
Customizable Fault Tolerance
for Wide-Area Replication ∗

Yair Amir1, Brian Coan2, Jonathan Kirsch1, John Lane1
1 Johns Hopkins University, Baltimore, MD.{yairamir, jak, johnlane}@cs.jhu.edu

2 Telcordia Technologies, Piscataway, NJ. coan@research.telcordia.com

Abstract

Constructing logical machines out of collections of phys-
ical machines is a well-known technique for improving
the robustness and fault tolerance of distributed systems.
We present a new, scalable replication architecture, built
upon logical machines specifically designed to perform well
in wide-area systems spanning multiple sites. The physi-
cal machines in each site implement a logical machine by
running a local state machine replication protocol, and a
wide-area replication protocol runs among the logical ma-
chines. Implementing logical machines via the state ma-
chine approach affords free substitution of the fault toler-
ance method used in each site and in the wide-area repli-
cation protocol, allowing one to balance performance and
fault tolerance based on perceived risk.

We present a new Byzantine fault-tolerant protocol that
establishes a reliable virtual communication link between
logical machines. Our communication protocol is efficient
(a necessity in wide-area environments), avoiding the need
for redundant message sending during normal-case opera-
tion and allowing a logical machine to consume approxi-
mately the same wide-area bandwidth as a single physical
machine. This dramatically improves the wide-area perfor-
mance of our system compared to existing logical machine
based approaches. We implemented a prototype system and
compare its performance and fault tolerance to existing so-
lutions.

1 Introduction

As network environments become increasingly hostile,
even well-protected distributed information systems, con-
structed with security in mind, are likely to be compromised
[1]. Byzantine fault-tolerant replication (e.g.,[5, 7, 27, 35])

∗This publication was supported by Grant 0430271 from the National
Science Foundation. Its contents are solely the responsibility of the au-
thors and do not necessarily represent the official view of Johns Hopkins
University or the National Science Foundation.

can be used to construct survivable information systems
that withstand partial compromises. Such systems are typ-
ically deployed in several local-area sites distributed across
a wide-area network. Practical solutions should have two
fundamental characteristics. First, they must achieve high
performance in large-scale deployments, which requires
the efficient use of limited wide-area inter-site bandwidth.
Second, they must offer customizability, because heteroge-
neous sites have different risk profiles resulting from varied
physical security, hardware, and performance requirements.
To the best of our knowledge, no previous replication archi-
tecture simultaneously provides these two properties.

This paper presents the first scalable wide-area replica-
tion system that (1) achieves high performance through the
efficient use of wide-area bandwidth and (2) allows cus-
tomization of the fault tolerance approach used within and
among the local-area sites. Our architecture uses the state
machine (SM) approach [20, 37] to transform the physi-
cal machines in each site into alogical machine(LM), and
the logical machines run a wide-area protocol. Using the
state machine approach to build logical machines is a well-
known technique for cleanly separating the protocol used to
implement the logical machine from the protocol running
on top of it. Representative systems include Voltan [6],
Immune [30], BASE [35], Starfish [19], and Thema [28],
which are described in more detail in Section 8. The state
machine approach affords free substitution of the fault toler-
ance method used in each site and in the wide-area replica-
tion protocol, allowing a Byzantine or benign fault-tolerant
protocol to be selected depending on system requirements
and perceived risks.

All previous Byzantine fault-tolerant SM-based logical
machine abstractions send messages redundantly in order to
guarantee reliable communication in the presence of mali-
cious protocol participants. Typically, to prevent malicious
servers from blocking the message transmission, at least
f + 1 servers in the sending LM will each send tof + 1
servers in the receiving LM, wheref is the number of po-

tential faults in each LM.1 While this strategy works well on
local-area networks, where bandwidth is plentiful, it is im-
practical for replication systems that must send many mes-
sages over wide-area links. In our experience, it is wide-
area bandwidth and not computational constraints that lim-
its the performance of well-engineered wide-area replica-
tion systems. To address this weakness, we present BLink,
the first Byzantine fault-tolerant communication protocol
that guarantees efficient wide-area communication between
logical machines. BLink is specifically designed for use
in systems where (1) the physical machines comprising an
LM are located in a LAN that provides low-latency, high-
bandwidth communication, and (2) the LMs are located in
different LANs, and are connected by high-latency, low-
bandwidth links. BLink usually requires only one physi-
cal message to be sent over the wide-area network for each
message sent by the logical machine.

Our previous wide-area replication architecture, Stew-
ard [5], shares some similarities with our new architecture.
Both systems use a hierarchical logical machine architec-
ture and provide high performance by efficiently utilizing
wide-area bandwidth. However, they use fundamentally
different techniques to construct their logical machines.The
servers comprising each LM in our new architecture totally
orderall events that cause a state transition in the protocol
running on top of them (i.e., updates, acknowledgements,
and wide-area timeouts), and execute these events in the
same order. This is in striking contrast to the approach taken
in Steward, where the wide-area protocol makes state transi-
tions based on unordered events. As a result, in Steward, the
protocols running within the sites and those running among
the sites are interdependent and cannot be separated. Con-
sequently, the fault tolerance approach within and among
the sites cannot be customized. Since Steward runs a be-
nign fault-tolerant wide-area protocol, it cannot survivea
site compromise. We describe precisely why the Steward
architecture is inflexible and inherently a poor match for di-
verse wide-area environments requiring customizability in
Section 2.

To mitigate the high cost of the additional ordering re-
quired by the state machine approach, we use two optimiza-
tions. First, we amortize the computational costs associ-
ated with digital signatures within the LM ordering protocol
using known aggregation techniques. Second, we demon-
strate the first use of a Merkle tree [29] mechanism to amor-
tize the cost of threshold signatures while producing a self-
contained, threshold-signed wide-area message. Amortiz-
ing optimizations enable an LM to process and send on the
order of a thousand wide-area messages per second, pre-

1It may be possible to use a peer-based protocol in which each of 2f+1
servers sends to a unique peer. To the best of our knowledge, no existing
system uses this method, except for Steward [5], which uses it sparingly to
send global view change messages.

venting LM throughput from limiting overall performance.
State machine based LMs augmented with BLink and the
Merkle tree optimization have precisely the necessary prop-
erties to build a customizable fault-tolerant replicationsys-
tem without sacrificing performance.

The contributions of this work are:

1. It presents a new hierarchical replication architecture
for wide-area networks that combines high perfor-
mance and customizability of the fault tolerance ap-
proach used within each site and among the sites. Us-
ing a Byzantine fault-tolerant protocol on the wide area
protects against site compromises and offers funda-
mentally stronger security guarantees than our previ-
ous system.

2. It presents a new Byzantine fault-tolerant protocol,
BLink, that guarantees efficient wide-area communi-
cation between logical machines, each of which is con-
structed from several non-trusted entities, such that
messages usually require one send over the wide-area
network. The use of BLink increases performance
by over an order of magnitude in comparison to an
SM-based logical machine approach that uses previ-
ous communication protocols, which require at least
2f + 1, and typically(f + 1)2, redundant sends.

3. It shows that by using optimizations that amortize the
computational cost of the logical machine ordering, the
new system achieves high performance, outperforming
the Steward system by a factor of 4 when running a
composition with the same level of fault tolerance.

We compare four possible compositions of the architec-
ture, plus the Steward architecture, over emulated wide-area
networks. The experiments show that the composable archi-
tecture that runs a wide-area benign fault-tolerant protocol
and Byzantine local-area protocols within each site has per-
formance that is 4 fold better than the original Steward ar-
chitecture, which was the previous state of the art. Our new
architecture achieves 12 percent lower performance than
a new version of Steward that we developed for compari-
son that uses similar amortizing optimizations. This per-
formance difference is the cost of providing clean separa-
tion and customizability. We also benchmarked a Byzantine
over Byzantine composition, which provides fundamentally
stronger fault tolerance than Steward, since Steward can-
not survive a site compromise. While the systems are not
strictly comparable because they offer different guarantees,
the Byzantine over Byzantine composition performs 3 times
better than the original Steward and achieves 35 percent
lower performance than the new version of Steward that
uses amortizing optimizations.

The remainder of this paper is presented as follows. In
Section 2, we provide background on the state machine

replication protocols used in the implementation of our
composable architecture, as well as on Steward. Section
3 describes our system model and service guarantees. In
Section 4, we describe our system architecture. Section 5
presents the BLink protocol, and Section 6 describes our
performance optimizations. In Section 7, we evaluate the
performance of our architecture. Section 8 describes related
work, and Section 9 concludes the paper.

2 Background

While our composable architecture can use any of a
number of state machine replication protocols as the local or
wide-area protocol, this paper focuses on the use of Paxos
[21, 22] and BFT [7]. This section provides an overview
of Paxos and BFT. We also describe Steward [5], our pre-
vious wide-area hierarchical replication system. We bench-
mark our composable architecture using Paxos and BFT and
compare it to the performance of Steward in Section 7.

Paxos [21, 22] is a fault-tolerant protocol that enables a
group of distributed servers, exchanging messages via asyn-
chronous communication, to totally order client requests in
a benign fault, crash-recovery model (enabling state ma-
chine replication). Paxos uses a leader to coordinate an
agreement protocol. If the leader fails, the other servers
elect a new leader, which coordinates sufficient reconcili-
ation so that progress can safely continue. In the normal
case, when the leader does not fail, Paxos requires two com-
munication rounds to order a message, one of which is an
all-to-all message exchange. Paxos continues to order client
updates if at leastf + 1 out of2f +1 servers are connected
and functioning correctly.

BFT [7] also totally orders client requests, similar to
Paxos. However, it tolerates Byzantine faults, where com-
promised servers behave maliciously in an attempt to dis-
rupt the system. BFT uses three communication rounds,
two of which are all-to-all message exchanges. It can sur-
vive f Byzantine server failures out of a total of3f + 1.
BASE [35] describes an abstraction that is built upon BFT
and gives examples of how to use this abstraction to build
Byzantine fault-tolerant services. We use a similar abstrac-
tion to convert the servers in one site into a logical machine.

Steward [5] is a hierarchical SM replication architecture
for wide-area networks. It converts a group of servers in a
site into a logical entity that plays the role of a single par-
ticipant in a wide-area protocol. However, it does not use
state machine replication to create logical machines. The
servers within a site pass incoming wide-area messages di-
rectly to the upper-level wide-area protocol,without order-
ing them within the site. For most messages, this elimi-
nates the overhead associated with Byzantine fault-tolerant
agreement (Byzantine agreement is used only to assign a
sequence number to client updates). The price of this op-

timization is the need for customized protocols specifically
designed to overcome the temporary state divergence with
respect to the lower-level protocols. Steward has over ten
specialized protocols that run within and among the sites,
most of which are associated with global view changes.
Since the servers comprising a Steward LM do not proceed
through the same sequence of states, they must run spe-
cial protocols to agree on the content of outgoing wide-area
messages. For example, when a site needs to send a sum-
mary of its knowledge, it runs theCONSTRUCT-GLOBAL-
CONSTRAINT protocol so that (1) the servers can agree on
a common state and (2) they can invoke theTHRESHOLD-
SIGN protocol on the same message. Other wide-area mes-
sages require separate protocols. Note that the servers do
not exhibit state divergence with respect to the global SM
replication service. Steward can withstandf out of 3f + 1
Byzantine failures within each site but cannot survive even
a single site compromise.

3 System Model and Service Guarantees

Servers are organized into wide-areasites; each site has
a unique identifier. Each server belongs to one site and
has a unique identifier within that site. The network may
partition into multiple disjointcomponents, each containing
one or more sites. During a partition, servers from sites in
different components are unable to communicate with each
other. Components may subsequently re-merge. We can
use a state transfer mechanism (as in [8]) or an update rec-
onciliation mechanism (as in [4]) to reconcile states aftera
merge.

The free substitution property afforded by using SM-
based logical machines allows our architecture to support
a rich configuration space. Each site can employ either a
Byzantine or a benign fault-tolerant SM replication protocol
to implement its LM, and the system can run either a benign
fault-tolerant or a Byzantine fault-tolerant wide-area proto-
col. We classify both servers and sites as either correct or
faulty (benign or Byzantine). A correct server adheres to its
protocol specification. A benign faulty server can crash but
otherwise adheres to the protocol. A Byzantine server can
deviate from its protocol specification in an arbitrary way.

In what follows, we assume that Paxos is used as our be-
nign fault-tolerant protocol and BFT is used as our Byzan-
tine fault-tolerant protocol. Different protocol choices
may require different assumptions (e.g., some Byzantine
fault-tolerant protocols require a smaller fraction of faulty
servers). A site running Paxos locally is benign faulty if
more thanf servers in the site are benign faulty, where the
site has2f + 1 servers. A site running Paxos locally is
Byzantine faulty if at least one server is Byzantine. Oth-
erwise, the site is correct. A site running BFT is Byzantine
faulty if more thanf servers in the site are Byzantine, where

the site has3f + 1 servers; otherwise the site is correct.
When run on the wide area, Paxos can tolerateF benign
faulty sites, where there are2F + 1 sites, but cannot toler-
ate a single Byzantine site; BFT can tolerateF Byzantine
sites.

Clients introduce updates into the system by communi-
cating with the servers in their local site. Each update is
uniquely identified by a pair consisting of the identifier of
the client that generated the update and a unique, monotoni-
cally increasing sequence number. We say that a clientpro-
posesan update when the client sends the update to a correct
server in the local site, and the correct server receives it.A
client receives a reply to its update after the update has been
globally ordered and executed. Clients propose updates se-
quentially: a client,c, may propose an update with sequence
numberic+1 only after it receives a reply for an update with
sequence numberic. A client retransmits its last update if
no reply is received within a timeout period. Clients may be
faulty; updates from faulty clients will be replicated consis-
tently. Access control techniques can be used to restrict the
impact of faulty clients.

We employ digital signatures, and we make use of
a cryptographic hash function to compute message di-
gests. We assume that all adversaries are computationally
bounded such that they cannot subvert these cryptographic
mechanisms. When BFT is deployed within a site, the
servers in that site use an (f + 1, 3f + 1) threshold digi-
tal signature scheme [38]. Each site has a public key, and
each server receives a share with the corresponding proof
that can be used to demonstrate the validity of the server’s
partial signatures. We assume that threshold signatures are
unforgeable without knowingf + 1 or more shares.

Our system achieves replication via the state machine ap-
proach, establishing a global, total order on client updates
in the wide-area protocol. Each server executes an update
with global sequence numberi when it applies the update
to its state machine. A server executes updatei only after
having executed all updates with a lower sequence number.

Our replication system provides the following two safety
conditions:

DEFINITION 3.1 S1 - SAFETY: If two correct servers ex-
ecute theith update, then these updates are identical.

DEFINITION 3.2 S2 - VALIDITY : Only an update that was
proposed by a client may be executed.

When running Paxos on the wide area, these safety con-
ditions hold as long as no site is Byzantine. When running
BFT on the wide area, the conditions hold as long as no
more thanF sites are Byzantine. We refer to these con-
ditions as thefault assumptions needed for safety. Since
no asynchronous, fault-tolerant replication protocol tolerat-
ing even one failure can always be both safe and live [16],

we provide liveness under certain synchrony conditions We
first define the following terminology and then specify our
liveness guarantee:

• Two servers are connectedor a client and server are
connectedif any message that is sent between them
will arrive in a bounded time. The protocol partici-
pants need not know this bound beforehand.

• Two sites are connectedif every correct server in one
site is connected to every correct server in the other.

• A client is connected to a siteif it can communicate
with all correct servers in that site.

• A site is stablewith respect to timeT if there exists a
set,S, of c servers within the site (withc = 2f + 1
for sites tolerant to Byzantine failures andc = f +
1 for sites tolerant to benign failures), where, for all
timesT ′ > T , the members ofS are (1) correct and (2)
connected. We call the members ofS stable servers.

• Let F be the maximum number of sites that may be
faulty. The system is stablewith respect to timeT
if there exists a set,W , of r wide-area sites (with
r = F + 1 when sites may exhibit benign failures and
r = 2F + 1 when sites may be Byzantine) where, for
all timesT ′ > T , the sites inW are (1) stable with re-
spect toT and (2) connected. We callW theSTABLE-
CONNECTED-SITES.

DEFINITION 3.3 L1 - GLOBAL L IVENESS: If the system
is stable with respect to timeT and the fault assumptions
needed for safety are met, then if, after timeT , a stable
server in theSTABLE-CONNECTED-SITES receives an up-
date which it has not executed, then that update will even-
tually be executed.

4 System Architecture

In our composable architecture, the physical machines
in each site implement alogical machineby running a lo-
cal state machine replication protocol [20, 37]. We then
run a state machine replication protocol on top of these log-
ical machines, among the sites. Using SM-based logical
machines is an established technique for cleanly separating
the implementation of the LM from the protocol running on
top of it. Our architecture leverages the flexibility afforded
by this technique, allowing one to customize the protocol
and type of fault tolerance desired, both within each LM
and among the LMs. Further, we can use the known safety
proof for the wide-area protocol (when run among single
machines), together with one for the local SM replication
protocol, to trivially prove safety for the composition. The
liveness proof is more complicated, but much simpler than

what is necessary when the wide-area and local-area proto-
cols are interdependent. See [3] for a more formal discus-
sion of the safety and liveness properties. In the remainder
of this section, we first review how we use the SM approach
to build our logical machines, and then present several com-
positions of our architecture.

Implementing Logical Machines: The wide-area repli-
cation protocol running on top of our LMs runs just as it
would if it were run among a group of single machines, each
located in its own site. Each LM sends the same types of
wide-area messages and makes the same state transitions as
would a single machine running the wide-area replication
protocol. To support this abstraction, the physical machines
in each site use an agreement protocol to totally order all
events (messages and timeouts) that cause state transitions
in the wide-area protocol. The physical machines then ex-
ecute the events in the agreed upon order. Thus, the LM
conceptually executes a single stream of wide-area proto-
col events. The LMs communicate using BLink to avoid
sending redundant wide-area messages.

The SM approach assumes that all events are determin-
istic. As a result, we must prevent the physical machines
from diverging in response to non-deterministic events. For
example, although the physical machines within a site may
fire a local timeout asynchronously, they must not act on the
timeout until its order is agreed upon. We use a technique
similar to BASE [35] to handle non-deterministic events. To
implement an LM timeout when a Byzantine fault-tolerant
agreement protocol is used, each server in the site sets a
local timer, and when this timer expires, it sends a signed
message to the leader of the agreement protocol. The leader
waits forf + 1 signed messages proving that the timer ex-
pired at at least one correct server and then orders a logical
timeout message (containing this proof).

Outgoing wide-area messages carry an RSA signature
[34]. When a logical machine is implemented with a be-
nign fault-tolerant protocol, the message carries a standard
RSA signature. When running a Byzantine fault-tolerant
local protocol, the physical machines within the site gen-
erate an RSA threshold signature, attesting to the fact that
f + 1 servers agreed on the message. This prevents mali-
cious servers within a site from forging a message. More-
over, outgoing messages carry only a single RSA (thresh-
old) signature, saving wide-area bandwidth. Our architec-
ture amortizes the high cost of threshold cryptography over
many outgoing messages. We use a technique similar to
Steward to prevent malicious servers from disrupting the
threshold signature protocol.

Protocol Compositions: The free substitution property
of our architecture makes it extensible, allowing one to use
any of several existing state of the art replication protocols,
both within each site and on the wide area. In this paper, we
focus on four compositions of our architecture, using two

B F TB L i n k B F TB L i n k B F TB L i n kB F TB L i n kW i d eA r e aL o c a lA r e a B F T P a x o s B F TP a x o sL M 1 L M 2 L M 3 L M 4
Figure 1: An example composition of four logical machines, each com-
prising several physical machines. The LMs receive wide-area protocol
messages via BLink, which passes these messages to the local-area order-
ing protocol (an independent instance of either Paxos or BFT). The local-
area protocol passes locally ordered messages up to the wide-area protocol
(a single global instance of BFT), which executes them immediately. If a
state transition causes the wide-area protocol to send a message, the LM
generates a threshold signed message and passes it to Blink,which reliably
transmits it to the destination logical machine.

well-known, flat replication protocols: Paxos [21, 22] as our
benign fault-tolerant protocol, and BFT [7] as our Byzantine
fault-tolerant replication protocol. We refer to compositions
aswide-area protocol/local-area protocol. For example, we
refer to a composition which runs BFT on the wide area and
Paxos on the local area as BFT/Paxos.

Figure 1 shows a representative system having four log-
ical machines, each running an independent local ordering
protocol. The logical machines run a single instance of BFT
on the wide-area to globally order client updates. Each LM
can be configured with any number of physical machines.
Since the wide-area protocol is BFT, the system can with-
stand a complete site compromise.

We conclude by providing an example of Paxos/BFT that
traces the flow of a client update through the system during
normal-case operation. First, a client sends an update to
a server in its own site, which forwards the update to the
leader site (i.e., the site coordinating the Paxos wide-area
protocol). Client updates are sent from a local server to the
leader site using a separate protocol, which is described in
[3]. The leader site LM uses BFT (requiring three local
communication rounds), to locally order the message event
corresponding to the reception of the update by the LM.
The LM generates a wide-area proposal message, binding a
global sequence number to the update. The message is then
threshold signed via a one-round protocol. The threshold-
signed proposal is then sent (using BLink) to the other sites.
Each non-leader LM orders the incoming proposal, gen-
erates an acknowledgement (accept) message for the pro-
posal, and then sends the acknowledgement (using BLink)
to the other LMs. Each LM then orders the reception of
the accept message. When the proposal and a majority of
accepts are collected, the LM globally orders the client up-
date, completing the protocol. We observe that the protocol
consists of many rounds, most of which are associated with
ordering incoming messages; this is the price to achieve
protocol separation.

5 BLink

To achieve high performance over the low-bandwidth
links characteristic of wide-area networks, our architecture
requires an efficient mechanism for passing messages be-
tween logical machines. As described in Section 4, each
LM is implemented by a replicated group of physical ma-
chines, some of which may be faulty. Faulty servers may
fail to send, receive, and/or disseminate wide-area mes-
sages. Existing protocols that use state machine based logi-
cal machines (e.g., [6, 28, 30]) overcome this problem by re-
dundantly sending all messages between logical machines.
For example, in a system toleratingf faults, each off + 1
servers in the sending LM might send the outgoing message
to f + 1 servers in the receiving LM. While this overhead
may be acceptable in high-bandwidth LANs or systems sup-
porting a small number of faults, the approach (or even one
with O(f) overhead) is poorly suited to large-scale wide-
area deployments.

Steward [5] avoids sending redundant messages during
normal-case operation by choosing one server (the site rep-
resentative) to send outgoing messages. Steward employs
a coarse-grained mechanism to monitor the performance of
the representative, using a lack of global progress to signal
that the representativemaybe acting faulty and should be
replaced. This approach has two undesired consequences:
timeouts for detecting faulty behavior can be significantly
higher than they need to be, and the communication pro-
tocol is (1) not generic and (2) tightly coupled with global
and local protocols, making it unusable in our customizable
architecture.

In this section we present theByzantine Linkprotocol
(BLink), a new Byzantine fault-tolerant protocol that allows
logical machines to efficiently communicate with each other
over the wide-area network, regardless of the protocols they
are running.2 BLink consists of several sub-protocols; the
sub-protocol deployed between the sending and the receiv-
ing logical machines is based on the fault tolerance method
employed in each site: (benign, benign), (Byzantine, be-
nign), (benign, Byzantine), and (Byzantine, Byzantine). We
first focus on the most challenging case, where each LM
runs a Byzantine fault-tolerant protocol. We then describe
the other sub-protocols in Section 5.2.

5.1 (Byzantine, Byzantine) Sub-protocol

BLink establishes a reliable communication link be-
tween two LMs using three techniques. The first technique
provides a novel way of delegating the responsibility for
wide-area communication such that (1) messages are nor-
mally sent only once and (2) the adversary is unable to

2The term “link” refers to the logical communication link established
between LMs. In particular, BLink operates over UDP.

repeatedly block communication between two logical ma-
chines. The second technique leverages the power of thresh-
old cryptography and state machine replication to allow the
servers in the sending LM to monitor the behavior of the
link and take action if it appears to be faulty. The third
technique ensures fairness by preventing the adversary from
starving any particular link.

Delegating Communication Responsibility: BLink
constructs a set oflogical links from each LM to its neigh-
boring LMs. These logical links are reliable, masking faulty
behavior at both the sending and receiving LMs. To sup-
port this abstraction, BLink defines a set ofvirtual links,
each consisting of one server (theforwarder) from the send-
ing LM and one server (thepeer) from the receiving LM.
The servers on a virtual link form a (forwarder, peer) pair.
The forwarder sends outgoing wide-area messages to the
peer, and the peer disseminates incoming messages to the
other servers in the receiving LM. The BLink logical link is
shown in Figure 2.

For each outgoing logical link, the sending LM delegates
communication responsibility to the forwarder of one of its
virtual links. This decision is made independently for each
outgoing logical link; different servers may act as forwarder
on different logical links, and the same server may act as
forwarder on multiple logical links. Since either the for-
warder or the peer may be faulty, the other servers within the
sending LM monitor the performance of the virtual link and
move to the next virtual link (electing the next forwarder)
if the current forwarder is not performing well enough (we
define this notion more precisely below).

The properties of the logical link are based on (1) how
one defines the set of virtual links that compose the logi-
cal link and (2) the order through which the sending LM
proceeds through the virtual links in this set. We consider
the logical link between two logical machines,LMA and
LMB, whereLMA hasA′ = 3FA + 1 servers, andLMB

hasB′ = 3FB +1 servers, withFA ≥ FB . In our construc-
tion, the set of virtual links in each logical link is simply
the set of allA′ · B′ possible virtual links constructed by
choosing a server inLMA and a server inLMB. We define
a selection orderfor virtual links as an infinite sequence
〈v0, . . .〉 of virtual links; the LM cycles through the set of
virtual links according to this sequence.

We now describe the selection order used by our logi-
cal links. In what follows,LCM(x, y) denotes the least
common multiple ofx andy, andGCD(x, y) denotes the
greatest common divisor ofx andy. We defineA′ series
of virtual links, each series indexed bys ∈ {0, . . . , A′ −
1}. Within each series, there areLCM(A′, B′) virtual
links, with each virtual link in the series indexed byi ∈
{0, . . . , LCM(A′, B′) − 1}. We denote virtual linki in se-
riess asLs,i and define it to connect the server inLMA with
server idi + s mod A′ to the server inLMB with server id

S e n d i n gL o g i c a lM a c h i n e R e c e i v i n gL o g i c a lM a c h i n eL o g i c a l L i n kV i r t u a lL i n k s
Figure 2: A logical link in the (Byzantine, Byzantine) case is constructed
from (3FA + 1) · (3FB + 1) virtual links. Each virtual link consists of a
forwarder and a peer. At any time, one virtual link is used to send messages
on the logical link. A virtual link that is diagnosed as potentially faulty is
replaced.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 30 1 2 3 01 2 3 0 12 3 0 1 23L o g i c a l M a c h i n e A
L o g i c a l M a c h i n e B

Figure 3: An example BLink logical link and selection order,with FA =
FB = 1. Numbers refer to server identifiers. Boxed servers are faulty,
and their associated virtual links can be blocked by the adversary. The
selection order defines four series, each containing four virtual links. The
order repeats after cycling through all four series.

i mod B′. We say thatLs,i = Lt,j if the two virtual links
connect the same pair of servers. Our construction uses the
following selection orderP :

v0≤i = L⌊i/ LCM(A′,B′)⌋,i mod LCM(A′,B′)

Thus, our protocol selects virtual links by taking series in
ascending numerical order moduloA′, starting with series
0, and within each series taking the virtual links in ascend-
ing numerical order. Figure 3 depicts an example with two
logical machines, each with four servers. The selection or-
der defines four series, each with four virtual links. Note
that the servers inLMB wrap around modulo 4, while the
servers inLMA “shift” by one position from one series to
the next.

We state the following properties regarding the selection
orderP (proofs are provided in the extended version of this
paper [3]):

1. ∀s∀i∀j 6=i if s ∈ {0, . . . , A′ − 1} and i, j ∈
{0, . . . , LCM(A′, B′)− 1}, thenLs,i 6= Ls,j. In other
words, each series consists ofLCM(A′, B′) distinct
virtual links.

2. ∀s∀t6=s∀i∀j , where s, t ∈ {0, . . . , A′ − 1} and
i, j ∈ {0, . . . , LCM(A′, B′) − 1}, if s 6≡ t
(mod GCD(A′, B′)) then Ls,i 6= Lt,j . In other
words, if the indices of two seriess andt are not con-
gruent moduloGCD(A′, B′), thens andt contain dis-
joint sets of virtual links.

3. For all s, the set S = {s mod A′, . . . , (s +
GCD(A′, B′)− 1) mod A′} of series containsA′ ·B′

disjoint virtual links. In other words, proceeding
through any set ofGCD(A′, B′) consecutive series
cycles through the set of all virtual links.

Given Properties 1-3, we prove the following claim
about the ratio of correct virtual links (i.e., virtual links
where both forwarder and peer are correct) to faulty links:

Claim: The selection orderP consists of consecutive
blocks ofA′ ·B′ virtual links, and in each block the fraction
of correct virtual links is at least4/9.

Proof: By construction, each block consists of
GCD(A′, B′) consecutive series moduloA′ and hence
Property 3 applies to each block. Consider any block. By
Property 3, allA′ ·B′ possible distinct virtual links are used
exactly once in the block.

Assume thatFA servers inLMA are faulty andFB

servers inLMB are faulty. There areFA(3FB + 1) vir-
tual links that have a faulty server fromLMA. There are
FB(3FA + 1) virtual links that have a faulty server from
LMB. There areFAFB virtual links that have both a faulty
server fromLMA and a faulty server fromLMB. Taking
into account the virtual links with two faulty servers, there
areFA(3FB + 1) + FB(3FA + 1) − FAFB virtual links
with at least one faulty server. Letb be the fraction of vir-
tual links with at least one faulty server. Then:

b =
FA(3FB + 1) + FB(3FA + 1) − FAFB

(3FA + 1)(3FB + 1)

=
5FAFB + FA + FB

9FAFB + 3FA + 3FB + 1

≤ 5/9

In addition to the ratio of correct virtual links to faulty
virtual links, we are also interested in the maximum num-
ber of consecutive faulty links through which the LM must
cycle before reaching a correct virtual link. We refer to this
value asV Lmax. In [3], we show thatV Lmax is bounded
at2FA.

Reliability and Monitoring: BLink uses threshold-
signed, cumulative acknowledgements to ensure reliability.
Each message sent on an outgoing logical link is assigned a
link-specific sequence number. Assigning these sequence
numbers consistently is simple, since outgoing messages
are generated in response to events totally-ordered by the
LM and can be sequenced using this total order. Each LM
periodically generates a threshold-signed acknowledgement
message, which contains, for each logical link, the sequence
number through which the LM has received all previous
messages. The generation of the acknowledgement is trig-
gered by executing an LM timeout, as described in Sec-
tion 4. Servers could also piggy-back acknowledgements

on regular outgoing messages for more timely, fine-grained
feedback. The peer server for each incoming logical link
sends the acknowledgement to its corresponding forwarder,
which presents the acknowledgement to the servers in the
sending LM.

The acknowledgement serves two purposes. First, it is
used to determine which messages need to be retransmitted
over the link to achieve reliability. This reliability is guar-
anteed even if the current forwarder is replaced, since the
next forwarder knows exactly which messages remain un-
acknowledged and should be resent. Second, the servers in
the sending LM use the acknowledgement to evaluate the
performance of the current forwarder. Each server in the
sending LM maintains a queue of the unacknowledged mes-
sages on each logical link, placing an LM timeout on the ac-
knowledgement of the first message in the queue. If, before
the timeout expires, the forwarder presents an acknowledge-
ment indicating the message was successfully received by
the receiving LM, the timeout is canceled and a new time-
out is set on the next message in the queue. However, if
the timeout expires before such an acknowledgement is re-
ceived, the servers suspect that the virtual link is faulty and
elect the next forwarder. This mechanism can be augmented
to enforce a higher throughput of acknowledged messages
by placing a timeout on a batch of messages. Of course,
BLink does not guarantee delivery when a site at one or
both ends of the logical link is Byzantine.

Fairness: The third technique used by BLink addresses
the dependency between the evaluation of the virtual link
forwarder and the performance of the leader of the agree-
ment protocol in the receiving LM. Intuitively, if the leader
in the receiving LM could selectively refuse to order cer-
tain messages or could delay them too long, then a correct
forwarder (in the sending LM) might not be able to collect
an acknowledgement in time to convince the other servers
that it sent the messages correctly. We would like to settle
on a correct virtual link to the extent possible, and thus we
augment the agreement protocol with a fairness mechanism.

When a peer receives an incoming message, it dissemi-
nates the message within the site; all servers then forward
the message to the leader of the agreement protocol and
expect it to initiate the message for ordering such that the
message can be executed by the LM. To ensure fairness,
servers must place a timeout on the leader of the agreement
protocol to prevent the selective starvation of a particular
incoming logical link. Servers within the LM maintain a
queue for each incoming logical link. When the leader re-
ceives a message to be ordered, it places the message on the
appropriate queue. The leader then attempts to order mes-
sages off of the queues in round-robin fashion. Since in-
coming link messages have link-based sequence numbers,
all servers know which message should be the next one or-
dered for each link. Thus, upon receiving the next message

on a link, a server places a timeout on the message and at-
tempts to replace the leader if the message is not ordered in
time. We describe our mechanism for preventing the star-
vation of any particular client in [3].

5.2 Other BLink Sub-protocols

We now consider the problem of inter-LM communica-
tion when one or both of the LMs is implemented using a
benign fault-tolerant state machine replication protocol. We
first consider the (benign, Byzantine) and (Byzantine, be-
nign) cases. As in the (Byzantine, Byzantine) case, the
number of virtual links that compose each logical link is
equal to the number of servers inLMA times the number
of servers inLMB. In the following discussion, we assume
that the number of servers inLMA, A′, is greater than or
equal to the number of servers, inLMB, B′. If LMA runs
a Byzantine fault-tolerant protocol andLMB runs a benign
fault-tolerant protocol, then3FA+1 ≥ 2FB+1. Otherwise,
we have2FA + 1 ≥ 3FB + 1.

We use the same selection order as for the (Byzan-
tine, Byzantine) case, and we use an argument similar to
the one found in Section 5.1 to obtain the ratio of correct
to faulty virtual links. In the extended version of this pa-
per [3], we show that at least1/3 of the virtual links are
correct. Further, whenLMA is Byzantine fault-tolerant,
the maximum number of consecutive faulty links (V Lmax)
is bounded atmax(⌊2.5FA⌋, 3FA − 2); when LMA is
benign fault-tolerant,V Lmax is bounded atmax(2FA −
1, ⌊ 5

3FA⌋). Intuitively, the difference in the bounds is at-
tributed to the difference in the ratio of faulty servers within
LMB: whenLMB is Byzantine, the ratio is only1/3, but
whenLMB is benign, the ratio is1/2.

In the (benign, benign) case, each logical link consists
of (2FA + 1) · (2FB + 1) virtual links. This yields a ra-
tio of 1/4 correct virtual links. Since no server in either
LM is Byzantine, it is possible to use a simple and efficient
selection order to cycle through the virtual links. The ap-
proach assumes that the correct servers in the sending LM
can communicate equally well with the correct servers in
the receiving LM. This assumption implies that there is no
need for the sending LM to replace a correct forwarder. The
sending LM thus allows its forwarder to try different peers
until it establishes a correct virtual link. The forwarder will
need to cycle through at mostFB + 1 such peers before
finding a correct one. The servers in the sending LM can
use a standard ping/Hello protocol to monitor the status of
the current forwarder. A server only votes to replace the for-
warder if it has not received a response from the forwarder
within a timeout period.

When a forwarder detects that a peer is faulty, it lo-
cally broadcasts a message indicating that the peer should
be skipped by other forwarders. The next forwarder then

Sub-protocol Correct links V Lmax upper bound
(Byz, Byz) 4/9 2FA

(Byz, Benign) 1/3 max(⌊2.5FA⌋, 3FA − 2)
(Benign, Byz) 1/3 max(⌊2.5FA⌋, 3FA − 2)
(Benign, Benign) 1/4 FA + FB

Table 1: The ratio of correct virtual links and the maximum number of
consecutive faulty virtual links for each BLink sub-protocol.

picks up where the last forwarder left off. In this way, one
can think of the logical machine as rotating through a sin-
gle sequence of peers. Note that subsequent forwarders
may eventually send to peers that were previously diag-
nosed as faulty, because a correct peer may be diagnosed as
faulty due to a transient network partition. In the extended
version of this paper, we show thatV Lmax is bounded
at FA + FB. We can use a similar strategy in the (be-
nign, Byzantine) case; however, the technique is not appli-
cable to the (Byzantine, benign) case, since the forwarder
cannot be trusted to find a correct peer.

We summarize our results in Table 1.

6 Performance Optimizations

Our composable architecture has significant computa-
tional overhead, because each LM must order all events
that cause state transitions in the wide-area protocol. This
Byzantine fault-tolerant ordering (which in our architecture
uses digital signatures) is computationally costly. In addi-
tion, each LM threshold signs all outgoing messages, which
imposes an even greater computational cost. Consequently,
we use Merkle hash trees [29] to amortize the cost of thresh-
old signing, and we improve the performance of LM event
processing via well-known aggregation techniques. These
optimizations are appliedonly to the local protocols. Thus,
there is a one-to-one correspondence between wide-area
messages in an optimized, composable protocol and its un-
optimized equivalent.

Merkle Tree Based Signatures: Instead of thresh-
old signing every outgoing message, we generate a sin-
gle threshold signature, based on a Merkle hash tree, that
is used to authenticate several messages. Each outgoing
message is self-contained, including everything necessary
for validation (except the public key). The leaf nodes in a
Merkle hash tree contain the hashes of the messages that
need to be sent. Each of the internal nodes contains a hash
of the concatenation of the two hashes in its children nodes.
The signature is generated over the hash contained in the
root. When a message is sent, we include the series of
hashes that can be used to generate the root hash. The num-
ber of included hashes is log(N), whereN is the number of
messages that were signed with the single signature.

Logical Machine Event Processing: We use the aggre-
gation technique described in [8] to increase the through-

put of local event processing by the LM. The LM orders
several events at once, allowing the LM to order thousands
of events per second over LANs while providing Byzantine
fault tolerance. With this performance, it is likely that the
incoming wide-area bandwidth will limit throughput.

7 Performance Evaluation

To evaluate the performance of our composable architec-
ture, we implemented our protocols, including all necessary
communication and cryptographic functionality.

Testbed and Network Setup: We used a network topol-
ogy consisting of 5 wide-area sites, each containing 16
physical machines, to quantify the performance of our sys-
tem. In order to facilitate comparisons with Steward, we
chose to use the same topology and numbers of machines
used in [5]. If BFT is run within a site, then the site can
tolerate up to 5 Byzantine servers. If Paxos is run within
a site, then the site can tolerate 7 benign server failures. If
BFT is run on the wide area, then the system can tolerate
one Byzantine site compromise. If Paxos is run on the wide
area, then the system remains available if no more than two
sites are disconnected from the others.

Our experimental testbed consists of a cluster with
twenty 3.2 GHz, 64-bit Intel Xeon computers. Each com-
puter can compute a 1024-bit RSA signature in 1.3 ms and
verify it in 0.07 ms. For n=16, k=6, 1024-bit threshold cryp-
tography which we use for these experiments, a computer
can compute a partial signature and verification proof in 3.9
ms and combine the partial signatures in 3.4 ms. The leader
site was fully deployed on 16 machines, and the other 4 sites
were emulated by one computer each.

Each emulating computer performed the role of a repre-
sentative of a complete 16 server site. Thus, our testbed is
equivalent to an 80 node system distributed across 5 sites.
Upon receiving a message, the emulating computers busy-
waited for the time it took a 16 server site to handle that
packet and reply to it, including intra-site communication
and computation. We also modeled the aggregation used
by our composable architecture. We determined busy-wait
times for each type of packet by benchmarking the different
types of ordering protocols on a fully deployed, 16 server
site. The Spines [2] messaging system was used to emulate
latency and throughput constraints on the wide-area links.
Wide-area links were limited to 10 Mbps in all tests.

We compared the performance results of five protocols,
four of which use our composable architecture:
Paxos/Paxos, BFT/Paxos, Paxos/BFT, BFT/BFT. The fifth
is a new implementation of Steward, which includes the op-
tion of using the same optimization techniques used in our
new architecture. The updates in our experiments carried a
payload of 200 bytes, representative of an SQL statement.

We exclusively use RSA signatures for authentication,

Protocol Rounds
Protocol Wide Area Local Area Total
Steward 2 4 6
Paxos/Paxos 2 6 8
BFT/Paxos 3 8 11
Paxos/BFT 2 11 13
BFT/BFT 3 15 18

Table 2: Normal-case protocol rounds.

Protocol Computational Costs
Protocol Threshold RSA Sign RSA Sign
Steward 1 3
Paxos/Paxos 0 2 + (S − 1)
BFT/Paxos 0 3 + 2(S − 1)
Paxos/BFT 1 3 + 2(S − 1)
BFT/BFT 2 4 + 4(S − 1)

Table 3: Number of expensive cryptographic operations thateach server at
the leader site does per update during normal-case operation.

both for consistency with our previous work and to provide
non-repudiation, which is valuable when identifying mali-
cious servers. The benign fault-tolerant protocols use RSA
signatures to protect against external attackers. While itis
possible to use more efficient cryptography in the composi-
tions based on Paxos, these changes do not significantly af-
fect performance when our optimizations are used. We also
note that BFT can use MACs, which improves its latency
and results in much better performance when no aggrega-
tion is used. However, this change has a smaller effect on
our optimized protocols, because the total update latency is
dominated by the wide-area latency.

Protocol Rounds and Cryptographic Costs: Table 2
shows the number of normal-case protocol rounds, where
view changes do not occur, in Steward and in each of the
four combinations of our composable architecture. The pro-
tocol rounds are classified as wide-area when the message
is sent between sites, and local-area when it is sent between
two physical machines within a site. The difference in total
rounds ranges from 6 (Steward) to 18 (BFT/BFT). However,
it is important to observe that all of the protocols listed have
either two or three wide-area rounds.

Table 3 shows the computationally expensive crypto-
graphic operations required for each update during normal-
case operation at the leader site when the optimizations pre-
sented in Section 6 are not used. The costs are a function
of the number of sites, denoted byS. The table shows the
number of threshold signatures to which each server in the
leader must contribute and the number of RSA signatures
that each server in the leader site must compute. In the
tests presented in this paper, the unoptimized versions of our
algorithm are always limited by computational resources.
Consequently, these costs are inversely proportional to the
maximum throughput.

Architectural Comparison: To evaluate the overhead
of our composable architecture compared to that of Stew-
ard, we first compare the performance of the five protocols
when the optimizations presented in Section 6 are not used.
Note that that the unoptimized results do not reflect our ar-
chitecture’s actual performance; we specifically removed
the optimizations to provide a clear picture of their bene-
fits. We used a symmetric configuration where all sites are
connected to each other with 50 ms (emulating crossing the

continental US), 10Mbps links. Each client sends an update
to a server in its site, waits for proof that the update was
ordered, and then immediately injects the next update.

Figure 4 shows update throughput as a function of the
number of clients. In all of the protocols, throughput ini-
tially increases as the number of clients increases. When
the load on the CPU reaches 100%, throughput plateaus.
This graph shows the performance benefit of Steward’s ar-
chitecture. In Steward, external wide-area accept messages
are not ordered before the replicas process them. Stew-
ard achieves over twice the performance of Paxos/BFT, its
equivalent composition, reflecting the price of clean sepa-
ration. Steward even outperforms Paxos/Paxos, which has
more ordering and RSA signature generation, but does not
use threshold signatures. The initial slope of these curves
is most dependent on the number of wide-area protocol
rounds. The peak performance of each of the protocols is
a function of the number of cryptographic operations (see
Table 3). The Paxos/BFT composition has about twice the
throughput of the BFT/BFT composition, and it has approx-
imately half of the cryptographic costs. A similar relation-
ship exists between Paxos/Paxos and BFT/Paxos.

Figure 5 shows average update latency measured at the
clients as a function of the number of clients. In each of
the curves, the update latency remains approximately con-
stant until the CPU is 100% utilized, at which point, latency
climbs as the number of clients increases. In our system, we
queue client updates if the system is overburdened and in-
ject these updates in the order in which they were received.

Figures 6 and 7 show the results for the same tests as
above with 100 ms network diameter. We observe the same
maximum bandwidth and latency trends. Additional latency
on the wide-area links reduces the slope of the lines in Fig-
ure 6 (update throughput), but has no effect on the maxi-
mum throughput that is achieved.

Performance of Optimized Protocols: We now present
the performance of the five protocols with the optimiza-
tions described in Section 6. In these protocols, the cost
of the cryptographic operations listed in Table 3 are amor-
tized over several updates when CPU load is high. In con-
trast to the unoptimized protocols, none of our optimized
protocols were CPU limited in the following tests. Max-
imum throughput was always limited by wide-area band-

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 4: Throughput of Unoptimized Protocols, 50 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 5: Latency of Unoptimized Protocols, 50 ms Diameter

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 6: Throughput of Unoptimized Protocols, 100 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Steward
Paxos/Paxos
Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 7: Latency of Unoptimized Protocols, 100 ms Diameter

width constraints. In all cases, the optimized protocols in-
creased throughput by at least a factor of 4 compared to their
unoptimized versions.

In Figures 8 and 10 (discussed below), we include two
theoretical throughput upper bounds of a Paxos/BFT com-
position in which LMs redundantly send physical messages
over the wide area to ensure reliable inter-LM communica-
tion. We computed the maximum throughput by assuming
that the wide-area Proposal message sent from the leader
site contains at least a signed update from the client and an
RSA signature from the LM (456 bytes total). We present
bounds based on (1) an(f + 1)2 protocol where the leader
site would need to redundantly send 36 of these messages
to each of the other 4 sites per update and (2) a(2f + 1)
peer protocol where the leader site would redundantly send
11 messages to each site per update. The second proto-
col was included within the original Steward system for use
during view changes, but we are unaware of any other sys-
tems that use it. The upper bound is the throughput at which
the leader site’s outgoing link reaches saturation. The dif-
ference between the redundant send upper bounds and the
performance of Paxos/BFT (with BLink) attests to the im-

portance of the BLink protocol.

Figure 8 shows the update throughput as a function of
the number of clients. The relative maximum throughput
and slopes of the curves are very different from the un-
optimized versions. For example, Paxos/Paxos, Steward,
and Paxos/BFT have almost the same maximum through-
put. This attests to the effectiveness of the optimizationsin
greatly reducing the performance overhead associated with
clean separation. The optimization improves the perfor-
mance of the compositions more than it improves Steward
because the composable architecture uses many more local
rounds. In a wide-area environment, local rounds are rela-
tively inexpensiveif they do not consume too much com-
putational resources. The optimizations eliminate this com-
putational bottleneck. Thus, performance of the optimized
version is predominantly dependent on the number of wide-
area protocol rounds.

The local-area protocol has a smaller, but significant,
effect on performance. The slopes of the curves are dif-
ferent because of the difference in latency contributed by
the local-area protocols. BFT and threshold signing con-
tribute the greatest latency. As a result, Steward has a

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Redundant Send (2f+1) Bound
Redundant Send (f+1)2 Bound

Figure 8: Throughput of Optimized Protocols, 50 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 9: Latency of Optimized Protocols, 50 ms Diameter

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

U
pd

at
e

T
hr

ou
gh

pu
t (

up
da

te
s/

se
c)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Redundant Send (2f+1) Bound
Redundant Send (f+1)2 Bound

Figure 10: Throughput of Optimized Protocols, 100 ms Diameter

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140

U
pd

at
e

La
te

nc
y

(m
s)

Clients

Paxos/Paxos
Optimized Steward

Paxos/BFT
BFT/Paxos
BFT/BFT

Figure 11: Latency of Optimized Protocols, 100 ms Diameter

steeper slope than its equivalent composition, Paxos/BFT.
Here also, we can see the benefit of Steward, but the per-
formance difference is considerably smaller than in the un-
optimized protocols. Paxos contributes very little latency
and therefore, Paxos/Paxos’s performance slightly exceeds
Steward’s. Note that Paxos/Paxos benefits slightly more
than Steward from the optimizations, because Paxos/Paxos
locally orders more messages than Steward (which orders
the update locally only once).

Figure 9 shows the average update latency in the same
experiment. Although aggregation is commonly associated
with an increase in latency, the optimized protocols have
similar or lower latency compared to the unoptimized vari-
ants. An LM locally orders at least two external messages
to execute a client’s update. Therefore, even with a single
client in the system, if the external accept messages arrive
at about the same time, the latency can be lower with ag-
gregation. When there are many clients, the average latency
of the optimized protocols is considerably less than that of
the unoptimized protocols, because the optimized protocols
have much higher maximum throughput. Figures 10 and 11
show the same trends on a 100 ms diameter network.

Discussion: Our optimized composable architecture
achieves practical performance, with throughputs of hun-
dreds of updates per second, even while offering the
strong security guarantees of BFT/BFT. The performance of
Paxos/BFT represents a factor of 4 improvement compared
with the previous state of the art for wide-area Byzantine
replication (i.e., unoptimized Steward). The performance
of the unoptimized protocols is computationally limited and
reflects the cost associated with achieving composability
and flexibility. Our results show that the optimizations ef-
fectively eliminate this performance bottleneck.

8 Related Work

State Machine Replication: Lamport [20] and Schnei-
der [37] introduced and popularized state machine replica-
tion, where deterministic replicas execute a totally ordered
stream of events that cause state transitions. Therefore, all
replicas proceed through exactly the same states. This tech-
nique can be used to implement replicated information ac-
cess systems, databases, and other services. The SM ap-
proach has been used in many systems to construct fault-

tolerant logical machines out of collections of physical ma-
chines. We mention several of these systems here.

Schlichting and Schneider [36] discuss the implementa-
tion and use of k-fail-stop processors, which are composed
of several potentially Byzantine processors. Benign fault-
tolerant protocols safely run on top of these fail-stop pro-
cessors even in the presence of Byzantine faults.

The Delta-4 system [31] uses an intrusion-tolerant archi-
tecture and provides services for data authentication, stor-
age, and authorization. Like our current work, the system
constructs logical entities out of multiple physical machines
via the SM approach; it also employs protocols to make
communication between the logical entities efficient. How-
ever, these protocols assume that the communicating parties
are fail-silent, whereas our current work constructs Byzan-
tine fault-tolerant links between logical entities.

The Voltan system of Brasileiro, et al. [6] uses the SM
approach to construct two-processor fail-silent nodes that
either work correctly or become silent if an internal failure
of one of the processes is detected. Each message send from
one logical node to another requires sending four physical
messages over the network, reducing the system’s applica-
bility to bandwidth-constrained wide-area environments.

The Starfish system of Kihlstrom and Narasimhan [19]
builds an intrusion-tolerant middleware service by using a
hierarchical membership structure and end-to-end intrusion
detection. The system uses a central, hardened core that
offers strong security guarantees. The core is augmented
by “arms,” with weaker security guarantees, that can be re-
moved in the case of a security breach.

The Thema system of Merideth, et al. [28] uses SM
replication to build Byzantine fault-tolerant Web Services.
Standard Web Service clients access the Byzantine fault-
tolerant service using a client library. Thema allows Byzan-
tine fault-tolerant services to safely access non-replicated
Web Services.

The MAFTIA system of Verissimo, et al. [40] uses archi-
tectural hybridization to build mechanisms for intrusion tol-
erance by transforming untrusted components into trusted
components. The hybrid architecture is built in the worm-
hole model [39], where different parts of the system oper-
ate under different fault assumptions and are thus resilient
to different types of attack. For example, if trusted compo-
nents (e.g., a reliable channel, a processor whose results can
be trusted) are available, the system can be configured to run
protocols that take advantage of them to achieve increased
performance (e.g., [9]). In contrast, our system assumes all
components are untrusted, allowing a similar performance-
resilience tradeoff by deploying either a benign or a Byzan-
tine fault-tolerant protocol in each site and on the wide area.

Byzantine Fault-tolerant SMR Protocols: Although
our prototype system deployed BFT [7], we mention sev-
eral other Byzantine fault-tolerant agreement protocols that

can be used for SM replication.
Doudou, et al. [13] decompose the problem of Byzan-

tine fault-tolerant SMR via a series of abstractions. The
replication problem is reduced to an atomic multicast pro-
tocol, which itself is composed of a reliable multicast com-
ponent and a solution to the weak interactive consistency
problem. The latter uses a Byzantine failure detector for
detecting mute processes (i.e., processes from which, from
some time on, a correct process stops receiving messages).

Yin, et al. [41] describe a Byzantine fault-tolerant repli-
cation architecture that separates the agreement component
that orders requests from the execution component that pro-
cesses them. Their architecture reduces the number of stor-
age replicas to2f +1 and provides a privacy firewall, which
prevents a compromised server from divulging sensitive in-
formation.

Correia, et al. [10] reduce the number of replicas needed
for SM replication from3f +1 to 2f +1 by augmenting the
Byzantine, asynchronous model with a distributed trusted
component, the Trusted Timely Computing Base (TTCB).
The local TTCBs of the replication servers are assumed not
to be malicious, and they communicate over a synchronous
control network providing real-time delay guarantees. The
TTCBs run a fault-tolerant protocol to assign an ordering
to protocol messages, and these protocol messages are then
exchanged over the asynchronous payload network.

Martin and Alvisi [27] recently introduced a two-round
Byzantine consensus algorithm, which uses5f + 1 servers
to overcomef faults. Their approach trades potentially
lower availability for increased performance. The protocol
is well-suited for use in our architecture as the wide-area
protocol, since it would reduce the number of wide-area
crossings from three to two.

Fault-tolerant CORBA: State machine replication has
also been used to increase the fault-tolerance and availabil-
ity of CORBA services.

The Object Group Service (OGS) of Felber, et al. [15]
provides a composable, modular architecture for replicating
CORBA objects. The OGS implements several component
CORBA services, such as group multicast, group member-
ship, and distributed consensus, which are then composed to
implement group communication services; this group com-
munication service is then used for replication.

The FTS system of Friedman and Hadad [17] uses active
replication to construct a lightweight fault tolerance service
for CORBA. The system survives network partitions, allow-
ing updates in a single partition but allowing other partitions
to remain alive until they reconnect.

The Immune system of Narasimhan, et al. [30] provides
support for survivable CORBA applications by replicating
both client and server objects. When a replicated client ob-
jects invokes an operation on a replicated server object, each
client object sends a message to each server object via the

SecureRing multicast protocol [18], and the servers employ
majority voting to mask faulty behavior; the responses are
sent from server to client in similar fashion. While the log-
ical machines in our architecture could use SecureRing to
communicate with one another (with one group for each
pair of neighboring logical machines), doing so would re-
sult in many redundant messages being sent over the wide-
area network during normal-case operation, greatly limiting
performance.

Byzantine Fault-tolerant Group Communication:
Also related to our work are group communication systems
resilient to Byzantine failures [12, 14, 18, 32, 33].

Both Rampart [33] and SecureRing [18] provide services
for messaging (atomic multicast) and membership. Ram-
part uses a designated server in each view, the sequencer,
to assign an ordering to messages, while SecureRing orders
messages via a logical token ring. Both systems rely on a
Byzantine failure detector for liveness and maintain safety
provided that there are fewer than one third faulty servers.

The ITUA system [12, 32], developed by BBN
Technologies and the University of Illinois at Urbana-
Champaign, focuses on providing intrusion-tolerant group
services. It employs the principle of unpredictable adapt-
ability to overcome intelligent adversaries.

Drabkin, et al. [14] describe a Byzantine version of
the JazzEnsemble system, providing a formal definition of
Byzantine virtual synchrony. The system uses the idea of
fuzzy membership: each node is given an indication of how
fuzzy the other group members are, with low fuzziness indi-
cating a well-responding server and high fuzziness indicat-
ing a server that is not very responsive. Detection of Byzan-
tine behavior in this context is encapsulated by fuzzy mute
and fuzzy verbose failure detectors.

Quorum Replication: Quorum systems obtain Byzan-
tine fault tolerance by applying quorum replication meth-
ods [23]. Examples of such systems include Phalanx [26]
and Fleet [24, 25]. The HQ protocol [11] combines the use
of quorum replication with Byzantine fault-tolerant agree-
ment, using a more lightweight quorum-based protocol dur-
ing normal-case operation and BFT to resolve contention
when it arises.

9 Conclusions

This paper presented a customizable, scalable replication
architecture, tailored to systems that span multiple wide-
area sites. Our architecture constructs logical machines (en-
hanced for use on wide-area networks) out of the physical
machines in each site using the state machine approach, en-
abling free substitution of the fault tolerance method used
in each site and in the wide-area replication protocol. We
presented BLink, a new Byzantine fault-tolerant commu-
nication protocol that provides efficient and reliable wide-

area communication between logical machines. BLink was
shown to be a critical addition to the logical machine ab-
straction for wide-area networks, where bandwidth con-
straints limit performance. An experimental evaluation
showed that our optimized architecture achieves a maxi-
mum wide-area Byzantine replication throughput at least
four times higher than the previous state of the art.

References

[1] http://www.ciphertrust.com/resources/statistics/zombie.php.
[2] The Spines project, http://www.spines.org/.
[3] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Customiz-

able fault tolerance for wide-area replication. Tech-
nical Report CNDS-2007-3, Johns Hopkins University,
www.dsn.jhu.edu, August 2007.

[4] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-
Rotaru, J. Olsen, and D. Zage. Steward: Scaling byzan-
tine fault-tolerant replication to wide area networks. Tech-
nical Report CNDS-2006-2, Johns Hopkins University,
www.dsn.jhu.edu, November 2006.

[5] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-
Rotaru, J. Olsen, and D. Zage. Scaling byzantine fault-
tolerant replication to wide area networks. InProceedings of
the 2006 International Conference on Dependable Systems
and Networks (DSN’06), pages 105–114, Philadelphia, PA,
USA, June 2006. IEEE Computer Society.

[6] F. V. Brasileiro, P. D. Ezhilchelvan, S. K. Shrivastava,
N. A. Speirs, and S. Tao. Implementing fail-silent nodes
for distributed systems.IEEE Transactions on Computers,
45(11):1226–1238, 1996.

[7] M. Castro and B. Liskov. Practical byzantine fault toler-
ance. InProceedings of the 1999 Symposium on Operating
Systems Design and Implementation (OSDI ’99), pages 173–
186, New Orleans, LA, USA, 1999. USENIX Association,
Co-sponsored by IEEE TCOS and ACM SIGOPS.

[8] M. Castro and B. Liskov. Practical byzantine fault toler-
ance and proactive recovery.ACM Transactions on Com-
puter Systems, 20(4):398–461, 2002.

[9] M. Correia, L. C. Lung, N. F. Neves, and P. Verı́ssimo. Ef-
ficient byzantine-resilient reliable multicast on a hybridfail-
ure model. InProceedings of the 21st Symposium on Re-
liable Distributed Systems (SRDS ’02), pages 2–11, Suita,
Japan, Oct. 2002.

[10] M. Correia, N. F. Neves, and P. Verı́ssimo. How to tolerate
half less one byzantine nodes in practical distributed sys-
tems. InProceedings of the 23rd IEEE International Sym-
posium on Reliable Distributed Systems (SRDS’04), pages
174–183, Florianpolis, Brazil, 2004. IEEE Computer Soci-
ety.

[11] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and
L. Shrira. HQ replication: A hybrid quorum protocol for
byzantine fault tolerance. InProceedings of the 7th Sym-
posium on Operating Systems Design and Implementation
(OSDI ’06), pages 177–190, Seattle, WA, Nov. 2006.

[12] M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H.
Sanders, M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Web-
ber, P. Pal, R. Watro, and J. Gossett. Providing intrusion

tolerance with ITUA. InSupplement of the 2002 Interna-
tional Conference on Dependable Systems and Networks,
June 2002.

[13] A. Doudou, R. Guerraoui, and B. Garbinato. Abstractions
for devising byzantine-resilient state machine replication.
In Proceedings of the 19th IEEE Symposium on Reliable
Distributed Systems (SRDS’00), pages 144–153, Nurnberg,
Germany, 2000. IEEE Computer Society.

[14] V. Drabkin, R. Friedman, and A. Kama. Practical byzantine
group communication. InProceedings of the 26th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS ’06), page 36, Lisboa, Portugal, 2006. IEEE Com-
puter Society.

[15] P. Felber, R. Guerraoui, and A. Schiper. Replication of
CORBA objects. InAdvances in Distributed Systems, Ad-
vanced Distributed Computing: From Algorithms to Sys-
tems, pages 254–276, London, UK, 1999. Springer-Verlag.

[16] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process.J. ACM,
32(2):374–382, 1985.

[17] R. Friedman and E. Hadad. FTS: A high-performance
CORBA fault-tolerance service. InProceedings of the
7th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS ’02), pages 61–68, San
Diego, CA, USA, 2002. IEEE Computer Society.

[18] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The
SecureRing protocols for securing group communication. In
Proceedings of the IEEE 31st Hawaii International Confer-
ence on System Sciences, volume 3, pages 317–326, Kona,
Hawaii, January 1998.

[19] K. P. Kihlstrom and P. Narasimhan. The Starfish system:
Providing intrusion detection and intrusion tolerance for
middleware systems. InProceedings of the 8th International
Workshop on Object-Oriented Real-Time Dependable Sys-
tems (WORDS ’03), pages 191–199, Guadalajara, Mexico,
2003. IEEE Computer Society.

[20] L. Lamport. Time, clocks, and the ordering of events in a
distributed system.Commun. ACM, 21(7):558–565, 1978.

[21] L. Lamport. The part-time parliament.ACM Transactions
on Computer Systems, 16(2):133–169, May 1998.

[22] L. Lamport. Paxos made simple.SIGACTN: SIGACT News
(ACM Special Interest Group on Automata and Computabil-
ity Theory), 32:18–25, 2001.

[23] D. Malkhi and M. Reiter. Byzantine quorum systems.Dis-
tributed Computing, 11(4):203–213, 1998.

[24] D. Malkhi and M. Reiter. An architecture for survivableco-
ordination in large distributed systems.IEEE Transactions
on Knowledge and Data Engineering, 12(2):187–202, 2000.

[25] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind. Persis-
tent objects in the Fleet system. InProceedings of the 2nd
DARPA Information Survivability Conference and Exposi-
tion (DISCEX II), volume 2, pages 126–136, June 2001.

[26] D. Malkhi and M. K. Reiter. Secure and scalable replication
in Phalanx. InProceedings of the The 17th IEEE Symposium
on Reliable Distributed Systems (SRDS ’98), pages 51–58,
West Lafayette, IN, USA, 1998. IEEE Computer Society.

[27] J.-P. Martin and L. Alvisi. Fast byzantine consensus.
IEEE Transactions on Dependable and Secure Computing,
3(3):202–215, 2006.

[28] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvel-
lou, and P. Narasimhan. Thema: Byzantine-fault-tolerant
middleware for web-service applications. InProceedings of
the 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), pages 131–142, Orlando, FL, USA, 2005. IEEE
Computer Society.

[29] R. C. Merkle. Secrecy, authentication, and public key sys-
tems.PhD thesis, Stanford University.

[30] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and P. M.
Melliar-Smith. Providing support for survivable CORBA
applications with the Immune system. InProceedings of the
19th IEEE International Conference on Distributed Com-
puting Systems (ICDCS ’99), pages 507–516, Austin, TX,
USA, 1999.

[31] D. Powell, D. Seaton, G. Bonn, P. Verı́ssimo, and F. Wae-
selynck. The Delta-4 approach to dependability in open
distributed computing systems. InProceedings of the 18th
IEEE International Symposium on Fault-Tolerant Comput-
ing (FTCS), pages 246–251, June 1988.

[32] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H.
Sanders. Quantifying the cost of providing intrusion toler-
ance in group communication systems. InProceedings of
the 2002 International Conference on Dependable Systems
and Networks (DSN ’02), pages 229–238, Bethesda, MD,
USA, June 2002.

[33] M. K. Reiter. The Rampart Toolkit for building high-
integrity services. InSelected Papers from the International
Workshop on Theory and Practice in Distributed Systems,
pages 99–110, London, UK, 1995. Springer-Verlag.

[34] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, Feb. 1978.

[35] R. Rodrigues, M. Castro, and B. Liskov. BASE: using
abstraction to improve fault tolerance. InProceedings of
the 18th ACM symposium on Operating systems principles
(SOSP ’01), pages 15–28, Banff, Alberta, Canada, 2001.
ACM Press.

[36] R. D. Schlichting and F. B. Schneider. Fail-stop processors:
An approach to designing fault-tolerant computing systems.
ACM Transactions on Computer Systems, 1(3):222–238,
1983.

[37] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial.ACM Computing
Surveys, 22(4):299–319, 1990.

[38] V. Shoup. Practical threshold signatures.EUROCRYPT
2000, Lecture Notes in Computer Science, 1807:207–220,
2000.

[39] P. Verı́ssimo. Uncertainty and predictability: Can they be
reconciled? InFuture Directions in Distributed Computing,
number 2584 in LNCS. Springer-Verlag, 2003.

[40] P. Verı́ssimo, N. Neves, C. Cachin, J. Poritz, D. Powell,
Y. Deswarte, R. Stroud, and I. Welch. Intrusion-tolerant
middleware: The road to automatic security.IEEE Security
& Privacy, 4(4):54–62, 2006.

[41] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for byzan-
tine fault-tolerant services. InProceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP ’03),
pages 253–267, Bolton Landing, NY, USA, October 2003.

