Framework for Authentication and Access
Control of Client-Server Group Communication
Systems *

Yair Amir, Cristina Nita-Rotaru, and Jonathan R. Stanton

Department of Computer Science
Johns Hopkins University
3400 North Charles St.
Baltimore, MD 21218 USA

{yairamir, crisn, jonathan}@cs.jhu.edu

Abstract. Researchers have made much progress in designing secure
and scalable protocols to provide specific security services, such as data
secrecy, data integrity, entity authentication and access control, to mul-
ticast and group applications. However, less emphasis has been put on
how to integrate security protocols with modern, highly efficient group
communication systems and what issues arise in such secure group com-
munication systems. In this paper, we present a flexible and modular
architecture for integrating many different authentication and access con-
trol policies and protocols with an existing group communication system,
while allowing applications to provide their own protocols and control
the policies. This architecture maintains, as much as possible, the scala-
bility and performance characteristics of the unsecure system. We discuss
some of the challenges when designing such a framework and show its
implementation in the Spread wide-area group communication toolkit.

1 Introduction

The Internet is used today not only as a global information resource, but also to
support collaborative applications such as voice- and video-conferencing, white-
boards, distributed simulations, games and replicated servers of all types. Such
collaborative applications often require secure message dissemination to a group
and efficient synchronization mechanisms. Secure group communication systems
provide these services and simplify application development.

A secure group communication system needs to provide confidentiality and
integrity of client data, integrity, and possibly confidentiality, of server control
data, client authentication, message source authentication and access control of
system resources and services.

Many protocols, policy languages and algorithms have been developed to
provide security services to groups. However, there has not been enough study

* This work was supported by grant F30602-00-2-0526 from The Defense Advanced
Research Projects Agency.

of the integration of these techniques into group communication systems. Needed
is a scheme flexible enough to accommodate a range of options and yet simple
and efficient enough to appeal to application developers. Complete secure group
communication systems are very rare and research on how to transition protocols
into complete systems has been scarce.

Secure group systems really involve the intersection of three major, and dis-
tinct, research areas: networking protocols, distributed algorithms and systems,
and cryptographic security protocols.

A simplistic approach when building a secure group system is to select a spe-
cific key management protocol, a standard encryption algorithm, and an existing
access control policy language and integrate them with a messaging system. This
would produce a working system, but would be complex, fixed in abilities, and
hard to maintain as security features would be mixed with networking protocols
and distributed algorithms.

In contrast, a more sophisticated approach is to construct an architecture that
allows applications to plug-in both their desired security policy and the mech-
anisms to enforce the policy. Since each application has its particular security
policies, it is natural to give an application more control not only on specifying
the policy, but on the implementation of the services part of the policy too.

This paper proposes a new approach to group communication system archi-
tecture. More precisely, it provides such an architecture for authentication and
access control. The architecture is flexible, allowing many different protocols to
be supported and even be executing at the same time; it is modular so that secu-
rity protocols can be implemented and maintained independently of the network
and distributed protocols that make up the group messaging system; it allows
applications to control what security services and protocols they use and config-
ure; it efficiently enforces the chosen security policy without unduely impacting
the messaging performance of the system.

As many group communication systems are built around a client-server archi-
tecture where a relatively small number of servers provide group communication
services to numerous clients, we focused on systems utilizing this architecture. |

We implemented the framework in the Spread wide-area group communica-
tion system. We evaluate the flexibility and simplicity of the framework through
six case studies of different authentication and access control methods. We show
how both simple (IP based access control, password based authentication) and
sophisticated (SecurID, PAM, anonymous payment, and group based) protocols
can be supported by our framework.

Note that this paper is not a defense of any particular access control policy,
authentication method or group trust model. Instead, it provides a flexible, com-
plete interface to allow many such polices, methods, or models to be expressed
and enforced by an existing, actively used group communication system.

The rest of the paper is organized as follows. Section M overviews related
work. We present the authentication and access control framework and its im-

! Some of the work may apply to network level multicast, but we have not explored
that.

plementation in the Spread toolkit in Section ll We provide several brief case
studies of how diverse protocols and policies can be supported by the framework
in Section ll Finally, we conclude and discuss future directions.

2 Related Work

There are two major directions in secure group communication research. The first
one aims to provide security services for IP-Multicast and reliable IP-Multicast.
Research in this area assumes a model consisting of one sender and many re-
ceivers and focuses on the high scalability of the protocols. Since the presence
of a shared secret can be used as a foundation of efficiently providing data con-
fidentiality and data integrity, a lot of work has been done in designing very
scalable key management protocols. For lack of space we cite only the very re-
cent ones: the VersaKey Framework [#¥] and the Group Secure Association Key
Management Protocol (GSAKMP) [#].

The second major direction in secure group communication research is secur-
ing application level multicast systems, also known as group communication sys-
tems. These systems assume a many-to-many communication model where each
member of the group can be both a receiver and a sender, and provide reliability,
strong message ordering and group membership guarantees, with moderate scal-
ability. Initially group communication systems were designed as high-availability,
fault-tolerant systems, for use in local area networks. Therefore, the first group
communication systems ISIS [M], Horus [B¥, Transis [M], Totem [M], and RMP
[B¥] were less concerned with addressing security issues, and focused more on the
ordering and synchronization semantics provided to the application (the Virtual
Synchrony [i] and Extended Virtual Synchrony [#%] models).

The number of secure group communication systems is small. Besides our
system (Spread), the only implementation of group communication systems that
focus on security are the RAMPART system at AT&T [B], the SecureRing [#¥]
project at UCSB and the Horus/Ensemble work at Cornell [2%]. A special case
is the Antigone [#] framework, designed to provide mechanisms allowing flex-
ible application security policies. Most relevant to this work are the Ensemble
and the Antigone systems. Ensemble focused on optimizing group key distri-
bution, and chose to allow application-dependent trust models in the form of
access control lists treated as replicated data within the group. Authentication
is achieved by using PGP. Antigone instead, allows flexible application security
policies (rekeying policy, membership awareness policy, process failure policy
and access control policy). However, it uses a fixed protocol to authenticate a
new member and negotiate a key, while access control is performed based on a
pre-configured access control list.

We also consider frameworks designed with the purpose of providing authen-
tication and/or access control, without addressing group communication issues.
Therefore, they are complementary to our work. One of these frameworks is the
Pluggable Authentication Module (PAM) [2¥] which provides authentication ser-
vices to UNIX system services (like login, ftp, etc). PAM allows an application

not only to choose how to authenticate users, but also to switch dynamically
between the authentication mechanisms without (rewriting and) recompiling a
PAM-aware application. Other frameworks providing access control and authen-
tication services are systems such as Kerberos [#8] and Akenti [ll]. Both of
them have in common the idea of authenticating users and allowing access to
resources, with the difference being that Kerberos uses symmetric cryptography,
while Akenti uses public-key cryptography to achieve their goals.

One flexible module system that supports various security protocols is Flex-
inet [M¥]. Flexinet is an object oriented framework that focuses on dynamic
negotiations, but does not provide any group-oriented semantics or services.

3 General System Architecture

The overall goal of this work is to provide a framework that integrates many
different security protocols and supports all types of applications which have
changing authentication and access control policy requirements, while maintain-
ing a clear separation of the security policy from the group messaging system
implementation. In this section, after discussing some design considerations, we
present the authentication and access control frameworks.

3.1 Why is a General Framework Needed?

When a communication system may only be used with one particular application,
integrating the specific security policy and needed protocols with the system may
make sense. However, when a communication system needs to support many
different applications that may not always be cooperative, separating the policy
issues which will be unique to each application from the enforcement mechanisms
which must work for all applications avoids an unworkable “one-size-fits-all”
security model, while maintaining efficiency.

Separating the policy implementation from both the application and the
group communication system is also useful because in a live, production envi-
ronment, the policy restrictions and access rules will change much more often
than the code or system changes. So modifications of policy modules should not
require recompiling or changing the application code.

The features of the general framework, as opposed to the features of a par-
ticular authentication or access control protocol, are:

Individual policies for each application.

Efficient policy enforcement in the messaging system.

Simple interface for both authentication and access control modules.
Independence of the messaging system from security protocols.

Many policies and protocols work with the framework, including: access con-
trol lists, password authentication, public/private key, certificates, role based
access control, anonymous users, and dynamic peer-group policies.

CUk o=

We distinguish between authentication and access control modules to provide
more flexibility. Each type of module has a distinctive interface which supports
its specific task. The authentication module verifies that a client is who it claims
to be. The access control module decides about all of the group communication
specific actions a client attempts after it has been authenticated: join or leave
a group, send an unicast message to another client or multicast a message to a
group. It also decides whether a client is allowed to connect to a server (the access
control module can deny a connection even if the authentication succeeded).

The framework supports dynamic policies. The main challenge with such
policies is to allow changes during execution. Since the framework itself does
not have any knowledge of the actual policy, for example it does not cache
decisions or restrict what form actual policies take, it is possible for the access
control modules to change how they make decisions independently of server. The
modules need to make sure they activate dynamic changes in a consistent way,
by using synchronized clocks, or by using the group communication services to
agree on when to activate changes.

3.2 Framework Implementation in Spread

We implemented the framework in the Spread group communication system to
give a concrete, real-world basis for evaluating the usefulness of this general
architecture. Although we only implemented the framework within the Spread
system, the model and the interface of the framework are actually quite general
and the set of events upon which access control decisions can be made includes
all of the available actions in a group-based messaging service (join, leave, group
send, unicast send, connect).

3.3 The Spread Group Communication Toolkit

Spread [MEN] is a local and wide-area messaging infrastructure supporting reli-
able multicast and group communication. It provides reliability and ordering of
messages (FIFO, causal, total ordering) and a membership service. The toolkit
supports four different semantics: No membership, Closely Synchronousl, Ex-
tended Virtual Synchrony (EVS) [M] and View Synchrony (VS) [#9.

The system consists of one or more servers and a library linked with the appli-
cation. The servers maintain most of the state of the system and provide reliable
multicast dissemination, ordering of messages and the membership services. The
library provides an API and basic services for message oriented applications. The
application and the library can run on the same machine as a Spread server, in
which case they communicate over IPC, or on separate machines, in which case
the client-server protocol runs over TCP /IP.

Note that in order to implement our framework, we needed to modify both the
Spread client library and the Spread daemon. When an application implements
its own authentication and access control method, it needs to implement both

2 This is a relaxed version of EVS for reliable and FIFO messages.

the client side and the server side modules, however, it does not need to modify
the Spread library or the Spread daemon.

In Spread each member of the group can be both a sender and a receiver. The
system is designed to support small to medium size groups, but can accommo-
date a large number of different collaboration sessions, each of which spans the
Internet. This is achieved by using unicast messages over the wide-area network
and routing them between Spread nodes on an overlay network. Spread scales
well with the number of groups used by the application without imposing any
overhead on the network routers. Group naming and addressing is not a shared
resource (as in IP multicast addressing), but rather a large space of strings which
is unique to a collaboration session.

The Spread toolkit is available publicly and is being used by several orga-
nizations for both research and practical projects. The toolkit supports cross-
platform applications and has been ported to several Unix platforms as well as
Windows and Java environments.

3.4 Authentication Framework

All clients are authenticated when connecting to a server, and trusted afterwards.
Therefore, when a client attempts actions, such as sending messages or joining
groups, no authentication is needed. However, the attempted user actions are
checked against a specified policy which controls which actions are permitted
or denied for that user. This approach explicitly assumes that as long as a
connection to the server is maintained, the same user is authenticated.

%:Jet?]t] |7 protocol specific auth. meésages ?A\e{j\tll’?r
Module | | ' Module

1. SP_set_auth_method| 2. SP_connect

Application

Spread Daemon|

6'. authenticate

|3 UserID, Library Ver. . .
i i 6. auth_client_connection
Spread Client P | 4. available auth. methods Session
i 8. Sess_session_report_
lerary |_5. chosen auth. methods Layer auth_result
__________ J o= _ _ _ _ ___]

Legend:
— tcp communication
—< cdll function

Fig. 1. Authentication architecture and communication flow

Figure M presents the architecture and the process of authentication. Both
the client and the server implement an authentication module.

The change on the client side consists of the addition of a function (see
Figure) that allows an application to set the authentication protocol it wishes
to use and to pass in any necessary data to that protocol, before connecting

S NN

OO AW

to a Spread server. When the function that specifies the request of a client to
connect to a server is called (SP-connect), the connection tries to use the method
the application set to establish a connection. The authentication method chosen
by the application applies to all connections established by this application.

int SP_set_auth_method(const char *auth_name, int (*authenticate) (int, void *), void * auth_data);
int SP_set_auth_methods(int num_methods, const char *auth_name[], int (*authenticate[]) (int, void *), void * auth_data[l);

/* declaration of authenticate function */
int authenticate(int fd, void * user_data_pointer);

Fig. 2. Client Authentication Module API

A server authentication module needs to implement the functions listed in
the auth_ops structure (see Figure Bl line 10). Then the module should register
itself with the Spread daemon by calling the Acm_auth add method function. By
default, a module is registered in the ’disabled’ state. The system administrator
can enable the module when configuring Spread.

struct session_auth_info {

int ses;

void *module_data;

int num_required_auths;

int completed_required_auths;

int required_auth_methods [MAX_AUTH_METHODS];

int required_auth_results[MAX_AUTH_METHODS];
};

struct auth_ops {
void (*auth_client_connection) (struct session_auth_info *sess_auth_p);
};

struct acp_ops {

bool (*open_connection) (char *user);

bool (*open_monitor) (char *user); /* not used currently */

bool (*join_group) (char *user, char *group, void *acm_token);

bool (xleave_group) (char *user, char *group, void *acm_token);

bool (*p2p_send) (char *user, char dests[][MAX_GROUP_NAME], int service_type);

bool (¥mcast_send) (char *user, char groups[][MAX_GROUP_NAME], int service_type);
};

/* Auth Functions */
bool Acm_auth_add_method(char *name, struct auth_ops *ops);

/* Access Control Policy Functions */
bool Acm_acp_set_policy(char *policy_name);
bool Acm_acp_add_method(char *name, struct acp_ops *ops);

Fig. 3. Server Authentication and Access Control Module API

The authentication process begins when the session layer of the daemon re-
ceives a connection request from a client. After some initial information exchange
and negotiation of the allowed authentication protocols, the session module con-
structs a session_auth_info structure containing the list of agreed upon authen-
tication protocols. This structure is passed as a parameter to each authentication
function and is used as a handle for the entire process of authenticating a client.
The authentication function can use the module_data pointer to store any mod-
ule specific data that it needs during authentication. The session layer calls the
auth _client_connection method for each protocol and then “forgets about” the
client connection. A minimal state about the client is stored, but no messages
are received or delivered to the client at this point.

The auth client_connection function is responsible for authenticating the
client connection. If authenticating the client will take a substantial amount of

CPU or real time, the function should not do the work directly, but rather setup
a callback function to be called later (for example when messages arrive from
the client), and then it should return. Another approach is to fork off another
process to handle the authentication. This is required because the daemon is
blocked while this function is running.

The auth_client_connection function never returns a decision value because
a decision may not have been reached yet. When a decision has been made the
server authentication module calls Sess_session_report_auth result and releases
control to the session layer. The Sess_session_report_auth_result function re-
ports whether the current authentication module has successfully authenticated
the session or not. If more than one authentication method was required, the
connection succeeds if all the methods succeed.

3.5 Access Control Framework

In our model, an authenticated client connection is not automatically allowed
to perform any actions. Each action a client may request of the server, such
as sending a message or joining or leaving a group, is checked at the time it
is attempted against an access control policy module. The enforcement checks
are implemented by having the session layer of the server call the appropriate
access control policy module callback function (see Figure ll lines 14-20) return
a decision. The implementation of the check functions should be optimized as
they have a direct impact on the performance of the system as they are called
for every client action.

If the module chooses to allow the request, then the server handles it nor-
mally. In the case of rejection, the server creates a special “reject” message which
will be sent to the client in the normal stream of messages. The reject message
contains as much of the data included in the original attempt as possible. The
application should be able to identify which message was rejected by whatever
information it stored in the body of the message (such as an application level
sequence number) and respond to it appropriately. That response could be a no-
tification to the user, establishing a new connection with different authentication
credentials and retrying the request, logging an error, etc.

The server can reject an action at two points, when the server receives the
action from the client or when the action is going to take effect. For example,
when a client joins a group the join can be rejected when the join request is
received from the directly connected client, and when the join request has been
sent to all of the servers and has been totally ordered. Rejecting the request
the first time it is seen avoids processing requests that will later be rejected
and simplifies the decision-making because only the server the client is directly
connected to will make the decision. The disadvantage is that at the time the
request is being accepted or rejected the module only knows the current state of
the group or system and not what the state will be when the request would be
acted upon by the servers. Since these states can differ, some type of decisions
may not be possible at the early decision point.

4 Case Studies

To provide some intuition as to what building a Spread authentication module
requires, this section discusses the implementation of several real-world modules:
an IP based access control module, a password based authentication module, a
SecurID or PAM authentication module, an anonymous payment authentication
and anonymous access control module, and a dynamic peer-group authentication
module. For more details and implementation code see [H].

IP Access Control. A very simple access control method that does not involve
any interaction with the client process or library, is one that is based on the IP
address of the clients. The connection is allowed considering the IP address
from which the client connected to the server. This module only restricts the
open_connection (see Figure ll line 15) operation.

Password Authentication. A common form of authentication uses some type
of password and username to establish the identity of the user. Many types of
password based authentication can be supported by our framework from pass-
words sent in the clear (like in telnet) to challenge-response passwords.

To implement a password-based authentication method, both a client and
a server side need to be implemented. The server module can use the Events
subsystem in Spread to wait for network events to occur and avoid blocking the
server while the user is entering its password or the client and server modules are
communicating. The client module consists of one function which is called during
the establishment of a connection and returns either success or failure. The func-
tion can use the file descriptor of the socket over which the connection is being
established and whatever data pointer was registered by the SP_set_auth method.
In this case the application prompted the user for a username and password and
created a user_password structure. The authenticate function, sends the user-
name and the password to the server and waits for a response, informing it of
whether or not the authentication succeeded.

SecurID. A popular authentication method is RSA SecurID. The method uses
a SecurID server to authenticate a SecurID client based on a unique randomly
generated identifier and a PIN. In some cases the SecurID server might ask the
client to provide new credentials. We do not discuss here the internal of the
SecurID authentication mechanism (see [#¥] for more details), but focus on how
our framework can accommodate this method.

The main difference from the previous examples is that here the Server Au-
thentication Module needs to communicate with the SecurID server. As men-
tioned before, the auth_client_connection function should not block. Blocking
can happen when opening a connection with a SecurID server and retrieving
messages from it. Therefore, auth_client_connection forks another process re-
sponsible for the authentication protocol and then registers an event such that
it will get notified when the forked process finished. The forked process estab-
lishes a connection with the SecurID Server and authenticates the user. When
it finishes, the Server Authentication Module gets notified, so it can call the
Sess_session report_auth result function to inform the Spread daemon that a
decision was taken and to pass control back to it.

PAM. Another popular method of authentication is the modular PAM [2¥]
system which is standard on Solaris and many Linux systems. Here the authen-
tication module will act as a client to a PAM system and request authentication
through the standard PAM function calls. To make authentication through PAM
work, the module must provide a way for PAM to communicate and interact with
the actual human user of the system, to prompt for a password or other informa-
tion. The module would register an interactivity function with PAM that would
pass all of the requests to write to the user or request input from the user over
the Spread communication socket to the Spread client authentication module
for PAM. This client module would then act on the PAM requests and interact
with the user and then send the reply back to the Spread authentication module
which would return the results to the actual PAM function.

Anonymous payments. An interesting approach is when access is provided to
anonymous clients in exchange for payment. These systems [#8] perform transac-
tions between a client and a merchant, assuming that both of them have accounts
with a Bank. By using cryptographic techniques, the system provides anonymity
of the client and basic security services. We do not detail the cryptographic de-
tails, but show how this method can be accommodated in our framework.

We assume support from the anonymous payments system (in the form of
an API) and require the servers and the client to have an account with a Bank.
When a client connects to a server, the Client Authentication Module generates
a check and an identifier of client’s account and then passes them to the Server
Authentication Module which will then contact the Bank to validate the check (if
necessary another process will be forked as in the SecurID case). When validated,
the Server Authenticated Module will register the client’s identifier with the
access control policy as a paid user of the appropriate groups. Then, for as long
as the payment was valid, the client will be permitted to access the groups they
paid for and the server has no knowledge of the client’s identity.

Group-Based Authentication. In all the previous authentication methods pre-
sented, the authentication of a client is handled by the server that the client con-
nects to. In larger, non-homogeneous environments authentication may involve
some or all of the group communication system servers. Although these proto-
cols may be more complex, they can provide better mappings of administrative
domains, and possibly better scalability.

An example of such a protocol is when a server does not have sufficient
knowledge to check a client’s credentials (for instance a certificate). In this case,
it sends the credentials to all the servers in the configuration and each server
then attempts to check the credentials itself and sends an answer back. If at
least one server succeeds, the client is authenticated. The particularity of such
a protocol is that the servers need to communicate between them as part of
the authentication process. Since all the servers can communicate between them
in our system, the framework provides all necessary features that allows the
integration of such a group-based authentication method.

Access Control. We realize that the above case studies are focused on authen-
tication. Few standard access control protocols that we could use as case studies

exist. To demonstrate the ability of the access control architecture we create
a case study about an imaginary secure IRC system. Consider a set of users
where some users are allowed to chat on the intelligence group, while others are
restricted to the operations group. Some are allowed to multicast to a group but
are not allowed to read the group messages (virtual drop-box). Our framework
supports these access control policies through appropriate implementation of the
join and multicast hooks defined in Figure Bl Access control modules support
identity based, role based, or credential based restrictions.

5 Conclusions and Future Work

We presented a flexible implementation of an authentication and access control
framework in the Spread wide area group communication system. Our approach
allows an application to write its own authentication and access control modules,
without needing to modify the Spread client or server code. The flexibility of
the system was showed by showing how a wide range of authentication methods
can be implemented in our framework.

There are a lot of open problems that are subject of future work. These
include: providing tools that allow an application to actually specify a policy,
handling policies in a system supporting network partitions (for example merging
components with different policies), providing support for meta-policies defin-
ing which entity is allowed to create or modify group policies, and developing
dynamic group trust protocols for authentication.

References

1. AMIR, Y. Replication using Group Communication over a Partitioned Network.
PhD thesis, Institute of Computer Science, The Hebrew University of Jerusalem,
Jerusalem, Israel, 1995.

2. AMIR, Y., AWERBUCH, B., DaniLov, C., AND STANTON, J. Flow control for
many-to-many multicast: A cost-benefit approach. Tech. Rep. CNDS-2001-1, Johns
Hopkins University, Center of Networking and Distributed Systems, 2001.

3. AMIR, Y., DANILOV, C., AND STANTON, J. A low latency, loss tolerant architecture
and protocol for wide area group communication. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks (June 2000), pp. 327-336.

4. AMIR, Y., DoLEvV, D., KRAMER, S., AND MALKI, D. Transis: A communica-
tion sub-system for high availability. Digest of Papers, The 22nd International
Symposium on Fault-Tolerant Computing Systems (1992), 76-84.

5. AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M., AGARWAL, D., AND CIAR-
FELLA, P. The totem single-ring ordering and membership protocol. ACM Trans-
actions on Computer Systems 13, 4 (November 1995), 311-342.

6. AMIR, Y., NITA-ROTARU, C., AND STANTON, J. Framework for authentication and
access control of client-server group communication systems. Tech. Rep. CNDS
2001-2, Johns Hopkins University, Center of Networking and Distributed Systems,
2001. http://www.cnds.jhu.edu/publications/.

7. AMIR, Y., AND STANTON, J. The Spread wide area group communication system.
Tech. Rep. 98-4, Johns Hopkins University, Center of Networking and Distributed
Systems, 1998.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. BirmAN, K. P., AND JosePH, T. Exploiting virtual synchrony in distributed

systems. In 11th Annual Symposium on Operating Systems Principles (November
1987), pp. 123-138.

. BIrMAN, K. P., AND RENESSE, R. V. Reliable Distributed Computing with the

Isis Toolkit. IEEE Computer Society Press, March 1994.

CARONNI, G., WALDVOGEL, M., SuN, D., WEILER, N., AND PLATTNER, B. The
VersaKey framework: Versatile group key management. IEEE Journal of Selected
Areas in Communication 17, 9 (September 1999).

FEKETE, A., LyNcH, N., AND SHVARTSMAN, A. Specifying and using a parti-
tionable group communication service. In Proceedings of the 16th annual ACM
Symposium on Principles of Distributed Computing (Santa Barbara, CA, August
1997), pp. 53-62.

HARNEY, H., COLEGROVE, A., HARDER, E., METH, U., AND FLEISCHER, R.
Group secure association key management protocol (GSAKMP). draft-irtf-smug-
gsakmp-00.txt, November 2000.

HayToN, R., HERBERT, A., AND DONALDSON, D. FlexiNet — A flexible
component oriented middleware system. In Proceedings of SIGOPS‘98 (url-
http://www.ansa.co.uk/, 1998).

KiHLsTrOM, K. P., MOSER, L. E., AND MELLIAR-SMITH, P. M. The SecureRing
protocols for securing group communication. In Proceedings of the IEEE 81st
Hawaii International Conference on System Sciences (Kona, Hawaii, January
1998), vol. 3, pp. 317-326.

KoHL, J., AND NEUMAN, B. C. The Kerberos Network Authentication Service
(Version 5). RFC-1510, September 1993.

McDANIEL, P., PRAKASH, A., AND HONEYMAN, P. Antigone: A flexible frame-
work for secure group communication. In Proceedings of the 8th USENIX Security
Symposium (August 1999), pp. 99-114.

MOSER, L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND AGARWAL, D. A. Ex-
tended virtual synchrony. In Proceedings of the IEEE 14th International Con-
ference on Distributed Computing Systems (June 1994), IEEE Computer Society
Press, Los Alamitos, CA, pp. 56-65.

NeuMAN, B. C., AND MEDVINSKY, G. Requirements for network payment: The
netcheque perspective. In In Proceedings of IEEE COMPCON’95 (March 1995).

NyYsTROM, M. The SecurID SASL mechanism. RFC-2808, April 2000.

REITER, M. K. Secure agreement protocols: reliable and atomic group multicast
in RAMPART. In Proceedings of the 2nd ACM Conference on Computer and
Communications Security (November 1994), ACM, pp. 68-80.

RENESSE, R. V., K.BIRMAN, AND MAFFEIS, S. Horus: A flexible group commu-
nication system. Communications of the ACM 39 (April 1996), 76-83.

RoDEH, O., BIRMAN, K., AND DOLEV, D. The architecture and performance of
security protocols in the Ensemble Group Communication System. ACM Trans-
actions on Information and System Security (To appear).

SAMAR, V., AND SCHEMERS, R. Unified login with Pluggable Authentication
Modules (PAM). OSF-RFC 86.0, October 1995.

THOMPSON, M., JounsTON, W., MuDpUMBAI, S., H0O, G., JACKSON, K., AND
EssiArl, A. Certificate-based access control for widely distributed resources. In
Proceedings of the Eighth Useniz Security Symposium (August 1999), pp. 215-227.
WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. A high performance totally
ordered multicast protocol. In Theory and Practice in Distributed Systems, Inter-
national Workshop (September 1994), Lecture Notes in Computer Science, p. 938.

	1 Introduction
	2 Related Work
	3 General System Architecture
	3.1 Why is a General Framework Needed?
	3.2 Framework Implementation in Spread
	3.3 The Spread Group Communication Toolkit
	3.4 Authentication Framework
	3.5 Access Control Framework

	4 Case Studies
	5 Conclusions and Future Work

