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Abstract

Maintaining the availability of critical servers and
routers is an important concern for many organizations.
At the lowest level, IP addresses represent the global
namespace by which services are accessible on the In-
ternet.

We introduce Wackamole, a completely distributed
software solution based on a provably correct algorithm
that negotiates the assignment of IP addresses among the
currently available servers upon detection of faults. This
reallocation ensures that at any given time any public IP
address of the server cluster is covered exactly once, as
long as at least one physical server survives the network
fault. The same technique is extended to support highly
available routers.

The paper presents the design considerations, algo-
rithm specification and correctness proof, discusses the
practical usage for server clusters and for routers, and
evaluates the performance of the system.

1 Introduction

Maintaining the availability of critical network servers
is an important concern for many organizations. Server
redundancy is the traditional approach to provide avail-
ability in the presence of failures. From the client per-
spective, a network-accessible service is resolved via a set
of public IP addresses specified for this service. There-
fore, the continued availability of a service via these IP
addresses is a prerequisite for providing uninterrupted
service to the client. In order to function correctly, each of
the service’s public IP addresses has to be covered by ex-
actly one physical server at any given time. If no physical
server covers a public IP address, the clients will not re-
ceive any service. On the other hand, if more than one
physical server is covering the same IP address at any
time, the network might not function properly and clients

may not be served correctly.

A sizable market exists for hardware solutions that
maintain the availability of IP addresses, usually via a
gateway that hides the actual servers behind a smart
switch or router in a centralized manner. We present
Wackamole, a high availability tool for clusters of servers.
Wackamole ensures that all the public IP addresses of a
service are available to its clients. Wackamole is a com-
pletely distributed software solution based on a provably
correct algorithm that negotiates the assignment of IP ad-
dresses among the available servers upon detection of
faults and recoveries, and provides N-way fail-over, so
that any one of a number of servers can cover for any
other.

Using a simple algorithm that utilizes strong group
communication semantics, Wackamole demonstrates the
application of group communication to address a critical
availability problem at the core of the system, even in the
presence of cascading network or server faults and recov-
eries. We also demonstrate how the same architecture is
extended to provide a similar service for highly-available
routers.

The remainder of this paper is organized as follows.
Section 2 introduces the system architecture. Section 3
describes the system model and the core algorithm behind
the engine of Wackamole and discusses its correctnes.
Section 5 analyzes practical considerations and presents
two applications for the system. Section 6 presents per-
formance results concerning the reconfiguration time of
Wackamole clusters. We discuss related work in Section
7 and conclude in Section 8.

2 System Overview
Our solution has three main components, presented in
Figure 1:

e An IP address control (acquire and release) mecha-
nism.
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Figure 1. Wackamole Architecture

e A state synchronization algorithm (the Wackamole
Algorithm).

e A membership service provided by a group commu-
nication toolkit.

The group communication toolkit maintains a mem-
bership service among the currently connected servers
and notifies the synchronization algorithm of any view
changes that occur due to server crashes and recoveries,
or network partitions and remerges.

The synchronization algorithm manages the logical as-
signment of virtual IP addresses among the currently con-
nected members, avoiding conflicts that can occur upon
merges and recoveries and covering the “holes” that can
arise as a result of a crash or partition.

The IP address control mechanism enforces the deci-
sions of the synchronization algorithm by acquiring and
releasing the IP addresses accordingly. These mech-
anisms are highly specific to the operating system on
which the Wackamole system runs.

The correctness of the system is dependent on the as-
sumption that the group communication system provides
an accurate view of the current network connectivity. If
there is additional connectivity beyond that reported by
the group communication system, there may be conflicts
in the assignment of IP addresses. On the other hand, if
the group communication system does not detect the dis-
connection of a server from the current membership in a
timely manner, the IP addresses that were covered by that
server will be unavailable to the clients, since the system
will not reconfigure without the proper notification.

3 TheWackamole Algorithm

In this section we present the state synchronization al-
gorithm that forms the core of the Wackamole system
and discuss its correctness, given the assumption that the
membership notifications issued by the group communi-
cation system reflect the actual network status.

3.1 System Model

In order to formally identify the problem that Wack-
amole attempts to solve, we define the system model and
introduce the correctness properties that the algorithm
and the implemented system need to maintain.

We consider a set S={s1, s2, ..., s, } Of servers that
provide service to outside client applications. The servers
are all located in the same Local Area Network (LAN),
but are susceptible to crashes and temporary network par-
titions . During a network partition, the servers are sep-
arated into two or more components that are unable to
communicate with each other.

The client applications access the services through IP
addresses in the set 1={41, i2, ..., i, }. The serversin S are
responsible for covering the set | of virtual IP addresses.
We refer to the IP addresses in | as virtual in order to
distinguish them from the stationary default IP addresses,
that do not change, used by the servers for intercommu-
nication.

The client applications are oblivious to the stationary
IP addresses of the servers in S or to the possible parti-
tioning that may exist among the servers.

In order to guarantee correct service, the following
properties need to be maintained.

Property 1 (Correctness) Every IP address in the set | is
covered exactly once by a server in each subset S, where
S} is a maximal connected component whose servers are
in the operational (RUN) state.

Property 2 (Liveness) If there is a time t from which
a set of connected servers does not experience any
crashes/recoveries or network partitions/merges, the
servers will switch to the operational (RUN) state.

In order to guarantee these properties we rely on the
group communication system to follow the Virtual Syn-
chrony properties [6, 14] in partitionable systems and to
provide Agreed message delivery. The Virtual Synchrony
property specifies that any two servers that advance to-
gether from one membership to the next one, will deliver
an identical set of messages in the first membership. The
Agreed delivery property guarantees that additionally, the
messages will be delivered in the same order at all servers.
Furthermore we assume that the group communication
system provides a membership service that provides each
server in the group a uniquely ordered list of the currently
connected participants.

3.2 Algorithm Specification

The algorithm runs according to the state machine pre-
sented in Figure 2.

LPartitions can occur even in LAN environments due, for instance,
to aswitch failure in one of the subnetworks.
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Figure 2. Wackamole Algorithm

Each server maintains a table current_table that con-
tains the virtual IP allocation during the current member-
ship. During normal operation, the algorithm is in the
RUN state. In this state, each server is responsible for
a set of virtual IP addresses and will answer all the re-
quests directed to those IP addresses. While in the RUN
state, the current_table information is conflict-free and
the complete IP set is covered, maintaining the correct-
ness guarantees of the algorithm. When the group com-
munication system delivers a VIEW_CHANGE event, a
backup of the IP table is created and a STATE MSG is
sent to every member of the new view containing the in-
formation about the IP addresses managed by the server
and the identifier of the view in which it is initiated. The
algorithm then moves to the GATHER state.

Algorithm 1 RUN State

1: when: VIEW_CHANGE do

2. old_table = current_table
send STATE_MSG
state = GATHER

when: receive BALANCE_MSG do
Change_IPs()

@ gk w

In the GATHER state each server incorporates the in-
formation received through the STATE MSGs in its cur-
rent_table variable and checks for the existence of con-
flicts in the IP allocation; if members from previously
partitioned components are merged together, conflicts are
expected since each component covers the full IP address
set. ResolveConflicts() is a deterministic procedure in-
voked as soon as a new STATE_MSG is received, that
checks whether the server that sent this message intro-
duces any conflict with respect to the information already
gathered about the set of covered IP addresses. If a con-
flict is detected, the server drops the addresses that are
overlapping, thus restoring consistency at the network
level as soon as possible.

When all the state messages (STATE_MSG) have been
received, each server invokes a deterministic procedure
Reallocate_IPs(). During the Reallocate_IPs() procedure,
the servers make sure that all the virtual IPs are covered
by a server in the current configuration. In particular,
the procedure relies on the uniquely ordered membership
list provided by the group communication system to dis-

tributely decide which server covers which IP address.

If the GATHER state is interrupted by a cascad-
ing VIEW_CHANGE event, the server clears its cur-
rent_table, discarding the information already collected
and reverting to the information in the old table, then
sends a new STATE_MSG to all members of the new con-
figuration.

Algorithm 2 GATHER State

1: when: receive STATE_MSG with current view id do
2:  update current_table
3 ResolveConflicts()
4. if (received STATEMSG from all cur-
rent_table.members) then
Reallocate_IPs()
state = RUN
when: VIEW_CHANGE do
clear current_table
send STATE_MSG
10: when: BALANCE_MSG do
11:  ignore
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3.3 Correctness of the Algorithm

We consider a subset of servers S’< S that are in the
operational RUN state. Between the servers in S’, each
virtual IP address is covered exactly once. We consider a
VIEW_CHANGE event that is detected by members of
S’. According to the group communication guarantees,
all members of S’ will receive VIEW_CHANGE notifi-
cations, even though they are possibly disconnected from
each other. Following the algorithm, each server will pro-
ceed to the GATHER state and send a state message con-
taining its local knowledge base. Let’s consider a server
s that was part of S’ and is now part of S” as indicated
by the group communication. The group communication
system provides every s in S” an identically ordered list
of all the servers in S”.

Lemmal For every connected set S’ of servers in the
RUN state, every IP address is covered at most once by a
serverin S’.

Pr oof:

We consider a set of servers that are connected after
a view change event, as indicated by the group commu-
nication notification. In order for the servers to advance
to the RUN state, the state transfer algorithm, executed
in the GATHER state, needs to complete. Therefore we
consider the situation where a set of servers S’ does not
detect further VIEW_CHANGE events until they exit the
GATHER state.

Let’s assume that upon receiving the last STATE mes-
sage in the GATHER state (line 4 in Algorithm 2) there



exists a virtual IP address vip that is covered by two
servers p and q in S°. According to the Virtual Synchrony
and Agreed delivery guarantees of the group communi-
cation, both p and g received all the state messages that
were sent during the GATHER state, therefore they re-
ceived their own state messages. According to the man-
agement of the current_table variable from the algorithm
(line 2 Algorithm 1 and lines 2,8 Algorithm 2) and the fact
that only STATE_MSGs generated in the current view are
considered (line 1 of Algorithm 2), the variable will ac-
curately reflect at this point the state of the currently con-
nected component. During this stage, following the algo-
rithm, the servers don’t acquire new IP addresses, there-
fore both p and q were already covering vip from their
previous memberships. From the algorithm, in the Re-
solve_Conflicts() procedure (line 3 in Algorithm 2), when
p receives the state message from q, it will notice the con-
flict in the coverage of vip and will adjust its IP coverage
table and release vip if p appears in the membership list of
S’ before g. The same reasoning applies for q; therefore
it is impossible for vip to be covered by both p and q at
this point. Furthermore, both p and g will have the same
view of the virtual ip coverage. Note that reaching agree-
ment does not assume any particular relation between the
initial states of p and g or of the other members of S’.
When all the state messages have been received each
server will execute the Reallocate _IPs() procedure. Dur-
ing this procedure a server may acquire new IP addresses
only if there is a virtual IP that is not covered by any
server in S’. Since all the servers have the same view of
the coverage table, they will all detect the same set of
IP addresses that need to be covered. Furthermore, since
they all have the same uniquely ordered list of the mem-
bership of S’ the procedure Reallocate _IPs() will guaran-
tee that each unallocated virtual IP address will be cov-
ered by exactly one server in S’. This concludes the proof
of the lemma.
a

Lemma 2 During the RUN state, every virtual IP ad-
dress in the set R is covered by at least one server.

Proof:

According to the algorithm, after a view-change, if the
connectivity remains stable allowing the GATHER pro-
cedure to complete, all the connected servers will exe-
cute the Reallocate_IPs() procedure. As shown above, all
servers that start this procedure in the same component
will have identical views of the IP coverage and will de-
tect the same “holes” (IP addresses that are not covered
by any server in the current component). Following the
algorithm, these IP’s are covered at the end of the Re-
allocate_IPs() procedure, ensuring the complete coverage
during the RUN state.

O

From the two lemmas above, we obtain the correctness
property as specified in section 3.1.

We will now prove the liveness property.

Proof:

Due to the properties of the group communication
delivery specification, if there is a time t from which
no view-change notifications occur, then every server is
guaranteed to deliver all the state messages that were sent
in that membership. At that time, each server will exe-
cute the finite procedure Reallocate_IPs() and will switch
to the RUN state.

a

3.4 Practical Considerations

The algorithm presented so far satisfies the correctness
guarantees but can be further optimized in order to im-
prove its performance.

From a practical perspective we want to minimize the
amount of time that an IP address is covered by two or
more servers in the same connected component in order to
avoid network level conflicts. This is ensured by the fact
that the ResolveConflicts() procedure is invoked as soon
as a conflict is detected and one of the involved parties
will drop the offending IP.

Algorithm 3 BALANCE State

1. Balance_IPs()
2: send BALANCE_MSG
3. state = RUN
4: when: VIEW_CHANGE or BALANCE_MSG or
STATE_MSG do
delay event

a

Of similar importance to the system is the fast comple-
tion of reconciliation during the GATHER state. The min-
imal task that needs to be executed in the Reallocate _IPs()
procedure is the acquisition of non-allocated IP addresses
in order to guarantee the complete coverage. However, af-
ter several partitions/merges, the system may end up with
a very unbalanced allocation of IP addresses among the
set of connected servers. To avoid this we can modify the
Reallocate_IPs() procedure to perform load-based reallo-
cation of IP addresses. However, this would extend the
time the system is in a non-operational state. We intro-
duce a re-balancing procedure which is triggered from the
RUN state by a set timeout and is executed only by one
member (representative) of the connected component, se-
lected based on the order in the membership list provided
by the group communication system. The representative
decides on the new IP allocation based on load balanc-
ing considerations and explicit preferences specified by
each server at startup and passed along through state mes-
sages. The representative broadcasts a BALANCE _MSG



containing the new IP allocation and switches back to the
RUN state. Upon receiving a BALANCE_MSG, a server
in the RUN state acquires or releases the necessary IP ad-
dresses. Note that the BALANCE state executes as an
atomic procedure with the server ignoring any potential
VIEW_CHANGE notification from the group communi-
cation until it returns to the RUN state. Furthermore, even
when a VIEW_CHANGE is detected before all servers re-
ceive and apply the BALANCE _MSG the correctness of
the algorithm is not endangered since the GATHER pro-
cedure does not assume anything about the starting state
of the participating servers and treats any conflict as it is
discovered.

Another optimization was added in order to gracefully
bootstrap the system. A server s starts with the local vari-
able mature unset and without being responsible for any
IP addresses. Upon receiving a view change notification,
s switches to the GATHER state. If during the GATHER
state s receives a state message from a mature server, it
will mark itself as mature and continue the normal algo-
rithm execution. If all the servers that s can contact are not
mature, s will remain “immature” until a certain timeout
expires after which it automatically sets itself as mature,
notifies the other servers, and starts managing the IP ad-
dresses. The reason for this optimization is to avoid quick
IP reallocations as the cluster is rebooted.

4 Implementation

Wackamole [23] has been implemented with cross-
platform interoperability in mind; it currently supports
FreeBSD, Linux, and Solaris systems. To more readily
accommodate its use on multiple platforms, the imple-
mentation is separated into two clearly delineated parts.
The first, comprised of generic ANSI C code, implements
the core algorithm presented above. The second, which
contains platform-specific code, implements the function-
ality needed to manage multiple interfaces and spoof ARP
caches on each supported operating system.

4.1 The Spread Toolkit

The correctness as well as the efficiency of the sys-
tem depends on the use of a group communication system
that provides reliable, totally ordered multicast and group
membership notifications for a cluster of servers. Wack-
amole was implemented using the Spread group commu-
nication toolkit [20, 3].

Spread is a general-purpose group communication sys-
tem for wide- and local-area networks. It provides re-
liable and ordered delivery of messages (FIFO, causal,
agreed ordering) as well as Virtual Synchrony and Ex-
tended Virtual Synchrony membership services. These

properties match the algorithm requirements specified in
Section 3.1

Spread uses a client-daemon architecture.  Node
crashes/recoveries and network partitions/remerges are
detected by Spread at the daemon level; upon detecting
such an event, the Spread daemons install the new dae-
mon membership and inform their clients of the corre-
sponding changes in the group membership that are in-
troduced by the failure. Clients are also notified when
changes in the group membership are triggered by a
graceful leave or join of any client. The Spread toolkit is
optimized to support the latter situation without triggering
a full daemon membership reconfiguration, but rather in-
forming only the participating group about the new group
membership. The impact of this optimized approach will
become apparent in section 6.

The Spread toolkit is publicly available and is being
used by several organizations in both research and pro-
duction settings. It supports cross-platform applications
and has been ported to several Unix platforms as well as
to Windows and Java environments.

4.2 Implementation Considerations

Wackamole’s state synchronization algorithm is im-
plemented using group membership and messaging ser-
vices offered by the Spread Toolkit. Immediately upon
startup, the Wackamole daemon connects to a Spread dae-
mon running on the same host and joins the wackamole
group. It then relies on the regular membership messages
sent by Spread to determine the current set of available
hosts, and to initiate state transfer upon view-change de-
tection. Spread is also used to ensure that messages are
sent in a total order among Wackamole daemons, that old
messages which must be discarded upon receipt can be
identified properly, and that endian conflicts across plat-
forms are handled correctly.

As a consequence of Wackamole’s tightly-coupled re-
lationship with Spread, some of the fine-tuning decisions
that can be made to improve Wackamole’s response time
to network events are dependent on the way Spread is
configured. Modifying the Spread network-failure prob-
ing timeouts must be, however, done on a system-specific
basis. If not done properly, this tuning can be detrimental
to the performance of a Wackamole cluster by increasing
the number of false-positive network failures. The impact
of this tuning is analyzed in Section 6.

A Wackamole daemon that becomes disconnected
from Spread will drop all of its virtual interfaces and
enter a cycle in which it periodically attempts to recon-
nect to Spread, because it cannot ensure correctness with-
out the services Spread provides. This behavior allows
clusters to survive changes to the Spread daemons with
which they communicate, such as version changes and re-
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initializations for configuration modification, taking into
account the fact that Spread may be used for multiple ap-
plications concurrently.

In order to provide continuous service to the Wack-
amole daemons, Spread must bind to IP addresses that are
not subject to Wackamole’s management. Consequently,
it is possible (although not required) to run Spread on a
separate Network Interface Card (NIC) than the one be-
ing used for the virtual IP addresses managed by Wack-
amole. Also, Wackamole does not provide failure detec-
tion of any of the applications that may be relying on its
management, e.g. HTTP servers. Either of these two sit-
uations can cause failures that are not detectable by the
Spread membership service. This problem is not directly
addressed by Wackamole’s implementation, but a possi-
ble solution is to perform run-time checks on the avail-
ability of the NIC or of the specific applications that use
Wackamole, and trigger the virtual IP migration when a
failure is detected.

Another practical aspect of the Wackamole implemen-
tation is the addition of an input channel to allow admin-
istrative control of a cluster’s behavior. Also, the way
Wackamole handles network failures can be modified,
such that all decisions are made by a deterministically
chosen representative and imposed upon the other dae-
mons, rather than made independently by each daemon
through a deterministic decision process. This will enable
changing the way virtual address allocation decisions are
made without breaking version compatibility.

5 Practical Applications

The two primary applications for which Wackamole
was developed are clusters and fail-over routers. The im-
plementation of Wackamole takes these applications into

account and can be fine-tuned to make appropriate trade-
offs in either situation. We show how Wackamole pro-
vides availability for these applications.

5.1 N-Way Fail-over for Clusters

Web clustering is the application that drove the cre-
ation of Wackamole. In combination with Domain Name
Service (DNS), Wackamole provides the functionality to
enable websites served by multiple IP addresses and/or
hosted on a cluster of machines to be highly available.
The generic management of virtual addresses has already
been discussed. However, this class of application re-
quires Wackamole to perform an additional task: ARP
spoofing.

While IP addresses are used for routing on wide area
networks, on local area networks Media Access Control
(MAC) addresses are used. An IP address is resolved to
a MAC address using the Address Resolution Protocol
(ARP). In and of itself, this is not a problem for Wack-
amole. However, ARP data is cached on an IP address
basis. This cache must be updated for any virtual address
that is moved from one host to another, on each host that
has cached an <IP address, MAC address> pair for that
virtual address.

Since we assume that we are managing a local area
cluster, all requests to the server must come through a
router. That router’s ARP cache must be updated in order
to ensure that it correctly forwards packets to the appro-
priate machine whenever Wackamole alters the allocation
of virtual addresses within the cluster. Consequently, part
of Wackamole’s platform-specific code deals with spoof-
ing of ARP reply packets to force updates to the router
ARP cache.

An example layout for a Wackamole-assisted web
cluster (Figure 3) consists of a number of web servers and



oy

XXX.yyy.221.1
Private Cluster (DB)
192.168.0.1

Virtual Router

Router 1 Router 2
XXX.yyy.221.2 XXX.yyy.221.3

Z @192.168.0.2

XXX.yyy.222.102

192.168.0.3
192.168.0.zzz

XXX.yyy.222.103

XXX.yyy.222.101  Visible Cluster (Web)

o

XxX.yyy.221.1
Private Cluster (DB)
192.168.0.1

Virtual Router

Router 1 Router 2
XXX.yyy.221.2 XXX.yyy.221.3

E gﬂ)l]é&()l E’@

XXX.yyy.222.102

192.168.0.3
192.168.0.zzz

XXX.yyy.222.103

XXX.yyy.222.101  Visible Cluster (Web)

Figure 4. N-Way Fail-Over for Routers: At any point, a single physical router acts as the virtual
router, managing the virtual addresses xxx.yyy.221.1, xxx.yyy.222.101, 192.168.0.1.

a single router through which outside requests are made.
Each of the web servers must be running a Spread dae-
mon, likely on a private IP address, and must be running
a Wackamole daemon, to ensure that virtual IP addresses
are correctly allocated. Each server must also be responsi-
ble for notifying the router to update its ARP cache when
it assumes responsibility for a new virtual address.

5.2 N-Way Fail-Over for Routers

Router management is another application that has
emerged as a common use for Wackamole. An exam-
ple layout for this application of Wackamole consists of
multiple physical routers that act as a single virtual router
as depicted in Figure 4. An indivisible set of virtual ad-
dresses on different interfaces is allocated to the physi-
cal router currently acting as the fail-over router. In the
figure, these IP’s are xxx.yyy.222.101, 192.168.0.1, and
xxX.yyy.221.1 which represent the logical IP addresses of
the router in the three networks that it serves. The picture
also shows the stationary IP addresses of each physical
router, on each of the three networks. These IPs are de-
picted in the figure inside the Virtual Router box.

If the interface through which the machine is con-
nected to Spread fails, or the machine itself crashes, the
set of virtual IP addresses will be reallocated to a different
machine. The set of physical routers running Wackamole,
each of which is potentially the” router, can be concep-
tualized as a single virtual router.

For the most part, the presented Wackamole architec-
ture can support this application without additional modi-
fications beyond what is needed for web clustering. How-
ever, a router needs to simultaneously exist on multiple
networks in order to route packets between said networks.
Therefore a set of virtual IP addresses must be consid-
ered as a single entity. As a result, Wackamole was mod-

ified to support grouping of multiple IP addresses, possi-
bly on different interfaces, as an indivisible set of virtual
addresses. This enables the correct handling of situations
where a single host being managed by Wackamole must
be accessible on multiple virtual addresses.

Furthermore, the notification mechanism for ARP
spoofing must be enhanced to update the ARP cache of
every host which has resolved the MAC address of the vir-
tual router. To facilitate the necessary notification, each
Wackamole daemon periodically sends data from its ARP
cache to all other daemons. This makes it possible for a
daemon to approximately know the set of machines that
must be notified when it assumes responsibility for a vir-
tual IP address. Obviously, this approach does not scale
well to very large LANSs. We are investigating the poten-
tial of applying garbage collection techniques to make the
ARP spoof notification more accurately targeted towards
hosts that require such notification.

The method described above incurs additional delays
when the router is using any dynamic routing protocol
such as OSPF [15] or RIP [18] on one or more of its
interfaces. The fail-over router in such a case needs to
be updated with the current state of the relevant dynamic
routing tables before it is able to route messages properly.
This usually takes around 30 seconds. A different setup
can be used to avoid this delay. In this alternate setup,
all the participating fail-over routers act as separate enti-
ties in the dynamic routing protocol and all advertise the
same internal networks to the external dynamic networks.
Therefore, all of the fail-over routers are continuously up-
dated with route changes. On the internal network only
one of the fail-over routers actively routes, and Wack-
amole will ensure that its IP address is always covered
by one of the fail-over routers.

Using this setup, a failure of any of the routers will
only cause a minor service interruption, noticeable only



by the fraction of the external routing queries that are di-
rected to the failed router. All routing from the internal
network will not be affected unless the designated router
fails. In this case, Wackamole reassigns another router
to control the virtual router address and the hand-off is
complete as soon as Wackamole reconfigures without ad-
ditional need to transfer routing information. Essentially,
this setup is closer to the setup described in Section .

Our solution, in both scenarios, provides the additional
benefit of allowing a heterogenous set of physical routers
to collaborate in forming a virtual router. Using a vari-
ety of architectures and operating systems for the routers
provides increased protection of the virtual router against
security exploits that may target specific platforms.

6 Performance Results

In order to assess the performance of Wackamole, the
most relevant measurement is the length of the service
interruption perceived by a client when the server with
which it is communicating is made unavailable by a fault.
For this reason, we report results for the average avail-
ability interruption time when a computer running Wack-
amole fails and its virtual addresses must be reallocated
to another computer, as measured from a client.

In our experiment we place a simple server process
on each computer using Wackamole. The server re-
sponds to UDP packets by sending a packet containing
its hostname. A client process on another computer is in-
structed to continuously access a specific virtual address
by sending UDP request packets at a specified interval,
and record the hostname of the server that responds as
well as the time since the last response was received. For
our experiments, we used a 10ms interval between re-
quests. The value is the smallest that can be practically
used, and is determined by the linux context-switch times.
When a fault is induced by disconnecting the interface
through which Spread, Wackamole, and the experimental
server access the network, the client will stop receiving
responses to its requests. When Wackamole completes
the IP address reallocation procedure and the client’s ARP
cache is updated, the client resumes receiving responses
to its queries, this time from the computer that has aquired
its target address. The time elapsed between the receipt
of the last response from the disabled computer and the
first response from the new server is the availability inter-
ruption time from the experimental client’s point of view.
While there is a small possibility for error in this mea-
surement due to the interval between requests and fluc-
tuations in the network, our measurements represent an
upper bound on the actual interruption time.

As discussed, Wackamole depends upon the Spread
group communication toolkit for notification of member-
ship changes. For this reason, the availability interrup-

| Parameter Name

| Default Spread | Tuned Spread |

Fault-detection timeout 5 1
Distributed Heartbeat timeout 2 0.4
Discovery timeout 7 14

Table 1. Spread timeout tuning (seconds)

tion time measures the total time to complete four actions:
Spread’s detection of membership changes, Spread’s dae-
mon and process group membership installation, Wack-
amole’s state transfer and virtual address reallocation, and
Wackamole’s ARP spoofing.

In light of this dependency, we performed two sets of
experiments. The first set uses the default Spread settings
with timeout intervals designed to perform adequately on
most networks, for a variety of applications. The second
set uses a fine-tuned version of Spread, in which we ad-
justed the relevant timeout intervals specifically for the
Wackamole application and our network setup. Both ex-
periments were run on a 100Mbit Ethernet LAN cluster,
maintaining 10 virtual IP addresses in a cluster, and vary-
ing the number of servers from 2 to 12.

Table 1 shows the differences between the two exper-
iment setups. The timeouts presented in the table cover
the major components of the time it takes Spread to notify
Wackamole of network faults. The distributed heartbeat
timeout specifies an interval after which a Spread daemon
notifies other daemons that it is still in operation. The
fault-detection timeout begins at approximately the same
time as the distributed heartbeat timeout; after the fault-
detection timeout expires, if a daemon has not specified
that it is operating, Spread assumes a fault has taken place
and attempts to reconfigure. Because a fault could occur
at any time during the heartbeat interval, the actual time
to detect a failure ranges from failure-detection timeout -
distributed heartbeat timeout to failure-detection timeout.
The discovery timeout is the time spent performing this
reconfiguration by determining the currently available set
of Spread daemons and installing this configuration view
at each daemon. Thus the time it takes the default Spread
to notify Wackamole of a failure (ignoring the minor over-
head of Spread’s group membership procedure) ranges
from 10 seconds to 12 seconds. For the tuned Spread,
this time ranges from 2 seconds to 2.4 seconds.

Figure 5 displays the average availability interruption
time when varying the cluster size, for each version of
Spread. We notice that the Spread timeouts account for
the majority of the interruption time recorded in our ex-
periments.

These results were obtained using a cluster of servers
under low average load. Both Wackamole and Spread can
be used in production on highly-loaded machines as well.
However, it is recommended that both daemon processes
be run with high priority (real-time priority under Linux)
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in these types of environments in order to avoid false pos-
itive errors. This has no adverse impact on the cluster
performance as Spread and Wackamole hardly consume
resources when used for this application.

Also relevant is the availability interruption time when
a Wackamole daemon leaves voluntarily, not as the result
of a failure. This is experienced when Wackamole dae-
mons are taken offline for administrative or policy rea-
sons. However, we found that this time interval is diffi-
cult to measure precisely, because it is more susceptible
to context switch times and other low-level fluctuations.
In general, our measurements suggest a conservative up-
per bound of 250 milliseconds of availability interruption
on our experimental cluster; most of our measurements
actually recorded an interruption time as small as 10ms.

7 Related Work

Wackamole, in its current state, has evolved from an
idea first introduced in [1]. There are two areas that relate
to the work presented in this paper. On one hand our solu-
tion benefits from extensive research in the areas of group
communication and distributed algorithms. On the other
hand, various other techniques have been employed to
provide availability for critical services. Additionally our
IP fail-over solution is usually used in conjunction with
load-balancing mechanisms. Wackamole is often used to-
gether with the mod-backhand load-balancing module for
web servers. We do not further address the coupling be-
tween Wackamole and various load-balancing techniques
as it is outside the scope of the paper.

Research in the group communication area has lead
to the implementation of several systems which pro-
vide properties similar to those required by the Wack-
amole algorithm. Among such systems we mention Ho-
rus [21], Ensemble [10], Totem [2]. The Wackamole al-

gorithm uses a design similar to the state machine ap-
proach for maintaining consistent state in distributed sys-
tems [19, 16]

Wackamole as a fail-over solution is designed to pre-
serve the IP presence of a service. The Virtual Router
Redundancy Protocol (VRRP) was designed to perform a
similar task for routers. VRRP specifies an election pro-
tocol that dynamically assigns responsibility for a virtual
router to one of the VRRP routers on a local area net-
work. VRRP design is chaired by an IETF working group
and has been formalized into an Internet Standard RFC
2338 [22]. A similar protocol is the Hot Standby Router
Protocol (HSRP) developed by Cisco [11]. In essence,
HSRP elects one router to be the active router and an-
other to be the standby router. The active and the standby
routers send hello messages. The standby router is the
candidate to take over the active role if the active router
faults. All other routers are monitoring the hello mes-
sages sent by the active and standby routers. Routers may
be assigned priorities. The router with the highest prior-
ity will become the active router after initialization. After
an certain Active timeout elapses without hearing hello
messages from the active router, the standby router takes
over. Similarly if a Standby timeout elapses, a monitor-
ing router (if such exist) with the lower IP address takes
over the standby role. By default, hello messages are sent
every 3 seconds and the Active and Stanby timeouts are
set to 10 seconds.

Aside from IP fail-over, front-end high-availability and
load-balancing devices are often used in front of mis-
sion critical networked services to provide uninterrupted
service in the event of a system failure. These devices
perform application level checks against machines in the
cluster and keep track of which machines are providing
service. They present a virtual IP address to which clients
connect, and then dynamically set the local endpoint of
the IP connection to an active machine in the local clus-
ter. These devices are in common use today to support
most large Internet sites and are provided by a variety
of vendors. Such devices include Cisco’s Arrowpoint
[4], Foundry’s Serverlron [12], F5’s BIG/ip [5], Coyote-
Point’s Equalizer [7], and Linux Virtual Server [13].

While these components may provide more than just
high-availability (specifically load balancing), they them-
selves must be made highly available — by itself, any such
component is a single point of failure. Each vendor has its
own method of providing High availability between two
of their devices, but an application independent protocol
such as VRRP or Wackamole could just as easily be used
to accomplish this.

Many services need high availability and only reme-
dial load-balancing techniques such as multiple DNS A
records. For these architectures, using an IP fail-over
protocol directly on the machine providing the service



in question reduces the need for complicated, expen-
sive and otherwise unnecessary high-availability/load-
balancing components.

The Linux Fake project [8] provides IP fail-over
through service-probing and ARP-spoofing. The avail-
ability of the main server is probed regularly and upon
failure detection a backup server instantiates a virtual IP
interface that will take over the failed one and send a gra-
tuitous ARP request to accelerate the transition.

The PolyServe Matrix HA [17] product provides a ser-
vice similar to Wackamole. The technical details of the
implementation or the soundness of the protocols cannot
be assessed as the product and procotols are unreleased.
Until recently the Polyserve solution only offered pair-
wise fail-over, where every server is covered by one other
specific server. The latest version of the software is re-
porting use of the Spread Toolkit and provides N:M, N:N,
and N:1 IP failover.

In their presentation of the Raincore Distributed Ses-
sion Service infrastructure [9], the authors mention a Vir-
tual IP Manager application that similarly to Wackamole
exploits underlying group communication guarantees to
provide fail-over for servers and also indicate that the
technology can be applied to firewalls or routers.

8 Conclusions

This paper presented a software-based distributed so-
lution for providing high availability for clusters and
routers at the IP addressing level. The core algorithm
relies on a group communication service to monitor the
currently connected membership and reallocate virtual 1P
addresses that are accessible to client machines, between
the avaible servers. We presented the algorithm and dis-
cussed its correctness. We discussed two classes of practi-
cal applications of the system and provided experimental
performance results.

The Wackamole system has been available as an open-
source tool since August 2001 (www.wackamole.org).
During the past 20 months the system was downloaded
more than 1000 times and is actively used in production
environments for both the web-cluster and router avail-
ability applications described in this paper. This work
demonstrates how sound academic research can readily
make an impact in production environments.
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