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Abstract

Reliable point-to-point communication is usually
achieved in overlay networks by applying TCP on the end
nodes of a connection. This paper presents a hop-by-hop
reliability approach that considerably reduces the latency
and jitter of reliable connections. Our approach is feasible
and beneficial in overlay networks that do not have the
scalability and interoperability requirements of the global
Internet.

The effects of the hop-by-hop reliability approach are
quantified in simulation as well as in practice using a newly
developed overlay network system that is fair with the ex-
ternal traffic on the Internet. The experimental results show
that the overhead associated with overlay network process-
ing at the application level does not play an important fac-
tor compared with the considerable gain of the approach.

1 Introduction

Reliable point-to-point communication is one of the
main utilizations of the Internet, where over the last few
decades TCP has served as the dominant protocol. Over the
Internet, reliable communication is performed end-to-end in
order to address the severe scalability and interoperability
requirements of a network in which potentially every com-
puter on the planet could participate. Thus, all the work
required in a reliable connection is distributed only to the
two end nodes of that connection, while intermediate nodes
route packets without keeping any information about the in-
dividual packets they transfer.

Overlay networks are opening new ways to Internet us-
ability, mainly by adding new services (e.g. built-in secu-
rity) that are not available or cannot be implemented in the
current Internet, and also by providing improved services
such as higher availability [2]. However, the usage of over-
lay networks may come with a price, usually in added la-
tency that is incurred due to longer paths created by overlay
routing, and by the need to process the messages in the ap-
plication level by every overlay node on the path.

Reliable communication in overlay networks is usually
achieved by applying TCP on the edges of a connection.
This surely works. However, this paper argues that employ-
ing hop-by-hop reliability techniques considerably reduces
the average latency and jitter of reliable communication.
When using such an approach one has to consider network-
ing aspects such as congestion control, fairness, flow con-
trol and end-to-end reliability. We discuss these aspects and
our design decisions in Section 2.

In Section 3, we demonstrate through simulation that our
approach provides tremendous benefit for the application as
well as for the network itself, even when very few packets
are lost. Simulations usually do not take into account many
practical issues such as processing overhead, CPU schedul-
ing, and most important, the fact that overlay network pro-
cessing is performed at the application level of general pur-
pose computers. These may have considerable impact on
real-life behavior and performance. Therefore, we test our
approach in practice on an overlay network platform called
Spines that we have built.

We introduce Spines in Section 4. Spines [16] is an open
source research platform that allows deployment of over-
lay networks in the Internet. We run the same experiments
that were simulated, on a Spines overlay network. The re-
sults are presented in Section 5. We show that the benefit
of hop-by-hop reliability greatly overcomes the overhead of
overlay routing and achieves much better performance com-
pared to standard end-to-end TCP connections deployed on
the same overlay network.

We describe existing related work and compare it with
our approach in Section 6, and end the paper, concluding
that hop-by-hop reliability is a viable and beneficial ap-
proach to reliable communication in overlay networks.

2 Hop-by-hop reliable communication in
overlay networks

An overlay network constructs a user level graph on top
of an existing networking infrastructure such as the Inter-
net, using only a subset of the available network links and
nodes. An overlay link is a virtual edge in this graph and



may consist of many actual links in the underlying network.
Overlay nodes act as routers, forwarding packets to the next
overlay link toward the destination. At the physical level,
packets traveling along a virtual edge between two overlay
nodes follow the actual physical links that form that edge.

Overlay networks have two main drawbacks. First, the
overlay routers incur some overhead every time a message
is processed, which requires delivering the message to the
application level, processing it, and resending the message
to the next overlay router. Second, the placement of overlay
routers in the topology of the physical network is often far
from optimal, because the creator of the overlay network
rarely has control over the physical network (usually the
Internet) or even the knowledge about its actual topology.
Therefore, overlay networks provide longer paths that have
higher latency than point to point Internet connections.

The easiest way to achieve reliability in Overlay Net-
works is to use a reliable protocol, usually TCP, between the
end points of a connection. This mechanism has the benefit
of simplicity in implementation and deployment, but pays a
high price upon recovery from a loss. As overlay paths have
higher delays, it takes a relatively long time to detect a loss,
and data packets and acknowledgments are sent on multiple
overlay hops in order to recover the missed packet.

2.1 Hop-by-hop reliability

We propose a mechanism that recovers the losses only on
the overlay hop on which they occurred, localizing the con-
gestion and enabling faster recovery. Since an overlay link
has a lower delay compared to an end-to-end connection
that traverses multiple hops, we can detect the loss faster
and resend the missed packet locally. Moreover, the con-
gestion control on the overlay link can increase the conges-
tion window back faster than an end-to-end connection, as
it has a smaller round-trip time.

Hop-by-hop reliability involves buffers and processing
in the intermediate overlay nodes. These nodes need to de-
ploy a reliable protocol, and keep track of packets, acknowl-
edgments and congestion control, in addition to their regular
routing functionality. Although such an approach may not
be feasible to implement at the level of the Internet routers
due to scalability limitations, we can easily deploy it at the
level of an overlay network, thus allowing us to pinpoint
the congestion, limiting the problem to the congested part
of the network.

Let’s consider a simple overlay network composed of
five 10 millisecond links in a chain, as shown in Figure 1.
Such a network may span a continent such as North Amer-
ica or Europe. Every time a packet is lost (say on link C-
D), it will take at least 50 milliseconds from the time that
packet was sent until the receiver detects the loss, and at
least 50 additional milliseconds until the sender learns about
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Figure 1. Chain Network Setup

it. The sender will retransmit the lost packet that will travel
50 more milliseconds until the receiver will get it. This ac-
counts for a total of at least 150 milliseconds to recover a
packet. If the sender continues to send packets during the
recovery period, even if the new packets arrive at the re-
ceiver in time (assuming no loss for them), they will not be
delivered at the receiver until the missing packet is recov-
ered, as they are not in order. Our experimental results pre-
sented in Sections 3 and 5 show that the number of packets
delayed is much higher than the number of packets lost.

Let us assume that we use five reliable hops of 10 mil-
liseconds each instead of one end-to-end connection. Sup-
pose the same message is lost on the same intermediate link,
as in the above scenario. On that particular link (with 10
milliseconds delay) it will take only about 30 milliseconds
for the receiver to recover the missed packet. Moreover, as
the recovery period is smaller, a smaller number of out of
order packets will be delayed. This effect is more visible as
the throughput increases.

2.2 End-to-end reliability and congestion control

Simply having reliable overlay links does not guarantee
end-to-end reliability. Intermediate nodes may crash, over-
lay links may get disconnected. However, such events are
not likely to happen and most of the reliability problems
(generated by network losses) are indeed handled locally at
the level of each hop. Therefore we still need to send some
end-to-end acknowledgments from the end-receiver to the
initial sender, at least once per round-trip time, but not for
every packet. This means that for some of the packets we
will pay the price of sending two acknowledgments, one
on each of the overlay hops for local reliability, and one
end-to-end, that will traverse the entire path. However, ac-
knowledgments are small and are piggy-backed on the data
packets whenever possible. We believe that the penalty of
sending double acknowledgments for some of the packets
is drastically reduced by resending the missed data packets
(which are much bigger than the acknowledgments) only
locally, on the hop where the loss occurred, and not on the
entire end-to-end path.

Intermediate overlay nodes handle reliability and con-
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gestion control only for the links to their immediate neigh-
bors and do not keep any state for individual flows in the
system. Packets are forwarded and acknowledged per link,
regardless of their originator. This is essensial for the scal-
ability with the number of reliable sessions in the system.

Since the packets are not needed in order at the interme-
diate overlay nodes, but only at the final destination, in case
of a loss there is no need to delay the following packets lo-
cally on each link in order to forward them FIFO on the next
link. We choose to forward the packets even if out of order
on intermediate hops, and reestablish the initial order at the
end receiver.

Our tests show that out of order forwarding reduces the
burstiness inside the network. It also contributes to the re-
duction of the end-to-end latency (although that contribu-
tion is not as significant as the latency reduction achieved
by the hop-by-hop reliability). The latency effect of out
of order forwarding is magnified when multiple flows use
the same overlay link. In that case, they do not need to re-
order packets with respect to each other but only according
to their own packets. The same occurs when more than one
overlay link is congested and looses packets.

Overlay links are seen as individual point-to-point con-
nections by the underlying network. Since overlay flows
coexist with external traffic, each overlay link needs to have
a congestion control mechanism in place. Our approach
uses a window-based congestion control on each overlay
link, that very closely follows the slow start and congestion
avoidance of TCP [11].

The available bandwidth is different on each overlay
link, depending on the underlying network characteristics,
and is also dynamic, as the overlay link congestion con-
trol adjusts to provide fairness with the external traffic. If,
at an intermediate node, the incoming traffic is bigger than
the outgoing available bandwidth of the overlay link, that
node will buffer the incoming packets, but if the condition
persists it will either store an infinite number of packets or
will start dropping them. Since end-to-end recovery is ex-
pensive, there needs to exist a congestion control mecha-
nism that will limit, or even better, avoid packet losses at
the overlay level. As opposed to the regular mechanism in
TCP that uses packet losses to signal congestion, we use
an explicit congestion notification scheme [15] where con-
gested routers stamp the header of the data packets. Upon
receiving such a stamped packet, the end receiver will send
an end to end acknowledgment signaling the congestion im-
mediately, and the sender’s congestion control will treat that
acknowledgment as a loss, even though the sender will not
resend the corresponding packet. Note that the initial sender
still sends retransmissions if necessary (e.g. in case of node
failures and rerouting).

Since end-to-end acknowledgments are not sent for ev-
ery packet, the end-to-end window may advance in big
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Figure 2. TCP throughput (analytical model)

chunks once a cummulative acknowledgment is received.
If the network path is not congested, this phenomenon
does not affect the burstiness of the traffic, as the sending
throughput is anyway smaller than the size of the window.
However, in case of congestion the receiver sends end-to-
end acknowledgments for every packet (stamped by an in-
termediate overlay router) until the congestion is resolved.

2.3 Fairness

Since we intend to deploy our protocols on the Internet
we need to share the global resources fairly with the ex-
ternal TCP traffic. A “TCP-compatible” flow is defined in
[3] as one that is responsive to congestion notification, and
in steady state, it uses no more bandwidth than a confor-
mant TCP running under comparable conditions (loss rate,
round-trip time, packet size, etc.).

The throughput obtained by a conformant TCP flow is
evaluated analytically in [13], where the authors approxi-
mate the bandwidth � of a TCP flow as a function of packet
size � , loss rate � and round-trip time ����� , where ��� is the
retransmission timeout and 	 is the number of packets that
have to be received before sending an acknowledgment.

��
 �
�����

� ������� � ���
� � ���� ����� � ��� � ��

Considering 	�
 � and � � 
!�"�#� in the ideal case, on
a network topology such as in in Figure 1 the throughput
obtained by an end-to-end TCP connection (50 millisecond
delay) and by a short one hop TCP connection (10 millisec-
ond delay on link CD) sending 1000 byte packets are shown
in Figure 2 as a function of loss rate.

Clearly, an end-to-end reliable connection with a delay
of 50 milliseconds will achieve less bandwidth than a hop-
by-hop flow that will be limited only by the short bottle-
neck link C-D with 10 milliseconds delay, where the losses
occur. This phenomenon happens because TCP through-
put is biased against long connections. Analytically, �����
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appears at the denominator of the throughput formula, and
in practice it will take more time for the long connection
to recover its congestion window (the congestion avoidance
protocol adds one to the congestion window for each ����� ).

Note that achieving more throughput by a hop-by-hop
flow does not happen with respect to external TCP connec-
tions that run outside of the overlay traffic. Each of the
overlay links provides fairness and congestion control with
respect to the external flows. A comparison of the through-
put obtained by a single flow traversing multiple hops on
the overlay network with one that uses the Internet directly
cannot be done because of several factors:

� Flows that run within the overlay network usually have
longer paths (higher delay) than direct Internet connec-
tions (due to the overlay routing which is usually far
from optimal), and therefore achieve less throughput.

� In general, multiple connections coexist within an
overlay network, so there is more than one stream us-
ing a single overlay link. In that case, multiple streams
will share a single overlay link using only a part of
what they could get if each of them used the Internet
directly by opening a separate TCP connection. One
way to overcome this problem is to open multiple con-
nections between two overlay nodes depending on the
number of internal flows using that overlay link. How-
ever, we see an overlay network as a single distributed
application, no matter how many internal flows it car-
ries; therefore, it should get only one share of the avail-
able bandwidth.

Some mechanisms can be deployed in order to limit the
internal hop-by-hop throughput to the one obtained by an
end-to-end connection that uses the overlay network. Such
mechanisms can evaluate the loss rate and round-trip time
of a path and adjust the sending rate accordingly, in a way
similar to [7]. We believe such mechanisms are not neces-
sary in our case - since we provide end-to-end congestion
control, obtaining more throughput is just an effect of pin-
pointing the congestion and resolving it locally. However,
in all the experiments of this paper we choose a conservative
approach and limit the sending throughput to values achiev-
able by both end-to-end and hop-by-hop flows, and focus
only on the latency of the connections.

3 Simulation Environment and Results

In this section we analyze the multihop reliability behav-
ior using the ns2 simulator [12]. We run a simple end-to-end
TCP connection from node A to node F on a network setup
as shown in Figure 1, while changing the packet loss rate on
link C-D. Since this paper focuses on the latency of reliable
connections, we limit the sending throughput to the same

value for end-to-end and hop-by-hop flows in order to keep
the same network parameters for our latency measurements.

We record the delay of each packet for the different send-
ing rates and packet loss for both end-to-end and hop-by-
hop reliability approaches. We define the delay of a packet
as the difference between the time the packet was received
at the destination, and the time it was initiated by a constant
rate sending application. Note that there is a difference be-
tween the time a packet is sent by an application and the
time that packet is actually put on the network by the reli-
able protocol (in our case, TCP). If TCP shrinks its window
or reaches a timeout, it will not accept or send new pack-
ets until it has enough room for them. During this time, the
new packets generated by the application will be stored in
a buffer owned either by the host operating system or by
the application itself. We believe that a delay measurement
that is fair to the application would count the time spent by
packets in these buffers as well.

The ns2 simulator offers a variety of TCP implementa-
tions. Out of these, we used TCP-Fack - TCP with forward
acknowledgments - as we believe it resembles a behavior
closest to the actual TCP implementation in the Linux Red-
hat 7.1, that we use in Section 5. The Linux kernel allows
adjustment of different TCP parameters (for example, turn-
ing off forward acknowledgments would give us a version
similar to TCP-SACK), however we opted for leaving the
default protocol in the kernel unaltered.

Table 1 shows the average packet delay given by differ-
ent TCP variations in ns2, as well as the Linux TCP imple-
mentation and the Spines link protocol (described in Sec-
tion 4) when a 500Kbps stream is sent on an end-to-end A-
F connection in the network showed in Figure 1, with link
C-D experiencing 1% loss. The Redhat 7.1 TCP and the
Spines link protocol delays were measured on an emulated
network setup described in Section 5.

We compare the performance of the standard end-to-end
approach to that of our hop-by-hop approach, where we for-
ward packets reliably on each link, A-B, B-C, ... up to link
E-F. For hop-by-hop reliability we use a modified version
of TCP-Fack: the initial sender (at node A) adds its orig-
inal sequence number in an additional packet header, in-
termediate receivers deliver packets out of order, and the
destination delivers packets FIFO according to the original
sequence number available in the new header. We did not
change the congestion control or the send and acknowledge
mechanisms in any way. We verified that our modified TCP
and the original TCP-Fack in ns2 behave identically with
respect to each packet on a point-to-point connection under
different loss rates. All the simulations in this section were
run for 5000 seconds, sending 1000 byte messages.

Figure 3 shows that the average delay for a 500 Kbps
data stream increases faster with an end-to-end connection
while a hop-by-hop flow maintains a low average delay even
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Table 1. Average latency for under loss
Protocol Tahoe Reno NewReno SACK Fack Vegas Redhat 7.1 Spines

Avg. delay (ms) 407.49 217.52 155.76 144.70 84.66 74.07 90.06 117.55
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Figure 3. Average delay for a 500 Kbps stream
(simulation)
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when it experiences a considerable loss rate. This phe-
nomenon is magnified as the throughput required by the
flow increases, as depicted by Figure 4 for a 1000 Kbps
data stream.

Jitter is an important aspect of network protocols behav-
ior due to its impact both on other flows at the network level
and on the application served by the flow. Figure 5 shows
that the jitter of an end-to-end connection is considerably
higher and increases faster than the jitter of a hop-by-hop
connection for a 500 Kbps stream. We computed the jitter
as the standard deviation of the packet delay.

It is interesting to see the distribution of the packet de-
lay for a certain loss rate. In Figure 6, we see that for a
500 Kbps data stream under 1% loss rate, over 27% of the
packets are delayed more than 60 milliseconds (including
the 50 milliseconds network delay) for an end-to-end con-
nection, while for a hop-by-hop connection only about 3%
of the packets are delayed more than 60 milliseconds. Sim-
ilarly, about 18% of the packets are delayed more than 100
milliseconds by the end-to-end connection, while for a hop-
by-hop connection only 1% of the packets are delayed as
much. Note that the actual number of packets delayed is
much higher than the number of packets lost.

We studied how the performance is affected by the num-
ber of intermediate reliable hops in an overlay network. We
consider the same network of 50 milliseconds delay, and
we measure the percentage of packets that are delayed as
we increase the number of intermediate hops from 1 to 10,
while keeping the total path latency constant. First, we use
two hops of 25 milliseconds each, then three hops of 16.66
milliseconds each, and so forth. Figure 7 shows the per-
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centage of packets delayed more than 60 milliseconds (10
milliseconds more than the path latency) for a 500 Kbps
data stream with 1% and 2% packet loss as the number of
hops increases. It is interesting to note that two to four hops
appear to be sufficient to capture almost all of the benefit
associated with hop-by-hop reliability. This is encouraging
as small overlay networks are relatively easy to deploy.

The important factor in obtaining better performance
with hop-by-hop reliability is the latency of the lossy link
rather than the number of hops in the end-to-end connec-
tion. The reason for the phenomenon depicted in Figure 7 is
that increasing the number of hops from one to two reduces
the latency of the lossy link by approximately 50 percent
(25 milliseconds in our case), while increasing the number
of hops from nine to ten reduces the latency of the lossy link
only by approximately 1 percent (0.55 milliseconds).

It is important how well we can isolate a potentially lossy
or congested Internet link in an overlay link that is as short
as possible. This can be achieved in practice by placing a
few overlay nodes such that we create close to equal latency
overlay links, as we do not usually know in advance which
Internet connections will be congested.

We believe that the simulation results are promising. The
reminder of the paper will investigate whether the same be-
havior is not limited to our simulation environment but is in
fact achieved in practice.

4 The Spines Overlay Network

In this section we introduce Spines, an open source re-
search platform that allows the deployment of an overlay
network in the Internet. We use Spines to evaluate the hop-
by-hop reliability properties in practice.

Spines instantiates overlay nodes on participating com-
puters and creates virtual links between these nodes. Once
a message is sent on a Spines overlay network it will be for-
warded on the overlay links until it reaches the destination.

Many Spines overlays can coexist in the Internet, and even
overlap on some of the nodes or links. Both the source and
the destination of a connection should be part of the same
Spines overlay network.

Spines runs a software daemon on each of the overlay
nodes. The daemon acts both as a router, forwarding pack-
ets toward other nodes, and as a server, providing network
services to client applications.

Clients use a library to connect to a daemon through
an API very similar to the Unix Socket interface. A
spines socket() call will return a socket, which is actually a
TCP/IP connection to the daemon. The application can use
that socket to bind, listen, connect, send and receive, using
Spines library calls (e.g. a spines bind() call is the equiv-
alent to the regular bind(), etc.). The interface is almost
transparent, and virtually any socket-based application can
be easily adapted to work with Spines. In addition to the
TCP-like interface, the Spines API also provides UDP-like
functions for unreliable, best effort communication.

The Spines daemon communicates with clients through
a Session layer as seen in Figure 8. There is one session
for each client connection, and if the client requests a reli-
able connection, the daemon will instantiate an end-to-end
Reliable Session module that will take care of end-to-end
reliability, FIFO ordering, and end-to-end congestion con-
trol.

An overlay link consists of three logical components.

� An Unreliable Data Link sends and receives data pack-
ets with no regard to ordering and reliability. It is used
for unreliable, best effort, fast communication as it has
no buffering other than the ones provided by the oper-
ating system.

� A Reliable Data Link provides link reliability through
a selective repeat protocol and congestion control, but
does not provide FIFO ordering. Packets are buffered
before being sent on a Reliable Data Link only in case
the congestion control or available link capacity limit
the outgoing bandwidth to a lower value than the in-
coming throughput. The explicit congestion notifica-
tion mentioned in Section 2 is based on the size of
these buffers. The link congestion control allows the
deployment of Spines in the Internet, providing fair-
ness with external TCP traffic. Figure 9 shows the
throughput obtained by an end-to-end TCP stream and
by the Spines link protocol for a 10 and a 50 millisec-
ond delay link of 10 Mbps capacity under different lev-
els of losses, and compares it to the analytical TCP
model from [13]. The throughput achieved by Spines
is very close to that of a TCP connection under simi-
lar conditions. Note that for a 10 millisecond link, as
the throughput of both TCP and Spines approaches the
maximum capacity of 10Mbps, they start developing
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their own additional losses in order to probe the avail-
able bandwidth. This is why they appear to achieve
less than the analytical model that takes into account
only the original losses we enforced on the link.

� A Control Link is used for sending and receiving con-
trol information between two neighbor daemons. It
provides both reliable and unreliable communication.
In case of buffering for the reliable data, the unreliable
packets will bypass the buffer and go directly on the
network.

The overlay node is responsible for maintaining connec-
tions to its neighbors and forwarding data packets either on
the overlay links or to its own clients. A Data Forwarder
parses the header of each message and sends it on the next
link or to the daemon-client interface. The Data Forwarder
allows any combination of reliable and unreliable session
and reliable and unreliable link in order to experiment with
different forwarding mechanisms. The type of Session and
Data Link requested are stamped in the header of each mes-
sage. For example, one can create a reliable end-to-end ses-
sion using either unreliable links or reliable links.

Neighboring overlay nodes ping each other periodically
using unreliable hello packets. The Spines Hello Protocol
is responsible for creating, destroying and monitoring over-
lay links between neighbor daemons. Each Spines daemon
sends information about the links to its neighbors through a
reliable link state protocol, only when the state of its links
change, or periodically at large intervals for garbage collec-
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Figure 9. Spines congestion control (Emulab)

tion. The link state protocol provides a complete informa-
tion about the existing overlay links, out of which a Routing
module chooses the neighbor providing the shortest path to
each destination. The choice of link state routing is purely
arbitrary, any other routing protocol could have been used
without afecting the hop by hop reliablility mechanisms.

In addition to the IP and UDP headers, Spines adds
its own headers for routing and reliability. Also, for re-
liable connections Spines sends acknowledgments for ev-
ery packet at the level of each link for hop reliability and
at least four acknowledgments per end-to-end window for
end-to-end reliability and congestion control. When pos-
sible acknowledgments are piggybacked with data packets.
The control traffic is relatively small, being composed only
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Figure 10. Emulab Network Setup

by hello packets (currently, two 28 byte packets per second
on each link) and link state packets that are sent only when
the network conditions change. A single link state packet
can contain information about up to 90 links, depending on
the dispersion of the network. Due to this overhead, our ex-
periments show that when compared with a standard TCP
connection running alone on a network link with capacity
ranging from 500 Kbps to 100 Mbps, the Spines link proto-
col achieves about 3.5% less data throughput, and the end-
to-end connection that uses both levels of reliability and
congestion control (on the hop and end-to-end) shows an
overhead of at most 5.7%. The best effort, unreliable proto-
col in Spines has an overhead of about 2.3%.

5 Experimental results

In this section we evaluate the hop-by-hop reliability be-
havior using the Spines overlay network deployed on the
Emulab testbed. Emulab 1 [5] is a network facility that al-
lows real instantiation in a hardware network (composed of
actual computers and network switches) of a given topol-
ogy, simply by using an ns script in the configuration setup.
Link latencies, loss rates and bandwidths are emulated with
additional nodes that delay packets or drop them according
to specified link characteristics.

We instantiated on Emulab the network setup presented
in Figure 10 that follows the topology used in our Section 3
simulations. In addition to the five links A-B, B-C,... E-F
we also connected the nodes through a fast, local area net-
work that was used to obtain accurate clock measurements
between the overlay nodes.

The routing was set up such that all the experiment traf-
fic went on the 10 millisecond links, while on the local area
network we continuously measured (every 100 millisec-
onds) the clock difference between the computers making
the end nodes of a connection. The one-way delay of the
data packets was calculated as the difference between the
timestamp at the sender and the current time at the receiver,
adjusted with the clock difference between the end nodes.

On the overlay network, the round-trip delay between
nodes A and F measured with ping under no traffic was
99.96 milliseconds, and the throughput achieved by a TCP
connection on each of the 10 millisecond links was about

1The Utah Network Emulation Testbed (www.emulab.net) is primarily
supported by NSF grant ANI-00-82493 and Cisco Systems
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Figure 11. Average delay for a 500 Kbps
stream (Emulab)
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Figure 12. Average delay for a 1000 Kbps
stream (Emulab)

9.59 Mbps. On the local area network the round-trip de-
lay between any two nodes was about 0.135 milliseconds,
which gave us a very good accuracy in measuring the clock
difference and one-way delay of the packets. For each ex-
periment in this section we sent 200000 messages of 1000
bytes each.

We compared the packet delay of a data stream using
an end-to-end TCP connection between nodes A and F,
with that of a hop-by-hop connection using Spines on the
overlay nodes, while varying the sending rate (at node A)
and the loss rate on the intermediate link C-D. Note that
the end-to-end TCP connection does not go through the
Spines application-level routers, but only through the over-
lay nodes A, B, ... F - so it is not affected in any way by the
Spines overhead in user-level processing and added head-
ers.

Figure 11 and Figure 12 show that the low latency ef-
fect of hop-by-hop reliability is very signifficant also in the
experimental setting, overcoming by far the overhead of
user-level processing at the level of the intermediate over-
lay network nodes. The latency of a real TCP connection
is lower than the simulation result (presented in Figure 3
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Figure 14. Packet delay distributuin for a 500
Kbps stream (Emulab)

and Figure 4), especially at high loss rates, which shows
us that the TCP model we used in the simulation (TCP-
Fack), even though the closest, does not resemble exactly
the Linux kernel implementation. The latency achieved by
Spines hop-by-hop reliability is slightly higher than the la-
tency obtained in the simulator, mainly due to simplifying
assumptions of the simulation. However, the hop-by-hop
latency remains very low, and increases much slower com-
pared to the latency of the end-to-end TCP connection.

Jitter follows a similar pattern, as seen in Figure 13 (and
compared with Figure 5). Packets sent through the Spines
overlay network arrive at the destination with a jittter up
to three to four times smaller than the jitter of an end-to-
end connection. In Figure 14, although the delay distribu-
tion for the end-to-end TCP connection is almost identical
to the result of the simulation (Figure 6), the overhead of the
application-level routing is clearly visible in the hop-by-hop
delay distribution. However, even with this overhead, the
number of packets delayed by Spines is significantly (more
than three times) lower than the number of packets delayed
by the end-to-end connection.

6 Related Work

The idea of using reliable intermediate links is not new.
In 1976 the International Committee for Telegraph and
Telephony (CCITT) recommended X.25 as a store-and-
forward connection oriented protocol between end-nodes
(DTE) and routers (DCE). In [14], the authors give a de-
tailed description of the X.25 protocol. However, since the
Internet was developed as a conectionless, best-effort net-
work (which allows better scalability and interoperability),
it did not incorporate the X.25 specifications, but relied on
end-to-end protocols such as TCP to provide reliable con-
nections.

One of the early uses of overlay networks in the Inter-
net was in a proposed overlay network called EON (Exper-
imental OSI-based Network) [10] on top the IP network,
that would allow experimentation with the OSI network
layer. The scheme was only experimental and did not spec-
ify hop-by-hop reliability. More recently, overlay networks
emerged mainly by providing new services to the applica-
tion. The Mbone [6] is a routing mechanism that creates an
overlay infrastructure over the global Internet and extends
the use of IP multicast by creating virtual tunnels between
the networks that support native IP multicast. The Mbone
facilitates the use of multicast services on the global Inter-
net but does not provide reliability by itself.

TRAM [4] is a tree-based reliable multicast protocol that
uses repair trees to localize recoveries, and aggregates end-
to-end acknowlegenents at intermediate nodes. TRAM was
designed specifically for single-source multicast. If applied
to multiple flows (unicast or multicast), TRAM requires in-
termediate nodes to keep packet-based state for each end-
to-end session in order to provide end-to-end reliability and
congestion control. Since we use two completely sepa-
rated levels of reliability (hop-by-hop and end-to-end) our
approach allows an unlimited number of reliable sessions,
as per flow information is only handled at the end nodes.
SRM [8] provides a form of localized recovery for reliable
multicast by using randomized timeouts for sending retrans-
mission requests and the retransmissions themselves. SRM
does not guarantee recovery from the nearest node, as the
closest one may set its timeout to be higher than that of an
upstream node. Its probabilistic algorithm allows for double
retransmission requests and recovery messages to be sent.
The Spread system [1] uses a network of daemons to pro-
vide wide area group communication, where missed mes-
sages are recovered from the nearest daemon on the path,
localizing message recovery in a way similar to ours. The
system is confined to group communication and does not
provide a generic service such as ours.

Yoid [9] is a set of protocols that allows host-based con-
tent distribution using unicast tunnels and, where available,
IP multicast. Yoid has the option of using TCP as the link
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protocol on the overlay network, but does not guarantee ei-
ther end-to-end congestion control or end-to-end reliability.
In addition to these guarantees, our approach uses an out of
order forwarding mechanism that provides less burstiness at
the network level, and lower packet latency and jitter.

The X-Bone [17] is a system that uses a graphical user
interface for automatic configuration of IP-based overlay
networks. RON [2] creates a fully connected graph between
several nodes, monitors the connectivity between them, and,
in case of Internet route failures, re-directs packets through
alternate overlay nodes. Both X-Bone, and RON are imple-
mented at the IP level, do not provide reliability other than
the regular end-to-end offered by TCP, and are complemen-
tary to our work.

7 Conclusion

This paper presented a hop-by-hop reliability approach
that considerably reduces the latency and jitter of reliable
connections in overlay networks. We first quantified these
effects in simulation.

Overlay networks pay a performance price due to the
need to process each message at the application level, and
to maintain the overlay. The paper presented experimental
results with a new overlay network software we have built.
These results resemble the simulation results and show that
the overhead associated with overlay network processing
does not play an important factor compared with the con-
siderable gain of the approach. We also learned that having
a small number of approximately equal hops (two to four)
is sufficient to capture most of the performance benefit.

While network bandwidth increases exponentially over
time, latency is very slow to improve. This work shows
how coupling cheap processing and memory with the pro-
grammable platform provided by overlay networks and pay-
ing a small price in throughput overhead, can considerably
improve the latency characteristics of reliable connections.
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