
those updates must be applied. Because the adversary can
compromise pre-order and order certificates stored on the disk,
they must be validated.

1) Validation of order certificates: Order certificates are
validated first, because they determine the set of updates that
the rejuvenated replica expects to find during the pre-order
certificate validation, and the order in which correct updates
must be applied to the state.

Because the recovering replica may be missing some mes-
sages when it is rejuvenated, it is necessary to estimate the
current execution point to catch up. We use the same approach
as in [1]: the rejuvenated replica broadcasts a request for the
sequence number of the last pre-prepare message for which
each replica obtained a prepare certificate. The replica collects
sequence numbers, including its own number, and selects the
value (v, p) such that at least 2f + 1 different replicas reported
a value greater than or equal to p for view v. This is necessary
to ensure SAFETY if the rejuvenated replica was correct: p is
guaranteed to be no smaller than the value p’ proposed by the
rejuvenated replica.

Verifying whether a prepare or commit certificate is valid
requires the replica to decrypt the pre-prepare message, com-
pute the digest of the summary matrix, and compare this value
to the digests contained in prepare or commit messages. If the
validation fails for some message, or there is a gap in the pre-
prepare sequence, the rejuvenated replica sends a request to
another f + 1 replicas with the sequence number and view
of the compromised/missing pre-prepare. Replies include the



pre-prepare message, prepare and commit certificates. In this
way we are guaranteed that at least one reply contains valid
certificates. The verification process is executed for all pre-
prepare messages with sequence number up to (v, p).

Note that the validation of an order certificate may involve
just the pre-prepare and the 2f + 1 commit messages, because
the collection of a correct commit certificate implies that the
ordering proposed by the leader has been previously accepted.
However, the validation of prepare certificates is necessary to
ensure that all Prime messages saved in the persistent storage
are correct after rejuvenation.

2) Validation of pre-order certificates: The procedure to
validate pre-order certificates is similar to the one described
in the previous point. Verifying whether a pre-order certificate
is valid requires the replica to compute the digest of the client
operation and compare this value with digests in ack messages.
Note that in Prime the complete set of update identifiers is
obtained from pre-prepare messages.

If the validation fails for some message, or there is a
missing update, the rejuvenated replica sends a request to
another f + 1 replicas with the sequence number of the com-
promised/missing update. Replies include the client operation
and 2f ack messages. In this way we are guaranteed that at
least one reply contains a valid certificate. When pre-order
validation completes, the correct set of updates is applied to
the state. After that, the Prime replica is correct and is ready
to resume Prime operations.

F. Extension to a system with 3f + 2k + 1 replicas

Augmenting the number of system replicas requires some
minor changes to the Prime protocol. As introduced in Section
II-C, the number of messages to order updates and, conse-
quently, the certificates size change from 2f+1to 2f +k+1.
This is necessary because, otherwise, f malicious replicas can
send different messages to two distinct sets of f + 1 replicas,
violating SAFETY. The proactive recovery protocol requires
some minor changes.

Key replacement: A new session key invalidates all
previous keys of the same replica when at least another 2f + k
replicas receive it. In this way we guarantee that Prime does
not order updates signed with old keys.

State validation: During the state validation the re-
covering replica still requires f + 1 replies with the same
digest. Even in the case when the recovering replica has no
valid checkpoint, it waits for 2f + 1 replies and selects the
checkpoint ck* with the f + 1*"* highest sequence number.

State transfer: The strategy described in Section IV-D1
still needs f + 1 copies of a data block and f digests. At most
f replies, in fact, may contain invalid information, and the
remaining f + 1 replies are enough to find a correct copy of
the block. The strategy described in Section IV-D2, including
the two variants, requires no additional change.

Certificate validation: The size of Prime certificates
increases from 2f + 1 to 2f 4+ k + 1, while the transfer of
missing/compromised certificates still requires f + 1 replies.

V. EVALUATION
A. System deployment

In this Section we describe the deployment of the survivable
Prime system in a physical and virtualized environment.

1) Deployment in a physical environment: The deployment
in a physical environment is depicted in Figure 2. The proac-
tive recovery logic runs in a separate computer and includes
the scheduler that periodically rejuvenates one replica at a
time, in a round robin fashion. The computer is connected to
a network switch that, in turn, connects to netbooters (i.e.
remotely activated power switches), one for each physical
server that hosts a Prime replica. The network that connects
the computer with the proactive recovery logic, switch and
netbooters is completely isolated from outside communication,
and thus cannot be accessed by the attacker. Physical servers
are connected to netbooters through power wires. Periodically,
the proactive recovery scheduler activates one of the netbooters
to cycle the power and reboot the corresponding server. After
rebooting, the replica executes the proactive recovery protocol
as described in the previous section.
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Fig. 2. Deployment in a physical system, with the proactive recovery logic
isolated from the external network.
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2) Deployment in a virtualized environment: The deploy-
ment in a virtualized environment is depicted in Figure 3,
and is based on Xen Cloud Platform (XCP). The proactive
recovery logic runs in the privileged Dom0O domain on a
separate physical server, while Prime replicas run in Xen guest
domains. XCP allows creating a resource pool: a virtualized
system that can be managed from a single hypervisor, i.e.
the master, which can instruct other hypervisors to execute
specific operations (e.g. creating/destroying virtual machines).
The proactive recovery logic runs in the master hypervisor,
which communicates with other hypervisors through a private
network.

The advantage of a deployment in a virtualized environment
is that rejuvenation is much shorter than in a physical environ-
ment: a shadow virtual machine, in fact, can be instantiated in
advance, with a clean copy of the operating system and a new
version of Prime. When the shadow virtual machine is ready to
start, the old one can be destroyed. We built a prototype that,
as soon as the new virtual machine is ready to take over, shuts
down the old virtual machine, detaches the virtual disk with
the state and the virtual network interface from that machine,
and attaches them to the new one. We measured the time taken
to complete these operations to be approximately 8 seconds.
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Note that XCP does not allow destroying a virtual machine
before shutting it down; the shut down operation is what most
impacts the time to transition. Finally, the old virtual machine
is destroyed, while the second one can initiate the proactive
recovery protocol.

The virtualized environment poses two drawbacks: (i) the
server that runs proactive recovery logic can be compromised
if the attacker compromises the hypervisor; (ii) a virtualized
environment offers poor or no support for TPM (i.e. solu-
tions present in literature are either not implemented or only
partially implemented), which is a fundamental component
in our survivable system. Regarding point (i), a deployment
in a virtualized environment is suggested if one trusts the
hypervisor. This can be substantiated, as an example, by
rebooting physical servers from time to time and verifying
the status of the servers through a chain of trust (i.e. digest
of BIOS, operating system kernel, ...) computed by the TPM.
Regarding point (ii), instead, we exploit the fact that Dom0O
has full access to the underlying hardware to implement a
TPM manager that mediates the interaction between the Prime
replica in a virtual machine and the physical TPM. Each time
the Prime replica has to access the TPM, it contacts the TPM
manager in Dom0, which, in turn, accesses the TPM and
replies back to the Prime replica with the outcome of the
specific operation.

B. Experimental results

We deploy the system in a physical cluster with 3f + 1
servers. Each server is a Dell PowerEdge R210 II, with an Intel
Xeon E3 1270v2 3.50 GHz processor and 16GB of memory.
All servers are connected by Solarflare 5161T 10GbE cards
and an Arista 7120T-4S switch, providing 10 Gigabit Ethernet.
All servers run CentOS 6.2 as the operating system. In the
following we measure the time to complete state validation and
transfer in systems with 4, 7, and 10 replicas. The proactive
recovery protocol has been implemented using Prime 1.1 [15],
which uses an intrusion tolerant communication substrate built
on top of Spines 4.0 [16].

Table I shows the measurements for state reading and
transfer for different state sizes, from 1 gigabyte to 1 terabyte.
These state sizes are quite common in SCADA systems, mil-
itary command and control, banking systems, communication

TABLE I
STATE VALIDATION AND TRANSFER MEASUREMENTS FOR DIFFERENT
STATE SIZES AND NUMBER OF SYSTEM REPLICAS.

state size | state reading - state tr:_msfer -
4 replicas | 7 replicas | 10 replicas
1 Gb 9 sec 36 sec 25 sec 23 sec
10 Gb 1 m, 27 sec 6 m 4 m 4 m
40 Gb 5 m, 47 sec 24 m 15 m 15 m
80 Gb 11 m, 30 sec 48 m 31 m 31 m
120 Gb 17 m, 15 sec 1h 12 m 48 m 48 m
240 Gb 34m,30sec | 2h,24m | 1h,38m 1h, 36 m
520 Gb 1 h 14 m 5h,9m 3 h,28 m 3 h,24 m
1Tb 2 h,24 m 9h,50m | 6h, 17 m 6h, 17 m

systems, to name a few. We evaluate the state transfer strategy
described in Section IV-D2 that minimizes the bandwidth
usage. The whole state is fragmented into data blocks of 1
megabyte. We transfer these blocks in parallel, 5 at a time.
During the experiment, we noticed that the time to transfer
the state grows linearly with the number of data blocks. The
performance hit obtained in a system with 4 replicas is due
to the fact that some replicas are sending more data blocks
at the same time, which produces a higher CPU consumption
that limits the processing speed of the physical servers that
host those replicas.

Based on the obtained results, in Section VI we will show
how to set the rejuvenation rate in our theoretical model.
The model will output the minimum security requirement
that a replica has to guarantee in order to achieve a desired
confidence in the system over its lifetime.

VI. THEORETICAL REJUVENATION MODEL

In this section we present a theoretical model that allows a
system administrator to determine the deployment parameters
needed to reach the desired confidence in the system.

As a building block, we present an equation that computes
the resiliency of the system based on the rejuvenation rate
and the number of replicas. The equation takes as input: (i)
the probability c that a replica is correct over a year; (ii) the
rejuvenation rate r, i.e. the number of rejuvenations per day
across the whole system, which is limited by the system’s
state size; (iii) the number of replicas n; and (iv) the system
lifetime y. A system administrator has control of r and n, but
he does not have control of ¢, which represents the strength
of a replica. The strength of a replica can be estimated with
CERT alerts, bug reports, or other historical information, as
in [17]. The output of the computation is the probability the
system will remain correct over its lifetime.

By iterating this computation many times with different
possible values of r and n, the system administrator can
determine the replica strength required to reach the desired
confidence in the system. Alternatively, if the replica strength
is fixed, the same computation can be iterated to find the
required values of r and n to reach the desired confidence.

A. Model description

In our model we consider only failures related to software
aspects, not hardware failures. We assume that every replica
has the same probability of being compromised over a year. In
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Fig. 4. Required strength of a replica to achieve a confidence in the system of 95% over 30 years varying: (a) the rejuvenation rate and state size, while the
number of replicas in the system is 7; (b) the rejuvenation rate, for different number of replicas in the system.

addition, we assume that each replica fails independently. We
support this assumption by making extensive use of diversity
as explained before. Replicas are periodically rejuvenated one
at a time in a round robin fashion. For simplicity’s sake we
optimistically assume that recovery is instantaneous. However,
in Section VI-C we extend this model to relax this assumption
at the cost of an additional 2k replicas in the computation and
pessimistically assume that a recovery operation spans over an
entire rejuvenation cycle.

In order to compute the probability the system is correct
over its lifetime, we first define p as the probability that a
replica is correct at the end of an inter-rejuvenation period
by simply scaling the probability ¢ to the appropriate time
interval: p = 3%y/c. The following equation then gives the
probability the system will survive over a lifetime of y years.

n+1 n y-365-r
Z coeff H (1=p") +p2) | [1]
i=nt1—f j=1

The innermost part of the equation is a product of the
form H?:l ((1 — pj) +p’ ;E) Each term of this product cor-
responds to one replica, where p’ is the probability that
the replica will remain correct to the end of the current
rejuvenation round and 1—p7 is the probability that the replica
will be compromised at the end of current rejuvenation round.
This is because that replica has not been rejuvenated for the
last j—1 rounds and must have survived all of them in addition
to the current round in order to remain correct at the end of
the current round. By taking the product of these terms, the i*
coefficient in the resulting polynomial is formed by the sum
of all possible combinations of the p/z components of i of
the terms with the (1 —p”) components of the remaining n — i
terms. Thus, the i" coefficient represents the probability that
exactly ¢ replicas will remain correct at the end of the current
rejuvenation round.

We sum these probabilities for all the cases when the system
would survive the round, i.e. the coefficients of the polynomial
from the (n + 1 — f)™ coefficient to the (n + 1) coefficient.
This excludes any cases when more than f replicas have failed.
This sum then gives the probability that the system will survive

one rejuvenation round.

In fact, there are many rejuvenation rounds in the system’s
lifetime, which can be treated as a repeated experiment. In
order for the system to succeed for its entire lifetime, it
must succeed for every rejuvenation round in its lifetime. The
probability of success, then, is the product of the probabilities
of success for all the rejuvenations rounds, here represented
as the exponent 30 - 365 - r, to capture the y year lifetime, 365
days per year, and r rejuvenations per day.

B. Application to realistic scenarios

Let us apply the model to a concrete example based on the
measured time to complete state transfer reported in Section V,
Table I. Figure 4(a) shows the required strength of a replica to
achieve a confidence in the system of 95% over 30 years when
varying the number r of rejuvenations per day and the state
size. The time to transfer the state determines the maximum
rejuvenation rate possible for each state size. In the presence
of large state, some of the configurations are not possible.
As an example, we cannot have » > 2 when the state size
is 1 terabyte, because the total time to validate and transfer
that state is 8 hours and 41 minutes. Figure 4(a) shows that
increasing r, when possible, helps the system to work correctly
in the presence of weak replicas.

In Figure 4(b) we vary the rejuvenation rate r, for different
numbers of tolerated failures f. We assume the state size is
large enough to allow multiple rejuvenations per day (e.g.
1, 10, or 40 gigabytes). Augmenting the number of replicas
allows the system to survive in the presence of weaker replicas,
but the benefit of adding replicas decreases as f increases.

The results presented in this section show that proactive
recovery is possible in the presence of large state. Some papers
in the literature [1], [5] use an aggressive rejuvenation rate
(one rejuvenation every 5, 10, or 15 minutes), but these rates
limit the size of the state to transfer and incur unnecessary
overhead. Our model shows that a rejuvenation rate of one
replica per day requires a replica strength of 0.54 when
the state size is 1 terabyte. In addition, our model helps
to determine the number of replicas to deploy. Many BFT
protocols in literature are evaluated with 4 replicas. The model
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shows that a system with 4 replicas requires stronger replicas,
even in the presence of multiple rejuvenations per day. At
the same time, deploying systems with more than 10 replicas
does not increase the resiliency of the system remarkably, and
it generates additional overhead in the BFT protocol.

C. Extension to a system with 3f + 2k + 1 replicas

So far, the model has assumed that rejuvenations occur
instantaneously. Since the system has state, which takes time
to verify or transfer, rejuvenations actually take some time
to complete. In this section, we extend the model by con-
servatively assuming that each rejuvenation takes an entire
rejuvenation round to complete.

A system with 3 f +2k+1 replicas can tolerate f Byzantine
faults and k benign faults simultaneously, as previously shown
in [5]. The changes to the protocol necessary to support the
additional 2k replicas are specified in Section IV-F. Since
each rejuvenating replica behaves as a replica experiencing
a benign fault until it finishes its rejuvenation, we choose
k to be 1, reflecting the fact that we rejuvenate one replica
at a time. Then, the system is able to tolerate f Byzantine
failures while rejuvenating some other correct replica without
sacrificing availability.

To extend our model from 3f 4+ 1 to 3f + 2k + 1, we
change the value of n accordingly. The equation in the model
is unchanged.

We now show the results of the same analysis as in the
previous section, but with this extended model. The salient
difference here is that we seek a 95% confidence that the
system will remain correct and available for 30 years, when
in the previous section we sought a 95% confidence that the
system will remain correct but not always available for 30
years.

The results of this new analysis are shown in Figures 5(a)
and 5(b). Note that the curves with k = 0 in Figure 5(b) repre-
sent the same system configuration as reported in Figure 4(b).
Compared to Figures 4(a) and 4(b), in Figures 5(a) and 5(b)
we note an increased required strength of a replica to achieve
the desired confidence in the system over its lifetime. This
increase is driven by the 2k additional replicas in the system,
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required to maintain both correctness and availability, while
the number of tolerated faults still remains the same as in the
case of 3f + 1 replicas. However, Figure 5(b) shows that this
difference decreases as we increase the number of tolerated
faults, f.

VII. RELATED WORK
A. Proactive rejuvenation

Software rejuvenation [18] was introduced to increase the
reliability and availability of continuously running applications
in order to prevent failures over time due to software aging.
Both [18], [19] formulate the rejuvenation model through a
Markov chain and derive the optimal rejuvenation schedule.

More recently, software rejuvenation has been used to
proactively recover replicas in a malicious environment. Castro
in [1] was the first to present a proactive recovery protocol
for BFT systems, addressing issues such as the need for
unforgeable cryptographic material, rebooting from read-only
memory, and efficient state transfer. In our paper we extend
the work in [1] by describing how to obtain fine-grain diversity
and efficient state transfer in the presence of a large state.

Rodrigues et al. in [7] present BASE, which extends the
BFT protocol described in [20] with data abstraction tech-
niques in order to mask software errors. The abstraction
layer hides implementation details and allows the reuse of
off-the-shelf software components. Replicas are periodically
rejuvenated, rebooting from a clean state. Authors in [21]
propose splitting the system into a synchronous component
that activates periodic rejuvenation and an any-synchronous
subsystem that includes the payload application. This model
has been adopted later in other papers [5], [6], [22], [23].
In particular, authors in [5] enhance proactive rejuvenation
with reactive recovery, which allows the recovery of replicas
as soon as they are detected or suspected of being compro-
mised. The proposed solution guarantees the availability of
the minimum number of replicas required to make progress
by using 2k additional replicas, where k is the maximum
number of replicas that recover at the same time. In our
paper we also describe how to adapt our protocol to work
with 3 f + 2k + 1 replicas, and separate the proactive recovery



logic from the replication engine. However, in contrast to [5]
we avoid any direct interaction between these two modules
because the bidirectional communication between the trusted
proactive recovery logic and the untrusted application could
open the possibility for potential attacks.

Theoretical models for proactive recovery have been pre-
sented in [11] and [24]. The paper in [11] compares different
system configurations under parallel attacks (multiple healthy
replicas are attacked at the same time) and serial attacks
(only a single healthy replica is attacked at a time). That
theoretical model computes the system availability, defined as
the proportion of time in which the number of intruded replicas
is at most f, by varying the time § between rejuvenations
of different replicas. Specifically, the model computes the
system availability in the presence of parallel (§ = 0) and
serial (0 > 0) rejuvenation schemes. [24] instead presents a
theoretical assessment of FOREVER, a service that enhances
the resiliency of intrusion-tolerant replicated systems through
recovery and diversity, which is implemented through operat-
ing systems and configuration diversity rules. The theoretical
model evaluates the system failure probability by varying the
rejuvenation rate. The authors also consider the probability
of common vulnerabilities in their model. In our work we
concentrate on serial rejuvenations and do not consider the
common vulnerabilities among replicas due to the high entropy
among variants generated by the MultiCompiler. In addition,
we define the rejuvenation rate taking into account the size
of the state that may need to be transferred and the time to
transfer it, while the models in [11] and [24] are designed for
stateless systems.

The closest work to ours is presented by Schneider et al. in
[4]. The paper presents proactive obfuscation, a method that
uses semantic-preserving code transformations to create repli-
cas that are likely to share few vulnerabilities. The proposed
solution relies on a component trusted to periodically initiate
proactive obfuscation (as in our system), during which one
replica at a time reboots from a fresh copy of the application
code and a clean copy of the state is obtained from other
replicas through an internal service network. This approach is
used to implement two prototypes: a distributed firewall and
a distributed storage service, both with small state size (few
hundreds kilobytes) and arbitrary rejuvenation rate (on the
order of minutes). In our work instead we augment the built-
in operating system tools with a compiler-based diversification
engine and support large-state applications.

Finally, it is worth mentioning that our solution is built
on Prime [8], which guarantees performance under attacks.
However, recently other BFT protocols with performance guar-
antees have been presented. Aardvark [25] guarantees that over
sufficiently long periods the system throughput remains within
a constant factor of what it would be if only correct replicas
were participating in the protocol. BFT-Mencius [26], like
Prime, ensures bounded-delay in a period of network stability.
In addition, the protocol reduces the cost of the pre-ordering
phase by using a multi-leader approach, in which replicas
propose an order through an atomic broadcast primitive.
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B. State transfer

State transfer for BFT protocols has been previously pre-
sented in [1]. However, the proposed approach is designed
for a small state (few hundreds of kilobytes), and hence it
is not suitable for the kind of system that we target. The
state is organized as a tree of digests and is always retrieved
from the latest checkpoint. If the system makes progress to
the next checkpoint before a rejuvenated replica completes
state transfer, that replica must restart state transfer. In a
system with large state this would generate a cascade of state
transfer executions that would not end until another f replicas
fail/rejuvenate. At that time the recovering replica can finally
catch up, at the cost of a period of service unavailability.

Authors in [6] present two state transfer strategies that are
specifically tailored for a virtualized environment, exploiting
the fact that more virtual replicas can share the same physical
hardware. The work in [23] speeds up proactive recovery by
rejuvenating several replicas at the same time and restarting
the execution from a previously saved correct state.

A collaborative state transfer protocol based on sequential
checkpointing has been presented in [27]. Replicas checkpoint
their state at different points of execution, in groups of at
most f replicas each, in order to minimize the performance
impact of taking a snapshot. The state of a replica consists
of a checkpoint and a log file with all operations executed
between two consecutive checkpoints at that replica. The log
file is composed of many segments. During collaborative state
transfer, the recovering replica retrieves the checkpoint and
all log segments from the replica with the f + 1** most
recent checkpoint, while the first f replicas provide a digest of
segments and checkpoint. The proposed approach is effective
against the performance degradation generated by the typical
checkpointing mechanisms. However, while the solution in
[27] is very efficient for transferring a large log, in this paper
we are more interested in transferring a large checkpoint.

VIII. CONCLUSION

The increasing reliance on critical systems necessitates the
construction of systems that are able to tolerate intrusions.
In this paper we presented the first practical survivable intru-
sion tolerant replication system, which offers defense across
space (diversity) and time (proactive recovery). The innovative
aspects of our work include: (i) the support for large state
applications, with two state transfer strategies that can be
used if the state is compromised; (ii) a theoretical model that
computes how resilient the system is over its lifetime; and (iii)
the use of low-level diversity to generate perpetually different
copies of system replicas. We ran state transfer for different
state sizes and measured the maximum rejuvenation rate and
the minimum strength of a replica required to achieve high
confidence in the system (e.g. 95%) over 30 years.
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