
Toward Survivable SCADA

Jonathan Kirsch
Siemens Technology to

Business Center
1995 University Avenue

Berkeley, CA
jonathan.kirsch@siemens.com

Stuart Goose
Siemens Technology to

Business Center
1995 University Avenue

Berkeley, CA
stuart.goose@siemens.com

Yair Amir
∗

The Johns Hopkins University
3400 N. Charles Street

Baltimore, MD
yairamir@cs.jhu.edu

Paul Skare
Pacific Northwest National

Laboratory
Richland, WA

paul.skare@pnnl.gov

ABSTRACT
This paper reports on our experience designing and imple-
menting the first survivable SCADA system – one capable of
providing correct behavior with minimal performance degra-
dation even during a cyber attack that compromises part of
the system. We describe the challenges we faced while at-
tempting to integrate modern intrusion-tolerant protocols
with the SCADA architecture and present the techniques
we developed to overcome these challenges.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—Fault tolerance

General Terms
Security, Reliability

Keywords
Survivability, SCADA, High Availability

1. INTRODUCTION
Critical infrastructure systems provide vital services such

as electricity generation and distribution, water treatment,
and traffic control. These systems are often geographically
distributed and rely heavily on communication networks for
control and data (e.g., SCADA). Although many of these
systems were designed to operate on isolated, private net-
works, this assumption no longer holds as these systems mi-
grate to modern IP-based deployments. Historically, society

∗Yair Amir’s work was partially supported by the National
Science Foundation under grant 0716620.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSIIRW ’11, October 12-14, Oak Ridge, Tennessee, USA
Copyright 2011 ACM 978-1-4503-0945-5 ISBN ...$10.00.

has come to expect critical services to be continually avail-
able, but their growing reliance upon networks makes them
increasingly vulnerable to malicious attacks.

Cyber attacks, especially insider attacks, are on the rise,1

and the cost of service disruption is severe, especially for
critical infrastructure systems.2 As in the corporate world,
critical infrastructure systems deploy maintstream IT secu-
rity products, such as firewalls and antivirus checkers, to
protect against external threats, but it is impossible to pre-
vent all attacks. Moreover, insider attacks have already ef-
fectively breached the system’s security perimeter and leave
the control system exposed to compromise. The unfortunate
reality is that state-of-the-art security technologies provide
insufficient protection against contemporary and emerging
threats.

The field of intrusion tolerance has been motivated by the
key question: Is it possible for a critical application to act
as its own firewall, enabling it to survive even in the face
of malicious attacks that result in a partial system compro-
mise? By survive, we mean that the application not only
continues to operate correctly, but that it also operates with
minimal performance degradation. These twin properties
are essential for maintaining the high availability of critical
infrastructure systems.

Over the last decade, using intrusion-tolerant protocols
to achieve consistent global state (e.g., [5, 1, 6]) has been
shown to be an effective technique for building highly avail-
able systems able to withstand partial compromises. While
earlier intrusion-tolerant replication systems guaranteed cor-
rectness, recent protocols [1, 6] also guarantee minimal per-
formance degradation whilst under attack and are hence
survivable. Importantly, these recent protocols have also
demonstrated the ability to scale to support thousands of
clients. Survivability is maintained as long as no more than
a threshold fraction of the replicas (typically f out of 3f +1
[10]) is compromised. A distinguishing feature of intrusion-
tolerant systems is that they do not require prior knowledge
of attack signatures and behaviors.

This paper reports on our experiences to date building

1McAfee reported more than 14 million unique pieces of mal-
ware in its Q3 2010 threat report, almost quadrupling since
2007.
2McAfee [3] estimates that the cost of downtime can be as
high as six million dollars per day.

the first survivable SCADA system. We employ intrusion-
tolerant replication using the state machine approach [11, 9].
Specifically, we use the Prime replication protocol [1] as an
important building block, but, as elaborated upon below, we
were confronted with fundamental architectural mismatches
when analyzing the integration with SCADA. After devel-
oping solutions to these obstacles, we translated this proven
family of survivability protocols from the research domain
into a practical reality.

The novel contributions of this paper are: (i) the design
and development of three new protocols necessary to inte-
grate intrusion tolerance with a SCADA architecture; (ii)
methods for eliminating the hardware cost of replication
(crucial in many commercial settings) without sacrificing
crash fault tolerance; (iii) results to validate the architec-
ture, showing that our system currently performs sufficiently
well to meet the needs of large-scale SCADA systems.

2. SURVIVABLE SCADA: FROM RESEARCH
TO REALITY

Since SCADA systems are high-value targets for attack-
ers, it would be beneficial to harden them via intrusion-
tolerant replication. Unfortunately, while it would seem that
SCADA should be“just another application,” capable of run-
ning seamlessly on top of an intrusion-tolerant replication
engine, there are several challenges specific to SCADA that
are significant barriers to a practical integration. This sec-
tion describes these obstacles and gives an overview of the
new algorithms we developed to overcome them.

A SCADA system consists of the following main compo-
nents:

• One or more Remote Terminal Units (RTUs),
which communicate with, and aggregate data from, lo-
cal sensors in the field. Some larger systems can have
several thousand RTUs.

• A SCADA Server, which periodically polls the RTUs
and maintains a real-time database containing the cur-
rent state of each one. The SCADA Server can also
send supervisory control commands to the RTUs.

• One or more Human Machine Interface (HMI)
workstations, which periodically query the SCADA Server
so that the state of the RTUs can be graphically dis-
played for a human operator.

The highest value asset is the SCADA Server, and its com-
promise can have serious consequences for the control and
monitoring of the entire system. Therefore, the SCADA
Server is the prime candidate for protecting via replication.
Figure 1 depicts a minimal configuration of the survivable
SCADA architecture, where the system can survive the com-
promise of one of the SCADA Server replicas.

There is an important difference between the SCADA
Server and the typical client-server applications that lever-
age replication. Most client-server applications are client

driven: the server takes actions as the result of executing
client requests; the reliability of the communication link be-
tween client and server is ensured by client retransmissions;
and server replies are sent to the requesting client. In con-
trast, communication between the SCADA Server and the

Figure 1: Survivable SCADA Architecture.

RTUs is primarily server driven, where the SCADA Server
can spontaneously send a message (e.g., a poll request).3

This seemingly small difference has large implications on
the functionality required from the replication engine. In-
deed, bringing intrusion tolerance techniques from the re-
search setting to the practical SCADA setting necessitated
the invention of several new algorithms, which are described
in the following subsections.

2.1 Scalable Intrusion-Tolerant Synchroniza-
tion

That the SCADA Server spontaneously initiates messages
implies that it takes action based on the passage of time. Ab-
sent synchronized clocks, the passage of time is observed in a
non-deterministic way at different SCADA Server replicas;
if each SCADA Server replica were to make a state tran-
sition based on the passage of time on its local clock, the
replicas could become inconsistent with one another. Thus,
a mechanism is needed to enable the replicas to agree on the
logical point in time at which a time-based action should be
taken. Of course, this mechanism must be intrusion-tolerant
so that malicious replicas cannot disrupt the agreement.

Since large SCADA systems may contain thousands of
RTUs, each of which may be polled individually, the syn-
chronization mechanism must scale with the number of en-
tities being polled (or, put another way, with the number of
different synchronization points being agreed upon). Exist-
ing techniques [8] require a number of messages proportional
to the number of synchronization points requested by the
server application. To meet the scalability requirements of
the SCADA Server, we invented a new protocol that requires
a constant number of messages to be exchanged, indepen-
dent of the polling period of the application. Our protocol
makes no assumptions about the relative speeds of the repli-
cas’ local clocks and prevents compromised replicas from ar-
bitrarily advancing or delaying the agreed upon time.

Intuitively, the protocol works by having each replica pe-
riodically send a message containing its local clock value and
a number uniquely identifying the last synchronization point
the replica believes to have arrived (as measured on its local
clock). These messages are agreed upon using the intrusion-
tolerant replication protocol, and a replica can act on the
synchronization point when it is convinced that enough time
has elapsed on the local clock of at least one correct replica.

3Some SCADA communication follows the traditional client-
server pattern, such as the request/reply protocol between
an HMI workstation and the SCADA Server.

2.2 Intrusion-Tolerant Reliable Channels
Many existing SCADA systems make use of a reliable

transport protocol, such as TCP, to pass messages between
the SCADA Server and the RTUs. In contrast, intrusion-
tolerant replication systems tend to use UDP and implement
their own reliability.4 In such systems, the replication en-
gine is responsible for passing application messages between
clients and the server replicas.

Unfortunately, since existing intrusion-tolerant replication
systems implicitly assume that the application is client driven,
they provide only limited support for reliable communica-
tion between a client and the server replicas. Most use a
transaction-based protocol, where the client retransmits its
request if it does not receive a response within a timeout pe-
riod. This approach makes additional implicit assumptions,
namely that the server application will always generate a
response that can be used by the client as an acknowledge-
ment, and that this acknowledgement message will be sent
to the requesting client.

SCADA applications require a more flexible approach to
achieving reliability. Since the SCADA server replicas can
spontaneously initiate messages, the system needs a mech-
anism for reliable communication from the replicas to each
RTU (and to the HMI workstation). In addition, the execu-
tion of a message (e.g., a poll response) by the replicas may
cause them to send a reply to an entirely different entity
(e.g., the HMI workstation), or to not send a reply at all.

To address this issue, we developed two protocols that
together implement the abstraction of an intrusion-tolerant

reliable channel between clients (i.e., the HMI workstation
and the RTUs) and the SCADA Server replicas. Each pro-
tocol handles a different communication direction. Since the
endpoints of the channel are asymmetric (i.e., one is a single
client process and the other is a set of server replicas), us-
ing two unidirectional protocols allows us to optimize per-
formance in each direction. The reliable channel provides
FIFO delivery between a client and the replicas, with se-
mantics similar to that of a non-blocking TCP socket.

Several factors make it challenging to design an efficient
intrusion-tolerant reliable channel. For example, the channel
must ensure the desired semantics even when the compro-
mised replicas (or a malicious client) send invalid messages,
attempt to delay messages, or try to cause the correct par-
ticipants to consume excessive resources. In addition, the
channel implementation must be efficient, since the replicas
may communicate with many RTU endpoints.

Due to space limitations, we omit a full description of the
reliable channel implementation here. Instead, we highlight
one of its important properties: the replicas do not need to
agree upon the order in which to execute client acknowledge-
ments. This significantly reduces the overhead of the pro-
tocol, because agreement is the most expensive operation in
an intrusion-tolerant replication system. Interestingly, this
property violates the state machine approach (where each
replica executes the same client messages in the same or-
der), but it does so in a way carefully designed to ensure
correctness. In particular, the replicas do agree on when a
connection with a client is established or should be termi-
nated, and thus they all agree on the status of the channel.

4As noted in [5], TCP is poorly suited to systems with po-
tentially faulty receivers because, by failing to send acknowl-
edgements, the faulty receivers can require correct replicas
to buffer an unbounded number of messages.

Figure 2: Virtualization-based Architecture.

3. SURVIVABILITY WITH NO ADDITIONAL
HARDWARE

As the entity controlling the entire system, the SCADA
Server must be protected against crashes. Current SCADA
systems typically use a primary/hot-standby approach to
provide crash fault tolerance, with each running on its own
physical machine.

Our survivable SCADA architecture requires running four
replicas to tolerate one compromise. The simplest deploy-
ment strategy is to place each replica on its own physical ma-
chine, thus providing maximal crash fault tolerance. How-
ever, while the cost of a few additional machines may not be
an issue for some SCADA customers, others will be reluctant
to adopt a solution requiring twice as much hardware as the
existing approach (both because of the cost of the hardware
itself and the additional management cost). Indeed, our ex-
periences have taught us that reducing the hardware cost
of replication is a key design requirement if our survivable
SCADA architecture is to be adopted in practice.

To address this issue, we developed a solution that uses
virtualization to enable four replicas to run on only two
physical machines (like the current primary/hot-standby ap-
proach) but without sacrificing crash fault tolerance. Specif-
ically, the SCADA Server application continues providing
correct, timely operation even if one of the physical ma-
chines crashes.

Before describing our approach in more detail, we note
that the use of virtualization raises as an issue an important
practical trade-off. Using virtualization saves on hardware
but requires trusting the hypervisor to operate correctly;
using four separate physical machines requires no additional
trust assumptions but at the cost of more hardware. Which
configuration to prefer ultimately depends on deployment-
specific factors, but we believe cost constraints will lead
many to opt for the virtualization-based approach. In this
case, rather than blindly trusting the hypervisor, a more
prudent approach is to attempt to endow the hypervisor
with as much trustworthiness as possible (e.g., by measur-
ing and verifying its integrity in real-time [2], by protecting
its control flow [13], etc.).

We conclude this section by giving some intuition about
our virtualization-based architecture. We first note that vir-
tualization itself is not enough to provide the necessary de-
gree of crash fault tolerance. To see why, note that any
placement of four replicas on two physical machines can re-
sult in a scenario in which the crash of one of the physical
machines leaves fewer than three running replicas (which is
the minimum number needed to ensure that the system re-
mains available). In order to provide continued operation in
the face of a physical machine crash, we leverage a recent
virtualization technique called transparent high availability,
or fault tolerance. This technique associates with each vir-
tual machine (VM) a backup VM that runs in lockstep with

its primary. The backup runs on a different physical ma-
chine from the primary and is automatically activated by
the hypervisor if the primary crashes (see Figure 2). The
backup is instantiated within several hundred milliseconds,
in exactly the same state the primary was in.

We have explored two different fault tolerance solutions,
one using VMware’s Fault Tolerance approach [12] and the
other using open-source tools based on the Xen hypervisor
[4] and a synchronization protocol called Remus [7]. While
our testing indicates that both solutions can meet our needs,
there are some key differences between them. Besides the
obvious price difference, the two solutions have different per-
formance characteristics. In VMware’s approach the backup
replicas consume the same amount of processing resources
as the primaries, while in Xen/Remus the backups remain
passive until failover. However, the primary/backup syn-
chronization in VMware introduces less latency than the
checkpoint-based approach of Xen/Remus. There are also
subtle but important differences in the failover semantics:
VMware prevents “split-brain” scenarios from occurring but
requires shared storage, while Xen/Remus does not depend
on shared storage but currently cannot prevent split-brain
behavior in certain cases if the link between the two physical
machines breaks. This can be mitigated in practice by using
NIC teaming.

4. DEPLOYMENT CONSIDERATIONS
In this section we comment on the results of some pre-

liminary performance benchmarks that we have run on our
replication engine. We also discuss what impact the repli-
cation engine has on SCADA application processing.

We are interested in both the throughput of our replica-
tion engine (i.e., the number of client messages that it can
process per second) and the amount of latency added to the
processing of SCADA events by the replica agreement pro-
tocol. Intuitively, throughput is important because a higher
throughput means that the system can scale to larger num-
bers of RTUs; latency is important because it must be low
enough to facilitate the real-time control and monitoring re-
quired of a SCADA application.

The current implementation of our replication engine can
handle more than 10,000 messages per second with an aver-
age latency of approximately 100 ms. We expect this per-
formance to be sufficient for most SCADA systems, even
large-scale systems with several thousand RTUs being polled
approximately once per second. Encouragingly, we also plan
to implement several optimizations that we expect will al-
low the system to scale even further. Clearly, depending on
the performance requirements of the SCADA application in
question, it may be prudent to tune the replication engine
so that it is optimized more towards throughput or latency.

One trend that works in our favor is the increasing adop-
tion of multi-core processors. Our system leverages this
trend by running the replication engine in a separate thread
from the SCADA Server application itself, thus allowing the
two to execute on different cores. This enables the replica
agreement protocol to run in parallel with SCADA applica-
tion processing, minimizing the extent to which the two com-
pete for CPU resources. It also minimizes the constraints
placed on the application by the replication engine. For ex-
ample, a blocking call in the application will not prevent ad-
ditional events from being agreed upon (although, of course,
the replication engine will not be able to deliver these sub-

sequent events until the application becomes unblocked).

5. CONCLUSIONS
This paper documented our experiences to date in de-

signing and implementing the first survivable SCADA sys-
tem. We described the unique requirements imposed by the
SCADA architecture and gave an overview of several new
techniques facilitating the integration of intrusion-tolerant
replication and SCADA. Our initial experimental results
show that our replication engine can perform well enough
to meet the needs of even large-scale SCADA systems con-
taining thousands of RTUs.

6. REFERENCES
[1] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime:

Byzantine replication under attack. IEEE

Transactions on Dependable and Secure Computing,
8(4):564–577, 2011.

[2] A. M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang,
and N. C. Skalsky. HyperSentry: Enabling stealthy
in-context measurement of hypervisor integrity. In
Proceedings of the 17th ACM Converence on Computer

and Communications Security, pages 38–49, 2010.

[3] S. Baker, S. Waterman, and G. Ivanov. In the crossfire:
Critical infrastructure in the age of cyber war, 2009.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM symposium on operating

systems principles, pages 164–177, 2003.

[5] M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Trans.

Comput. Syst., 20(4):398–461, 2002.

[6] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making Byzantine fault tolerant
systems tolerate Byzantine faults. In Proceedings of

the 6th USENIX Symposium on Networked Systems

Design and Implementation, pages 153–168, 2009.

[7] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High
availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX

Symposium on Networked Systems Design and

Implementation, pages 161–174, 2008.

[8] J. Kirsch. Intrusion-Tolerant Replication Under

Attack. PhD thesis, The Johns Hopkins University,
Baltimore, Maryland, 2010.

[9] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[10] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

[11] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM

Computing Surveys, 22(4):299–319, 1990.

[12] VMware. Protecting mission-critical workloads with
VMware Fault Tolerance, 2009.

[13] Z. Wang and X. Jiang. HyperSafe: A lightweight
approach to provide lifetime hypervisor control-flow
integrity. In Proceedings of the 31st IEEE Symposium

on Security and Privacy, pages 380–395, 2010.

