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Abstract asynchronous. Rather, these systems exhibit extended peri
ods of stability (synchrony), possibly interspersed wiéh p
Existing Byzantine-resilient replication protocols syi riods of instability. Realistic Byzantine-resilient regltion

two standard correctness criteria, safety and livenes)én  systems generally guarantee liveness in a sufficientlyestab
presence of Byzantine faults. In practice, however, faulty subset of the set of all asynchronous executions. In this pa-
processors can, in some protocols, significantly degrade per we observe that during stable periods, the system can
performance by causing the system to make progress asatisfy much stronger performance guarantees. Thus, when
an extremely slow rate. While “correct” in the traditional the network is stable, there is a potential gap in the type
sense, systems vulnerable to such performance degradatioof performance that is promised by existing protocols,(i.e.

are of limited practical use in adversarial environments. eventual execution of each update) and the type of perfor-
This paper argues that techniques for mitigating such mance that is attainable.
performance attacks are needed to bridge this “practigalit In Byzantine environments, faulty processors can exploit

gap” for intrusion-tolerant replication systems. We pr&go  this gap to degrade system performance to a level far be-
a new performance-oriented correctness criterion, and we jow what would be achievable with only correct proces-
show how failure to meet this criterion can lead to perfor- sors. Specifically, a small number of faulty processors can
mance degradation. We presenta new Byzantine replicationcause the System to make progress at an extreme|y slow
protocol that achieves the criterion and evaluate its perfo  rate. While “correct” in the traditional sense (both safety
mance in fault-free Configurations and when under attack. and liveness are met), systems vulnerable to such perfor-

mance degradation are of limited practical use in adveakari
Keywords: Byzantine, replication, fault tolerance, environments.

performance, attacks We experienced this problem first hand during a red-

team experiment conducted on our Steward system [4]. Al-
1 Introduction though the system survived all of the tests according to
the metrics of safety and liveness, we observed that it was

Existing Byzantine-resilient state machine replication slowed down to twenty percent of its potential performance
(SMR) protocols satisfy two standard correctness criteria in One experiment. After analyzing the attack, we found
in the presence of Byzantine faults: safety and liveness.that we could in fact slow the system down to roughly one
Safety means that two servers remain consistent replicas oP€rcent of its potential performance. Thus, our provably
one another, while liveness means that each update is execorrect system, which achieves high performance in fault-
cuted eventually. Since no asynchronous Byzantine agreefree configurations, could be made effectively unusable in
ment protocol can always be both safe and live [14], systemspraCt'Ce under a relatively simple attack. This experience
requiring strong consistency semantics are usually design led us to conclude that liveness is a necessary but insuffi-
to meet safety in all executions, while guaranteeing ligsne cient correctness criterion for achieving high performeanc
only during periods of sufficient synchrony and connectiv- Byzantine replication under attack. This paper argues that
ity [13] or in a probabilistic sense [5, 23]. newperformance-orientedriteria are needed.

Designers of practical Byzantine-resilient replication Preventing the type of performance degradation experi-
systems recognize that real systems are not completelyenced by Steward requires addressing what we dizan-

, — tine performance failurePrevious work focused on Byzan-
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from a faulty processor do not arrive within protocol time- magnitude better when under attack. Our results show that

outs, if at all). Processors exhibiting performance fafyr  the performance of Prime when under attack is within a rea-

however, send correct messages slowly but without trigger-sonable factor of its fault-free performance.

ing protocol timeouts; they are thus correct in both of the  The remainder of this paper is presented as follows. Sec-

traditional domains, despite having the potential to $igni tion 2 presents our system model and describes the service

icantly degrade performance. Performance failures haveproperties provided by our system. Section 3 describes the

been considered in benign environments [11, 25]. To thevulnerabilities of existing leader-based protocols tofqer

best of our knowledge, we are the first to (1) propose a use-mance degradation under attack, using BFT as a case study.

ful performance-oriented metric to evaluate Byzantine pro We present the Prime protocol in Section 4, and we analyze

tocols and (2) present a SMR protocol that performs well its properties in Section 5. Section 6 presents experirhenta

according to this metric. results for our new system. Section 7 details related work,
Byzantine protocols whose progress is driven by mes-and Section 8 concludes the paper.

sages from a large number of correct processors (e.g.,

[5,22]) are less vulnerable to performance degradation due2  System Model and Service Properties

to performance failures. The voting in such protocols masks

performance failures, in addition to value and timing fail-  \ve consider a system consisting af servers, which

ures, because no collection of faulty processors can pteven:gommunicate by passing messages. Each server is uniquely
the correct processors from moving forward. For efficiency, jgentified from the seR = {1,2,...,N}. We assume

however, other protocols rely on select processors to per-5 Byzantine fault model. Servers are eitrerrect or

form certain tasks correctly and in a timely manner, reduc- faity: correct servers follow the protocol specification,
ing the number of messages that must be sent in the comyyjje faulty servers can deviate from the protocol speci-
mon case. These protocols typically use cryptographistool fication arbitrarily. We employ digital signatures, and we

and timeouts to restrict the adversary in the value and timemake use of a cryptographic hash function to compute mes-
domains, respectively, but they do not address performanceage digests. We denote a messaggigned by server as

failures. (m),,, and we denote a digest of as D{n). We assume
In this paper we focus on this latter class of Byzantine that all adversaries, including faulty servers, are comput
SMR protocols, which we refer to deader-basedroto- tionally bounded such that they cannot subvert these cryp-

cols. These protocols (e.g., [2, 4, 8, 16, 18, 21, 29]) rely tographic mechanisms.

on a leader to coordinate the global ordering and are thus The consistency of our new protocol, Prime, is given in
vulnerable to performance degradation caused by a slowthe following two properties:

leader. The problem is magnified in environments (such as

wide-area networks) where it is difficult to predict the type DEFINITION 2.1 SAFETY: If two correct servers execute
of performance that should be expected of the leader. Wethei™” update, then these updates are identical.
demonstrate this vulnerability through analysis and exper
mental evaluation of BFT [8], the first leader-based Byzan-
tine fault-tolerant SMR protocol to achieve practical perf
mance in fault-free executions.

DEFINITION 2.2 VALIDITY : Only an update that was pro-
posed by a client may be executed.

Prime guarantees safety and validity in all executions,
By applying the understanding gained from our expe- including those in which the network is asynchronous and
rience with BFT, we developed a new Byzantine fault- may drop or duplicate messages. Like existing leader-based
tolerant SMR protocol, Prime (Performance-oriented Repli  Byzantine replication protocols, Prime guarantees ligsne
cation In Malicious Environments), resilient to perfornaan only in executions in which the network eventually meets
degradation under attack. Prime has two key properties: (1)certain stability conditions, which we now state. In what

The resources required by the leader for global ordering arefollows, K., is a known network-specific constant ac-
bounded and independent of system throughput, enablingcounting for latency variability.

non-leader servers to aggressively monitor the leaderss pe

formance, and (2) Non-leader servers compute a thresholdEFINITION 2.3 PRIME-STABILITY: There is a time after
level of acceptable performance, which is a function of cur- which the following condition holds for a set of at least
rent network latencies, against which they judge the leader2f + 1 correct servers (the stable servers):

Prime meets a new performance-oriented correctness crite-

rion, BOUNDED-DELAY, which makes a stronger guaran-  ® For each pair of stable servers r and s, there exists a
tee than traditional liveness criteria. We present expemim value MinLat(r, s), unknown to the servers, such that
tal results showing that Prime performs competitively with if r sends a message to s, it will arrive with delay. ;,
BFT in fault-free configurations and performs an order of where MinLat(r, s) < A, < Min_Lat(r, s)* Kpqz.



In those executions in whichRPME-STABILITY is met, corresponding lessons learned) also apply to other leader-

Prime guarantees the following liveness property: based protocols, and (3) its implementation was publicly
- available. BFT achieves high throughputs in fault-free-con
DEFINITION 2.4 PRIME-LIVENESS: If a stable server ini-  figurations or when servers exhibit only benign faults. We
tiates an update, all stable servers will eventually execut fjrst provide background on BFT and then describe two at-
the update. tacks that can be used to significantly degrade its perfor-

mance when under attack. We present experimental results
validating the analysis in Section 6.

BFT assigns a total order to client updates. The proto-
col requires3f + 1 servers, wher¢ is the maximum num-

PRIME-LIVENESS is similar to the liveness guarantees
provided by existing leader-based protocols (except that
PRIME-LIVENESS contains a stronger degree of stability).

While it is critical to guarantee that in those executiorat th ber of servers that may be Byzantine. An elected leader

are sufficiently stable each update is eventually executed, . o
. . : coordinates the protocol by assigning sequence numbers to
such liveness properties do not guarantee how quickly the . :
. updates. If a server suspects that the leader has failed, it
updates are executed when the network is stable. Sys-

. . votes to replace it. Whef + 1 servers vote to replace
tems that solely meet liveness thus provide a very weak ; . . .
the leader, a view change occurs, in which a new leader is
performance-related guarantee.

. . . . . elected and servers collect information regarding pending

For this reason, in those executions in whieRIME- : :

. : ) updates so that progress can safely resume in a new view.
STABILITY is met, Prime also provides a stronger perfor- . . .
. ; A client sends its updates directly to the leader. The
mance guarantee, which we catbUNDED-DELAY: .
leader assigns a sequence number to the update and pro-
DEFINITION 2.5 BOUNDED-DELAY: There exists a time Poses the assignment to the rest of the servers. It sends a
after which the update latency for any update initiated by PREPREPAREmessage, which contains the view number,
a stable server is upper-bounded. the assigned sequence number, and the update itself. Upon
receiving theeRE-PREPARE a non-leader server accepts the

Prime achieveBOUNDED-DELAY inthose executionsin  proposed assignment by broadcastirRR&E PAREMessage.
whichPRIME-STABILITY is met, assuming the systemisnot The PREPAREmMessage contains the view number, the as-
overloaded (i.e., given load beyond its maximum through- signed sequence number, and a digest of the update. When
put) and when correct servers have sufficient bandwidtha server collects theRe-PREPAREanNd2f corresponding
with which to communicate. Indeed, no system (even in PREPAREMessages, it broadcastsaMmIT message. A
benign environments) can provide latency guarantees wherserver globally orders the update when it collezfs+ 1
these conditions are not met due to necessary queuing decoOMMIT messages. Each server executes globally ordered
lays. Our current protocol requires knowledge of this mini- updates according to sequence number. A server sends a
mal level of bandwidth to ensure that these assumptions aregeply to the client after executing the update.
met. We believe that adaptively setting the bandwidth con-
sumed by correct servers is an important open problem for3,1  Attack 1: Pre-Prepare Delay
Byzantine-resilient systems. Section 5 provides an arsalys
of the bound provided by Prime.

We remark that resource exhaustion denial of service at-
tacks may causerRIME-STABILITY to be violated for the
duration of the attack. However, such attacks fundamen-
tally differ from the attacks that are the focus of this paper
where malicious leaders can slow down the system without
triggering defensc_e mechanls.ms (s_eg Section 3). Har_1dl|n cuted and (2) the duration of these timeouts.
resource exhaustion attacks is a difficult problem that-is or

) . A malicious leader can ignore updates sent directly by
thogonal and complementary to the solution strategies con- ;. e . o
. S clients. If a client’s timeout expires before receiving plye
sidered in this paper.

to its update, it broadcasts the update to all servers, which
forward the update to the leader. Each non-leader server
3 Case Study: BFT Under Attack maintains a FIFO queue of pending updates (i.e., those up-
dates it has forwarded to the leader but not yet executed).
In this section we present a theoretical analysis of BFT A server places a timeout on the execution of the first up-
[8], a leader-based Byzantine SMR protocol, when under date in its queue; that is, it expects to execute the update
attack. We chose BFT because (1) it is the standard proto-within the timeout period. If the timeout expires, the serve
col to which other Byzantine protocols are often compared, suspects the leader is faulty and votes to remove it from
(2) many of the attacks that can be applied to BFT (and thepower. When a server executes the first update in the queue,

A malicious leader can introduce latency into the global
ordering path simply by waiting some amount of time af-
ter receiving an update before sending it iRRE-PREPARE
message.The amount of delay a leader can add without be-
ing detected as faulty is dependent on (1) the way in which
non-leaders place timeouts on updates they have not yet ex-



it restarts the timer if the queue is not empty. Note thata4 The Prime Protocol
server does not stop the timer if it executes a pending up-

date that is not the first in the queue. The duration of the |, this section we present Prime, a new Byzantine fault-
timeout is dependent on its initial value (which is imple- tolerant state machine replication protocol designed to mi

mentation and configuration dependent) and the history ofigate the types of attacks described in Section 3. Prime re-
pastview changes. Servers double the value of their timeoutyyiress f + 1 servers to toleraté Byzantine faults.

each time a view change occurs. The specification of BFT
does not provid_e a mechanism for reducing timeout values.4.1 Prime Ordering Protocol
BFT’'s queueing mechanism ensures fairness by guaran-
teeing that each update is eventually ordered. However, it
also allows the leader to significantly delay the ordering of
an update without being replaced. To stay in power, the
leader must prevernft+ 1 correct servers from voting to re-
place it. Thus, assuming a timeout valuer@, a malicious
leader can use the following attack: (1) Choose aSsef
f + 1 correct servers, (2) For each serveg S, maintain
a FIFO queue of the updates forwarded/hyand (3) For
each such queue, sencPBEPREPAREcCONtaining the first
update on the queue evelYD — ¢ time units. This guar-
antees that th¢ + 1 correct servers irb execute the first
update on their queue each timeout period. If these update
are all different, the fastest the leader would need to intro
duce updates is at a rate pf- 1 per timeout period. In the
worst case, th¢ + 1 servers would have identical queues
and the leader could introduce one update per timeout.
This attack exploits the fact that non-leader servers place
timeouts only on the first update in their queues. To under
stand the ramifications of placing a timeoutahpending
updates, consider the following scenario: Non-leadereserv
s simultaneously initiatea updates. If serves sets a time-
out on alln updates, theawill suspect the leader if the sys-
tem fails to execute updates per timeout period. Since the

system has a maximal throughputpiis sufficiently large, local sequence number aspaeorder sequence number

s will suspect a correct leader. The fundamental problem is - ;
Upon receivingreq, each correct servef, sends aPo-

that correct servers have no way to assess the rate at which X .
. . ACK, seq, D(u), o,1),, message to all other serverg ifias
a correct leader can coordinate global ordering.

not previously received ®0-REQUEST from o with se-

guence numbeteq. A set consisting ofeq and2 f match-

3.2 Attack 2: Timeout Manipulation ing PO-ACK messages constitutes meorder-certificate
which is proof that the correct servers agree that preorder

One of the main benefits of BFT is that it ensures safety identifier (o,seq) is uniquely bound ta.

regardless of synchrony assumptions. The authors justify Each server;, maintains a vector, P@ru[], where

the need for this property by noting that denial of service PO_Aru[o] contains the maximum sequence numbey,

attacks can be used by a malicious adversary to violate tim-such that; has preorder-certificates for all preordered up-

ing assumptions. While a DoS attack cannot impact safety,dates with identifiersdj), with 5 < n. Each server,

it can be used to increase the timeout value used to detect, periodically broadcasts & 0-ARU, vec,i),, message,

a faulty leader. During the attack, the timeout doubles with wherevec is its local PQAru vector. TheeO-ARU message

each view change. If the adversary stops the attack when a&erves as a cumulative acknowledgement for preordered up-

malicious leader is in power, then that leader will be able to dates. Given tw@®0O-ARU messagesy; andms, Figure

slow the system down to a throughput of rouglfily- 1 up- 1 defines what it means fon; to be at least as up-to-

dates pefl’O, whereT'O is potentially very large, using the  date asmsy, more up-to-datéhanms, andconsistentith

attack described in the previous section. This vulneitgbili ms. Each server stores the most up-to-date, consistent

stems from the inability of BFT to reduce the timeout and ARU message received from each other server in a vector,

adapt to the network conditions after the system stabilizes LastPO_Arul[], indexed by server identifier. We describe a

Prime uses a rotating coordinator protocol to assign a
total order to client updates. The servers execute the up-
dates according to this total order, and they thus remain
replicas of one another. Prime establishes the total order
in two phases. In the first phase, each server disseminates
its updates to the other servers and coordinates an agree-
ment protocol, whictpreordersthose updates that it orig-
inated. Each preordering agreement protocol coordinated
by a different server operates independently and in paral-
lel. A preordered update, is bound to greorder identi-
fier, (0,1), whereu is theith update preordered by server
S1'hus, the preordering phase enables correct servers to con-
sistently refer to updates using their preorder identifigrs
the second phase, an elected leader coordinates a global or-
' dering protocol, which establishes a total order on batches
of preordered updates. The final total order on updates is
achieved by deterministically assigning an order to the up-
“dates in each batch based on their preorder identifiers.

Preordering Phase: When originating serven re-
ceives update: from one of its clients, it sends @0
REQUEST, seq, u, 0),, messageyeq, to all servers, where
seq is a local sequence number thatincrements each
time it sends a newPO-REQUEST We refer to this



1. Form; = (PO-ARU, vec1, i), andmsa = (PO-ARU,vecz, i)o,; , WE
say that:
e mj is at least as up-to-date aso when
(V5 € R)[vecr[j] > veca[5]].

e m; ismore up-to-date thamsg whenm; is at least as up to da
asmo A (3j € R)[vecy[7] > veca[7]].

0]

e mj andme areconsistenivhenm; is at least as up to date as

ma, Ofr my is at least as up to date as; .

2. For originating serves and preorder sequence numperseq
PreorderProof Exist§o, po_seq (PRE-PREPARE**,pm,l),,) is true
iff:

o |{i:i € R Apml[i]lo] > po_seq}| > 2f +1
3. M(pp = (PREPREPARE %, s€q, *, *)o, ) =
{(0,s) : 0 € R N s € NA PreorderProofExistgo,s,pp) }

4. Forpp = (PRE-PREPARE*, *, Ppp, *)o, and
pm = (PROOFMATRIX , ppm, *) ¢, , Wherep,, andp,., denote
proof matrices, we say that:

e pp coverspm if Vi € R, pppli] is at least as up-to-date as
Ppm [7/} .

Figure 1: Definitions and terminology used by the Prime andgprotocol.

mechanism for blacklisting faulty servers that send incon-
sistentPO-ARU messages in [3].
Global Ordering Phase: Prime’s global ordering phase

is similar to BFT and uses three message rounds (see Sec:

tion 3). While BFT establishes a total order GRE
PREPAREMeESSages containing updates, Prime’s global or-
dering phase establishes a total order FRE-PREPARE
messages containirgoof matrices Each proof matrix is

a vector ofPO-ARU messages. A correct leadér,peri-
odically sends aPRE-PREPARE v, seq, pm, 1), message,
wherew is the current view numbegeq is a global se-
guence number, angn is the leader’s LasPO_Aru vector
(which is a proof matrix).pm/[o] is either aPo-ARU mes-
sage signed by serveror a null vector of lengthR|, in-
dicating thato has not yet cumulatively acknowledged any
preorder-certificates.

We now explain how a server obtains a total order on
updates from the totally ordered streamrHEPREPARE
messages. Call this streamrHEPREPAREMEeSsages =
(Ty,Ts, .. .). Intuitively, globally ordering @ RE-PREPARE

PO
ARU

PO PO

PRE
REQUEST ACK PREPARE PREPARE COMMIT

—

L = Leader
O = Originator

— Aggregation
Delay

(@]

No Attack (A)

PO
ARU

PO
ACK
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MATRIX

PRE

PO
REQUEST PREPARE PREPARE COMMIT
L

Attack (B)

Figure 2: Common case operation of Primfe£ 1). Part A shows the
messages and protocol rounds when the leader is corredt.BRdiows
the delay added by a malicious leader that performs well gimaa stay

in power. The malicious leader ignore®-ARU messages and sends its
PRE-PREPAREO only one correct server.

ordered in two rounds, after which its preordering is cumu-
latively acknowledged irO-ARU messages. When the net-
work is stable, faulty servers cannot delay the preordering
u because correct servers need only waitforACK mes-
sages from each other to collect a preorder-certificate.for
In turn, the faulty servers cannot delay how quickly the pre-
ordering ofu is cumulatively acknowledged in theo-ARU
messages of correct servers. A correct leader sergEa
PREPARE pp, Whose proof matrix includes thes@-ARU
messagesu Will be executed whepp is globally ordered.
Reconciliation: In order to prevent attacks where mali-
cious servers preorder updates without sending them to all
correct servers, Prime includes a reconciliation mecianis
that disseminates updates to correct servers that do not re-
ceive them during the preordering phase. Together, Prime’s
preordering phase and its reconciliation protocol provide
a reliable broadcast service; if Prime assigns a global or-
der to updateu, reconciliation guarantees that all correct
servers will receiveu. Reconciliation messages contain
MDS(@2f+1,f+1)erasure encoded [6]>-REQUESTS, such
that a server needs to receife- 1 out of 2 f + 1 reconcilia-
tion messages to decode the associate®REQUEST. This
reduces the bandwidth overhead required for reconcikiatio
and is described in detail in [3].

4.2 Detecting Malicious Leaders

A malicious leader can mount two types of performance

message expands the set of preordered updates that are elitacks against Prime. First, it can propose a global order-

igible for execution. LetM map a globally orderedrRE
PREPARE pp, to a set of preordered updated, where P
contains those preordered updates, s, for which Pre-
order_Proof Existgo, s, pp) is true (see Figure 1). Léet be
a function that lexicographically orders the elementg of
by their preorder identifiers. Then the final total ordér,
on updates is obtained by = L(M (T1)) || L(M (1) —
M(Ty)) || L(M(T5) — M(Tz)) ..., where|| denotes con-
catenation and- denotes set difference.

Part A of Figure 2 summarizes the path of an update,

ing on preordered updates slowly by send?RE-PREPARE
messages at a slow rate. Some strategies for the leader to
slow down the sending of itBRE-PREPARE are illustrated

in Part B of Figure 2. Prime uses tl®®SPECTLEADER
protocol, described below, to detect slow leaders. Second,
even if it sends timelyPREPREPARE messages, a mali-
cious leader can intentionally sendP&EPREPARE pp,
whose proof matrix does not contain the most up-to-date
PO-ARU messages that it has received. This can prevent
preordered updates that would have become eligible for ex-

through the system in the fault-free case. The update is pre-ecution wherpp is globally ordered from becoming eligi-



ble. Defending against these two performance attacks al-the leader if TATleader> TAT _acceptable.

lows Prime to meeBOUNDED-DELAY (see Definition 2.5). TAT _acceptable and TATeader are computed so that,
Enforcing up-to-date Pre-Prepare messages. Each when PRIME-STABILITY holds, SUSPECTLEADER meets
non-leader server,i, periodically sends a(PROOF two key properties.L* is the maximum latency between
MATRIX , pin, i), Message to the leader, where: is i’s any two correct servers after the network stabiliz&s,, is
LastPOAru[]. pm contains the set of P@ru vectorsi a value greater than the maximum time between a correct
expects the leader to include in its n@#E-PREPARE ToO server sending successiP®@E-PREPAREMeSSages K q

understand why a non-leader server is justified in this ex- (see Section 2) accounts for latency variability. [et=
pectation, note that the leader can simply adopt any of the2K ra:L* + A,,. We now state the properties.

PO-Aru vectors inpm that are more up-to-date than what .

it currently has in its LasPO.Aru[]. Thus, a correct leader PROPERTY4.1 Any server that retains a role as leader
will send, in its NextPRE-PREPARE a proof matrix with must prowgie a turn-around time to at least one correct
vectors that are at least as up-to-date as thogenin We server that is no more thaf.

say that such @REPREPAREcCoverspm (see Figure 1).
A critical property of Prime, which differs from existing
leader-based solutions, is that the leader requires a leolun
amount of bandwidth and computational resources, inde-
pendent of system throughput, to perform its role as leader;
the size of ®RE-PREPARES dependent only on the number

of servers, and a singleRE PREPARECAN propose a global correct server. We consider a TAT< B, to be timely be-

ordering on an arbltra_lry number of preordgred updates. causeB is within a constant factor of the TAT that the slow-

~ Pre-Prepare Flooding: Prime’s mechanism for detect- et correct server might provide. This factor is a functibn o
ing malicious leaders requires a simple addition to the e |atency variability thasUsPECTLEADER is configured
global ordering phase to ensure timely global ordering. {4 tolerate. Note that malicious servers cannot affect the
Upon receiving @REPREPARE pp, & correct server broad-  ya1ye of B. Property 4.2 ensures that view changes cannot
casts it. This guarantees that all correct servers reggive  occyr indefinitely. Prime does not guarantee that the slowes
within one round from the time that the first correct server f correct servers will not be suspected because slow faulty
receives it, at which point no faulty server can delay the |gaders cannot be distinguished from slow correct leaders.
correct servers from gllo.bally ordering. FloodlngFfRE- Figure 3 contains pseudocode feUSPECTLEADER.
PREPARES forces a malicious leader to delay send®E  gerver; initializes its data structures at the beginning of
PREPARES to all correct servers in order to add unbounded g5ch new view (Block A). The remaining blocks run in

delay to the global ordering phase. In practice, the rate atparallel. In Block B, servei uses a simple ping proto-
which the leader sendRE-PREPARE can be configured so  q| to measure the RTT to each other senjer,Serveri
that this flooding requires a small bandwidth overhead. sends this measured RTT jo Using this value; com-
Suspect-Leader Protocol: Since the leader requires putes the maximum TAT that would compute for;j if
bounded resources to perform its role as leader, if the net-; were the leader, and stores it in TATsLeaderf]. In
work is stable, the leader can be expected to send up-toBlock C, server uses TATsIf_Leader[] to compute an up-
datePRE-PREPARES in a timely manner. To leverage this, per boundy, on the value of TATLeader that any correct
we require a mechanism whereby non-leader servers caserver will compute fori if it were leader. Each server
(1) dynamically determine how fast a timely leader should broadcasts its value af and stores the values that it re-
perform, (2) monitor the performance of the current leader, ceives in TATLeaderUBs]]. In Block D, each non-leader
and (3) suspect the leader if it is not performing fast enough server broadcasts the maximum TAT that the leader has pro-

PROPERTY4.2 There exists a set of at leagt+ 1 correct
q servers (the permanent leaders) that will not be suspected
by any correct server if elected leader.

Intuitively, Property 4.1 ensures that a faulty leader will
be suspected unless it provides a timely TAT to at least one

EaCh time a server SendSPROOFMAT_RIX messagepm, vided it in the current view and stores the values that it re-
it computes the delay between sending and receivinga  ceives in Reported@ATs[]. In Block E, each server com-
PRE-PREPAREcoveringpm. We call this delay theurn- putes TATacceptable using TALeaderUBs[], computes

around-time(abbreviated TAT) provided by the leader. The TAT Leader using Reporte@ATs[], and compares these
goal of SUSPECTLEADERIs to force any leader that stays in - values to decide whether to suspect the leader.
power to provide a timely TAT to at least one correct server.  We now sketch the proof of Property 4.1. From Block
Each correct server, locally decides whether to suspect B, atleasf + 1 cells in servei’s TATs_If _Leader[] even-
the leader by computing two valueSAT acceptableand tually contain valuesy, sent by correct servers. By defini-
TAT leader TAT_acceptable is a standard against which tion, eachw < B. Figure 4 (left side) illustrates that server
serveri judges the current leader, and TAGader is amea- i computes am such thate < B (see Line C3). Server
sure of the current leader’s performance. Seivairspects  stores the values ef computed by each other server. Thus,



/* Initialization, run at start of new view */
For i 1 to N, TATs.If_Leader[i] « oo

For i 1 to N, TAT_Leader_UBs[i] « oo

For i 1 to N, Reported.TATs[i] < 0

pingseq «— 0

RTT Measurenent Task, run at server i x/

Peri odi cal I y:

B2. BROADCAST: (RTT-PING view, pingseq, i),
B3. pi ng_seq++
B4. Upon receiving (RTT-PING view, seq, j >U].:

SEND to server j: (RTT-PONG Vview, seq, i)ai
Upon receiving (RTT-PONG view, seq, j)aj:

B7. rtt «— Measured RTT for pong nessage
B8. SEND to server j: (RTT-MEASURE, view, rtt, i >01:
B9. Upon receiving (RTT- MEASURE, view, rtt, j )(,j:

B10. t «— rtt * Kra+ App

B11l. if t < TATs.If _Leader[j]

B12. TATs_I f Leader[j] «— t

/» TAT_Leader Upper Bound Task, run at server i =/
Cl. Periodically:

c2. Sort ed_-TATs « SORT- ASCENDI NG TATs_I f _Leader[]
C3. a — Sorted.TATs[ 2f +1]

CA. BROADCAST: (TAT-UB, view, «, 1o,

C5. Upon receiving (TAT-UB, view, tat_ub, j)(,j:
C6. if tat_ub < TAT_Leader _UBs|[j ]

C7. TAT_Leader UBs[j] « tat_ub

TAT Measurenent Task, run at server i */
Peri odi cal I y:
max_tat <« Maxi mum TAT neasured this view
BROADCAST: (TAT- MEASURE, view, nmex.tat, i>%‘
Upon receiving (TAT- MEASURE, view, tat, j)c,j
if tat > Reported.TATs[]]
Reported_TATs[j] « tat

Suspect Leader Task */

E1l. Periodically:

E2. Sort ed_-TAT_UBs « SORT- ASCENDI NG TAT_Leader _UBs[ ]
E3. TAT.accept abl e «— Sorted_TAT_UBs[ 2f +1]

E4. Sort ed_TATs « SORT- ASCENDI NG Report ed_TATs[]

E5. TAT. eader « Sorted_TATs[f +1]

E6. if TAT.l eader > TAT.acceptable

E7 Suspect Leader

Figure 3: SUSPECLEADER Protocol, used to determine whether a
server should suspect the leader. View numbers refer toidve im the
global ordering protocol.

at least2f + 1 of the cells in servei's TAT LeaderUBs|]
(Figure 4, right side) eventually containvalues from cor-
rect servers (each of which is no more thah The right
side of Figure 4 shows that the value of TACceptable (de-
notedr) must also eventually be less than or equaBto

If a malicious leader remains in power, there are at
least f + 1 servers (at least one of which is correct) for
which TAT leader< TAT _acceptable always holds. Thus,
at least one correct server collect&T-MEASURE mes-
sages fromf + 1 servers (at least one of which is cor-
rect) with valuesy such thatv < TAT _acceptable. There-
fore, the malicious leader is providing a TAT, such that
t < TAT _Acceptable< B, to at least one correct server.

We now show that Property 4.2 holds. Since
TAT _acceptable is the(2f + 1)st lowest value in
TAT _LeaderUBs][], at leastf + 1 correct servers sent val-
ues fora such thata < TAT_acceptable. Each per-
manent leader/, has a set of at leasf + 1 correct
servers that, if is elected, will report TATs¢, with ¢ <
«a < TAT _acceptable. Thus, any correct server will com-
pute TAT_leader< TAT _acceptable and will not suspdct

TATs If Leader[] (Sorted) TATLeaderUBsJ] (Sorted)

2f 1 f 2f 1 f
| [of ] ]| [ ]
L 1 L 1

M P

o (Ire M)[r < B
e v is the minimum value in/

e(FpeP)p< B
e 7 is the minimum value P

e Thereforep < B e Thereforey < B

Figure 4: The value of TAJacceptable®) computed at any correct server
converges to a value where < B. The setsM (left side) andP (right
side) contain thg + 1 highest values in their respective vectolg. must
eventually contain at least one valugreported by a correct server, where
v < B. Thus,a < B. Using a parallel argument, the right side shows that
T <B.

5 Analysis

In this section we show that in those executions in which
PRIME-STABILITY holds, Prime meets th®OUNDED-
DELAY property (see Definition 2.5)L* and B are as de-
fined in Section 4.2A,,, is a value greater than the maxi-
mum time between a correct server sending any of the fol-
lowing messages successivelyo-ARU, PROOFMATRIX,,
andPRE-PREPARE

We first consider the maximum amount of delay that can
be added by a malicious leader that performs well enough
to stay in power. As discussed in Section 4, the time be-
tween a correct server initiating an update,and all cor-
rect servers sendingROOFMATRIX messages containing
atleast2 f + 1 Po-ARUS that cumulatively acknowledge the
preordering ofu is at most three rounds pl@s\,,,. The
malicious servers cannot increase this time beyond what it
would take if only correct servers were participating. By
Property 4.1, a leader that stays in power must provide a
TAT, t < B, to at least one correct server. By defini-
tion, Aggg > App. Thus,B < 2K L™ + Aggg. Since
correct servers floo®RE-PREPARE messages, all correct
servers receive therRe-PREPAREWiIthin three rounds and
one aggregation delay of when tR®@0OOFMATRIX mes-
sages are sent. All correct servers globally orderrtRe-
PREPAREIN two rounds from the timet, the last correct
server receives it. Reconciliation guarantees that all cor
rect servers receive the update within one round of time
t. Summing the total delays yields a maximum latency of
B=06L"4+2KprqL* 4+ 30u44.

If a malicious leader delays an update by more tihan
it will be suspected and a view change will occur. View
changes require a finite (and, in practice, small) amount of
state to be exchanged among correct servers, and thus they
complete in finite time SUSPECFTLEADER guarantees that
at most2 f view changes can occur before the system settles
on a leader that will remain in power forever. Therefore,
there is a time after which the bound gfholds for any
update initiated by a stable server.
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6 Performance Evaluation out (300 ms), yielding the most favorable performance for

BFT under attack. To attack Prime, (1) the leader adds as

To evaluate the performance of Prime, we implemented Much delay as possible (without being suspected) to the
the protocol and compared it to an available implementa- Protocol, and (2) faulty servers force as much reconcilia-
tion of BFT in a 7 server configurationf(= 2). We tion as possible. A malicious leader can add approximately
present results fof = 1 in [3]. Prime has similar per- two rounds of delay to the global ordering phase (see Fig-
formance to BFT when the systems are run in a benignure 2). The malicious servers (servers 1 and 2) force rec-
environment, which is commonly the only environment Onciliation by not sending the?0-REQUESTMessages to
in which Byzantine fault-tolerant replication systems are ./ Of the correct servers (servers 6 and 7). Therefore, all
benchmarked. When strong attacks are mounted againséPdates originating from the faulty servers must be sent to
both systems, Prime outperforms BFT by more than an or-Servers 6 and 7 using the reconciliation mechanism (Section
der of magnitude. 4). Moreover, the malicious servers only acknowledge each

Testbed and Network Setup: We used a system con- other'sPO-REQUESTMessages, forcing the correct servers
sisting of 7 servers, organized in a fully connected graph. t0 send reconciliation messages to servers 1 and 2 for all
Each server ran on a 3.2 GHz, 64-bit Intel Xeon com- Messages originating from correct servers. Thus, all mes-
puter. RSA signatures provided authentication and non-Sages undergo a reconciliation step, which consumes ap-
repudiation. Each computer can compute a 1024-bit RSAProximately the same outgoing bandwidth as update dis-
signature in 1.3 ms and verify it in 0.07 ms. We emu- semination during preordering. This reduces the maximum
lated the overhead of Cauchy-based Reed-Solomon erasur@chievable throughput by approximately half.
codes [6] used for reconciliation. Servers and clients sent  Performance Results: Figure 5 shows system through-
unicast messages. We used the netem utility to place delayut in updates per second as a function of the number of
and bandwidth constraints on the links between the serversclients. The clients send one write update (containing 512
We added 50 ms delay (emulating a US-wide deployment) bytes of data), wait for proof that the update has been or-
to each link and limited the aggregate outgoing bandwidth dered, and then submit their next update. BFT uses an
of each server to 10 Mbps. Clients were evenly distributed optimization where clients send updates directly to all of
among the servers and no delay or bandwidth constraintg¢he servers, and the BFFRE-PREPAREmMessage contains
were set between the client and its server. batches of update digests. When both protocols are not

Attack Strategies. Our experimental results during at- under attack, the throughput of BFT increases at a faster
tack show the minimum performance that must be achievedrate than the throughput of Prime, because BFT has fewer
in order for a malicious leader to remain in power. Our mea- protocol rounds. BFT’s performance plateaus due to band-
surements do not reflect the time required for view changes width constraints at slightly less than 850 updates per sec-
during which a new leader is installed. Since a view changeond with about 250 clients. Prime reaches a similar plateau
takes a finite, and, in practice, relatively small, amount of with about 350 clients.
time, malicious leaders must cause performance degrada- Throughputresults are much different when the two pro-
tion without being detected in order to have a prolonged tocols are attacked. With an aggressive timeout of 300 ms,
effect on throughput. Therefore, we focus on the attack sce-BFT can order less than 30 updates per second. With the
nario where a malicious leader stays in power indefinitely default timeout of 5 sec, BFT can only order 2 updates per
while degrading performance. second (not shown). Prime plateaus at about 400 updates

We use the first attack on BFT described in Section 3. per second due to the bandwidth overhead of reconciliation.
We present results for a very aggressive yet possible time-The slope of the curve corresponding to Prime under attack



is less steep than when it is not under attack due to the deto how Prime uses preordering followed by global order-
lay added by the malicious leader. We include results with ing. Both protocols disseminate update2fo+ 1 servers
Kroe = 1land K, = 2. K. accounts for variabili- before a coordinator assigns the global order. Drabkin et
ties in latency (Section 2). AKX, increases, a malicious al. [12] observe the difficulty of setting protocol timeoirs
leader can add more delay to the turn-around time withoutthe context of group communication in malicious settings.
being detected. Prime’s throughput continues to increase Other Byzantine fault-tolerant protocols [5,7,22,23] use
until it becomes bandwidth constrained. BFT reaches itsrandomization to circumvent the FLP impossibility result,
maximum throughput when there is one client per server. guaranteeing termination with probability 1. These proto-
This throughput limitation, which occurs when only a small cols incur a high number of communication rounds during
amount of the available bandwidth is used, is a consequenceormal-case operation (even those that terminate in an ex-
of judging the leader conservatively. pected constant number of rounds). However, they do not
Figure 6 shows update latency, measured at the client, agely on a leader to coordinate the ordering protocol, and
a function of the number of clients. When the protocols are thus may not suffer the same kinds of performance vulner-
not under attack, BFT has a lower latency than Prime, dueabilities when under attack. We believe it is an interesting
to the differences in the number of protocol rounds. The open question to consider (1) whether their performance in
latency of both protocols increases at different points be- fault-free configurations is sufficiently high, especiailty
fore the plateau due to overhead associated with aggregahigh latency environments and (2) how resilient they are to
tion. The latency begins to climb steeply when the through- performance degradation when under attack.
put plateaus due to update queueing at the servers. When Byzantine quorum systems [1,10,19,20] can also be used
under attack, the latency of Prime increases due to the twaofor replication. While early work in this area was restritte
extra protocol rounds added by the leader. Whagp,; = 2, to a read/write interface, recent work uses quorum systems
the leader can add approximately 100 ms more delay thanto provide SMR. The Q/U protocol [1] of Abd-El-Malek et
whenK ., = 1. The latency of BFT under attack climbs al. require$ f + 1 replicas for this purpose and suffers per-
as soon as more than one client is added to each server, bdermance degradation when write contention occurs. The
cause the leader can order one update per server during &8Q protocol [10] showed how to mitigate this cost by re-

timeout period without being suspected. ducing the number of replicas 8f + 1. Since HQ uses
BFT to resolve contention when it arises, it is vulnerable to
7 Reated Work the same types of performance degradation as BFT.

A different approach to SMR is to use a hybrid architec-

. N ture in which different parts of the system rely on different
The protocols considered in this paper use the state M3tault and/or timing assumptions [9, 27, 28]. The different
chine approach [17, 26] to achieve replication, in which U

renlicas execute a totally ordered stream of uodates. Thi components are therefore resilient to different types of at
P y P ' Stacks. We believe leveraging stronger timing assumptions

paper focused on leader-based Byzantin_e fault-tolerantmay allow for more aggressive performance monitoring.
SMR protocols. Other approaches are possible, such as us- The ©-Model [15] assumes that messages in transit si-

ltngr:jersan;i\otrﬁ(l)zr?tlorﬁ,;qnu;;rl;_rz cs)]}/itgmfésa}l'?:n?iﬁéfefcgéﬁémultaneously experience a bounded ratio of end-to-end de-
ures. ug ysl W resil Y lays. PRIME-STABILITY assumes an eventual ratio of de-

are to performance failures is an interesting avenue for fu-I .
ays on each link between correct servers.

ture research.

Many Byzantine fault-tolerant SMR systems rely on a ]
leader to coordinate the ordering protocol [2, 4, 8, 16, 18,8 Conclusions
21,29]. The consistency of these systems does not rely
on synchrony assumptions, while liveness is guaranteed as- In this paper we brought to light the vulnerability of cur-
suming the network meets certain stability properties. To rentleader-based Byzantine fault-tolerant SMR protoimols
ensure that the stability properties are eventually met in performance degradation when under attack. We proposed
practice, they use exponentially growing timeouts during the BOUNDED-DELAY correctness criterion to complement
view changes. This makes these systems vulnerable taurrent liveness criteria by requiring the leader to acetim
the type of performance degradation when under attack de-in order to stay in power. We presented Prime, a new Byzan-
scribed in Section 3.2. In contrast, Prime usessthePECT tine fault-tolerant SMR protocol, which meet®UNDED-
LEADER protocol to allow correct servers to collectively de- DELAY and is a first step towards making intrusion-tolerant
cide whether the leader is performing fast enough by adapt-replication resilient to performance attacks in maliciens
ing to the network conditions once the system stabilizes.  vironments. Our experimental results show that Prime per-

Rampart [24] implements Byzantine atomic multicast forms competitively with BFT in fault-free configurations
over a reliable group multicast protocol. This is similar and an order of magnitude better when under attack.
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