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Abstract

The increasing popularity and diversity of collaborative
applications prompts a need for highly secure and reliable
communication platforms for dynamic peer groups. Secu-
rity mechanisms for such groups tend to be both expensive
and complex and their integration with reliable group com-
munication services presents a formidable challenge.

This paper discusses some important integration issues,
reports on our implementation experience and provides ex-
perimental results. Our approach utilizes distributed group
key management developed by the Cliques project. We en-
hance it to handle processor and network faults (under a
fail-stop or crash-and-recover model) and asynchronous
membership events (such as joins, leaves, merges and net-
work partitions). Our approach leverages the strong prop-
erties provided by the Spread group communication system,
such as message ordering, clean failure semantics and a
membership service. The result of this work is a secure
group communications layer and an API that provide the
application programmer with both standard group commu-
nication services and flexible security services.

1 Introduction

Fault-tolerant, scalable, and reliable communication ser-
vices have become critical in modern computing. A ma-
jor focus today is in taking traditional, centralized services

�
This work was supported in part by a grant from the National Security

Agency under the LUCITE program.�
Department of Computer Science, Johns Hopkins University, Balti-

more, MD 21218, USA. Email: � yairamir@cs, ateniese@cs, crisn@cs,
theos@cnds, jschultz@cs, jonathan@cs � .jhu.edu�

Computer Networks Division, USC Information Sciences Insti-
tute, Marina Del Ray, CA 90292-6695, USA. Email: � hasse, yong-
daek � @isi.edu	

Information and Computer Science Department, University of Cali-
fornia, Irvine Irvine, CA 92697-3425, USA. Email: gts@ics.uci.edu

such as file sharing, authentication, web, and mail ser-
vices, and distributing them across multiple systems and
networks. These distributed applications and other in-
herently collaborative applications (such as conferencing,
white-boards, shared instrument control, and command-
and-control systems) are very difficult to implement. One
common and successful approach to developing these types
of applications is to use a reliable group communication
toolkit as a base messaging and fault-tolerant service.

Reliable group communication systems offer a set of
low-level services that provide efficient messaging, mem-
bership, ordering and fault-detection services to peer
groups. Typically, distributed and collaborative applica-
tions require fairly low latency message delivery of both
small and large messages. They may involve many-to-
many communication patterns. The number of membership
events that these applications generate can vary from one
every few minutes or hours to tens of membership changes
per second. Commonly, however, the number of joins or
leaves is at most a few per second and network failures
or recoveries causing merges of groups or partitions are at
most a few an hour. Thus, we aim for the secure group com-
munication system to support that level of performance in
a practical setting.

The rest of this paper is organized as follows. The next
two subsections outline, in general terms, security problems
in peer groups and justify our focus on group key manage-
ment. Section 2 details our security goals and the various
issues arising in group key management. Then, Sections 3
and 4 provide an overview of the Spread group communi-
cation toolkit and the Cliques group key management ser-
vice, respectively. Next, the secure Spread architecture is
described in Section 5. Section 6 illustrates and discusses
some experimental results obtained with secure Spread, and
Section 7 summarizes the related work. Section 8 con-
cludes the paper with the discussion of on-going and future
work.



1.1 Security in Peer Groups

Just as many-to-many peer group communication tends
to be much more complex than two-party communication,
security in a multi-party setting is much harder to define,
specify and achieve.

Communication channel specifics have relatively little
impact on the ability of two parties to communicate se-
curely. An unreliable communication channel may drop or
corrupt data but, at worst, it can only prevent communica-
tion. Well-known cryptographic methods can be utilized
to assure data privacy, data integrity, source authentication
and other properties. Moreover, techniques exist for hiding
the communication patterns, thus preventing hostile traffic
analysis. As a result, the adversary’s choice is reduced to a
binary one: either to allow communication or to prevent it
altogether.

In contrast, secure group communication is very depen-
dent on the composition of the group. A group, unlike a pair
of end-points, mutates over time. If we collapse all pair-
wise channels within a group into a single group channel,
its state cannot be expressed as a binary value. Fluctuations
in the group channel state cause and are caused by members
joining and leaving the group. To achieve the highest level
of security, every state fluctuation must be accompanied by
a corresponding adjustment to group security parameters.
Of these, the most apparent is the group shared keying ma-
terial or group secret.

This leads to a classical case of a chicken-and-egg
problem: security events must immediately follow group
state change events yet the latter are not themselves se-
cure. However, we argue that certain group communication
events are fundamentally impossible to secure. Notably,
these include all kinds of fault-like events leading to group
partitions and involuntary member disconnects. As a con-
crete example, consider the situation where network faults
and individual node disconnects constantly perturb group
membership. In this setting, trying to differentiate between
two possible causes: 1) a clever adversary and 2) a truly
faulty network, is impossible. Other events, such as mem-
bers joining a group (whether as singletons or en masse)
can, indeed, be made secure.

Finally, there is the all-important matter of trust. Trust, a
very vague notion in a two-party case, becomes even more
vague in a group context. As group membership changes,
trust among group members may change over time.

1.2 Our Security Focus

The purpose of the above discussion is to motivate the
need for specialized group security mechanisms. Since rou-
tine security services such as bulk data privacy and data
integrity are usually contingent upon sharing a common

secret (group key), establishing and managing group key-
ing material is the most fundamental group security mech-
anism.

We thus concentrate on group key management, its inte-
gration with a reliable group communication platform and
its impact on the latter. We also consider the impact of data
privacy and data integrity, however, these services are not
much different in peer groups from those in a traditional
two-party communication setting.

There are tradeoffs to be made when choosing what
type of key management protocols a security system should
use. These include number of messages sent per event,
number of participants per event, amount of serial com-
putation and overall computation done by the group per
event, fault tolerance, amount of trust in members of the
group and fairness of load distribution. We discuss these
tradeoffs as we evaluate two group key management pro-
tocols: a distributed key management protocol suite based
on the Cliques work, and a centralized protocol providing a
roughly equivalent level of security.

In tackling the security issues in reliable group commu-
nication we do not (yet) consider certain components that
are needed for comprehensive security.

� Group access control and, more generally,
group policy.

� Group and member certification.

While we do not aim to underestimate their importance,
the research in this area is just beginning [1]. We believe
that well-designed group key management and data secu-
rity protocols can be coupled with an ad hoc policy frame-
work and be deployed rapidly. We further believe that the
same group key management system can be coupled with a
better policy framework when such exists.

2 Security Goals

Our main security goal is both natural and fairly stan-
dard: to achieve authentic and private communication
within a group. Although this requirement can be expressed
in any secure group setting – in a dynamic peer group con-
text – it leads to a number of interesting corollaries. The
second security goal is to provide authentic and private
communication between a secure group (i.e., its members)
and other entities (non-members). Finally, the third goal is
to obtain strong authentication and non-repudiation of indi-
vidual group members both within and outside a group.1

1That is, a secure group can be viewed as a microcosm of sorts where
authentication and non-repudiation of individuals is at the granularity of
members, not permanent identities.



So-called conventional cryptography requires two or
more parties to share a common secret in order to commu-
nicate securely. In contrast, public key cryptography [2] al-
lows two parties who do not share a common secret to com-
municate securely. Owing to its computational cost (orders
of magnitude greater than that of conventional encryption)
public key encryption can be used to secure communication
between two parties only when a very small amount of data
is involved. In practice, public key encryption is used only
as a means to distribute or agree upon a common secret key
which is subsequently used with conventional cryptography
to provide authenticity and privacy of bulk data.

To obtain security in a peer group setting, we can con-
struct an obvious extension to any two-party security mech-
anism (such as SSL or SSH) by establishing

���
(where�

is the group size) pair-wise secure channels among all
group members. Each pair-wise channel would then be as-
sociated with a unique secret key known only to the two
endpoints. In order to send private data to the group, the
sender would have to encrypt it � �����	� times (once for ev-
ery recipient) producing as many copies which would then
be sent individually to each recipient or conglomerated into
a single message and broadcasted to the entire group. It is
easy to see that this approach involves horrendous overhead
both in terms of computation and bandwidth consumed.2

2.1 Group Key Management

The above discussion essentially implies that, practi-
cally speaking, neither private nor authentic communica-
tion within a group can be achieved without some sort of a
common group secret. Consequently, the starting point for
security is a set of mechanisms for obtaining and maintain-
ing such a secret. We refer to this collectively as the group
key management problem.

Besides the fact that it forms the basis of all other secu-
rity services, there are two other important reasons for our
focus on group key management:

� The security of group key management itself is of
paramount importance. Data privacy, authenticity, and
integrity mechanisms are formed by defining a mes-
sage format and selecting a basic underlying algo-
rithm, i.e., a block cipher such as DES[4]3 for pri-
vacy and a keyed MAC4 such as HMAC [5] for data
integrity. Whereas, key management mechanisms in-
volve intricate protocols in addition to methods. An
adversary aiming to attack a system is unlikely to

2We note that the only exception is its use in secure multi-destination
electronic mail, such as PEM [3], where recipient “groups” are constructed
on a per-message basis.

3Data Encryption Standard.
4Message Authentication Code.

waste efforts on attacking privacy and integrity mech-
anisms since key management presents a much more
attractive target.

� The cost of group key management represents a “pure”
form of security overhead. Compared with the cost of
encryption (which can be done with almost no over-
head if certain types of stream ciphers are used) or
integrity (which can be obtained with certain Gigabit-
speed MACs), key management typically requires rel-
atively heavy-weight arithmetic operations and addi-
tional communication among group members.

2.2 Centralized vs Distributed Key Management

The main issues in group key management center around
who generates a group key as well as how and when it
is generated. The when part is relatively simple, since, in
the extreme, a new key must be generated following every
group membership change. The who and how issues are
more involved as they collectively determine the actual key
management protocol(s).

If the group key is generated by a single party who then
distributes it to all other group members we call the key
management centralized; whereas, if all members partic-
ipate in key generation we call the key management dis-
tributed.5

Centralized key management takes on two flavors: TTP-
based or controller-based. The first is based on the notion of
a Trusted Third Party (TTP) which is a fixed, highly secure
entity (e.g., a Kerberos Authentication Server [6]) charged
with user authentication as well as generation and distribu-
tion of keys. Since a TTP is fixed, this approach cannot
tolerate TTP partitions or TTP failures and is thus of lim-
ited utility in a peer group. An alternative is to fix a cer-
tain group member (e.g., oldest or newest) as a group con-
troller whose duty is to generate and distribute keys to the
group. Failures or partitions of a group controller can be
effectively dealt with by selecting an appropriate member
within the remaining group. This approach is workable and
we are in fact using it as a point of comparison in the ex-
perimental results (see Section 6 and Appendix). However,
it does not allow for the authentication of individual group
members which is one of our security goals. Furthermore,
a fixed controller presents an attractive attack target since it
is the only member entrusted with the security of the entire
group. Another drawback is the inability to authenticate
certain membership changes.

Distributed key management involves all group mem-
bers collectively generating or agreeing upon a group key.
The Cliques protocol suite, described in detail in Section 4,

5For the sake of clarity we do not consider hybrid methods, i.e., a sub-
set of members generating a group key.



falls into this category. A group secret is essentially a func-
tion of all group members’ individual contributions. At the
same time, a member’s contribution is known only to that
member; this property aids in the authentication of indi-
vidual members (since a member can show that it knows a
unique and secret portion of a common group secret.) The
often-cited drawbacks of distributed key management are
the relative complexity and the computational overhead of
the cryptographic protocols that implement it. On the other
hand, as illustrated by experimental results in Section 6,
the overhead is actually comparable to that of centralized
controller-based key management.

3 The Spread Group Communication
Toolkit

The group security services discussed in this paper are
built on top of the Spread wide-area group communication
system [7].

Spread is a group communication system for local area
and wide area networks. Spread provides all the services of
traditional group communication systems, including unreli-
able and reliable delivery, FIFO, causal, and total ordering,
and membership services with strong semantics.

Spread creates an overlay network that can impose
any arbitrary network configuration including for example,
point-to-multi-point, trees, rings, trees-with-subgroups and
any combinations of them to adapt the system to different
networking environments. The Spread architecture allows
multiple protocols to be used on links between sites and
within a site.

Spread is very useful for applications that need the tradi-
tional group communication services such as causal and to-
tal ordering, and membership and delivery guarantees, but
also need to run over wide area networks.

In addition, other applications may find Spread useful
because of some other technical properties:

� Scalability with the number of collaboration sessions.
Spread can support large number of different collab-
oration sessions, each of which spans the Internet but
has only a small number of participants. The reason is
that Spread utilizes unicast messages on the wide area
network, routing them between Spread nodes on the
overlay network.

� Scalability with the number of groups. Spread can
scale well with the number of groups used by the ap-
plication without imposing any overhead on network
routers. Group naming and addressing is no longer
a shared resource (the IP address for multicast) but
rather a large space of strings which is unique per col-
laboration session.

� Spread supports the Extended Virtual Synchrony
model [8] and the View Synchrony model [9] which
provide strong semantic guarantees about membership
events and message delivery.

� Spread uses a daemon-client architecture. This ar-
chitecture has many benefits, the most important for
wide-area settings is the resultant ability to pay the
minimum necessary price for different causes of group
membership changes. Simple join and leave of pro-
cesses translates into a single message. A daemon
disconnection or connection does not pay the heavy
cost involved in changing wide area routes. Only net-
work partitions between different local area compo-
nents of the network requires the heavy cost of full-
fledged membership change. Luckily, there is a strong
inverse relationship between the frequency of these
events and their cost in a practical system. The pro-
cess and daemon membership correspond to the more
common model of ”Lightweight Groups” and ”Heavy-
weight Groups”[RG98].

The Spread toolkit is available publicly. An early ver-
sion of the system is used by several organizations for both
research and practical projects. The toolkit supports cross-
platform applications and has been ported to several Unix
platforms as well as Windows and Java environments.6

3.1 Supported Group Communication Semantics

Spread supports the Extended Virtual Synchrony (EVS)
model [8] [10] and the View Synchrony (VS) model [9].
Both EVS and VS guarantee that group members see the
same set of messages between two sequential group mem-
bership events. They also both guarantee that the order
of messages requested by the application (such as FIFO,
Causal, or Total) is preserved. EVS provides a more general
service; VS semantics can be implemented on top of EVS
semantics without performance penalties, but EVS can not
be implemented on top of VS without a significant latency
penalty.

EVS provides three general benefits over VS: it has bet-
ter performance, prevents applications from blocking the
system, and allows open groups where non-members of a
group can send messages to the group. EVS guarantees that
messages are delivered to all recipients in the same mem-
bership as the message was originally sent on the network.

The last EVS property above is the critical difference be-
tween VS and EVS. VS, in contrast, guarantees the stricter
property that messages are delivered to all recipients in the
same membership as the sending application thought it was

6More details on the Spread system can be found at
http://www.spread.org/ along with a white paper and programming
documentation.



a member of at the time it sent the message. Providing
this property requires a round of application acknowledge-
ment messages before installing a new membership. This
need for application level acknowledgements requires that
the groups be closed, only allowing members of the group
to send messages to it.

This knowledge that a message is received in the mem-
bership the application believed it was sent in which is pro-
vided by VS semantics makes implementing a secure group
system much easier because every message is encrypted
with the same key as the receiver believes is current when
the message is delivered to them.

The services provided by a security layer almost require
closed groups7 because only the members of the group have
the shared group key with which to encrypt or sign mes-
sages. Additionally, to implement a group key agreement
protocol on top of EVS would require the security layer
to implement semantics similar to those of VS to correctly
maintain which messages were sent using which key. Thus,
we do not see any significant benefit to building security
requiring only EVS semantics.

The Spread system provides Extended Virtual Syn-
chrony. A flush layer built atop spread (provided with the
Spread system) provides the View Synchrony model.

4 Overview of Cliques and CLQ API

Cliques [11, 12, 13] is a cryptographic protocol suite
which provides authenticated contributory group key man-
agement and other security services. Cliques’ protocols
guarantee key independence, key confirmation, perfect for-
ward secrecy and resistance to known key attacks. (We
refer to [14] for detailed definitions of these attacks.) In
short, Cliques guarantees that group keys cannot be ob-
tained by either active or passive attackers. Moreover, past
group members (alone or in collusion) cannot obtain group
keys subsequent to leaving the group and, similarly, cur-
rent group members cannot obtain group keys used before
they joined the group. Cliques is based on group exten-
sions of the well-known Diffie-Hellman [2] key exchange
technique.

Cliques defines a special role for a group controller, the
last member to join a group. This role floats as the group
membership changes. A controller is charged with initiat-
ing key adjustments following membership changes. Other
than that, it has no special security tasks or privileges.

CLQ API [15] is a group key agreement API built on
top of the Cliques protocol suite. Its main purpose is to
implement the cryptographic primitives of Cliques. The
underlying communication system is assumed to deal with
the group communication and network events such as par-

7This is not true with a daemon based implementation.

titions, failures and other abnormalities. CLQ API is small
and concise containing only eight function calls.

Cliques guarantees two system invariants:

1. All group members always agree on the identity of the
current group controller.
At any point in time, the controller is the newest (most
recently joined) group member.

2. A group secret key is always contributed to equally by
each and every group member.
At any point in time, a group secret is a function of all
members’ private shares. Only current group members
have access to the group secret.

Cliques supports the following group key agreement op-
erations:

� Join: a new member is added to the group.

� Merge: one or more members are added to the group.

� Leave: one or more members are removed from (or
leave) the group.

� Key Refresh: generates a new group secret.

All of these result in the same outcome, i.e., the group se-
cret is changed such that: all members obtain the same au-
thenticated key.

The rest of this section briefly explains how the
CLQ API performs the above operations. (For details, the
reader is referred to [15].) The group secret for � mem-
bers is of the form � �������	�
�
� ��� �
������� � , where

���
is the

member � �
’s private share, � is large prime number and �

is the generator in ���� . Both � and � are agreed-upon sys-
temwide parameters just as in the plain two-party Diffie-
Hellman setting [2].

4.1 Join

1. The group controller generates a new private share and
computes partial group secrets, one for each existing
group member. Then, it hands over the partial group
secrets to the joining member, who is slated to become
the new controller.

2. After receiving the information, the new member adds
its own share to the partial group secrets of all users
and broadcasts the result to the entire group.

3. Upon reception of the broadcasted message, every
user computes the group secret.



4.2 Merge

The MERGE operation in Cliques requires the list of
merging members to be available to the current group con-
troller. At the end of MERGE, the last member in this list
becomes the new group controller.

1. The current controller generates a new private share
and computes a new partial group secret. This value is
then sent openly to the first new (merging) member.

2. Each new member, in turn, adds its own private share
to the group secret and sends it on to the next new
member.

3. The last new member does not add its share but only
broadcasts the partial group secret to the group.

4. Upon receipt of the broadcast, every member, except
the last one, removes (factors out) its private share
from the partial group secret and sends the result back
to the last new member who now becomes the new
group controller.

5. Having received all messages, the new controller com-
putes a new partial group secret for all members by
adding its own private share to every value it received.
It then broadcasts the set of partial group secrets to the
entire group.

6. Upon reception of the broadcast, every member com-
putes the new group secret.

4.3 Leave

1. The current controller updates its private share, recom-
putes the partial group secrets for all remaining group
members and broadcasts the result to the group.

2. Upon reception of the broadcast, each user computes
the new group secret.

4.4 Key Refresh

Key refresh is identical to LEAVE with the exception
that it is triggered unilaterally by the controller. (The API
also support an option whereby any group member, not just
the controller, can cause key refresh by updating its private
share.)

5 Secure Spread Architecture

As mentioned previously, Spread supports both VS and
EVS group semantics. Currently, secure Spread uses the
VS group semantics. Also, Spread uses a daemon-client

communication architecture. The current implementation
of secure Spread is implemented as a layer that extends the
Spread client library by adding the new security features
discussed in this paper. Client applications then link with
this secure library and use the provided API which is simi-
lar to regular Spread API. A different way to construct a se-
cure Spread would be to graft the security features directly
into the Spread daemon. We refer to these two approaches
as the client model and the daemon model, respectively.
The benefits of each model are the drawbacks of the other.

The client model has the advantage that the implemen-
tation of the daemon only has to be trusted to correctly im-
plement the ordering, reliability, and membership services.
The daemon is not responsible for any cryptographic or se-
curity services. However, providing a correct implementa-
tion of the ordering services, is not a trivial requirement,
security wise. In systems that use unsecured networks, it is
very possible to subvert the ordering guarantees provided
by a group communication system. This can be done by
modifying the content of the data messages the daemons
send between each other. Because the system is message
based and not stream-based, the client layer has no way of
detecting mis-ordered messages without reimplementing a
full agreed-ordering protocol. This is in contrast with point-
to-point secure communication systems such as SSH[18]
which run on top of TCP. In these point-to-point systems,
if the packets between two nodes are modified or reordered
the SSH decryption/integrity checks will detect a corrup-
tion even if TCP does not. Thus, the daemons must deploy
some mechanisms to protect against malicious network at-
tackers even in the client model.

Note, that even with this requirement of some trust in
the daemons, the client model requires less trust then the
daemon model. In a corporate network, all the employees
may trust that a shared Spread network setup by the system
administrator, will correctly perform ordering and reliabil-
ity services. However, they may not trust that their data will
remain confidential when sent through the Spread network
(because the system administrator could read it). Therefore,
they would want to encrypt it at the client level.

The main advantages of the client model are that a dif-
ferent, and often lesser, amount of trust is placed in the
daemon, that the implementation as a library can rely on
the Spread application semantics, and that all cryptographic
code is under the control of the end user. Another advan-
tage is that the client-based design demonstrates how to se-
cure any group communication system that supports the VS
model.

The daemon model denies an end user access to the se-
curity implementation, especially if the daemon network is
out of the end user’s control. However, it does offer several
advantages. The main advantage is a substantial increase
in performance. Keys would no longer need to be estab-



lished for every group. Instead, the daemons could encode
all of their communication using one daemon group key.
Daemons are long lived entities and might only update this
key if their connectivity changed or a daemon crashed or
recovered (daemons could also choose to refresh their key
occasionally). These kind of events are much rarer than in-
dividual processes joining or leaving a group. Therefore, in
the daemon model the number of key agreements occurring
in the system as a whole would be drastically reduced in
comparison to the client model. Note, however, that com-
munication between clients and daemons would still have
to be secured in some manner. For example, a client could
assume that IPC is secure, or use encrypted communica-
tions such as SSL sockets.

Another advantage of the daemon model is that secu-
rity policy can be easily configured and enforced. In this
model an administrator could change policy by editing the
daemon’s configuration. End users connecting to daemons
could be authenticated upon connection. Access control to
the daemons or specific groups could be easily enforced.
Daemons could also easily authenticate that users are mem-
bers of specific groups.

To summarize, despite all of the apparent advantages in
using the daemon model, the client model has a confiden-
tiality advantage over the daemon model. In the daemon
model, if a daemon key is obtained, all messages in every
group are compromised until the daemons re-key. In con-
trast, in the client model, if a group key is obtained, only
the messages in that group are compromised until the group
rekeys. Due to the different levels of security offered by the
two models, both approaches are useful.

5.1 High Level Design

A major consideration when designing a secure commu-
nications toolkit is that security and trust depend on the al-
gorithms used in the toolkit. As time goes on, trust in these
algorithms may change: ciphers are broken, algorithms are
proven insecure, better algorithms are designed, etc. There-
fore, any system hoping to secure communications and be
viable in the long run, needs to be flexible and easily mod-
ified. Another desirable feature is that security policy can
be easily changed by administrators and/or users. One way
to achieve these goals is to design an extremely modular
system.

Figure 1 shows a basic architecture for a modular secure
system. When necessary, the secure group layer calls differ-
ent modules that implement encryption, key management,
and key generation routines. If the secure layer only needs
to know when to call these modules, but not their functions,
then this type of design allows for drop-in replacement of
different modules. Therefore, if a new module needs to be
added, then only two modifications have to be made. First,

Key Generation
Module

Encryption
Module

Application

Secure
Group
Communication

Group 
Communication

Network

Figure 1. A Generic Secure Architecture

code must be written implementing the new module. Sec-
ond, the module must be chosen to run at the proper times.

5.2 Secure Spread Modules

The basic design of secure Spread follows this modular
design closely. The core functionality of secure Spread is
an event handling loop. Network events are generated by
the VS group communication layer. Secure Spread takes
each of these events and depending on their context, passes
it on to the proper module that handles the event.

An interesting addition to the design of secure Spread
is that the modules implementing the security policies and
algorithms of the system can be chosen at run time as
new groups are created. This mechanism allows different
groups to choose different event handlers while simultane-
ously running in the same group communication system.
For example, one group could decide to use centralized key
management, while another group is using distributed key
management at the same time.

Currently, secure Spread is designed to allow for drop
in replacement of encryption and key agreement protocols.
In the future we hope to extend the architecture to allow
for modules that would make access control and other pol-
icy decisions as well. At this early stage of development,
secure Spread has a small set of modules.

Figure 2 shows the current implementation of secure
Spread. The Flush layer provides View Synchrony seman-
tics to the secure Spread layer. Note that the application can
have several connections open at the same time and each of
them can be in multiple groups. Some of these groups can
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Figure 2. Secure Spread Implementation

be secure, while others can instead use the View Synchrony
semantics of the Flush layer or the EVS semantics provided
by Spread. The application chooses which services to use.

Currently, for bulk data encryption secure Spread uses
an open source implementation of Bruce Schneier’s Blow-
fish algorithm [16]. In the near future we hope to add the
ability to use the OpenSSL[17] cryptographic library which
provides an abundant selection of encryption algorithms.

Secure Spread currently has two different modules for
key agreement, both based on the Cliques protocol suite.

� Cliques key management (using group Diffie-
Hellman).

� Simple centralized key management (described in the
Appendix and Table 5).

The complexity of secure Spread is contained almost en-
tirely within these modules.

5.3 Implementation of Cliques Group Key Man-
agement

The Cliques key management suite and the correspond-
ing API presented in Section 4 are independent of a par-
ticular implementation of a group communication system.
How these protocols are implemented specifically in secure
Spread is the subject of this section.

In order to easily accommodate the Cliques protocols,
the underlying group communication system needs to pro-
vide certain fundamental features. These include: group
multicast, group member to group member unicast, FIFO
ordering on messages, and a mechanism for knowing and

identifying all of the members of a group. All of these ser-
vices are provided by Spread.

Furthermore, the Cliques API is tuned to allow for the
following types of membership changes: singleton join,
singleton leave, multi-join, and multi-leave. Again, all of
these types of membership events are provided by Spread.
In addition, the VS model of Spread generates an event
that is a combination multi-join and multi-leave, and an
event requesting the application to OK a group membership
change.

Implementing the Cliques protocols in a group commu-
nication system requires a mapping between group commu-
nication events and Cliques events. Presented in Table 1 is
the simple mapping of Spread’s VS group events to Cliques
events.

Table 1. Mapping of Spread Events to Group
Key Events
Spread VS Group Group Key
Membership Events Management Operations
Join Join
Leave Leave
Disconnect Leave
Partition Leave
Merge Merge
Partition + Merge Leave then Merge
Group Change Request N/A
N/A Key Refresh

When Spread generates a VS group event that event is
passed up to the security layer. Secure Spread then exam-
ines the event and determines to which group the message
corresponds. It then retrieves the event handler for that par-
ticular group and gives the event to the handler. This han-
dler is responsible for mapping the network VS event into
the set of proper actions to be taken. The handler considers
both the current state of the group and the key agreement
protocol as described in Section 4.

In our implementation, the Cliques protocols are imple-
mented using state machines. The state machine and the
current state of the member of the group will be collectively
referred to as the “member state.”

The member state and the current event affecting the
group determine what actions are taken by each member.
The Cliques library keeps most of the state information as-
sociated with a group, such as who is the current group con-
troller. When calls are made to the CLQ API, in general, all
group members make the same function call and the return
values of these calls determine how the member state of
each member changes and what actions they take.

FIFO ordered messages are used to communicate partial



keys or key shares to the group or between particular en-
tities. This is done because FIFO ordered messages have
extremely low overhead, and stronger message orderings
are not required.

5.4 Cascading Failure Handling

When merging security protocols with high reliability
group communication protocols we must begin with an ob-
vious premise that security does not imply robustness, i.e.,
a system can be secure but not robust. A security proto-
col does not become more secure when built over a reliable
communication platform; it becomes more robust. For in-
stance, many security protocols for group communication
assume that messages are received in certain order or that
all protocol parties are (at the same time) connected and
ready to receive messages. In real systems these assump-
tions are often not fulfilled. Adding reliability through a
group communication system can make these assumptions
realistic and the protocols themselves – usable.

Focusing on the problem at hand, recall that fluctuations
in group channel state must be coupled with group key ad-
justments. However, adjustments require the availability
and reachability of each group member. If the group chan-
nel state changes while an adjustment (stemming from an
earlier change) is in progress, appropriate actions must be
taken not to maintain security but to preserve the overall
group integrity. This is in stark contrast to two-party com-
munication where such “cascading” fluctuations simply do
not occur.

Thus, a significant challenge in integrating reliable
group communication and group security protocols lies not
in the straightforward mapping of well-spaced communica-
tion events into their security counterparts but in the proper
and robust handling of various cascading events that per-
turb group channel state.

Thus far, we have implemented key agreement for non-
cascading membership events. This allows us to benchmark
the system and learn about its performance in essentially all
common cases. Specifically, we compared the performance
of centralized and decentralized join and leave operations.

The basic difficulty in handling cascading membership
events arises because the key agreement protocol takes time
and communication to generate a new key and subsequent
membership changes can make completing that process ei-
ther impossible, or make it produce incorrect results. Solv-
ing this problem requires modification of the key agreement
protocol and the addition of cases handling all the possible
changes at all possible times.

Note that one can not just use the VS properties which
allow each application to delay the new membership until
it is finished, because at the time the security layer is asked
to OK a new membership change it does not yet know what
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Figure 3. Spread and Flush Layer Timings

the membership event is (Join/Leave/Partition) or who is
involved. Thus, it can not know whether the event is safe to
defer or not.

6 Experimental Results

In this section we present the experimental results ob-
tained with secure Spread. We performed the experiments
with two different machine architectures under the same
group scenario. In the first set, all the machines were SUN
Ultra-s 2 Model 1200 (200 MHz UltraSPARC, 128MB)
running Solaris 5.5.1, while in the other set, all the ma-
chines were Pentium II (450 MHz, 128MB) running Red-
Hat Linux 2.2.7. The timings were obtained by perform-
ing multiple batches of each operation

���
times and then

averaging across batches. The setup consisted of three
identical machines, each running its own Spread daemon.
Two machines had a single member each and the third
machine contained all other members (processes) utiliz-
ing a single daemon. An Ethernet 10BaseT network con-
nected the SUN Ultra-2s and an Ethernet 100BaseT net-
work connected the Pentium II machines. The CLQ API
was linked with OpenSSL 0.9.3a [17], where one Diffie-
Hellman (DH) exponentiation with 512-bit modulus costs
12 and 2.5 msecs for the SUN and Pentium platforms, re-
spectively.

The total number8 of serial exponentiations required for
Join and Leave operations is illustrated in Tables 2 and 3,

8During the join operation � includes the new member and during the
leave operation � includes the leaving member.



Table 2. Detailed number of exponentiation for Join

Cliques

Controller

Update key share with every member � � �
Long term key computation with new member

�
New session key computation

�
Total: � � �

New Member

Long term key computations � � �
Encryption of session key � � �
New session key computation

�
Total: � � � �

CKD

Controller

Long term key computation with new member
�

Pairwise key computation with new member
�

New session key computation
�

Encryption of session key � � �
Total: � � �

New Member

Long term key computation with controller
�

Pairwise key computation with controller
�

Encryption of pairwise secret for controller
�

Decryption of session key
�

Total: �

Table 3. Detailed number of exponentiation for Leave

Cliques

Remove long term key with previous controller
�

New session key computation
�

Encryption of session key � � �
Total: �

CKD
New session key computation

�
Encryption of session key � � �
Total: � � �

CKD,
when controller

leaves

Long term key computations � � �
Pairwise key computation with new user � � �
New session key computation

�
Encryption of session key � � �
Total: � � � �

Table 4. Total number of serial exponentiation
Operation Join Leave Controller leaves
Number of members after operation � � � � � � �
Cliques � � � �
CKD � ��� � � � � � � �
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respectively. Table 4 summarizes the total number of serial
exponentiations performed in the course of each operation.

Figure 3 shows the total time of one join or leave op-
eration, which costs the same, versus the group size.9 The
time in this graph includes the network overhead. The Flush
layer timings in the graph are not linear due to the fact that� messages have to be broadcast from each member to all
others. Further, the fact that 28 clients were running on one
machine (in the size 30 test) required � � � � � � work local to
that machine. In practice, the client would be more widely
distributed.

Figure 4 presents the total time of Join and Leave op-
erations versus the group size in two separate graphs. The
times reported in these graphs are CPU times as measured
by the getrusage() function. The graphs seem to fol-
low closely the total number of expected exponentiations
in Tables 2 and 3. Figure 3 shows the network overhead
is very small in comparison with the time required for ex-
ponentiation even with relatively large groups. In other
words, the results clearly show that exponentiation is the
most dominant operation. Of the CPU time required for
a join or leave, almost all of it is used by the exponentia-
tion operations. For example, a join operation in a group of
fifteen members takes 0.1125 seconds for the modular ex-
ponentiation and the total CPU time experimentally takes
0.1285 seconds for the Pentium. Hence, 88% of the CPU
was used for modular exponentiation.

9The Flush layer values on the SPARC architecture are not included as
they did not show anything new.

7 Related Work

Related work falls into three categories: 1) crypto-
graphic protocols for group key management, 2) architec-
tures and frameworks for secure multicast and 3) imple-
mentation of secure group communication systems. Given
the “systems” orientation of this paper, we concentrate on
(3). Readers interested in (1) are referred to [11] and [13].
We choose not to dwell on the related work in secure mul-
ticast since both its security and its communication models
differ greatly from those of dynamic peer groups. Suffice
it to say that it typically assumes one-to-many communi-
cation paradigm and emphasizes scalability over strong se-
curity; more specifically, the focus is on minimizing band-
width overhead from re-keying a very large group.10 Gen-
eration and distribution of group keys is assumed to be per-
formed by trusted servers which, as discussed above, is an
approach unsuitable for a peer group setting.

Group communication systems in LAN environments
have a well-developed history beginning with ISIS [19],
and more recent systems such as Transis [20], Horus [21],
Totem [22], and RMP [23]. These systems explored several
different models of Group Communication such as Virtual
Synchrony [24] and Extended Virtual Synchrony [8]. More
recent work in this area focuses on scaling group member-
ship to Wide Area Networks (WANs) [25].

Research in securing group communication systems is

10Most recent work in secure multicast has taken place under the aegis
of the Internet Research Task Force’s (IRTF) Secure Multicast Group
(SMUG); see http://www.ipmulticast.com for further information.



fairly recent. The only actual implementations of group
communication systems focusing on security issues are the
secure distributed CORBA (Immune) system built on top
of SecureRing[26] group communication work at UCSB
[27] and Horus/Ensemble work at Cornell [28]. (An earlier
RAMPART system [29] at Cornell concentrated on Byzan-
tine robustness.)

The Immune system from UCSB provides protection
against Byzantine failures using cryptographic techniques
to secure a low-level ring protocol (that forms the base of
the Totem system) and replicating the protected CORBA
objects sufficiently to detect and recover from up to a fixed
number of compromised objects or machines.

The Ensemble security work [28] exemplifies the state-
of-the-art in reliable group communication security and ad-
dresses several of the same problems we consider in this pa-
per. It also allows application-dependent trust models and
optimizes certain aspects of group key generation and dis-
tribution protocols. The problems we both address are in
generating shared group keys and rekeying, however, our
respective approaches are quite different.

Ensemble relies on extensions of conventional (i.e., not
group-oriented) cryptographic tools such as PGP [30] or
Kerberos [6] to distribute and refresh group keys. Our
approach has two notable advantages (also summarized in
Section 2.2):

First, our generation of group keys is distributed and
uses a peer group model, while Ensemble uses central-
ized key generation (done by group leader). In Ensemble,
the entire group relies on one member’s ability to gener-
ate strong, secure keys. The group leader is the lowest-
numbered member. The role of the group leader changes
only if the current group leader leaves the group voluntarily
or gets partitioned out.

Second, in Ensemble key distribution is performed with
the help of encryption (via PGP) which is expensive since
the key must be encrypted individually for each member.
More importantly, compromise of just one member’s long-
term secret (PGP private key) exposes all previous group
session keys, and, hence, all prior group communication.
While this may suffice in practice, a more secure solution
would provide so-called Perfect Forward Secrecy (PFS).
PFS guarantees that a compromise of a long-term secret (be
it shared or private key) does not result in a compromise of
previously used short-term secrets such as ephemeral group
keys. In contrast, CLIQUES key agreement protocols avoid
the use of encryption altogether and offer PFS.

Our approach also differs from Ensemble’s as far as
member authentication. A group member in Ensemble can
be authenticated using a common group key or a member’s
long-term secret (e.g., Kerberos or PGP key). The former
only authenticates membership and not a specific member
while the latter authenticates a long-lived entity, not a group

member. Although our approach supports both of these it
allows a group member to authenticate based on its unique
short-term secret, i.e., its secret contribution to the common
group key.

Very recent follow-on work at Cornell produced some
interesting decentralized (and optimized) group keying pro-
tocols [31]. The protocols are loosely based on the work of
Wong et al. [32].

8 Future Work

This paper represents only the tip of the proverbial ice-
berg. Much work remains to be done in constructing a com-
prehensive architecture and implementation for secure and
reliable group communication.

At the time of this writing, work is under way to imple-
ment secure and robust handling of cascaded group events
as sketched out in Section 5.

This paper focused on application (or client) security
which is only the first step in securing Spread. Since the
core functions of Spread are embodied in the daemon, the
next logical task is to integrate Cliques security mecha-
nisms into the Spread daemons. This would result in the
security of the membership change events themselves and
remove undue trust assumptions about the security of the
daemons.

More experimentation is needed to better assess the im-
pact of security on group communication. In the short term,
we need to consider other important and more specialized
group security services that can be built on top of the ba-
sic services, i.e., distributed key management and data pri-
vacy/integrity. These include intra-group member authen-
tication, secure communication with non-members, group
integrity, group/member anonymity, and membership non-
repudiation.

There are also several fundamental, long-term research
topics that this work has not addressed. Dynamic peer
groups present interesting policy considerations that tradi-
tional two-party communication does not. New policy con-
straints might include: altering group membership; policy
contingent on current membership; time based group ad-
mission constraints. Group certification is also an open
research problem, including such issues as: how to is-
sue, manage and revoke certificates for constantly chang-
ing groups. Finally, there is the need to extend peer group
security to two-tiered groups composed of small number of
senders and a comparatively large number of receivers.
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A Centralized Key Distribution protocol

The Centralized Key Distribution (CKD) protocol is a
simple group key distribution scheme. It provides the same
level of security as Cliques, as far as key independence,
key confirmation, perfect forward secrecy and resistance to
known key attacks. However, it is not contributory as the
group secret is always generated by one member, namely,
the current group controller.11 Following each membership
change, the current controller generates the secret and dis-
tributes it to the group in a secure manner. Unlike Cliques,
the controller is always the oldest member. The protocol is
shown in Table 5

Regardless of the group operation, the CKD key distri-
bution protocol consists of two phases:

1. Each group member and the controller agree on a key
using authenticated two-party Diffie-Hellman.
This key does not need to change as long as both users
remain in the group. If the controller leaves the group,
the new controller has to perform this operation with
every member. On the other hand, if a regular member
leaves, the controller simply discards this key.

2. The group controller unilaterally generates and dis-
tributes the group secret.

11We use the term current to mean that, even in the CKD protocol suite,
a controller can fail or be partitioned out thus causing the controller role
to be reassigned to the oldest surviving member.


