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Abstract—As the Internet becomes an important part of the
infrastructure our society depends on, it is crucial to construct
networks that are able to work even when part of the network is
compromised. This paper presents the first practical intrusion-
tolerant network service, targeting high-value applications such
as monitoring and control of global clouds and management of
critical infrastructure for the power grid. We use an overlay ap-
proach to leverage the existing IP infrastructure while providing
the required resiliency and timeliness. Our solution overcomes
malicious attacks and compromises in both the underlying
network infrastructure and in the overlay itself. We deploy
and evaluate the intrusion-tolerant overlay implementation on
a global cloud spanning East Asia, North America, and Europe,
and make it publicly available.

I. INTRODUCTION

The Internet is becoming an important part of the infrastruc-
ture our society depends on, connecting the distributed systems
that manage our financial systems, commercial applications,
and important aspects of our social interactions. With critical
infrastructure control systems for power, gas, and water moving
to use IP networks as their communication infrastructure, and
with malicious attacks becoming more prevalent and more
sophisticated by the day, it is crucial to construct networks
that are resilient to the point of intrusion tolerance, able to
work even when part of the network is compromised.

In this paper, we present the first practical intrusion-tolerant
network service. The service targets high-value applications
that need to work at all times, even when part of the network is
compromised or under sophisticated attack. Examples include
monitoring and control of global clouds, management of
critical infrastructure such as the power grid, and military
systems such as national nuclear command and control.

Our solution leverages the existing IP network infrastructure,
making it practical for deployment. However, native IP network
infrastructure cannot provide the resiliency needed for an
intrusion-tolerant network. A single IP network is susceptible
to failures, attacks, and misconfigurations (malicious or
benign) that can render the entire network unusable. Internet
routing connecting multiple IP backbones is based on trust
and therefore susceptible to routing attacks, such as BGP
hijacking [1], [2]. Recent sophisticated DDoS attacks, such
as Coremelt [3] and Crossfire [4], can target specific traffic

flows and cause them to experience severely degraded quality
of service while preventing the Internet from rerouting around
the problem.

Our solution uses an overlay approach to leverage the
existing IP network infrastructure while providing the required
resiliency and timeliness. An overlay running on top of
multiple IP networks can tolerate a complete failure of an
underlying network and is not bound to Internet routing,
allowing it to route around and overcome malicious attacks
and compromises at the Internet routing infrastructure in a
timely manner. However, the overlay must be constructed
with care. By using well-placed overlay nodes, diverse ISP
backbones, and multihoming at each overlay node, we can
construct a resilient architecture with enough redundancy to
prevent anything short of a complete simultaneous meltdown
of multiple ISP backbones from interrupting the ability to
deliver messages.

While an overlay approach to a resilient networking archi-
tecture overcomes attacks and compromises in the underlying
IP network infrastructure, the overlay itself is susceptible to
compromises. A complete intrusion-tolerant network solution
requires combining a resilient networking architecture with
an intrusion-tolerant overlay. The remaining challenge and a
major novelty of this work is the design and development of
a practical intrusion-tolerant overlay that meets the needs of
the targeted high-value applications.

We design and construct an intrusion-tolerant overlay that
can tolerate arbitrary (i.e. Byzantine [5]) attacker actions,
based on the key understanding that no overlay node should
be trusted or given preference. We use a Maximal Topology
with Minimal Weights, which specifies the overlay nodes,
overlay links, and minimal weight allowed on each link, to
limit network participation to authorized and authenticated
overlay nodes and to prevent routing attacks at the overlay
level (e.g. black hole [6] and wormhole [7]). We use source-
based routing and redundant dissemination methods to limit the
effect that a potentially compromised forwarder can have on
the delivery of messages. Specifically, we protect against K−1
compromised nodes anywhere in the network by sending along
K node-disjoint paths, or provide optimal delivery guarantees,
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where messages are delivered as long as a correct path between
source and destination exists, by using constrained flooding
on the overlay topology. Finally, we prevent compromised
nodes from consuming a disproportionate share of resources
by enforcing fair network resource allocation at each overlay
node.

As described so far, the intrusion-tolerant overlay provides
best-effort message forwarding in the presence of compro-
mises. However, high-value applications require messaging
semantics stronger than simple forwarding. For example, cloud
monitoring requires real-time delivery of a continuous stream
of messages to produce an up-to-date picture. Since some
monitoring messages convey more critical information than
others, in the event of network contention, it is crucial to
continue delivering the highest priority messages in real-time
at the expense of low priority ones. In contrast, cloud control
messages contain critical information that changes the state
of the system and must be delivered reliably to maintain
consistency.

Inspired by these requirements, we define two intrusion-
tolerant messaging semantics: Priority Messaging with Source
Fairness provides prioritized timely delivery and Reliable
Messaging with Source-Destination Fairness provides reliable
delivery. Many applications are served well by one or the
other. We are currently investigating how to protect critical
infrastructure control systems for the power grid and find
that the semantics address several of the needs well. Some
applications may require more complex guarantees (e.g.
military command and control), which can be supported by
creating additional semantics.

The intrusion-tolerant overlay is implemented and released
as open source as part of the Spines [8] overlay messaging
toolkit. We deploy the implementation on a global cloud that
spans 12 data centers from East Asia to North America to
Europe. We evaluate the overlay network in two ways. First,
we send realistic traffic across the overlay network to evaluate
its performance in the presence of compromised nodes. The
overlay network ensures fairness and continues to provide the
guaranteed semantics in the presence of compromised nodes.
Second, we use the deployment as a shadow monitoring system
to carry the monitoring messages of the global cloud, where
it ran for several months and was used in a limited production
capacity. The deployment was able to provide the same timely
delivery of monitoring messages as the production monitoring
network, validating that the intrusion-tolerant overlay can
support high-value applications.

The contribution of this work is inventing the first practical
solution to intrusion-tolerant networking. Specifically:

• We describe the resilient networking architecture necessary
to support a practical intrusion-tolerant network service on
a global scale.

• We describe the principles underlying our design and
implementation of a practical intrusion-tolerant overlay: mes-
saging semantics that guarantee fairness and performance in
the presence of network compromises, a Maximal Topology
with Minimal Weights, and source-based routing.

• We invent and implement two intrusion-tolerant messaging

semantics: Priority Messaging with Source Fairness and
Reliable Messaging with Source-Destination Fairness.

• We deploy and evaluate the intrusion-tolerant overlay
implementation on a global cloud spanning 12 data centers
from East Asia to North America to Europe, and present
the results. The implementation is publicly available at
www.spines.org.

II. RELATED WORK

Prior work has investigated securing Internet routing
protocols (surveyed by Papadimitratos et al. [9]), such as
integrating security into BGP [10], protecting OSPF with
digital signatures [11], and using Public Key Infrastructure
and secret keys to authenticate routing updates in generic
networks [6]. These works provide security against external
attacks, but do not provide intrusion tolerance.

Several works created Byzantine gossip and peer-to-peer
(P2P) protocols to disseminate information. Fireflies [12]
provides an intrusion-tolerant gossip protocol to maintain
full membership information in the presence of Byzantine
members, which is used to support a distributed hash table.
Castro et al. [13] provide secure node ID assignment, secure
maintenance of routing tables, and secure message forwarding
for a structured P2P network, assuming no more than a fraction
of nodes are Byzantine. BAR Gossip [14] presents a P2P
application on top of a Byzantine gossip protocol that provides
predictable throughput and low latency for streaming media
with high probability. In general, gossip and P2P protocols
provide probabilistic message delivery, which is insufficient
to support strong deterministic guarantees. In addition, these
works assume the underlying network provides a clique of
connectivity among the protocol participants, an assumption
that can be violated by network compromises.

Other work has provided basic intrusion-tolerant messaging
in limited network environments. Probing and flow conser-
vation can be used to determine if routers are behaving
maliciously [15], [16], but this places a limit on the location
and number of compromises, and assumes correct routing
behavior can always be determined. INSENS [17] provides
intrusion-tolerant routing in wireless sensor networks by
leveraging wireless-specific properties, e.g. compromised
nodes have a limited broadcast range.

Previous work investigated routing messages in the presence
of Byzantine failures. LITON [18] protects overlay network
communication using on-demand node-disjoint routes and
HMACs. ODSBR [19] presents a source-based routing scheme
that localizes faults to a specific link using disguised probing
techniques and re-routes accordingly. Authenticated Adver-
sarial Routing (AAR) [20] successfully routes messages if
even one correct path exists between source and destination,
however, the limitation of only a single flow and the large
initialization overhead are barriers to practical deployment.
These works address Byzantine forwarders, but not Byzantine
sources. In addition, none of these works were deployed in
practice and they focus solely on message delivery, as opposed
to guaranteeing messaging semantics.

The SCION work [21] provides a method to protect routing,
even in the presence of some compromised nodes. It does this
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Feasibly (i.e. Internet) Deployable 3 3 3 3
Protect against link-level tampering 3 3 3 3 3 3
Protect against a single ISP meltdown 3 3
Protect against
sophisticated DDoS attack 3 3

Protect against BGP hijacking 3 3

Overcomes Byzantine Forwarders 3 3 3 3 3 3
Overcomes Byzantine Sources 3 3

Guarantees Semantics 3

TABLE I
COMPARISON OF RELATED WORK

by allowing the source and destination to work together to
select a path. However, as the SCION work is a “clean-slate”
design, deploying it on the Internet is not feasible.

The work most closely related to ours is Perlman’s [22], [23],
which provides authenticated link state routing in the presence
of Byzantine failures. It floods routing updates with source-
specific buffers to provide fairness and proposes using node-
disjoint paths for data. Perlman bounds the number of nodes in
the network to address Sybil attacks, whereas we specify the
Maximal Topology with Minimal Weights to prevent Sybil and
routing attacks. The fundamental difference with our work is
that Perlman only provides best-effort message forwarding at
the network level within a single physical network. In contrast,
our service guarantees well-defined semantics at the (overlay)
network level and is able to leverage multiple underlying
networks to provide the needed resiliency in a timely manner.
Finally, since Perlman’s work is in the context of a physical
network, it has practical barriers to deployment.

The most relevant work is compared in Table I.
III. NETWORK AND THREAT MODEL

In this section we describe the network and threat model.
A. Network Model

The intrusion-tolerant network consists of intrusion-tolerant
messaging protocols running on top of a resilient networking
architecture, which uses an overlay network to leverage several
underlying IP networks such as commercial ISP backbones.

The overlay network consists of overlay nodes and logical
edges (i.e. overlay links), where each node can be a source
that injects new messages, a forwarder, and a destination. Each
overlay node has a set of neighbors, i.e. overlay nodes with
which it can communicate directly on the overlay without
intermediate overlay nodes.

Overlay network communication is authenticated using a
Public Key Infrastructure (PKI), where the system administra-
tor and each node in the overlay network has a public/private
key pair and knows all the other public keys. The overlay
network topology is known by all of the overlay nodes,
and changes to the topology can be made by the system
administrator.
B. Threat Model

A correct node is an overlay node that executes the network
protocols faithfully. A compromised node is any overlay node
that is not correct. Compromised nodes can exhibit arbitrary
(Byzantine [5]) behavior. A compromised node has access to

all of the private cryptographic material stored at that node.
Compromises may be sophisticated and difficult to detect.
Rather than detecting and evicting compromised nodes, we
provide guarantees even in the presence of such compromises.

A correct edge is a logical edge between two overlay nodes
that is able to pass messages freely in both directions. A
failed edge is any logical edge that is not correct. Note that
all possible causes of edge failures, including (but not limited
to) underlying network link failures and congestion, injected
loss, misconfigurations, OSPF attacks, DDoS attacks, BGP
hijacking, and physical layer (router/switch) compromises, are
covered by this model.

A correct path is one consisting of only correct nodes and
correct edges.

Overlay node resources. A correct node has sufficient
computational resources to keep up with processing incoming
messages, but has bounded buffers for storing messages.

Attacker resources. Attackers can compromise overlay
nodes and any components of the underlying IP networks.
Attackers can have large amounts of network bandwidth,
memory, and computation, such as those required by so-
phisticated large-scale DDoS attacks (e.g. Coremelt [3] and
Crossfire [4]). However, we assume the attacker cannot break
the cryptographic mechanisms used by our protocols.

We do not assume a specific fractional bound on the number
of compromised nodes in the network. However, as a liveness
condition there must exist a correct path from source to
destination. If this liveness condition is not met, the system will
remain correct, but will not be live for that source-destination
pair (it may be live for other source-destination pairs).

IV. RESILIENT NETWORKING ARCHITECTURE

We use an overlay approach to build a resilient networking
architecture that leverages existing IP network infrastructure
while providing the resiliency and timeliness required for a
practical intrusion-tolerant network that the Internet cannot
natively provide.
A. Overlay Approach to Resilient Networking Architecture

The intrusion-tolerant network cannot be based on a single
underlying IP network because that IP network would be
susceptible to misconfigurations, attacks, and compromises
that could render the entire network unusable. Therefore, it is
necessary to use multiple IP networks, which in practice means
using the Internet. The Internet is designed to route around
problems, including those that affect an entire IP network.

However, Internet routing is based on trust (making it
susceptible to routing attacks such as BGP hijacking) and
is vulnerable to sophisticated DDoS attacks. For example,
the Coremelt [3] and Crossfire [4] DDoS attacks can deci-
mate the service of targeted traffic flows while completely
preventing Internet reroutes from taking place, forcing these
flows to continuously experience poor service or complete
disconnections. Moreover, the tens of seconds to minutes of
service interruption during Internet reroutes caused by benign
connectivity faults is unacceptable for time-sensitive high-
value applications such as cloud and critical infrastructure
monitoring; a mechanism that provides faster (ideally near
real-time) reroutes is required.
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An alternative approach that uses the existing Internet
infrastructure without being bound to Internet routing is
to use an overlay. Overlay networks can sit on top of
multiple underlying IP networks simultaneously and provide
the ability to control (and quickly change) the path of messages
through the middle of the network by sending them through
intermediate overlay nodes. As a result, overlays can overcome
failures that render entire underlying IP networks unusable
and can overcome Internet routing attacks (e.g. Coremelt
and Crossfire) by quickly rerouting messages on alternative
paths rather than being forced to use the chosen end-to-
end Internet path [24], [25]. In addition, the overlay can
implement dissemination schemes that are not possible on the
Internet, such as multiple node-disjoint paths. We use resilient
overlay topology construction, diverse network providers, and
multihoming to construct a networking architecture that can
survive anything short of a complete simultaneous meltdown
of multiple ISP backbones.
1) Resilient Overlay Topology Construction

To be resilient, the overlay network should contain redun-
dancy: a source and destination should be able to communicate
along multiple disjoint paths so that even if some paths fail,
other paths can still deliver messages. However, the overlay
must be constructed carefully to ensure that disjointness in
the redundant overlay topology matches actual physical dis-
jointness in the underlying network infrastructure. Otherwise,
multiple overlay links may overlap at the physical level,
increasing the risk that a single failure in the underlying
network will affect multiple overlay links.

We address this concern by placing overlay nodes in
strategic locations, i.e. well-provisioned data centers. ISPs
invest strongly in a relatively small number of strategic
data center locations by laying independent fiber connections
between them. These are ideal locations for overlay nodes, as
the links between different pairs of geographically-close data
centers are likely to be disjoint at the physical network level.

We can leverage the data center investment and the available
map of the backbones to design our overlay topology to
follow, more or less, the underlying network topology. We
create overlay links between overlay nodes that are directly
connected or only a few hops apart on the backbone. There
are relatively few underlying network routing options between
overlay nodes that are connected in this way, making it likely
that messages sent between the two overlay nodes will follow
the expected backbone path. This predictability allows the
overlay topology to be designed with high likelihood that no
overlay links overlap.

Note that overlay nodes are not connected as a clique. This
would result in overlay links that correspond to many-hop
connections on the backbone. The increased number of routing
options for many-hop connections makes the path messages
take less predictable, potentially leading to overlay links that
overlap at the physical level.
2) Use of Diverse Network Providers

To use multiple underlying IP networks, we can use an
approach similar to [26]. That work shows how to assign
a small number of diverse software variants to nodes to

maximize the expected client connectivity when each variant
has some probability of failing completely. By considering
different ISPs as the diverse variants, we can use these ideas
to choose which single ISP each overlay node should contract
with to maximize resilience to one or more ISPs suffering a
complete meltdown.

3) Multihoming Using Diverse Network Providers
To further improve resilience, each overlay node can contract

simultaneous service from multiple ISPs via multihoming, as
shown in Figure 1. Using multihoming, an overlay link is
correct as long as at least one combination of the available
ISPs on each end of the link can pass messages. Normally,
combinations that use the same ISP at both ends are likely to
be more resilient, as they are not affected by BGP routing,
but any combination can be used.

Fig. 1. An overlay network using multihoming. Each color represents a
different ISP; a node with multiple colors simultaneously contracts service
with multiple ISPs.

B. Attack Resilience
In the event of a BGP hijacking attack, traffic using Internet

routes that cross multiple ISPs can be diverted to an attacker-
specified destination, but traffic that stays within a single ISP is
not affected. Therefore, overlay links that contract service from
the same provider on both ends can still pass messages during
the attack. The overlay can route messages across different
ISPs without relying on BGP by switching between providers

(A)
Source Destination Internet 

Path 

(B)
Source Destination 

(C)
Source Destination 

Fig. 2. An illustration of a Crossfire-style DDoS attack. By switching between
(B) and (C) above, the attacker can cut off communication between source and
destination, while simultaneously ensuring that the path will not be rerouted
because no one link is unusable for long.
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inside the overlay nodes: a node can receive a message using
one provider and send it using a different provider.

The Crossfire [4] and Coremelt [3] DDoS attacks can force
a targeted traffic flow or a targeted area to experience severely
degraded quality of service or complete disconnection by
overwhelming specific links on the Internet path used by the
targeted flow or paths leaving or entering the targeted area.
Normally, OSPF or BGP will eventually detect the problem on
the link and route around it. However, the attack on the flow
or area is made persistent by switching between different links
on the same path: no one link is attacked for long enough to
be detected, but the path as a whole is always unusable. This
is illustrated in Figure 2.

In overlay networks, the Crossfire and Coremelt attacks
can be used to attack the Internet paths corresponding to
the overlay links connecting overlay nodes. However, our
resilient networking architecture makes it very difficult for
an attacker to cut off communication between a source and
a destination. A successful attack must simultaneously affect
multiple overlay links (enough to cut the overlay topology
between source and destination), attacking each such overlay
link on multiple ISPs (enough to cut any combination of ISPs
available on that overlay link). This significantly raises the
bar for the attacker.

V. INTRUSION-TOLERANT OVERLAY NETWORK

A resilient networking architecture based on an overlay
approach tolerates compromises and attacks in the underlying
IP network infrastructure, but the overlay itself must also
be resilient to compromises. We build an intrusion-tolerant
overlay network using a Maximal Topology with Minimal
Weights, redundant source-based dissemination methods, and
intrusion-tolerant messaging protocols that guarantee well-
defined semantics.

A. Maximal Topology with Minimal Weights
Each overlay node trusts an offline system administrator to

initially distribute a signed Maximal Topology with Minimal
Weights (MTMW). The MTMW specifies the overlay nodes
and links in the network and the minimal weight allowed
on each link. Weights can represent any real-world cost
(e.g. latency) and routing decisions minimize weight. Overlay
nodes only accept messages from their direct neighbors in the
MTMW; non-neighbors communicate through intermediate
nodes.

Overlay nodes monitor the links with their neighbors, raise
and lower link weights when problems arise and resolve
respectively, and disseminate signed routing updates.1 A node
is not allowed to change the weights of non-neighboring links
or decrease the weight of any link below its minimal allowed
weight. If a node attempts such an action, it is detected,
that node is considered compromised, and that update is
ignored. As a result, routing attacks (e.g. black hole [6]
and wormhole [7]) are prevented, because routing updates
which would otherwise have disproportionately attracted traffic

1We use rate-limiting and overtaken-by-event techniques to limit the impact
of spurious routing updates from compromised nodes.

towards the node that issued the update are disallowed and
ignored.

To change the network topology, the offline system ad-
ministrator can update, sign, and re-distribute the MTMW.
Each MTMW is assigned a unique monotonically increasing
sequence number to defeat replay attacks. The offline sys-
tem administrator can be converted to an online Certificate
Authority, if desired.

B. Redundant Source-based Dissemination Methods
We use redundant source-based dissemination methods to

limit the effect that a potentially compromised forwarder can
have on message delivery. We use K Node-Disjoint Paths and
Constrained Flooding because they provide a good spectrum
of cost-resiliency tradeoffs.

1) K Node-Disjoint Paths
In the K Node-Disjoint Paths dissemination method, each

message is sent across the network K times, via K distinct
paths, such that no two paths share any overlay nodes, other
than the source and destination [27], [28]. The K separate
paths are specified on the message at the source.

Guarantees. K Node-Disjoint Paths tolerates K − 1 com-
promised nodes anywhere in the network and any number
of failed edges, as long as there exist K node-disjoint paths
across the topology after the failed edges are removed.

2) Constrained Flooding
In Constrained Flooding, in the worst case, each message is

sent on every overlay link in the overlay network topology (not
the entire underlying network). In practice, acknowledgments
from the destination and feedback from neighboring overlay
nodes prevent the message from being sent to nodes that are
already known to have received it, reducing overhead.

Guarantees. Constrained Flooding tolerates any number of
compromised nodes and failed edges, as long as there exists
a correct path from source to destination. This guarantee is
optimal: if a correct path does not exist, a combination of
compromised nodes and failed edges have cut the network
and no dissemination method can succeed.

C. Intrusion-Tolerant Messaging Semantics
We present two specific intrusion-tolerant messaging seman-

tics: one that provides prioritized timely delivery, and one that
provides reliable delivery. These semantics ensure fairness and
guarantee performance to the applications using them, even
in the presence of compromised nodes.

1) Priority Messaging with Source Fairness
Priority Messaging with Source Fairness (Priority Messag-

ing) is motivated by the real-time demands of monitoring
systems. Priority Messaging ensures that each source’s highest
priority messages are always timely. Within timeliness and
buffering constraints, Priority Messaging is as reliable as
possible.

Because compromises may be impossible to detect, no
source can be given preference over another. Resources must
be allocated fairly across sources, and message priority must
be considered independently for each source. If we compared
priorities across sources, a compromised source could send
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all of its messages with highest priority, potentially starving
correct sources.

Protocol description. Each message is assigned a prior-
ity, expiration time, and monotonically increasing sequence
number by its source and is digitally signed. Each node
stores uniquely received messages, identifying and discarding
duplicates based on sequence number. If message storage
is full on a given outgoing link, an incoming message that
needs to be sent on that link causes the oldest lowest-priority
message from the source currently using the most storage on
that link to be dropped, making room for the newer message.
When sending messages on a given link, each active source is
treated in a round-robin manner; for a particular source, the
oldest highest-priority message from that source is sent. This
approach enables full utilization of each link by dynamically
allocating resources based on the number of active sources,
i.e. the number of sources currently sending on the link.

Since Priority Messaging does not provide ordered delivery,
a node must potentially store the sequence numbers of all the
messages it has received to recognize duplicates. However,
requiring an expiration time (with an enforced upper bound)
on each message prevents this storage from growing without
bound since expired messages can be discarded.2

Service guarantees. Formal specifications and proofs of
Priority Messaging guarantees can be found in [30]. Informally,
Priority Messaging delivers messages in a timely (near real-
time) manner. In the absence of network contention, all
messages are timely. In the presence of network contention,
Priority Messaging maintains real-time delivery of the higher
priority messages by potentially dropping some of the lower
priority messages or delivering them with higher latency.

Priority Messaging guarantees fair storage and bandwidth
allocation for each source on each outgoing link between
two correct nodes; each active source receives either the
resources (storage and bandwidth) it requests or its fair
share

(
total resources
#active sources

)
, whichever is smaller. If a source

is using less than its fair share, the unused resources are
evenly reapportioned among the other active sources that are
requesting more than their fair share. Note that even if a correct
node receives messages in an unfair way from a compromised
neighbor, fairness is still maintained on the correct node’s
outgoing links.
2) Reliable Messaging with Source-Destination Fairness

Reliable Messaging with Source-Destination Fairness (Re-
liable Messaging) is motivated by the reliability demands of
control messages. Reliable Messaging ensures that messages
sent between a source and destination are delivered end-to-
end reliably and in order. Within these reliability constraints,
Reliable Messaging is as timely as possible.

Because messages must be kept until they are acknowledged
by the destination, we cannot use source-based fairness and
dynamic storage allocation (as in Priority Messaging). Using
those approaches, a compromised destination could refuse
to acknowledge messages to block sources from sending to
other correct destinations. Therefore, Reliable Messaging must

2This requires monotonically increasing clocks and some level of network
synchronicity. Previous work has met these conditions with atomic clocks [29].

enforce fairness based on source-destination flows and must
statically allocate storage across all potential flows, where a
flow consists of all traffic between a source and a destination.

Protocol description. Each message is assigned a mono-
tonically increasing sequence number and is digitally signed.
Nodes accept and store messages with the next expected se-
quence number for each flow. Duplicates are easily recognized
and discarded, defeating replay attacks. To provide end-to-
end reliability, intermediate nodes maintain responsibility for
messages until they are acknowledged by the destination. When
storage for a particular flow fills, the node stops accepting new
messages for that flow, creating back-pressure (all the way
back to the source) that prevents new messages from entering
the network for that flow. When sending messages on a given
link, each active flow is treated in a round-robin manner; for a
particular flow, the next expected message for that neighbor is
sent. As in Priority Messaging, dynamic bandwidth allocation
enables full bandwidth usage of each correct link.

Destinations acknowledge messages using end-to-end (E2E)
ACKs. E2E ACKs are periodically generated (with a con-
figurable E2E timeout), signed, and flooded back through
the network by each destination. Each E2E ACK indicates
the highest in-order sequence number received from every
source node in the network. E2E ACKs allow intermediate
nodes to discard acknowledged messages, making room for
new ones and clearing back-pressure. These ACKs operate on
an overtaken-by-event basis, with intermediate nodes only
storing the latest one from each destination. To prevent
compromised nodes from spamming E2E ACKs to consume
network bandwidth, a correct node only forwards E2E ACKs
that indicate progress, and forwards them no more often
than the E2E timeout. The choice of E2E timeout presents
a trade-off between overhead and responsiveness; longer
timeouts preserve more bandwidth for data messages, but
make the network take longer to clear back-pressure. As an
optimization, nodes can also send neighbor ACKs that indicate
which messages they have received, to prevent neighbors from
sending unneeded messages, improving bandwidth usage.

Reliable Messaging provides reliability even when inter-
mediate nodes crash and recover. Once a recovering node
retrieves the latest E2E ACKs from a correct neighbor, it can
resume correctly forwarding data messages. This ensures that
messages will flow even when the only correct path from
source to destination is an eventual path.

Service guarantees. Formal specifications and proofs of Re-
liable Messaging guarantees can be found in [30]. Informally,
Reliable Messaging delivers messages end-to-end reliably and
in order for each source-destination flow, even if there is only
an eventual path between source and destination.

Reliable Messaging guarantees fair storage and bandwidth
allocation for each flow on each outgoing link between two
correct nodes. Each active flow receives either the bandwidth it
requests or its dynamic fair share

(
total bandwidth
#active flows

)
, whichever

is smaller. For storage, each active flow receives its static fair
share

(
total storage
#total flows

)
. Note that, as with Priority Messaging,

compromised neighbors cannot affect the fairness of a correct
node’s other correct outgoing links.
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Fig. 3. Global cloud topology spanning East Asia, North America, and
Europe

D. Implementation Considerations
Protocol selection. The intrusion-tolerant overlay allows the

messaging semantics and dissemination method to be chosen
on a message-by-message basis. Currently, the four options
are: Priority K-Paths, Priority Flooding, Reliable K-Paths,
and Reliable Flooding.

Proof-of-Receipt Link. Neighboring overlay nodes com-
municate using a Proof-of-Receipt (PoR) link that provides
TCP-fair reliable in-order communication. The link main-
tains cryptographic authentication and integrity (similar to
DTLS [31]), using an authenticated Diffie-Hellman [32] key
exchange to establish a shared secret key for link-level message
integrity. Each side of the link must acknowledge messages
with a proof-of-receipt, using a cumulative nonce method [33],
to defeat denial-of-service attacks that acknowledge unreceived
messages to drive the sender arbitrarily fast.

Diversifying overlay node attack surface. Compiler-based
diversity [34] and proactive recovery [35], [36] of overlay
nodes diversify the attack surface of each overlay node across
space and time, greatly reducing the chance that a single
compromise can take down multiple overlay nodes at the
same time.

Cryptographic mechanisms. We use the RSA [37], Diffie-
Hellman and HMAC [38] (using SHA-256 [39]) implementa-
tions from the OpenSSL library [40].

Fuzz testing. We validated the implementation using the
Turret platform [41], designed for automatically finding attacks.
Turret revealed several bugs in message validation that allowed
a compromised node to cause a correct node to crash via
specific fields in a message (e.g. receiving an ACK for the
maximum sequence number). To date, we have fixed all
discovered vulnerabilities.

VI. DEPLOYMENT AND EVALUATION

We deploy the intrusion-tolerant overlay implementation on
a global cloud [42] (Figure 3) that spans 12 data centers from
East Asia to North America to Europe. We do not report the
specific latency on each edge for proprietary considerations.
This topology contains sufficient redundancy to support at
least three node-disjoint paths between any two nodes. We
were authorized to use 500 Mbps continuously for a whole
year. To ensure that we did not exceed the budget, we set the
bandwidth capacity of each of the 32 links in the topology to
be 10 Mbps.

We evaluate the overlay deployment’s performance and over-
head (Section VI-A) and resilience to attacks (Section VI-B)
by sending realistic traffic similar to monitoring traffic patterns

Priority (Mbps) Reliable (Mbps)
Flood K=1 K=2 Flood K=1 K=2

(a) 125 480 425 125 395 395
(b) 45 85 80 40 85 80

TABLE II
MAXIMUM GOODPUT MEASURED WITH:

(A) NO CRYPTOGRAPHY, (B) HMACS AND SIGNATURES.
Dissemination Avg. # Scaled Avg. Path

Method Hops Cost Lat. (ms)
K=1 1.9 1.0 41.4
K=2 4.4 2.3 43.5
K=3 6.6 3.5 46.6

Naı̈ve Flooding 64.0 34.1 -
Engineered Flooding 32.0 17.0 -

TABLE III
ANALYTICAL COST OF SOURCE-BASED DISSEMINATION ON THE

TOPOLOGY. SCALED COST IS AVG. # HOPS NORMALIZED BY COST OF K=1.

Protocol Avg. # Hops Scaled Cost
Priority Flooding 35.8 19.0

Reliable Flooding (w/o 31.3 16.7
End-to-End ACKs)
Reliable Flooding 16.3 8.7

TABLE IV
MEASURED COST ON THE TOPOLOGY. SCALED COST IS AVG. # HOPS

NORMALIZED BY COST OF K=1.

observed in the cloud, with most messages below 3500
bytes. In addition, we use the deployment as a shadow
monitoring system to carry the monitoring messages of the
cloud (Section VI-C). Note that all experimental results are
obtained by running on the actual global network, except
Table II and Figure 8, which are instead measured in a
controlled laboratory environment.
A. Performance and Overhead

We evaluate the performance and overhead of the intrusion-
tolerant overlay in benign environments.

Cryptographic impact on performance. Table II shows
the maximum performance for one active flow in the network,
obtained in a controlled laboratory environment matching the
topology of Figure 3. In (a), cryptographic mechanisms are
disabled. In (b), they are enabled. Since performance is strictly
CPU bound when using cryptography, adding additional
hardware by sharding the incoming traffic across multiple
cores or even multiple machines would enable us to reach
performance comparable with (a) in Table II.

Communication cost. The communication cost of the
intrusion-tolerant protocols is topology-dependent. Tables III
and IV show the analytical and experimental cost of source-
based dissemination methods and messaging semantics on the
cloud topology. The cost associated with sending messages
corresponds to the number of edges those messages traverse.

Analytical comparison: In Table III, we report the average
cost over all source-destination pairs for each dissemination
method. For K-Paths with K=1, equivalent to single-path
routing, the average number of hops between two nodes is 1.9
and the average path latency is 41.4 ms. For K=2 (resp. 3),
the total number of hops across the paths increases by more
than double (resp. triple). Since multiple shortest (latency-
wise) paths do not exist, the average latency across the paths
increases. Since the cost of Constrained Flooding depends on
network message timing and acknowledgements in some of
the messaging protocols (e.g. Reliable Messaging), we cannot
calculate its analytical cost. Instead, we show the analytical
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Fig. 4. Experimental goodput for: (a) Naı̈ve Flooding, (b) Priority Flooding,
(c) Reliable Flooding (no E2E ACKs), and (d) Reliable Flooding.

cost of Naı̈ve Flooding, where messages traverse each edge in
both directions, and Engineered Flooding, where techniques
(such as random delay) are used so that messages traverse each
edge only once. Since flooding schemes are not path-based,
average path latency is not reported.

Experimental comparison: We measure and compare the
costs of Priority Flooding, Reliable Flooding without E2E
ACKs, and Reliable Flooding (Table IV). The experiments use
five randomly selected flows (9-11, 4-5, 7-9, 1-10, and 3-8
in Figure 3) each sending at the maximum link capacity (10
Mbps) to create network contention. Since the experimental
costs for K-Paths are very similar to their analytical costs,
they are omitted. Note that Reliable Flooding without E2E
ACKs is not a correct protocol. It is solely used to evaluate
the cost benefits of neighbor ACKs.

The cost of Priority Flooding is between the costs of Naı̈ve
Flooding and Engineered Flooding because messages traverse
some (but not all) edges in only one direction. Since timeliness
is vital for Priority Messaging, a random delay is infeasible and
only the natural latency of the network can prevent messages
from flowing twice on a given edge. Note that the Priority
Flooding cost includes messages that traverse part of the
network but do not arrive at the destination due to contention.

In Reliable Flooding, neighbor ACKs eliminate the need to
forward messages to neighbors that have already acknowledged
them. E2E ACKS eliminate the need to forward messages that
have already been acknowledged by the destination. Both types
of ACKs can prevent messages from traversing every edge;
with E2E ACKs, messages may not even need to reach every
node in the network. The cost of Reliable Flooding without
E2E ACKs is comparable to the cost of Engineered Flooding,
showing the benefits of neighbor coordination. The cost of
Reliable Flooding is significantly lower; the E2E ACKs provide
global knowledge to nodes, giving the power of flooding for
a much cheaper cost.

Aggregate goodput. Figure 4 shows the goodput for Naı̈ve
Flooding, Priority Flooding, Reliable Flooding without E2E
ACKs, and Reliable Flooding. In Naı̈ve Flooding (Figure 4a),
since each message travels on every edge in both directions,
each of the five flows gets one fifth of the bandwidth capacity.
Priority Flooding (Figure 4b) and Reliable Flooding without
E2E ACKs (Figure 4c) both have higher goodput than Naı̈ve
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Fig. 5. Performance of one Priority Flooding flow (thin line) with an increasing
number of active sources. The thick line shows the guaranteed fair share.

Flooding because they avoid sending messages on some links.
Priority Flooding has higher goodput than Reliable Flooding
without E2E Acks. Because Priority Flooding drops messages
due to contention and different messages are dropped on
different paths, not all messages reach all nodes, providing
opportunities for more messages to arrive at the destination
in aggregate. Reliable Flooding (Figure 4d) has the highest
goodput because the E2E ACKs prevent some messages from
being sent to regions of the network that do not need them.

Discussion. The cost of Reliable Flooding (Table IV) is
about 2.5x the cost of K=3 (Table III), making it an appealing
alternative. Initially, we expected that Priority Flooding would
cost less and perform better than Reliable Flooding, since it is
a best-effort protocol and less rigid. However, the E2E ACKs
result in higher aggregate goodput as well as higher goodput
for each individual flow. While Reliable Flooding achieves
higher goodput, Priority Flooding is still the best choice for
applications that require timeliness.

In this global cloud, the monitoring and control traffic
amounts to less than 0.1% of the overall traffic. Because the
messaging overhead of our protocols on that topology is 2.3x
for K Node-Disjoint Paths with K=2 (Table III) and up to
19x for Constrained Flooding (Table IV), the overhead cost
of intrusion-tolerant monitoring and control is below 2% of
the total traffic. We consider this a tolerable overhead cost
because these applications form the infrastructure of the cloud.

B. Resilience to Attacks
We evaluate the performance of the deployment under

instrumented attacks.

1) Priority Messaging
Figure 5 shows the performance of a single Priority Flooding

flow sending at the maximum link capacity. Every 60 seconds,
an additional randomly selected source node begins sending
at the same capacity. At each interval, we report the measured
performance (thin line) and the guaranteed fair share (thick
line) based on the number of active sources. The measured
goodput outperforms the minimum guaranteed value because
not all links are in full contention at all times.

Figure 6a shows the goodput for a correct Priority Flooding
flow (9-11) sending at 1.6 Mbps, with four compromised flows
trying to consume bandwidth by each sending at the maximum
link capacity (10 Mbps). The goodput of the correct flow is
not affected because 1.6 Mbps is less than its fair share with
four other active flows. The remaining bandwidth is shared
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Fig. 6. Priority Flooding (a) goodput and (b) latency.
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Fig. 7. Priority Flooding under message spamming attack. When compromised
nodes attempt to saturate the network with highest-priority messages, the
correct node’s higher priority messages (lower bands) are preserved.

evenly among the other flows. These results are consistent
with the service guarantees of Priority Messaging.

Figure 6b shows the latency experienced by these five flows
and compares it to the propagation delay between the source
and destination (flat line). While all five flows experience
latency close to propagation delay, the correct flow’s latency
is closer to propagation delay because it sends less than its
fair share, so its messages do not wait in queues.

In Figure 7, a correct Priority Flooding flow (7-9), from
Europe to East Asia, sends at a rate of 7 Mbps and evenly
distributes its messages across ten priority levels (ten colored
bands). With no attack, all messages are received at the
destination. When one or more compromised nodes attempt to
saturate the network with highest-priority messages, the correct
node’s higher priority messages are preserved at the expense
of its lower priority messages. After the attack stops, the lower
priority messages still in storage at intermediate nodes are
forwarded, resulting in a burst of traffic. As can be seen in the
graph, this storage is cleared in order by priority (i.e. an entire
priority level is cleared before starting the next lower level).
In all cases, the correct flow achieves the bandwidth it requests
or at least its fair share, meeting the service guarantees.

2) Reliable Messaging
Figure 8 shows the performance of a single Reliable

Messaging flow (7-9), from Europe to East Asia, for both
Constrained Flooding and K-Paths, with various loss rates
applied to all links in the network. This experiment is emulated
to match the topology and latencies of the real cloud to
accurately control the injected loss. The flow is able to maintain
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Fig. 8. Performance of one Reliable Messaging flow with loss rates applied
to all links in the topology.
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Fig. 9. Performance of one Reliable Flooding flow (thin line), impacted by
two compromised flows and by crashes that cut the network.

performance, even under high loss. This is the worst-case flow
for loss in the topology because it uses the most hops, and loss
is applied on each hop. In fact, this is one of the worst-case
flows on the globe for backbone traffic as it spans about half
of the earth’s circumference.

Figure 9 shows the performance of a single Reliable
Flooding flow sending at maximum link capacity over the
course of two events: two compromised flows attempting to
saturate the network, and a crash-recovery of intermediate
nodes that causes a network partition between source and
destination. The guaranteed fair share (thick line) is shown for
reference in all cases. Throughout the experiment, the flow’s
goodput meets the service guarantees. During contention, the
E2E ACKs result in goodput higher than the guarantee.

C. Shadow Monitoring System
We use the deployment to carry the monitoring messages

of the global cloud. The monitoring messages provide a
real-time view of the cloud, updating every 1–3 seconds
depending on the type of information. This view contains
detailed information regarding the status of data centers, the
network characteristics (e.g. latency, bandwidth, loss rate) of
links between data centers, the status of cloud access points
(i.e. clients), and the service characteristics that each client-
generated task receives.

The deployment ran for several months as a complete
shadow monitoring system for all monitoring messages. It was
used in a limited production capacity: monitoring messages
carried by the deployed network were processed and displayed
in a graphical user interface that shows a real-time view of
the cloud. Other alarm and log related features were not im-
plemented. The monitoring messages used Priority Messaging
because it meets the real-time requirements. Throughout the
deployment, K-Paths (with K=2) and Constrained Flooding
were used to evaluate their applicability.

The deployed network was able to provide the same timely
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delivery of monitoring messages as the production monitoring
network (resulting in an equivalent real-time view of the
cloud), but with the addition of intrusion-tolerant guarantees
for a tunable higher cost. Based on our experience building
and running this cloud, we find the higher cost, even for
Constrained Flooding, an acceptable price to pay for the critical
messages, given the strong guarantees gained. Further, we are
even considering using the deployed network with K-Paths
(K=2) to carry data for some select high-value applications.

VII. CONCLUSION

We presented the first practical intrusion-tolerant network
service. The solution uses an overlay approach to overcome
malicious attacks and compromises in both the underlying
network infrastructure and in the overlay itself. We deployed
the overlay on a global cloud spanning East Asia, North
America, and Europe, and evaluated its performance carrying
realistic cloud monitoring and control traffic in the presence of
compromised nodes. The implementation is publicly available
in the Spines messaging toolkit at www.spines.org.
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