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Abstract—This paper presents the first hierarchical Byzantine fault-tolerant replication architecture suitable to systems that span
multiple wide area sites. The architecture confines the effects of any malicious replica to its local site, reduces message complexity
of wide area communication, and allows read-only queries to be performed locally within a site for the price of additional standard
hardware. We present proofs that our algorithm provides safety and liveness properties. A prototype implementation is evaluated over
several network topologies and is compared with a flat Byzantine fault-tolerant approach. The experimental results show considerable
improvement over flat Byzantine replication algorithms, bringing the performance of Byzantine replication closer to existing benign

fault-tolerant replication techniques over wide area networks.

Index Terms—Fault tolerance, scalability, wide area networks

1 INTRODUCTION

DURING the last few years, there has been consid-
erable progress in the design of Byzantine fault-
tolerant replication systems. Current state of the art
protocols perform very well on small-scale systems that
are usually confined to local area networks, which have
small latencies and do not experience frequent network
partitions. However, current solutions employ flat ar-
chitectures that have several limitations: Message com-
plexity limits their ability to scale, and strong connec-
tivity requirements limit their availability on wide area
networks, which usually have lower bandwidth, higher
latency, and exhibit more frequent network partitions.
This paper presents Steward [1], the first hierarchical
Byzantine fault-tolerant replication architecture suitable
for systems that span multiple wide area sites, each
consisting of several server replicas. Steward assumes
no trusted component in the entire system other than a
mechanism to pre-distribute private/public keys.
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Steward uses Byzantine fault-tolerant protocols within
each site and a lightweight, benign fault-tolerant pro-
tocol among wide area sites. Each site, consisting of
several potentially malicious replicas, is converted into a
single logical trusted participant in the wide area fault-
tolerant protocol. Servers within a site run a Byzantine
agreement protocol to agree upon the content of any
message leaving the site for the global protocol.

Guaranteeing a consistent agreement within a site is
not enough. The protocol needs to eliminate the ability
of malicious replicas to misrepresent decisions that took
place in their site. To that end, messages between servers
at different sites carry a threshold signature attesting
that enough servers at the originating site agreed with
the content of the message. This allows Steward to save
the space and computation associated with sending and
verifying multiple individual signatures. Moreover, it
allows for a practical key management scheme where
all servers need to know only a single public key for
each remote site and not the individual public keys of
all remote servers.

Steward’s hierarchical architecture reduces the mes-
sage complexity on wide area exchanges from O(N?) (N
being the total number of replicas in the system) to O(S?)
(S being the number of wide area sites), considerably
increasing the system’s ability to scale. It confines the
effects of any malicious replica to its local site, enabling
the use of a benign fault-tolerant algorithm over the
wide area network. This improves the availability of
the system over wide area networks that are prone to
partitions. Only a majority of connected sites is needed
to make progress, compared with at least 2f + 1 servers
(out of 3f+ 1) in flat Byzantine architectures, where f is
the upper bound on the number of malicious servers.

Steward allows read-only queries to be performed
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locally within a site, enabling the system to continue
serving read-only requests even in sites that are par-
titioned away. These local queries provide one-copy
serializability [2], the common semantics provided by
database products. Serializability is a weaker guarantee
than the linearizability semantics [3] provided by some
existing flat protocols (e.g., [4]). We believe serializability
is the desired semantics in partitionable environments,
because systems that provide linearizability can only
answer queries in sites connected to a quorum. In addi-
tion, Steward can guarantee linearizability by querying
a majority of the wide area sites, at the cost of higher
latency and lower availability.

Steward provides the benefits described above by
using an increased number of servers. More specifically,
if the requirement is to protect against any f Byzantine
servers in the system, Steward requires 3f + 1 servers
in each site. However, in return, it can overcome up
to f malicious servers in each site. We believe this
requirement is reasonable given the cost associated with
computers today.

Steward’s efficacy depends on using servers within a
site that are unlikely to suffer correlated vulnerabilities.
Multi-version programming [5], where independently
coded software implementations are run on each server,
can yield the desired diversity. Newer techniques [6], [7]
can automatically and inexpensively generate variation.
Steward remains vulnerable to attacks that compromise
an entire site (e.g., by a malicious administrator with
access to the site). This problem was addressed in [8].

The paper demonstrates that the performance of Stew-
ard with 3f 4+ 1 servers in each site is much better
even compared with a flat Byzantine architecture with
a smaller system of 3f 4 1 fotal servers spread over
the same wide area topology. The paper further demon-
strates that Steward exhibits performance comparable
(though somewhat lower) with common benign fault-
tolerant protocols on wide area networks.

We implemented the Steward system, and a DARPA
red-team experiment has confirmed its practical surviv-
ability in the face of white-box attacks (where the red-
team has complete knowledge of system design, access
to its source code, and control of f replicas in each site).
According to the rules of engagement, where a red-team
attack succeeded only if it stopped progress or caused
inconsistency, no attacks succeeded.

The main contributions of this paper are:

1) It presents the first hierarchical architecture and
algorithm that scales Byzantine fault-tolerant repli-
cation to large, wide area networks.

2) It provides a complete proof of correctness for this
algorithm, demonstrating its safety and liveness
properties.

3) It presents a software artifact that implements the
algorithm completely.

4) It shows the performance evaluation of the imple-
mentation software and compares it with the cur-
rent state of the art. The experiments demonstrate

that the hierarchical approach greatly outperforms
existing solutions when deployed on large, wide
area networks.

The remainder of the paper is organized as follows.
We discuss previous work in several related research
areas in Section 2. We provide background in Section
3. We present our system model in Section 4 and the
service properties met by our protocol in Section 5. We
describe our protocol, Steward, in Section 6. We present
experimental results demonstrating the improved scal-
ability of Steward on wide area networks in Section 7.
We include a proof of safety and a proof roadmap of
liveness in Section 8. We summarize our conclusions in
Section 9. Appendix A contains complete pseudocode
for our protocol, and complete correctness proofs can
be found in Appendix B. The appendices appear in the
electronic version of this paper, available from IEEE and
at http://dsn jhu.edu.

2 RELATED WORK

Agreement and Consensus: At the core of many replication
protocols is a more general problem, known as the
agreement or consensus problem. A good overview of
significant results is presented in [9]. The strongest fault
model that researchers consider is the Byzantine model,
where some participants behave in an arbitrary manner.
If communication is not authenticated and nodes are di-
rectly connected, 3f +1 participants and f+1 communi-
cation rounds are required to tolerate f Byzantine faults.
If authentication is available, the number of participants
can be reduced to f + 2 [10].

Fail-Stop Processors: Schlichting and Schneider [11]
present the implementation and use of k-fail-stop pro-
cessors, which consist of several potentially Byzantine
processors. A k-fail-stop processor behaves like a fail-
stop processor as long as no more than k processors
are Byzantine faulty. Benign fault-tolerant protocols can
thus safely run on top of these logical processors. Unlike
Steward, in which a site is live unless f+1 of its comput-
ers fail, the k-fail-stop processor described in [11] halts
when even one of its constituent processors fails.

Byzantine Group Communication: Related with our work
are group communication systems resilient to Byzantine
failures. Two such systems are Rampart [12] and Se-
cureRing [13]. Both systems rely on failure detectors to
determine which replicas are faulty. An attacker can slow
correct replicas or the communication between them
until a view is installed with less than two-thirds correct
members, at which point safety may be violated. The
ITUA system [14], [15], developed by BBN and UIUC,
employs Byzantine fault-tolerant protocols to provide
intrusion-tolerant group services. The approach taken
considers all participants as equal and is able to tolerate
up to less than a third of malicious participants.

Replication with Benign Faults: The two-phase commit
(2PC) protocol [16] provides serializability in a dis-
tributed database system when transactions may span
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several sites. It is commonly used to synchronize trans-
actions in a replicated database. Three-phase commit [17]
overcomes some of the availability problems of 2PC,
paying the price of an additional communication round.
Paxos [18], [19] is a very robust algorithm for benign
fault-tolerant replication and is described in Section 3.

Replication with Byzantine Faults: The first practical
Byzantine fault-tolerant replication protocol was Castro
and Liskov’s BFT [4], which is described in Section 3. Yin
et al. [20] propose separating the agreement component
that orders requests from the execution component that
processes requests, which allows utilization of the same
agreement component for many different replication
tasks and reduces the number of execution replicas to
2f + 1. Martin and Alvisi [21] recently introduced a
two-round Byzantine consensus algorithm, which uses
5f + 1 servers in order to overcome f faults. This
approach trades lower availability (4f + 1 out of 5f + 1
connected servers are required, instead of 2f + 1 out
of 3f + 1 as in BFT), for increased performance. The
solution is appealing for local area networks with high
connectivity. While we considered using it within the
sites in our architecture, we feel the increased hardware
cost outweighs the benefit of using one less intra-site
round. The ShowByz system of Rodrigues et al. [22]
seeks to support a large-scale deployment consisting
of multiple replicated objects. ShowByz modifies BFT
quorums to tolerate a larger fraction of faulty replicas,
reducing the likelihood of any group being compromised
at the expense of protocol liveness. Zyzzyva [23] uses
speculative execution to reduce the cost of Byzantine
fault-tolerant replication when there are no faulty repli-
cas. Since Zyzzyva employs fewer wide area protocol
rounds and has lower message complexity than BFT, we
expect it to perform better than BFT when deployed on
a wide area network. However, since Zyzzyva is a flat
protocol, the leader sends more messages than the leader
site representative in Steward.

Quorum Systems with Byzantine Fault Tolerance: Quo-
rum systems obtain Byzantine fault tolerance by ap-
plying quorum replication methods. Examples of such
systems include Phalanx [24], [25] and Fleet [26], [27].
Fleet provides a distributed repository for Java objects. It
relies on an object replication mechanism that tolerates
Byzantine failures of servers, while supporting benign
clients. Although the approach is relatively scalable with
the number of servers, it suffers from the drawbacks of
flat Byzantine replication solutions. The Q/U protocol
of Abd-El-Malek et al. [28] uses quorum replication
techniques to achieve state machine replication, requir-
ing 5f 4+ 1 servers to tolerate f faults. It can perform
well when write contention is low, but suffers decreased
throughput when concurrent updates are attempted on
the same object.

Alternate Architectures: An alternate hierarchical ap-
proach to scale Byzantine replication to wide area net-
works can be based on having a few trusted nodes that
are assumed to be working under a weaker adversary

model. For example, these trusted nodes may exhibit
crashes and recoveries but not penetrations. A Byzan-
tine replication algorithm in such an environment can
use this knowledge in order to optimize performance.
Correia et al. [29] and Verissimo [30] propose such
a hybrid approach, where synchronous, trusted nodes
provide strong global timing guarantees. Both the hybrid
approach and the approach proposed in this paper can
scale Byzantine replication to wide area networks. The
hybrid approach makes stronger assumptions, while our
approach pays more hardware and computational costs.

3 BACKGROUND

Our work requires concepts from fault tolerance, Byzan-
tine fault tolerance, and threshold cryptography. To facil-
itate the presentation of our protocol, Steward, we first
provide an overview of three representative works in
these areas: Paxos, BFT, and RSA threshold signatures.

Paxos: Paxos [18], [19] is a well-known fault-tolerant
protocol that allows a set of distributed servers, ex-
changing messages via asynchronous communication, to
totally order client requests in the benign-fault, crash-
recovery model. Paxos uses an elected leader to co-
ordinate the agreement protocol. If the leader crashes
or becomes unreachable, the other servers elect a new
leader; a view change occurs, allowing progress to (safely)
resume in the new view under the reign of the new
leader. Paxos requires at least 2f 4 1 servers to tolerate
f faulty servers. Since servers are not Byzantine, only a
single reply needs to be delivered to the client.

In the common case, in which a single leader exists
and can communicate with a majority of servers, Paxos
uses two asynchronous communication rounds to glob-
ally order client updates. In the first round, the leader
assigns a sequence number to a client update and sends
a Proposal message containing this assignment to the rest
of the servers. In the second round, any server receiving
the Proposal sends an Accept message, acknowledging
the Proposal, to the rest of the servers. When a server
receives a majority of matching Accept messages — in-
dicating that a majority of servers have accepted the
Proposal - it orders the corresponding update.

BFT: The BFT [4] protocol addresses the problem of
replication in the Byzantine model where a number of
servers can exhibit arbitrary behavior. Similar to Paxos,
BFT uses an elected leader to coordinate the protocol and
proceeds through a series of views. BFT extends Paxos
into the Byzantine environment by using an additional
communication round in the common case to ensure
consistency both in and across views and by construct-
ing strong majorities in each round of the protocol.
Specifically, BFT uses a flat architecture and requires
acknowledgments from 2f + 1 out of 3f + 1 servers to
mask the behavior of f Byzantine servers. A client must
wait for f + 1 identical responses to be guaranteed that
at least one correct server assented to the returned value.

In the common case, BFT uses three communication
rounds. In the first round, the leader assigns a sequence
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number to a client update and proposes this assignment
to the rest of the servers by broadcasting a Pre-prepare
message. In the second round, a server accepts the pro-
posed assignment by broadcasting an acknowledgment,
Prepare. When a server collects a Prepare Certificate (i.e., it
receives the Pre-Prepare and 2f Prepare messages with
the same view number and sequence number as the Pre-
prepare), it begins the third round by broadcasting a
Commit message. A server commits the corresponding up-
date when it receives 2 f 41 matching commit messages.

Threshold digital signatures: Threshold cryptography
[31] distributes trust among a group of participants to
protect information (e.g., threshold secret sharing [32])
or computation (e.g., threshold digital signatures [33]).
A (k, n) threshold digital signature scheme allows a set
of servers to generate a digital signature as a single
logical entity despite k — 1 Byzantine faults. It divides a
private key into n shares, each owned by a server. Each
server uses its key share to generate a partial signature
on a message m and sends the partial signature to a
combiner server, which combines the partial signatures
into a threshold signature on m. The threshold signature,
which is verified using the public key corresponding to
the divided private key, is only valid if it is the result of
combining k valid partial signatures on m.

Shoup [33] proposed a practical threshold digital
signature scheme that allows participants to generate
threshold signatures based on the standard RSA [34]
digital signature. The scheme provides verifiable secret
sharing [35], which allows participants to verify that the
partial signatures contributed by other participants are
valid (i.e., they were generated with a share from the
initial key split).

4 SYSTEM MODEL

Servers are implemented as deterministic state machines
[36], [37]. All correct servers begin in the same initial
state and transition between states by applying updates
as they are ordered. The next state is completely deter-
mined by the current state and the next update to be
applied.

We assume a Byzantine fault model. Servers are either
correct or faulty. Correct servers do not crash. Faulty
servers may behave arbitrarily. Communication is asyn-
chronous. Messages can be delayed, lost, or duplicated.
Messages that do arrive are not corrupted.

Servers are organized into wide area sites, each having
a unique identifier. Each server belongs to one site and
has a unique identifier within that site. The network
may partition into multiple disjoint components, each
containing one or more sites. During a partition, servers
from sites in different components are unable to commu-
nicate with each other. Components may subsequently
re-merge. Each site S; has at least 3 = (f;) + 1 servers,
where f; is the maximum number of servers that may
be faulty within S;. For simplicity, we assume in what
follows that in each site there are at most f faulty servers.
Clients are distinguished by unique identifiers.

We employ digital signatures, and we make use of
a cryptographic hash function to compute message di-
gests. Client updates are properly authenticated and
protected against modifications. We assume that all ad-
versaries, including faulty servers, are computationally
bounded such that they cannot subvert these crypto-
graphic mechanisms. We also use a (2f+1, 3f+1) thresh-
old digital signature scheme. Each site has a public key,
and each server receives a share with the corresponding
proof that can be used to demonstrate the validity of
the server’s partial signatures. We assume that threshold
signatures are unforgeable without knowing 2f + 1 or
more shares.

5 SERVICE PROPERTIES

Our protocol assigns global, monotonically increasing
sequence numbers to updates, to establish a global, total
order. Below we define the safety and liveness properties
of the Steward protocol. We say that:

o a client proposes an update when the client sends the
update to a server in the local site, and the server
receives it.

o a server executes an update with sequence number 4
when it applies the update to its state machine. A
server executes update ¢ only after having executed
all updates with a lower sequence number in the
global total order.

o two servers are connected or a client and server are con-
nected if any message that is sent between them will
arrive in a bounded time. The protocol participants
need not know this bound beforehand.

o two sites are connected if every correct server in one
site is connected to every correct server in the other
site.

o a client is connected to a site if it can communicate
with all servers in that site.

We define the following two safety conditions:

DEFINITION 5.1: S1 - SAFETY: If two correct servers
execute the i" update, then these updates are identical.

DEFINITION 5.2: 52 - VALIDITY: Only an update that
was proposed by a client may be executed.

Read-only queries can be handled within a client’s
local site and provide one-copy serializability semantics
[2]. Alternatively, a client can specify that its query
should be linearizable [3], in which case replies are
collected from a majority of wide area sites.

Since no asynchronous Byzantine replication protocol
can always be both safe and live [38], we provide
liveness under certain synchrony conditions. We intro-
duce the following terminology to encapsulate these
synchrony conditions and our progress metric:

1) A site is stable with respect to time T if there exists

a set, S, of 2f+1 servers within the site, where, for
all times 7" > T, the members of S are (i) correct
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and (ii) connected. We call the members of S stable
servers.

2) The system is stable with respect to time T if there
exists a set, S, of a majority of sites, where, for
all times T” > T, the sites in S are (i) stable with
respect to T and (ii) connected. We call the sites in
S the stable sites.

3) Global progress occurs when some stable server
executes an update.

We now define our liveness property:

DEFINITION 5.3: L1 - GLOBAL LIVENESS: If the sys-
tem is stable with respect to time T, then if, after time
T, a stable server receives an update which it has not
executed, then global progress eventually occurs.

6 PRoOTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale
Byzantine replication to the high-latency, low-bandwidth
links characteristic of wide area networks. Instead
of running a single, relatively costly Byzantine fault-
tolerant protocol among all servers in the system, Steward
runs a more lightweight benign fault-tolerant protocol
among all sifes in the system, which reduces the number
of messages and communication rounds on the wide
area network compared to a flat Byzantine solution.

Steward’s hierarchical architecture results in two levels
of protocols: global and local. The global, Paxos-like
protocol is run among wide area sites. Since each site
consists of a set of potentially malicious servers (instead
of a single trusted participant, as Paxos assumes), Stew-
ard employs several intra-site Byzantine fault-tolerant
protocols to mask the effects of malicious behavior at
the local level. Servers within a site agree upon the
contents of messages to be used by the global protocol
and generate a threshold signature for each message,
preventing a malicious server from misrepresenting the
site’s decision and confining malicious behavior to the
local site. In this way, each site emulates the behavior of
a correct Paxos participant in the global protocol.

Similar to the elected coordinator scheme used in BFT,
the local protocols in Steward are run in the context of a
local view, with one server, the site representative, serving
as the coordinator of a given view. Besides coordinating
the local agreement and threshold-signing protocols, the
representative (1) disseminates messages in the global
protocol originating from the local site to the other site
representatives and (2) receives global messages and
distributes them to the local servers. If the representative
is suspected to be faulty, the other servers in the site run
a local view change protocol to replace the representative
and install a new view.

While Paxos uses an elected leader server to coordi-
nate the protocol, Steward uses an elected leader site to
coordinate the global protocol; the global protocol runs
in the context of a global view, with one leader site in
charge of each view. If the leader site is partitioned

away, the non-leader sites run a global view change
protocol to elect a new one and install a new global
view. The representative of the leader site drives the
global protocol by invoking the local protocols needed to
construct the messages sent over the wide area network.
In the remainder of this section, we present the local
and global protocols that Steward uses to totally order
client updates. We first describe the data structures used
by our protocols. We then present the common case
operation of Steward, followed by the view change
protocols, which are run when failures occur. We then
present the timeout mechanisms that Steward uses to
ensure liveness. Due to space limitations, we include
pseudocode associated with normal-case operation only.
Complete pseudocode can be found in Appendix A.

6.1 Data Structures

Each server maintains separate variables for the global,
Paxos-like protocol and the local, intra-site, Byzantine
fault-tolerant protocols. Within the global context, a
server maintains the state of its current global view and
a Global_History, reflecting the status of those updates it
has globally ordered or is attempting to globally order.
Within the local context, a server maintains the state
of its current local view. In addition, each server at
the leader site maintains a Local_History, reflecting the
status of those updates for which it has constructed, or
is attempting to construct, a Proposal. Upon receiving
a message, a server first runs a validity check on the
message to ensure that it contains a valid RSA signature
and does not originate from a server known to be faulty.
If a message is valid, it can be applied to the server’s
data structures provided it does not conflict with any
data contained therein.

6.2 The Common Case

In this section, we trace the flow of an update through
the system as it is globally ordered during common case
operation (i.e., when no leader site or site representative
election occurs). The common case makes use of two
local, intra-site protocols: THRESHOLD-SIGN (Fig. 1) and
ASSIGN-SEQUENCE (Fig. 2), which we describe below.
Pseudocode for the global ordering protocol (ASSIGN-
GLOBAL-ORDER) is listed in Fig. 3.
The common case works as follows:

1) A client sends an update to a server in its local
site. The update is uniquely identified by a pair
consisting of the client’s identifier and a client-
generated logical timestamp. A correct client pro-
poses an update with timestamp ¢ + 1 only after
it receives a reply for an update with timestamp
i. The client’s local server forwards the update to
the local representative, which forwards the update
to the representative of the leader site. If the client
does not receive a reply within its timeout period,
it broadcasts the update to all servers in its site.
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THRESHOLD- SI G\( Dat a_s data, int server_id):
Al. Partial _Sig <« GENERATE_PARTI AL_SI G(data, server_id)
A2. Local Broadcast: Partial_Sig

Bl. Upon receiving a set, PSig_Set,
B2. signature «— COWVBI NE(PSi g_Set)

of 2f+1 Partial _Sigs:

B3. i f VERI FY(signature)

B4. return signature

B5. el se

B6. for each Sin PSig_Set

B7. if NOT VERIFY(S)

B8. REMOVE('S, PSi g_Set)

B9. ADD( S. server _id, Corrupted_Servers_List)
B9. Corrupt ed_Server «— CORRUPTED(S)

B10. Local Broadcast: Corrupted_Server

B11. Wait for nore Partial _Sig nessages

Fig. 1: THRESHOLD-SIGN Protocol, used to generate a thresh-
old signature on a message. The message can then be used in
a global protocol.

ASSI GN- SEQUENCE( Updat e u):
Al. Upon invoking:
A2. Local Broadcast:
A3. d obal _seq++

Pre-Prepare(gv, |v, dobal_seq, u)

Bl. Upon receiving Pre-Prepare(gv, |lv, seq, u):
B2. Apply Pre-Prepare to Local _H story
B3. Local Broadcast: Prepare(gv, |v, seq, Digest(u))
Cl. Upon receiving Prepare(gv, lv, seq, digest):
Apply Prepare to Local _History
if Prepare_Certificate_Ready(seq)
pc < Local _Hi story[seq].Prepare_Certificate
pre-prepare « pc. Pre-Prepare
unsi gned_prop <« Construct Proposal (pre-prepare)
i nvoke THRESHOLD- SI GN( unsi gned_prop, Server_id)

Upon THRESHOLD- SI GN r et ur ni ng si gned_pr oposal :
Apply signed_proposal to d obal _History
Apply signed_proposal to Local _History
return signed_proposal

Fig. 2: ASSIGN-SEQUENCE Protocol, used to bind an update
to a sequence number and create a threshold-signed Proposal.

RERR Q8848

2) When the representative of the leader site receives
an update, it invokes the ASSIGN-SEQUENCE pro-
tocol to assign a global sequence number to the
update; this assignment is encapsulated in a Pro-
posal message. The site then generates a thresh-
old signature on the constructed Proposal using
THRESHOLD-SIGN, and the representative sends the
signed Proposal to the representatives of all other
sites for global ordering.

3) When a representative receives a signed Proposal,
it forwards this Proposal to the servers in its site.
Upon receiving a Proposal, a server constructs a
site acknowledgment (i.e., an Accept message) and
invokes THRESHOLD-SIGN on this message. The
representative combines the partial signatures and
then sends the resulting threshold-signed Accept
message to the representatives of the other sites.

4) The representative of a site forwards the incoming
Accept messages to the local servers. A server
globally orders the update when it receives |S/2|
Accept messages from distinct sites (where S is the
number of sites) and the corresponding Proposal.
The server at the client’s local site that originally
received the update sends a reply back to the client.

We now highlight the details of the THRESHOLD-SIGN
and ASSIGN-SEQUENCE protocols.
Threshold-Sign: The THRESHOLD-SIGN intra-site pro-

ASSI GN- GLOBAL- ORDER( ) :
Al. Upon receiving or executing an update,
globally or locally constrained:

or becom ng

A2. if representative of |eader site

A3. if (globally_constrained and | ocally_constrained
and | n_W ndow G obal _seq))

Ad. u < Cet_Next_To_Propose()

A5, if (u # NULL)

A6. i nvoke ASSI G\- SEQUENCE( u)

Bl. Upon ASSI GN- SEQUENCE returning Proposal:
B2. SEND to all sites: Proposal

Cl. Upon receiving Proposal (site_id, gv, lv, seq, u):

c2. Apply Proposal to Q@ obal _History

C3. if representative

C4. Local Broadcast: Proposal

C5. unsi gned_accept « Construct Accept ( Proposal)

C6. i nvoke THRESHOLD- SI G\N(unsi gned_accept, Server_id)
D1. Upon THRESHOLD- SI GN returni ng si gned_accept:

D2. Apply signed_accept to G obal _History

D3. if representative

D4. SEND to all sites: signed_accept

E1. Upon receiving Accept(site_id, gv, |v, seq, Digest(u)):
E2. Apply Accept to G obal _H story

E3. if representative

E4. Local Broadcast: Accept

E5. if dobally_Ordered_Ready(seq)

E6. gl obal _ord_update < Construct O der edUpdat e(seq)
E7. Apply gl obal _ord_update to G obal _History

Fig. 3: ASSIGN-GLOBAL-ORDER Protocol. The protocol runs
among all sites and is similar to Paxos.

tocol (Fig. 1) generates a (2f + 1, 3f + 1) threshold signa-
ture on a given message.! Upon invoking the protocol,
a server generates a Partial _Sig message, containing a
partial signature on the message to be signed and a
verification proof that other servers can use to confirm
that the partial signature was created using a valid share.
The Partial Sig message is broadcast within the site.
Upon receiving 2f+1 partial signatures on a message, a
server combines the partial signatures into a threshold
signature on that message, which is then verified using
the site’s public key. If the signature verification fails, one
or more partial signatures used in the combination were
invalid, in which case the verification proofs provided
with the partial signatures are used to identify incorrect
shares, and the servers that sent these incorrect shares
are classified as malicious. Further messages from the
corrupted servers are ignored, and the proof of corrup-
tion (the invalid Partial Sig message) is broadcast to the
other servers in the site.

Assign-Sequence: The ASSIGN-SEQUENCE local pro-
tocol (Fig. 2) is used in the leader site to construct
a Proposal message. The protocol takes as input an
update that was returned by the Get_Next_To_Propose
procedure, which is invoked by the representative of the
leader site during ASSIGN-GLOBAL-ORDER (Fig. 3, line
A4). Get_Next_To_Propose considers the next sequence
number for which an update should be ordered and
returns either (1) an update that has already been bound
to that sequence number, or (2) an update that is not
bound to any sequence number. This ensures that the
constructed Proposal cannot be used to violate safety
and, if globally ordered, will result in global progress.

1. We could use an (f + 1, 3f + 1) threshold signature at the cost of
an additional round in ASSIGN-SEQUENCE.
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ASSIGN-SEQUENCE consists of three rounds. The first
two are similar to the corresponding rounds of BFT, and
the third round consists of an invocation of THRESHOLD-
SIGN. During the first round, the representative binds
an update, u, to a sequence number, seq, by creating
and sending a Pre-Prepare(gv, (v, seq, u) message, where
gv and lv are the current global and local views, re-
spectively. A Pre-Prepare causes a conflict if either a
binding (seq, u’) or (seq’, u) exists in a server’s data
structures. When a non-representative receives a Pre-
Prepare that does not cause a conflict, it broadcasts
a matching Prepare(gv, lv, seq, Digest(u)) message. At
the end of the second round, when a server receives a
Pre-Prepare and 2f matching Prepare messages for the
same views, sequence number, and update (i.e., when
it collects a Prepare_Certificate), it invokes THRESHOLD-
SIGN on a Proposal(site_id, gv, lv, seq, u). If there are
2f+1 correct, connected servers in the site, THRESHOLD-
SIGN returns a threshold-signed Proposal to all servers.

6.3 View Changes

Several types of failure may occur during system execu-
tion, such as the corruption of a site representative or the
partitioning away of the leader site. Such failures require
delicate handling to preserve safety and liveness.

To ensure that the system can make progress de-
spite server or network failures, Steward uses timeout-
triggered leader election protocols at both the local and
global levels of the hierarchy to select new protocol
coordinators. Each server maintains two timers, Local_T
and Global_T, which expire if the server does not execute
a new update (i.e., make global progress) within the local
or global timeout period. When the Local_T timers of
2f + 1 servers within a site expire, the servers replace
the current representative. Similarly, when, in a majority
of sites, the Global_T timers of 2 f+1 local servers expire,
the sites replace the current leader site.

While the leader election protocols guarantee progress
if sufficient synchrony and connectivity exist, Steward
uses view change protocols at both levels of the hierar-
chy to ensure safe progress. The presence of benign or
malicious failures introduces a window of uncertainty
with respect to pending decisions that may (or may not)
have been made in previous views. For example, the new
coordinator may not be able to definitively determine
if some server globally ordered an update for a given
sequence number. However, our view change protocols
guarantee that if any server globally ordered an update
for that sequence number in a previous view, the new
coordinator will collect sufficient information to ensure
that it respects the established binding in the new view.

Steward uses a constraining mechanism to enforce
this behavior. Before participating in the global order-
ing protocol, a correct server must become both lo-
cally constrained and globally constrained by completing
the LOCAL-VIEW-CHANGE and GLOBAL-VIEW-CHANGE
protocols. The local constraints ensure continuity across

local views (when the site representative changes), and
the global constraints ensure continuity across global
views (when the leader site changes). Since a faulty
leader site representative may ignore the constraints
imposed by previous views, all servers in the leader
site become constrained, preventing a faulty server from
causing them to act in an inconsistent way.

We now provide relevant details of our leader election
and view change protocols. We focus primarily on the
function of each protocol in ensuring safety and liveness,
rather than on the inner-workings of each protocol.

Leader Election: Steward uses two Byzantine fault-
tolerant leader election protocols, one in each level of the
hierarchy. Each site runs the LOCAL-VIEW-CHANGE pro-
tocol to elect its representative, and the system runs the
GLOBAL-LEADER-ELECTION protocol to elect the leader
site. Both protocols provide two important properties
necessary for liveness: If the system is stable and does
not make global progress, (1) views are incremented
consecutively, and (2) stable servers remain in each view
for approximately one timeout period. These properties
allow stable protocol coordinators to remain in power
long enough for global progress to be made.

Local View Changes: Since the sequencing of Pro-
posals occurs at the leader site (using the ASSIGN-
SEQUENCE local protocol), replacing the representative
of the leader site requires a Byzantine fault-tolerant
reconciliation protocol to preserve the consistency of
the sequencing. Steward uses the CONSTRUCT-LOCAL-
CONSTRAINT local protocol for this purpose. As a result
of the protocol, servers have enough information about
pending Proposals to preserve safety in the new local
view. Specifically, it prevents two conflicting Proposals,
Pl(gv, lv, seq, u) and P2(gv, lv, seq, v’), with u # v/, from
being constructed in the same global view.

Global View Changes: The GLOBAL-VIEW-CHANGE
protocol is triggered after a leader site election. It
makes use of two local protocols, CONSTRUCT-ARU and
CONSTRUCT-GLOBAL-CONSTRAINT, used at the leader
site and non-leader sites, respectively. The leader site
representative invokes CONSTRUCT-ARU, which gener-
ates an Aru_Message, containing the sequence num-
ber up to which at least f + 1 correct servers in
the leader site have globally ordered all previous
updates. The representative sends the Aru_Message
to all other site representatives. Upon receiving this
message, a non-leader site representative invokes
CONSTRUCT-GLOBAL-CONSTRAINT, which generates a
Global_Constraint_Message reflecting the state of the site’s
knowledge above the sequence number contained in
the Aru_Message. Servers in the leader site use the
Global_Constraint messages from a majority of sites to
become globally constrained, which restricts the Proposals
they will generate in the new view to preserve safety.

6.4 Timeouts

Steward uses timeouts to detect failures. Our protocols
do not assume synchronized clocks; however, we do
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assume that the drift of the clocks at different servers
is small. This assumption is valid considering today’s
technology. If a server does not execute updates, a local
and, eventually, a global timeout will occur. These time-
outs cause the server to “assume” that the current local
and/or global coordinator has failed. Accordingly, the
server attempts to elect a new local/global coordinator
by suggesting new views. Intuitively, coordinators are
elected for a reign, during which each server expects to
make progress. If a server does not make progress, its
Local T timer expires, and it attempts to elect a new
representative. Similarly, if a server’s Global T timer
expires, it attempts to elect a new leader site. To pro-
vide liveness, Steward changes coordinators using three
timeout values, which cause the coordinators of the
global and local protocols to be elected at different rates.
This guarantees that, during each global view, correct
representatives at the leader site can communicate with
correct representatives at all stable non-leader sites. We
now describe the three timeouts.

Non-Leader Site Local Timeout (T1): Local_T is set to
this timeout at servers in non-leader sites. When Local_T
expires at all stable servers in a site, they preinstall a
new local view. T1 must be long enough for servers in
the non-leader site to construct Global_Constraint mes-
sages, which requires at least enough time to complete
THRESHOLD-SIGN.

Leader Site Local Timeout (T2): Local T is set to
this timeout at servers in the leader site. T2 must be
long enough to allow the representative to communicate
with all stable sites. Observe that all non-leader sites
do not need to have correct representatives at the same
time; Steward makes progress as long as each leader site
representative can communicate with at least one correct
server at each stable non-leader site. We accomplish this
by choosing T1 and T2 so that, during the reign of
a representative at the leader site, f + 1 servers reign
for complete terms at each non-leader site. The reader
can think of the relationship between the timeouts as
follows: The time during which a server is representative
at the leader site overlaps with the time that f + 1 servers
are representatives at the non-leader sites. Therefore, we
require that 72 > (f+2)*T'1. The factor f+2 accounts for
the possibility that Local T is already running at some
of the non-leader-site servers when the leader site elects
a new representative.

Global Timeout (T3): Global_T is set to this timeout at
all servers, regardless of whether they are in the leader
site. At least two correct representatives in the leader
site must serve complete terms during each global view.
Thus, we require that '3 > (f+3)*7'2. From the relation-
ship between T1 and T2, each of these representatives
will be able to communicate with a correct representative
at each stable site. If the timeouts are sufficiently long
and the system is stable, the first correct server to serve
a full reign as leader site representative will complete
GLOBAL-VIEW-CHANGE. The second correct server will
be able to globally order and execute a new update.

We compute our timeout values based on the global
view. If the system is stable, all stable servers will move
to the same global view. Timeouts T1, T2, and T3 are
deterministic functions of the global view, guaranteeing
that the relationships described above are met at every
stable server. Timeouts double every S global views,
where S is the number of sites. Thus, if there is a
time after which message delays do not increase, then
our timeouts eventually grow long enough for global
progress to be made. We note that, when failures occur,
Steward may require more time than flat Byzantine fault-
tolerant replication protocols to reach a configuration
where progress will occur. The global timeout must be
large enough so that a correct leader site representa-
tive will complete GLOBAL-VIEW-CHANGE, which may
require waiting for several local view changes to com-
plete. In contrast, flat protocols do not incur this delay.
However, Steward’s hierarchical architecture yields an
O(S) wide area message complexity for view change
messages, compared to O(N) for flat architectures.

7 PERFORMANCE EVALUATION

To evaluate the performance of our hierarchical architec-
ture, we implemented a complete prototype of our pro-
tocol including all necessary communication and crypto-
graphic functionality. We focus only on the networking
and cryptographic aspects of our protocols and do not
consider disk writes.

Testbed and Network Setup: We selected a network
topology consisting of 5 wide area sites and assumed at
most 5 Byzantine faults in each site, in order to quantify
the performance of our system in a realistic scenario.
This requires 16 replicated servers in each site.

Our experimental testbed consists of a cluster with
twenty 3.2 GHz, 64-bit Intel Xeon computers. Each
computer can compute a 1024-bit RSA signature in 1.3
ms and verify it in 0.07 ms. For n=16, k=11, 1024-bit
threshold cryptography which we use for these experi-
ments, a computer can compute a partial signature and
verification proof in 3.9 ms and combine the partial
signatures in 5.6 ms. The leader site was deployed on
16 machines, and the other 4 sites were emulated by
one computer each. An emulating computer performed
the role of a representative of a complete 16 server site.
Thus, our testbed was equivalent to an 80 node system
distributed across 5 sites. Upon receiving a message, the
emulating computers busy-waited for the time it took a
16 server site to handle that packet and reply to it, in-
cluding intra-site communication and computation. We
determined busy-wait times for each type of packet by
benchmarking individual protocols on a fully deployed,
16 server site. We used the Spines [39], [40] messaging
system to emulate latency and throughput constraints
on the wide area links.

We compared the performance results of the above
system with those of the Castro-Liskov implementation
of BFT [4] on the same network setup with five sites,
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run on the same cluster. Instead of using 16 servers in
each site, for BFT we used a total of 16 servers across
the entire network. This allows for up to 5 Byzantine
failures in the entire network for BFT, instead of up to
5 Byzantine failures in each site for Steward. Since BFT
is a flat solution where there is no correlation between
faults and the sites in which they can occur, we believe
this comparison is fair. We distributed the BFT servers
such that four sites contain 3 servers each, and one site
contains 4 servers. All the write updates and read-only
queries in our experiments carried a payload of 200
bytes, representing a common SQL statement.

Our protocols use RSA signatures for authentication.
Although our ASSIGN-SEQUENCE protocol can use vec-
tors of MACs for authentication (as BFT can), the benefit
of using MACs compared to signatures is limited be-
cause the latency for global ordering is dominated by the
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wide area network latency. In addition, digital signatures
provide non-repudiation, which can be used to detect
malicious servers.

In order to support our claim that our results reflect
fundamental differences between the Steward and BFT
protocols, and not differences in their implementations,
we confirmed that BFT’s performance matched our sim-
ilar intra-site agreement protocol, ASSIGN-SEQUENCE.
Since BFT performed slightly better than ASSIGN-
SEQUENCE, we attribute Steward’s performance advan-
tage over BFT to its hierarchical architecture and re-
sultant wide area message savings. Note that in our
five-site test configuration, BFT sends over twenty times
more wide area messages per update than Steward.
This message savings is consistent with the difference
in performance between Steward and BFT shown in the
experiments that follow.
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Bandwidth Limitation: We first investigate the ben-
efits of the hierarchical architecture in a symmetric con-
figuration with 5 sites, where all sites are connected to
each other with 50 ms latency links (emulating crossing
the continental US).

In the first experiment, clients inject write updates.
Fig. 4 shows how limiting the capacity of wide area links
affects update throughput. As we increase the number
of clients, BFT’s throughput increases at a lower slope
than Steward’s, mainly due to the additional wide area
crossing for each update. Steward can process up to 84
updates/sec in all bandwidth cases, at which point it is
limited by CPU used to compute threshold signatures.
At 10, 5, and 2.5 Mbps, BFT achieves about 58, 26,
and 6 updates/sec, respectively. In each of these cases,
BFT’s throughput is bandwidth limited. We also notice
a reduction in the throughput of BFT as the number of
clients increases. We attribute this to a cascading increase
in message loss, caused by the lack of flow control in
BFT. For the same reason, we were not able to run BFT
with more than 24 clients at 5 Mbps, and 15 clients
at 2.5 Mbps. We believe that adding a client queuing
mechanism would stabilize the performance of BFT to
its maximum achieved throughput.

Fig. 5 shows that Steward’s average update latency
slightly increases with the addition of clients, reaching
190 ms at 15 clients in all bandwidth cases. As client up-
dates start to be queued, latency increases linearly. BFT
exhibits a similar trend at 10 Mbps, where the average
update latency is 336 ms at 15 clients. As the bandwidth
decreases, the update latency increases heavily, reaching
600 ms at 5 Mbps and 5 seconds at 2.5 Mbps, at 15 clients.

Increasing the update size would increase the percent-
age of wide area bandwidth used to carry data in both
Steward and BFT. Since BFT has higher protocol over-
head per update, this would benefit BFT to a larger ex-
tent. However, Steward’s hierarchical architecture would
still result in a higher data throughput, because the
update must only be sent on the wide area O(S) times,
whereas BFT would need to send it O(N) times. A simi-
lar benefit can be achieved by using batching techniques,
which reduces the protocol overhead per update. We
demonstrate the impact of batching in [8].

Adding Read-only Queries: Our hierarchical archi-
tecture enables read-only queries to be answered locally.
To demonstrate this benefit, we conducted an experiment
where 10 clients send random mixes of read-only queries
and write updates. We compared the performance of
Steward (which provides one-copy serializability) and
BFT (which provides linearizability) with 50 ms, 10 Mbps
links, where neither was bandwidth limited. Fig. 6 and
Fig. 7 show the average throughput and latency, re-
spectively, of different mixes of queries and updates.
When clients send only queries, Steward achieves about
2.9 ms per query, with a throughput of over 3,400
queries/sec. Since queries are answered locally, their
latency is dominated by two RSA signatures, one at the
originating client and one at the servers answering the

query. Depending on the mix ratio, Steward performs 2
to 30 times better than BFT.

BFT’s read-only query latency is about 105 ms, and
its throughput is 95 queries/sec. This is expected, as
read-only queries in BFT need to be answered by at
least f + 1 servers, some of which are located across
wide area links. BFT requires at least 2f 4 1 servers
in each site to guarantee that it can answer queries
locally. Such a deployment, for 5 faults and 5 sites, would
require at least 55 servers, which would dramatically
increase communication for updates and reduce BFT’s
performance.

Wide Area Scalability: To demonstrate Steward’s
scalability on real networks, we conducted experiments
measuring its performance on two emulated networks
based on real wide area topologies. The first experiment
was run on an emulated Planetlab [41] topology con-
sisting of five sites spanning several continents, and the
second experiment emulated a WAN setup across the
US, called CAIRN [42]. Fig. 8 and Fig. 9 show the average
write update throughput and latency measured in both
experiments, which we now describe.

We first selected five sites on the Planetlab network,
measured the latency and available bandwidth between
all sites, and emulated the network topology on our
cluster. We ran the experiment on our cluster because
Planetlab machines lack sufficient computational power.
The five sites were located in the US (University of Wash-
ington), Brazil (Rio Grande do Sul), Sweden (Swedish
Institute of Computer Science), Korea (KAIST) and Aus-
tralia (Monash University). The network latency varied
between 59 ms (US - Korea) and 289 ms (Brazil - Korea).
Available bandwidth varied between 405 Kbps(Brazil -
Korea) and 1.3 Mbps (US - Australia).

As seen in Fig. 8, Steward is able to achieve its
maximum throughput of 84 updates/sec with 27 clients.
Fig. 9 shows that the latency increases from about 200 ms
for one client to about 360 ms for 30 clients. BFT is
bandwidth limited to about 9 updates/sec. The update
latency is 631 ms for one client and several seconds with
more than 6 clients.

In the next experiment, we emulated the CAIRN
topology using the Spines messaging system, and we ran
Steward and BFT on top of it. The main characteristic of
CAIRN is that East and West Coast sites were connected
through a single 38 ms, 1.86 Mbps link. Since Steward
runs a lightweight fault-tolerant protocol between wide
area sites, we expect it to achieve performance compara-
ble to existing benign fault-tolerant replication protocols.
We compare the performance of our hierarchical Byzan-
tine architecture on the CAIRN topology with that of
two-phase commit protocols [16] on the same topology.

Fig. 8 shows that Steward achieved a throughput of
about 51 updates/sec in our tests, limited mainly by
the bandwidth of the link between the East and West
Coasts in CAIRN. In comparison, an upper bound of
two-phase commit protocols presented in [43] was able
to achieve 76 updates/sec. We believe that the difference
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in performance is caused by the presence of additional
digital signatures in the message headers of Steward,
adding 128 bytes to the 200 byte payload of each update.
Fig. 8 and Fig. 9 show that BFT achieved a maximum
throughput of 2.7 updates/sec and an update latency of
over a second, except when there was a single client.

8 PROOFS OF CORRECTNESS

In this section we first prove that Steward meets the
safety property listed in Section 5. Due to space limi-
tations, we provide a proof roadmap for liveness, and
we state certain lemmas without proof. Complete proofs
are presented in Appendix B.

8.1 Proof of Safety

We prove Safety by showing that two servers cannot
globally order conflicting updates for the same sequence
number. We use two main claims. In the first claim,
we show that any two servers which globally order an
update in the same global view for the same sequence
number will globally order the same update. We show
that a leader site cannot construct conflicting Proposal
messages in the same global view. A conflicting Proposal
has the same sequence number as another Proposal, but
it has a different update. Since globally ordering two
different updates for the same sequence number in the
same global view would require two different Proposals
from the same global view, and since only one Proposal
can be constructed within a global view, all servers that
globally order an update for a given sequence number
in the same global view must order the same update.

In the second claim, we show that any two servers
which globally order an update in different global views
for the same sequence number must order the same up-
date. We show that a leader site from a later global view
cannot construct a Proposal conflicting with one used
by a server in an earlier global view to globally order
an update for that sequence number. Since no Proposals
can be created that conflict with the one that has been
globally ordered, no correct server can globally order a
different update with the same sequence number. Since
a server only executes an update once it has globally
ordered an update for all previous sequence numbers,
two servers executing the ith update must execute the
same update.

We now proceed to prove the first main claim:

Claim 8.1: Let u be the first update globally ordered
by any server for sequence number seg, and let gv be
the global view in which u was globally ordered. Then if
any other server globally orders an update for sequence
number seq in global view gv, it will globally order w.

To prove this claim, we use the following lemma,
which shows that conflicting Proposal messages cannot
be constructed in the same global view:

Lemma 8.1: Let P1(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq. Then no other

Proposal message P2(gv, v/, seq, u') for lv' > lv, with
u' # u, can be constructed.

We prove Lemma 8.1 with a series of lemmas. We be-
gin by proving that two servers cannot collect conflicting
Prepare Certificates or construct conflicting Proposals in
the same global and local view.

Lemma 8.2: Let PCl(gv, lv, seq, u) be a Prepare Cer-
tificate collected by some server in leader site S. Then
no server in S can collect a different Prepare Certificate,
PC2(gv, lv, seq, u'), with (u # u'). Moreover, if some
server in S collects a Proposal P1(gv, lv, seq, u), then no
server in S can construct a Proposal P2(gv, lv, seq, u'),
with (u # u').

Proof: We assume that both Prepare Certificates
were collected and show that this leads to a contra-
diction. PC1 contains a Pre-Prepare(gv, v, seq, u) and
2f Prepare(gv, lv, seq, Digest(u)) messages from distinct
servers. Since there are at most f faulty servers in 5,
at least f + 1 of the messages in PC1 were from correct
servers. PC2 contains similar messages, but with v in-
stead of u. Since any two sets of 2 f+1 messages intersect
on at least one correct server, there exists a correct server
that contributed to both PC1 and PC2. Assume, without
loss of generality, that this server contributed to PCl
first (either by sending the Pre-Prepare message or by
responding to it). If this server was the representative,
it would not have sent the second Pre-Prepare message,
because, from Figure 2 line A3, it increments Global_seq
and does not return to seq in this local view. If this server
was a non-representative, it would not have contributed
a Prepare in response to the second Pre-Prepare, since
this would have generated a conflict. Thus, this server
did not contribute to PC2, a contradiction.

To construct Proposal P2, at least f + 1 correct servers
would have had to send partial signatures on P2, af-
ter obtaining a Prepare Certificate PC2 reflecting the
binding of seq to u' (Figure 2, line C7). Since some
server collected PC1, no server can have collected such
a Prepare Certificate, implying that P2 could not have
been constructed. O

We now show that two conflicting Proposal messages
cannot be constructed in the same global view, even
across local view changes. We maintain the following
invariant:

INVARIANT 8.1: Let P(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S for sequence number seq in global
view gv. We say that Invariant 8.1 holds with respect to P
if the following conditions hold in leader site S in global
view guv:

1) There exists a set of at least f + 1 correct servers

with a Prepare Certificate PC(gv, lv/, seq, u) or
a Proposal(gv, v/, seq, w), for v/ > lv, in
their Local_History[seq] data structure, or a Glob-
ally Ordered_Update(gv’, seq, u), for gv’ > gv, in
their Global_History[seq] data structure.

2) There does not exist a server with any conflict-

ing Prepare Certificate or Proposal from any view
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(gv, '), with v > lv, or a conflicting Glob-
ally_Ordered_Update from any global view gv’ >
guv.

Lemma 8.3 shows that the invariant holds in the first
global and local view in which any Proposal might have
been constructed for a given sequence number. Lemma
8.4 shows that the invariant holds throughout the re-
mainder of the global view, across local view changes.
Finally, Lemma 8.5 shows that if the invariant holds, no
Proposal message conflicting with the first Proposal that
was constructed can be created. In other words, once a
Proposal has been constructed for sequence number seq,
there will always exist a set of at least f+1 correct servers
which maintain and enforce the binding reflected in the
Proposal.

Lemma 8.3: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view
gv. Then when P is constructed, Invariant 8.1 holds with
respect to P, and it holds for the remainder of (gv, (v).

Lemma 8.4: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view gv.
If Invariant 8.1 holds with respect to P at the beginning
of a run of CONSTRUCT-LOCAL-CONSTRAINT, then it is
never violated during the run.

Lemma 8.5: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view gv.
If Invariant 8.1 holds with respect to P at the beginning
of a view (gv, [v), with [v' > lv, then it holds throughout
the view.

We can now prove Lemma 8.1:

Proof: By Lemma 8.3, Invariant 8.1 holds with re-
spect to P throughout (gv, lv). By Lemma 8.4, the invari-
ant holds with respect to P during and after CONSTRUCT-
LOCAL-CONSTRAINT. By Lemma 8.5, the invariant holds
at the beginning and end of view (gv, lv + 1). Repeated
applications of Lemma 8.4 and Lemma 8.5 shows that
the invariant always holds in global view gv.

In order for P2 to be constructed, at least f + 1
correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure 2,
line C3). Since the invariant holds throughout gv, at
least f + 1 correct servers do not collect such a Prepare
Certificate and do not send such a partial signature. This
leaves only 2f servers remaining, which is insufficient
to construct the Proposal. Since a Proposal is needed
to construct a Globally_Ordered_Update, no conflicting
Globally_Ordered_Update can be constructed. O

Finally, we can prove Claim 8.1:

Proof: To globally order an update u in global
view gv for sequence number seq, a server needs a
Proposal(gv, *, seq, u) message and [S/2] corresponding
Accept messages. By Lemma 8.1, all Proposal messages
constructed in gv are for the same update, which implies
that all servers which globally order an update in gv for
seq globally order the same update. O

We now prove the second main claim:

Claim 8.2: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which u was globally ordered. Then if
any other server globally orders an update for sequence
number seq in a global view gv’, with gv’ > gv, it will
globally order w.

We prove Claim 8.2 using Lemma 8.6, which shows
that, once an update has been globally ordered for a
given sequence number, no conflicting Proposal mes-
sages can be generated for that sequence number in any
future global view.

Lemma 8.6: Let u be the first update globally ordered
by any server for sequence number seq with correspond-
ing Proposal P1(gv, v, seq, u). Then no other Proposal
message P2(gv’, *, seq, v') for gv’ > gv, with v’ # u, can
be constructed.

We prove Lemma 8.6 using a series of lemmas, and
we maintain the following invariant:

INVARIANT 8.2: Let u be the first update globally or-
dered by any server for sequence number seg, and let gv
be the global view in which v was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. We say that Invariant 8.2 holds with respect
to P if the following conditions hold:

1) There exists a majority of sites, each with at
least f + 1 correct servers with a Prepare
Certificate(gv, Iv', seq, u), a Proposal(gv’, *, seq, u),
or a Globally_Ordered_Update(gv’, seq, u), with
gv’ > gv and lv' > lv, in its Global_History[seq]
data structure.

2) There does not exist, at any site in the sys-
tem, a server with any conflicting Prepare
Certificate(gv’, IV, seq, v'), Proposal(gv’, *, seq, u'),
or Globally_Ordered Update(gv’, seq, u'), with
gv' > gv, W' > lv, and v/ # u.

Lemma 8.7 shows that Invariant 8.2 holds when the
first update is globally ordered for sequence number seq
and that it holds throughout the view in which it is or-
dered. Lemmas 8.8 and 8.9 then show that the invariant
holds across global view changes. Finally, Lemma 8.10
shows that if Invariant 8.2 holds at the beginning of
a global view after which an update has been globally
ordered, then it holds throughout the view.

Lemma 8.7: Let u be the first update globally ordered
by any server for sequence number seg, and let gv be
the global view in which v was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. Then when v is globally ordered, Invariant
8.2 holds with respect to P, and it holds for the remainder
of global view gv.

Lemma 8.8: Let u be the first update globally ordered
by any server for sequence number seg, and let gv be
the global view in which u was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
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number seq. Assume Invariant 8.2 holds with respect to
P, and let S be one of the (majority) sites maintained
by the first condition of the invariant. Then if a run of
CONSTRUCT-ARU or CONSTRUCT-GLOBAL-CONSTRAINT
begins at S, the invariant is never violated during the
run.

Lemma 8.9: Let u be the first update globally ordered
by any server for sequence number seg, and let gv be
the global view in which v was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. Then if Invariant 8.2 holds with respect to
P at the beginning of a run of the Global_View_Change
protocol, then it is never violated during the run. More-
over, if at least f 4+ 1 correct servers in the leader site
become globally constrained by completing the GLOBAL-
VIEW-CHANGE protocol, the leader site will be in the set
maintained by Condition 1 of Invariant 8.2.

Lemma 8.10: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which gv was globally ordered. Let
P(gv, lv, seq, u) be the first Proposal message constructed
by any server in the leader site in gv for sequence
number seq. Then if Invariant 8.2 holds with respect to P
at the beginning of a global view (gv/, *), with gv’ > gv,
then it holds throughout the view.

Proof: We show that no conflicting Prepare Cer-
tificate, Proposal, or Globally_Ordered_Update can be
constructed during global view gv that would cause the
invariant to be violated. We assume that a conflicting
Prepare Certificate PC is collected and show that this
leads to a contradiction. This then implies that no con-
flicting Proposals or Globally_Ordered_Updates can be
constructed.

If PC is collected, then some server col-
lected a Pre-Prepare(gv’, lv, seq, u') and 2f
Prepare(gv’, lv, seq, Digest(u’)) for some local view
lv and v # u. At least f + 1 of these messages were
from correct servers. Moreover, this implies that at
least f 4 1 correct servers were globally constrained.
By Lemma 8.9, since at least f + 1 correct servers
became globally constrained in gv’, the leader site meets
Condition 1 of Invariant 8.2, and it thus has at least
f+1 correct servers with a Prepare Certificate, Proposal,
or Globally_Ordered_Update binding seq to u. At least
one such server contributed to the construction of PC.
A correct representative would not send such a Pre-
Prepare message because the Get_Next_To_Propose()
routine would return the constrained update. Similarly,
a correct server would see a conflict. Since no server
can collect a conflicting Prepare Certificate, no server
can construct a conflicting Proposal. Thus, no server can
collect a conflicting Globally_Ordered_Update, since
this would require a conflicting Proposal, and Invariant
8.2 holds throughout global view guv’. O

We can now prove Lemma 8.6:

Proof: By Lemma 8.7, Invariant 8.2 holds with re-
spect to P1 throughout global view gv. By Lemma 8.9,

the invariant holds with respect to P1 during and after
the GLOBAL-VIEW-CHANGE protocol. By Lemma 8.10, the
invariant holds at the beginning and end of global view
gv + 1. Repeated application of Lemma 8.9 and Lemma
8.10 shows that the invariant always holds for all global
views gv’ > gv.

In order for P2 to be constructed, at least f + 1
correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure 2,
line C3). Since the invariant holds, at least f + 1 correct
servers do not collect such a Prepare Certificate and do
not send such a partial signature. This leaves only 2f
servers remaining, which is insufficient to construct the
Proposal. O

Finally, we can prove Claim 8.2:

Proof: We assume that two servers globally order
conflicting updates with the same sequence number in
two global views gv and gv’ and show that this leads to
a contradiction.

Without loss of generality, assume that a server glob-
ally orders update u in gv, with gv < gv’. This server
collected a a Proposal(gv, *, seq, u) message and |S/2]
corresponding Accept messages. By Lemma 8.6, any fu-
ture Proposal message for sequence number seq contains
update u, including the Proposal from gv’. This implies
that another server that globally orders an update in gv’
for sequence number seq must do so using the Proposal
containing u, which contradicts the fact that it globally
ordered v’ for sequence number seq. O

SAFETY - S1 follows directly from Claims 8.1 and 8.2.

8.2 Proof Roadmap of Global Liveness

We prove Global Liveness by contradiction: we assume
that global progress does not occur and show that, if the
system is stable and a stable server receives an update
which it has not executed, then the system will reach a
state in which some stable server will execute an update
and make global progress.

We first show that, if no global progress occurs, all
stable servers eventually reconcile their global histories
to the maximum sequence number through which any
stable server has executed all updates. By definition, if
any stable server executes an update beyond this point,
global progress will have been made, and we will have
reached a contradiction.

Once the above reconciliation completes, the system
eventually reaches a state in which a stable represen-
tative of a stable leader site remains in power for suf-
ficiently long to be able to complete the global view
change protocol; this is a precondition for globally order-
ing a new update (which would imply global progress).
To prove this, we first show that, eventually, the sta-
ble sites will move through global views together, and
within each stable site, the stable servers will move
through local views together. We then establish the rela-
tionships between the global and local timeouts, which
show that the stable servers will eventually remain in
their views long enough for global progress to be made.
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Finally, we show that a stable representative of a stable
leader site will eventually be able to globally order (and
execute) an update which it has not previously executed.
We first show that the same update cannot be globally
ordered on two different sequence numbers. This implies
that when the representative executes an update, global
progress will occur; no correct server has previously ex-
ecuted the update, since otherwise, by our reconciliation
claim, all stable servers would have eventually executed
the update and global progress would have occurred
(which contradicts our assumption). We then show that
each of the local protocols invoked during the global
ordering protocol will complete in bounded finite time.
Since the duration of our timeouts are a function of
the global view, and stable servers preinstall consecutive
global views, the stable servers will eventually reach
a global view in which a new update can be globally
ordered and executed.

9 CONCLUSION

This paper presented a hierarchical architecture that en-
ables efficient scaling of Byzantine replication to systems
that span multiple wide area sites, each consisting of
several potentially malicious replicas. The architecture
reduces the message complexity on wide area updates,
increasing the system’s scalability. By confining the effect
of any malicious replica to its local site, the architecture
enables the use of a benign fault-tolerant algorithm over
the WAN, increasing system availability. Further increase
in availability and performance is achieved by the ability
to process read-only queries within a site.

We implemented Steward, a fully functional proto-
type that realizes our architecture, and evaluated its
performance over several network topologies. The exper-
imental results show considerable improvement over flat
Byzantine replication algorithms, bringing the perfor-
mance of Byzantine replication closer to existing benign
fault-tolerant replication techniques over WANSs.

ACKNOWLEDGMENT

Yair Amir thanks his friend Dan Schnackenberg for in-
troducing him to this problem area and for conversations
on this type of solution. He will be greatly missed.

This work was partially funded by DARPA grant
FA8750-04-2-0232, and by NSF grants 0430271 and
0430276.

REFERENCES

[1] Y. Amir, C. Danilov, ]J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Scaling byzantine fault-tolerant replication
to wide area networks,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN '06), 2006, pp. 105-114.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
control and recovery in database systems.  Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1987.

[3] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness
condition for concurrent objects,” ACM Trans. Program. Lang. Syst.,
vol. 12, no. 3, pp. 463-492, 1990.

(4]

(5]

(6]

(71

(8]

(9]

(10]

(1]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

M. Castro and B. Liskov, “Practical byzantine fault tolerance,”
Proc. Symp. Operating Systems Design and Implementation (OSDI
'99). New Orleans, LA, USA: USENIX Association, Co-sponsored
by IEEE TCOS and ACM SIGOPS, 1999, pp. 173-186.

A. Avizeinis, “The n-version approach to fault-tolerant software,”
IEEE Trans. Soft. Eng., vol. SE-11, no. 12, pp. 1491-1501, 1985.
“Genesis: A framework for achieving component diversity,
http:/ /www.cs.virginia.edu/genesis/.”

B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and ]. Hiser, “N-variant systems:
A secretless framework for security through diversity,” Proc.
USENIX Security Symp. (USENIX-SS “06), 2006, pp. 105-120.

Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Customizable fault
tolerance for wide-area replication,” Proc. IEEE Int’l Symp. Reliable
Distributed Systems (SRDS '07), Beijing, China, 2007, pp. 65-82.
M. J. Fischer, “The consensus problem in unreliable distributed
systems (a brief survey),” Fundamentals of Computation Theory,
1983, pp. 127-140.

D. Dolev and H. R. Strong, “Authenticated algorithms for byzan-
tine agreement,” SIAM Journal of Computing, vol. 12, no. 4, pp.
656-666, 1983.

R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An ap-
proach to designing fault-tolerant computing systems,” Computer
Systems, vol. 1, no. 3, pp. 222-238, 1983.

“The Rampart Toolkit for building high-integrity services,” in
Selected Papers from the International Workshop on Theory and Practice
in Distributed Systems, 1995, pp. 99-110.

K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “The
SecureRing protocols for securing group communication,” Proc.
IEEE Hawaii Int’l Conf. System Sciences, vol. 3, Kona, Hawaii, 1998,
pp- 317-326.

M. Cukier, T. Courtney, J. Lyons, H. V. Ramasamy, W. H. Sanders,
M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber, P. Pal,
R. Watro, and J. Gossett, “Providing intrusion tolerance with
ITUA,” Supplement of IEEE Int'l Conf. Dependable Systems and
Networks (DSN '02), 2002, pp. C-5-1-C-5-3.

H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H.
Sanders, “Quantifying the cost of providing intrusion tolerance in
group communication systems,” Proc. IEEE Int’l Conf. Dependable
Systems and Networks (DSN '02), 2002, pp. 229-238.

K. Eswaran, J. Gray, R. Lorie, and I. Taiger, “The notions of
consistency and predicate locks in a database system,” Commun.
ACM, vol. 19, no. 11, pp. 624-633, 1976.

D. Skeen, “A quorum-based commit protocol,” 6th Berkeley Work-
shop on Distributed Data Management and Computer Networks, 1982,
pp- 69-80.

L. Lamport, “The part-time parliament,” ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133-169, 1998.

Lamport, “Paxos made simple,” SIGACTN: SIGACT News (ACM
Special Interest Group on Automata and Computability Theory),
vol. 32, pp. 51-58, 2001.

J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating agreement from execution for byzantine fault-tolerant
services,” Proc. ACM SIGOPS Symp. Operating Systems Principles
(SOSP "03), 2003, pp. 253-267.

J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Trans.
Dependable Secur. Comput., vol. 3, no. 3, pp. 202-215, 2006.

R. Rodrigues, P. Kouznetsov, and B. Bhattacharjee, “Large-scale
byzantine fault tolerance: Safe but not always live,” Proc. 3rd work-
shop on Hot Topics in System Dependability (HotDep '07). Berkeley,
CA, USA: USENIX Association, 2007, p. 17.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative byzantine fault tolerance,” Proc. ACM
SIGOPS Symp. Operating Systems Principles (SOSP '07), 2007, pp.
45-58.

D. Malkhi and M. K. Reiter, “Secure and scalable replication in
Phalanx,” Proc. IEEE Int’l Symp. Reliable Distributed Systems (SRDS
'98), 1998, pp. 51-60.

D. Malkhi and M. Reiter, “Byzantine quorum systems,” . Distrib.
Computing, vol. 11, no. 4, pp. 203-213, 1998.

——, “An architecture for survivable coordination in large dis-
tributed systems,” IEEE Trans. Knowledge and Data Eng., vol. 12,
no. 2, pp. 187-202, 2000.

D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind, “Persistent objects
in the Fleet system,” The 2nd DARPA Information Survivability
Conference and Exposition (DISCEX II), 2001, pp. 126-136.



AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 15

(28]

[29]

(30]

[31]

(32]
(33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]
[42]
[43]

M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie,
“Fault-scalable byzantine fault-tolerant services,” Proc. ACM
Symp. Operating Systems Principles (SOSP '05), Brighton, UK, 2005,
pp- 59-74.

M. Correia, L. C. Lung, N. F. Neves, and P. Verissimo, “Efficient
byzantine-resilient reliable multicast on a hybrid failure model,”
Proc. IEEE Int’l Symp. Reliable Distributed Systems (SRDS '02), Suita,
Japan, 2002, pp. 2-11.

P. Verissimo, “Uncertainty and predictability: Can they be recon-
ciled?” Future Directions in Distributed Computing, ser. LNCS, no.
2584. Springer-Verlag, pp. 108-113, 2003.

Y. G. Desmedt and Y. Frankel, “Threshold cryptosystems,” Proc.
Advances in Cryptology (CRYPTO ’89). New York, NY, USA:
Springer-Verlag New York, Inc., 1989, pp. 307-315.

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

V. Shoup, “Practical threshold signatures,” Lecture Notes in Com-
puter Science, vol. 1807, pp. 207-223, 2000.

R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtain-
ing digital signatures and public-key cryptosystems,” Commun.
ACM, vol. 21, no. 2, pp. 120-126, 1978.

P. Feldman, “A practical scheme for non-interactive verifiable
secret sharing,” Proc. 28th Ann. Symp. on Foundations of Computer
Science. Los Angeles, CA, 1987, pp. 427-437.

L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558-565,
1978.

E. B. Schneider, “Implementing fault-tolerant services using the
state machine approach: A tutorial,” ACM Computing Surveys,
vol. 22, no. 4, pp. 299-319, 1990.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32,
no. 2, pp. 374-382, 1985.

“The spines project, http://www.spines.org/.”

Y. Amir and C. Danilov, “Reliable communication in overlay
networks,” Proc. IEEE Int’l Conf. Dependable Systems and Networks
(DSN '03), 2003, pp. 511-520.

“Planetlab,” http://www.planet-lab.org/.

“The CAIRN Network,” http://www.isi.edu/div7/CAIRN/.

Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, “On
the performance of consistent wide-area database replication,”
Tech. Rep. CNDS-2003-3, December 2003.

Yair Amir is a Professor in the Department of
Computer Science, Johns Hopkins University,
where he served as Assistant Professor since
1995, Associate Professor since 2000, and Pro-
fessor since 2004. He holds a BS (1985) and
MS (1990) from the Technion, Israel Institute
of Technology, and a PhD (1995) from the He-
brew University of Jerusalem, Israel. Prior to his
PhD, he gained extensive experience building
C3l systems. He is a creator of the Spread and
Secure Spread messaging toolkits, the Back-

hand and Wackamole clustering projects, the Spines overlay network
platform, and the SMesh wireless mesh network. He has been a mem-
ber of the program committees of the IEEE International Conference
on Distributed Computing Systems (1999, 2002, 2005-07), the ACM
Conference on Principles of Distributed Computing (2001), and the
International Conference on Dependable Systems and Networks (2001,
2003, 2005). He is a member of the ACM and the IEEE Computer
Society.

Claudiu Danilov is an Advanced Computing
Technologist at Boeing Phantom Works. Before
he joined Boeing in 2006, he was an Assis-
tant Research Scientist in the Department of
computer Science, Johns Hopkins University. He
received his BS degree in Computer Science in
1995 from Politehnica University of Bucharest,
and MSE and PhD degrees in Computer Sci-
ence from The Johns Hopkins University in 2000
and 2004. His research interests include wire-
less and mesh network protocols, distributed

systems and survivable messaging systems. He is a creator of the
Spines overlay network platform and the SMesh wireless mesh network.

Danny Dolev (SM’89) received his B.Sc. degree
in mathematics and physics from the Hebrew
University, Jerusalem in 1971. His M.Sc. thesis
in Applied Mathematics was completed in 1973,
at the Weizmann Institute of Science, Israel. His
Ph.D. thesis was on Synchronization of Paral-
lel Processors (1979). He was a Post-Doctoral
fellow at Stanford University, 1979-1981, and
IBM Research Fellow 1981-1982. He joined the
Hebrew University in 1982. From 1987 to 1993
he held a joint appointment as a professor at the
Hebrew University and as a research staff member at the IBM Almaden
Research Center. He is currently a professor at the Hebrew University
of Jerusalem. His research interests are all aspects of distributed
computing, fault tolerance, and networking — theory and practice.

r =

Jonathan Kirsch is a fourth year Ph.D. student
in the Computer Science Department at the
Johns Hopkins University under the supervision
of Dr. Yair Amir. He received his B.Sc. degree in
Computer Science from Yale University in 2004
and his M.S.E. in Computer Science from Johns
Hopkins University in 2007. He is a member of
the Distributed Systems and Networks Labora-
tory. His research interests include fault-tolerant
replication and survivability. He is a member of
the ACM and the IEEE Computing Society.

John Lane is a fifth year Ph.D. student in the
Computer Science Department at Johns Hop-
kins University under the supervision of Dr. Yair
Amir. He received his B.A. in Biology from Cor-
nell University in 1992 and his M.S.E. in Com-
puter Science from Johns Hopkins University
in 2006. He is a member of the Distributed
Systems and Networks Laboratory. His research
interests include distributed systems, replication,
and byzantine fault tolerance. He is a member of
the ACM and the IEEE Computing Society.

Cristina Nita-Rotaru is an Assistant Professor
in the Computer Science department of the Pur-
due University and a member of Center for Ed-
ucation and Research in Information Assurance
and Security at Purdue University. She received
the BS and MSc degrees in Computer Science
from Politechnica University of Bucharest, Ro-
mania, in 1995 and 1996, and the MSE and
PhD degrees in Computer Science from The
Johns Hopkins University in 2000 and 2003.
Her research interests include secure distributed
systems, network security protocols and security aspects in wireless
networks. She is a member of the ACM and IEEE Computer Society.

Josh Olsen is a graduate student at the Univer-
sity of California, Irvine. He obtained his Bach-
elor of Science from Purdue University in 2005.
His research interests include systems, security,
and cryptography.

[z

" Mia

David Zage is a fourth year PhD student in
the Computer Science Department at Purdue
University under the supervision of Professor
Cristina Nita-Rotaru. He obtained his Bachelor
of Science from Purdue in 2004. He is a member
of the Dependable and Secure Distributed Sys-
tems Laboratory (DS2). His research interests
include distributed systems, fault tolerance, and
security. He is a member of the ACM and IEEE
Computer Society.




16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

APPENDIX A
COMPLETE PSEUDOCODE

In this section we provide complete pseudocode for Steward. We then use this pseudocode in Appendix B to prove
the safety and liveness of our protocol.

Standard Abbreviations: |v = local view gv
ctx = context; sig = signature; partial_sig

gl obal view, u = update; seq = sequence numnber;
partial signature; t_sig = threshold signature

/1 Message fromclient
Update = (client_id, tinestanp, client_update, sig)

/1 Messages used by THRESHOLD- SI GN
Partial _Sig = (server_id, data, partial_sig, verification_proof, sig)
Corrupted_Server = (server_id, data, Partial_sig, sig)

/1 Messages used by ASSI GN- SEQUENCE

Pre-Prepare = (server_id, gv, |lv, seq, Update, sig)

Prepare = (server_id, gv, |lv, seq, Digest(Update), sig)

Prepare_Certificate( gv, lv, seq, u) = a set containing a Pre-Prepare(server_id, gv, |lv, seq, u, sig) nessage
and a list of 2f distinct Prepare(*, gv, lv, seq, Digest(u), sig) nessages

/1 Messages used by ASSI GN- GLOBAL- ORDER

Proposal = (site_id, gv, lv, seq, Update, t_sig)

Accept = (site_id, gv, |lv, seq, Digest(Update), t_sig)

G obal | y_Ordered_Update(gv, seq, u) = a set containing a Proposal (site_id, gv, lv, seq, u, t_sig) nessage and a
list of distinct Accept(*, seq, gv, *, Digest(u), t_sig) nmessages froma majority-1 of sites

/1 Messages used by LOCAL- VI EW CHANGE
New_Rep = (server_id, suggested_lv, sig)
Local _Preinstall _Proof = a set of 2f+1 distinct New_Rep nessages

/1 Messages used by GLOBAL- VI EW CHANGE
G obal _VC = (site_id, gv, t_sig)
G obal _Preinstall _Proof = a set of distinct dobal _VC nessages froma nejority of sites

/1 Messages used by CONSTRUCT- ARU, CONSTRUCT- LOCAL- CONSTRAI NT, and CONSTRUCT- GLOBAL- CONSTRAI NT

Request _Local _State = (server_id, gv, lv, seq)

Request _Qd obal _State = (server_id, gv, |lv, seq)

Local _Server_State = (server_id, gv, lv, invocation_aru, a set of Prepare Certificates, a set of Proposals,

si g)

G obal _Server_State = (server_id, gv, lv, invocation_aru, a set of Prepare Certificates, a set of Proposals, a
set dobally_Ordered_Updates, sig)

Local _Col | ected_Server_State = (server_id, gv, Ilv, a set of 2f+1 Local _Server_State nessages, sig)

G obal _Col | ected_Server_State = (server_id, gv, lv, a set of 2f+1 d obal _Server_State nessages, sig)

/1 Messages used by GLOBAL- VI EW CHANGE

Aru_Message = (site_id, gv, site_aru)

d obal _Constraint = (site_id, gv, invocation_aru, a set of Proposals and/or dobally_Ordered_Updates with seq >
invocati on_aru)

Col | ected_Qd obal _Constraints(server_id, gv, Ilv, a set of majority d obal _Constraint nmessages, sig)

/I Messages used by GLOBAL- RECONCI LI ATI ON and LOCAL- RECONCI LI ATI ON

G obal _Recon_Request = (server_id, global _session_seq, requested_aru, globally_ordered_update)
Local _Recon_Request = (server_id, |ocal_session_seq, requested_aru)

d obal _Recon = (site_id, server_id, global_session_seq, requested_aru)

Fig. A-1: Message types used in the global and local protocols.
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int Server_id: unique id of this server within the site

int Site_id: unique id of this server’'s site

A. dobal Context (Q obal Protocol) Data Structure

int dobal _seq: next global sequence nunber to assign.

int Gobal_view current global view of this server, initialized to 0.

int Gobal_preinstalled_view |ast global viewthis server preinstalled, initialized to O.

bool Installed_global _view If it is 0, then Aobal _viewis the new viewto be installed.
G obal _VC Latest_GQ obal _VC[]: |atest Q@ obal _VC nessage received fromeach site.
struct gl obally_proposed_item {
Proposal _struct Proposal
Accept _struct _Li st Accept_Li st
d obal _Ordered_Update_struct d obal |l y_Ordered_Updat e
} G obal _History[] // indexed by d obal _seq

int Gobal_aru: global seq up to which this server has globally ordered all updates.

bool globally_constrained: set to true when constrained in global context.

int Last_d obal _Session_Seq[]: |atest session_seq fromeach server (local) or site (global)

int Last_Gd obal _Requested_Aru[]: latest requested aru from each server (local) or site (global)
int Last_Gd obal _Request_Tine[]: time of |last global reconciliation request fromeach |ocal server
int Max_d obal _Requested_Aru[]: maximumrequested aru seen fromeach site

B. Local Context (Intra-site Protocols) Data Structure
int Local _view |ocal view nunber this server is in
int Local _preinstalled_vew last local viewthis server preinstalled, initialized to 0.
bool Installed_local _view If it is O, then Gobal_viewis the new one to be installed.
New_Rep Latest_New Rep[]: |atest New Rep nessage received fromeach site.
struct pending_proposal _item {

Pre-Prepare_struct Pre-Prepare

Prepare_struct _Li st Prepare_List

Prepare_Cert_struct Prepare_Certificate

Proposal _struct Proposal
} Local _History[] //indexed by G obal _seq
int Pending_proposal _aru: global seq up to which this server has constructed proposal s
bool locally_constrained: set to true when constrained in the |ocal context.
Partial _Sigs: associative container keyed by data. Each slot in the container holds an array, indexed by
server_id. To access data d fromserver s_id, we wite Partial _Sigs{d}[s_id].

Updat e_Pool :

pool

of client

int Last_Local _Session_Seq[]:
int Last_Local _Requested_Aru[]:

updat es,

bot h unconstrai ned and constrai ned

| at est session_seq fromeach | ocal server
| atest requested aru fromeach | ocal server
int Last_Local _Request_Tine[]: tine of last local reconciliation request fromeach |ocal server

Fig. A-2: Global and Local data structures maintained by each server.
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Fig. A-3: Rules for applying a message to the Local_History data structure. The rules assume that there is no conflict, i.e.,
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| *

Not ati on: <== neans append */

UPDATE- LOCAL - DATA- STRUCTURES:
case message:

Al.
A2.

REQA

BEIBERBRE

Pre-Prepare(server_id, *, lv, seq, u):
if Local _History[seq].Pre-Prepare is enpty
Local _Hi story[seq].Pre-Prepare «— Pre-Prepare
el se
i gnore Pre-Prepare

Prepare(server_id, *, lv, seq, digest):

if Local _History[seq].Pre-Prepare is enpty
i gnore Prepare

if Local _History[seq].Prepare_List contains a Prepare with server_id
i gnore Prepare

Local _Hi story[seq].Prepare_List <== Prepare

if Prepare_Certificate_Ready(seq)
pre-prepare « Local _History[seq].Pre-Prepare
PC — Construct_Prepare_Certificate(pre-prepare, Local _Hi story[seq].Prepare_List)
Local _Hi story[seq].Prepare_Certificate «— PC

Partial _Sig(server_id, data, partial_sig, verification_proof, sig):
if Local _History.Partial_Sigs{ data }[Server_id] is enpty
ignore Partial _Sig
Local _History. Partial _Sigs{ data }[server_id] « Partial_Sig

Local _Col | ected_Server_State(gv, |v, Local _Server_State[]):
uni on « Conput e_Local _Uni on(Local _Col | ect ed_Server_State)
invocation_aru «— Extract_lnvocation_Aru(Local _Server_State[])
max_l ocal _entry « Extract_Max_Local _Entry(Local _History[])
for each seq from (invocation_aru+l) to nmax_| ocal _entry
if Local _History[seq].Prepare_Certificate(*, |v', seq, *) exists and v’ < |v
clear Local _History[seq].Prepare_Certificate
if Local _Hi story[seq].Proposal (*, Iv', seq, *) exists and v’ < lv
clear Local _History[seq].Proposal
if Local _History[seq].Pre-Prepare(*, Iv', seq, *) exists and v’ < |v
cl ear Local _Hi story[seq].Pre-Prepare
for each Prepare_Certificate(*, *, seq, *), PC, in union
if Local _History[seq].Prepare_Certificate is enpty
Local _Hi story[seq].Prepare_Certificate «— PC
for each Proposal (», *, seq, *), P, in union
if Local _History[seq].Proposal is enpty
Local _Hi story[seq].Proposal «— P

New_Rep(site_id,|v):
if (lv > Latest_New Rep[site_id])
Latest _New _Rep[site_id] < New_Rep
Local _preinstalled_view «— Latest_New Rep[Site_id]

Updat e( ) :
SEND to all servers in site: Update(w)
if representative of non-leader site
SEND to representative of |eader site: Update(w)
Add Update(w) to Update_Pool

Conflict(message) == FALSE
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/+* Notation: <== neans append x/
UPDATE- GLOBAL- DATA- STRUCTURES:
case message:
Al. Proposal P(site_id, gv, *, seq, u):

A2. if dobal _Hi story[seq].Proposal is enpty

A3. d obal _Hi story[seq].Proposal «— P

Ad. if server in |eader site

A5. Reconput e Pendi ng_proposal _aru

A6. if dobal _History[seq].Prepare_Certificate is not enpty

A7. renove Prepare_Certificate from d obal _H story[seq].Prepare_Certificate
A8. if Gdobal _Hi story[seq].Proposal contains Proposal (site_id, gv', *, seq, u')
A9. if gv > gv

A10. d obal _Hi story[seq].Proposal «— P

All. if server in |eader site

Al2. Reconput e Pendi ng_proposal _aru

A13. if G obal _H story[seq].Prepare_Certificate is not enpty

Al4. renove Prepare_Certificate from d obal _History[seq].Prepare_Certificate
B1. Accept A(site_id, gv, *, seq, digest):

B2. if dobal _Hi story[seq].Proposal is enpty

B3. ignore A

B4. if G obal _H story[seq].Accept_List is enpty

B5. d obal _Hi story[seq].Accept _Li st <==

B6. if G obal _Hi story[seq].Accept_List has any Accept(site_id, gv', *, seq, digest’)
B7. if gv > gv

B8. discard all Accepts in d obal _History[seq]

B9. d obal _Hi story[seq].Accept _List <== A

B10. if gv == gv' and d obal _Hi story[seq] does not have Accept fromsite_id
B11. d obal _Hi story[seq].Accept _List <==

B12. if gv < gv

B13. ignore A

B14. if dobally_Ordered_Ready(seq)

B15. Construct globally_ordered_update from Proposal and |ist of Accepts

B16. Apply globally_ordered_update to d obal _History

Cl. G obal | y_Ordered_Update G(gv, seq, u):

c2 if not dobally_Odered(seq) and |Is_Contiguous(seq)

Cc3 G obal _H story[seq].d obally_Ordered_Update «— G

c4 Reconpute d obal _aru

c5 exec_set « all unexecuted globally ordered updates with seq < d obal _aru
C6 execute the updates in exec_set

c7 if there exists at least one Gobally_Ordered_Update(*, *, *) in exec_set
Cc8 RESET- GLOBAL- Tl MER()

9 RESET- LOCAL- TI MER()

C10 if server in |eader site

C11. Reconput e Pendi ng_proposal _aru

D1 Col | ected_Qd obal _Constraints(gv, 4 obal _Constraint[]):

D2 uni on « Conput e_Constrai nt_Uni on(Col | ect ed_d obal _Constrai nts)

D3 invocation_aru «— Extract_lnvocati on_Aru(d obal _Constraint[])

D4 max_gl obal _entry « Extract_Max_Gd obal _Entry(d obal _Hi story[])

D5 for each seq from (invocation_aru+l) to nax_gl obal _entry

D6 if @obal _History[seq].Prepare_Certificate(gv', *, seq, *) exists and gv' < gv
D7 clear G obal _History[seq].Prepare_Certificate

D8 if dobal _History[seq].Proposal (gv', *, seq, *) exists and gv' < gv
D9. clear d obal _H story[seq]. Proposal

D10. for each Gobally_Ordered_Update(*, *, seq, *), G in union

D11. d obal _History[seq].d obally_Ordered_Update «— G

D12. for each Proposal (*, *, seq, *), P, in union

D13. if dobal _Hi story[seq].Proposal is enpty

D14. d obal _Hi story[seq].Proposal «— P

E1. d obal _VC(site_id, gv):

E2. if ( gv > Latest_Q obal _VCsite_id].gv )

E3. Latest_d obal _V(site_id] «— dobal _VC

E4. sorted_vc_nessages < sort Latest_d obal _VC by gv

E5. d obal _preinstal |l ed_view «— sorted_vc_nessages[ |N/2|+1 ].gv

E6. if ( Gobal_preinstalled_view > d obal _view)

E7. d obal _view «— d obal _preinstalled_view

E8. gl obal I y_constrai ned «— Fal se

F1. G obal _Preinstal | _Proof (gl obal _vc_nessages[]):

F2. for each dobal _VC(gv) in global _vc_nesssages|]

F3. Apply d obal _VC

Fig. A-4: Rules for applying a message to the Global_History data structure. The rules assume that there is no conflict, i.e.,
Conflict(message) == FALSE
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Al. bool ean Q@ obal | y_Ordered(seq):

A2. if AQobal _History[seq].d obally_Ordered_Update is not enpty
A3. return TRUE

A4 return FALSE

Bl. bool ean d obal I y_Ordered_Ready(seq):

B2. if G obal _History. Proposal [seq] contains a Proposal (site_id, gv, lv, seq, u)

B3. if G obal _Hi story[seq].Accept_List contains (mjority-1) of distinct
Accept(site_id(i), gv, lv, seq, Digest(u)) with site_id(i) # site_id

B4. return TRUE

B5. if G obal _History[seq].Accept_List contains a majority of distinct

B6. Accept (site_id(i), gv', lv, seq, Digest(u)) with gv >= gv’

B7. return TRUE

B8. return FALSE

Cl. bool ean Prepare_Certificate_Ready(seq):

c2. if Local _History.Proposal [seq] contains a Pre-Prepare(server_id, gv, |lv, seq, u)

C3 if Local _History[seq].Prepare_List contains 2f distinct
Prepare(server_id(i), gv, lv, seq, d) with server_id # server_id(i) and d == Di gest (u)

CA. return TRUE
C5. return FALSE

D1. bool ean I n_W ndow( seq):

D2. if Gobal_aru < seq < dobal _aru + W
D3. return TRUE

D4. el se

D5. return FALSE

E1l. bool ean |Is_Conti guous(seq):
E2. for i fromd obal _aru+l to seg-1

E3. if Gobal _Hi story[seq].Prepare-Certificate == NULL and

E4. d obal _Hi story[seq].Proposal == NULL and

E5. d obal _Hi story[seq].d obal | y_Ordered_Update == NULL and
E6. Local _Hi story[seq].Prepare-Certificate == NULL and

E7. Local _Hi story[seq].Proposal == NULL

ES. return FALSE

E9. return TRUE

Fig. A-5: Predicate functions used by the global and local protocols to determine if and how a message should be applied to a
server’s data structures.

bool ean Val i d( nmessage):

Al. if message has threshold RSA signature S

A2, if NOT VERI FY(S)

A3. return FALSE

Ad. if message has RSA-signature S

A5. if NOT VERIFY(S)

A6. return FALSE

AT7. if message contains update with client signature C
A8. if NOT VERI FY(Q)

A9. return FALSE

A10. if message.sender is in Corrupted_Server_List
All. return FALSE

Al2. return TRUE

Fig. A-6: Validity checks run on each incoming message. Invalid messages are discarded.
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', seq, U') exists

u') exists) and (Digest(u') # digest)

', seq, U') exists

set):

gss_set):

_set):

bool ean Conflict(message):
case message
Al. Proposal ((site_id, gv, lv, seq, u):
A2. if gv # dobal _view
A3. return TRUE
Ad. if server in |eader site
A5. return TRUE
A6. if Gdobal _History[seq].d obal _O dered_Update(gv
A7. if (W #u) or (gv > gv)
A8. return TRUE
A9. if not Is_Contiguous(seq)
Al10. return TRUE
All. if not |In_Wndow seq)
Al12. return TRUE
Al13. return FALSE
B1. Accept(site_id, gv, lv, seq, digest):
B2. if gv # dobal _view
B3. return TRUE
B4. if (A obal_Hi story[seq].Proposal (*, *, *, seq,
B5. return TRUE
B6. if dobal _Hi story[seq].d obal _Ordered_Update(gv
B7. if (Digest(u') # digest) or (gv' > gv)
B8. return TRUE
B9. return FALSE
Cl. Aru_Message(site_id, gv, site_aru):
C2. if gv # dobal _view
C3. return TRUE
C4. if server in |eader site
C5. return TRUE
C6. return FALSE
D1. Request _Q obal _State(server_id, gv, lv, aru):
D2. if (gv # Gobal_view) or (lv # Local _view)
D3. return TRUE
D4. if server_id # Iv nbd numservers_in_site
D5. return TRUE
D6. return FALSE
E1. d obal _Server_State(server_id, gv, lv, seq, state_:
E2. if (gv # Gobal _view) or (lv # Local _view)
E3. return TRUE
E4. if not representative
ES5. return TRUE
E6. if entries in state_set are not contiguous above seq
E7. return TRUE
ES. return FALSE
F1. G obal _Col | ected_Servers_State(server_id, gv, |lv,
F2. if (gv # Gobal_view) or (lv # Local _view)
F3. return TRUE
FA4. if each nessage in gss_set is not contiguous above invocation_seq
F5. return TRUE
Gl. d obal _Constraint(site_id, gv, seq, state_set):
Q2. if gv # dobal _view
G3. return TRUE
G4 if server not in |leader site
Gb. return TRUE
G5. return FALSE
H1. Col | ect ed_G obal _Constraints(server_id, gv, lv, gc
H2. if gv # dobal _view
H3. return TRUE
H4. aru «— Extract_Aru(gc_set)
H5. if Gobal _aru < aru
H6. return TRUE
H7. return FALSE
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Fig. A-7: Conflict checks run on incoming messages used in the global context. Messages that conflict with a server’s current
global state are discarded.
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bool ean Conflict(nmessage):
case message

Al. Pre-Prepare(server_id, gv, lv, seq, u):

A2. if not (globally_constrained & | ocal |l y_constrai ned)

A3. return TRUE

Ad. if server_id # Iv nod numservers_in_site

A5. return TRUE

A6. if (gv # dobal _view) or (lv # Local _view)

A7. return TRUE

A8. if Local _History[seq].Pre-Prepare(server_id, gv, Ilv, seq, u') exists and u # u
A9. return TRUE

A10 if Local _History[seq].Prepare_Certificate.Pre-Prepare(gv, Iv', seq, u') exists and u # u
All. return TRUE

Al12. if Local _Hi story[seq].Proposal (site_id, gv, Iv', u) exists

Al13. if (U #u) or (Ivi >1v)

Al4. return TRUE

A15. if dobal _History[seq].Proposal (site_id, gv', Iv', seqg, u) exists
Al6. if (U #u) or (gv' > gv)

Al7. return TRUE

A18. if G obal _H story[seq].d obally_Ordered_Update(*, seq, u') exists
A19. if (u #u)

A20. return TRUE

A21. if not |s_Contiguous(seq)

A22. return TRUE

A23. if not In_Wndow seq)

A24. return TRUE

A25. if uis bound to seq’ in Local _Hi story or G obal _History

A26. return TRUE

A27. return FALSE

B1. Prepare(server_id, gv, lv, seq, digest):

B2. if not (globally_constrained & | ocal |l y_constrai ned)

B3. return TRUE

B4. if (gv # Gobal_view) or (lv # Local _view)

B5. return TRUE

B6. if Local _History[seq].Pre-Prepare(server_id, gv, |lv, seq, u) exists
B7. if digest # Digest(u)

B8. return TRUE

B9. if Local _History[seq].Prepare_Certificate.Pre-Prepare(gv, IVv', seq, u) exists
B10. if (digest # Digest(u)) or (Iv' >1v)

B11. return TRUE

B12. if Local _History[seq].Proposal (gv, |v', seq, u) exists

B13. if (digest # Digest(u)) or (Iv' >1v)

B14. return TRUE

B15. return FALSE

Cl. Request _Local _State(server_id, gv, lv, aru):

C2. if (gv # dobal _view) or (lv # Local _view)

C3. return TRUE

C4. if server_id # |Iv nod numservers_in_site

C5. return TRUE

C6. return FALSE

D1. Local _Server_State(server_id, gv, |lv, seq, state_set):

D2. if (gv # dobal _view) or (lv # Local _view)

D3. return TRUE

D4. if not representative

D5. return TRUE

D6. if entries in state_set are not contiguous above seq
D7. return TRUE

D8. return FALSE

E1. Local _Col | ected_Servers_State(server_id, gv, lv, Iss_set):
E2. if (gv # dobal _view) or (lv # Local _view)

E3. return TRUE

E4. if each nessage in Iss_set is not contiguous above invocation_seq
ES5. return TRUE

E6G. return FALSE

Fig. A-8: Conflict checks run on incoming messages used in the local context. Messages that conflict with a server’s current local
state are discarded.
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Al.

THRESHOLD- SI G\( Dat a_s data, int server_id):

Partial _Sig <« GENERATE_PARTI AL_SI G(data, server_id)
SEND to all local servers: Partial _Sig

Upon receiving a set, PSig_Set, of 2f+1 Partial _Sigs fromdistinct servers:
si gnature < COVBI NE(PSi g_Set)
if VERI FY(signature)
return signature
el se
for each S in PSig_Set
if NOT VERIFY(S)
REMOVE( S, PSi g_Set)
ADD( S. server_id, Corrupted_Servers_List)
Corrupt ed_Server «— CORRUPTED(S)
SEND to all local servers: Corrupted_Server
continue to wait for nobre Partial _Sig nessages

23

Fig. A-9: THRESHOLD-SIGN Protocol, used to generate a threshold signature on a message. The message can then be used in
a global protocol.

ASSI
Al.
A2,
A3.

B1.
B2.
B3.

a8aRaga

RBRR

G\ SEQUENCE( Updat e u):

Upon i nvoki ng:
SEND to all local servers: Pre-Prepare(gv, |lv, Gdobal_seq, u)
d obal _seq++

Upon receiving Pre-Prepare(gv, lv, seq, u):
Apply Pre-Prepare to Local _History
SEND to all |ocal servers: Prepare(gv, |v, seq, Digest(u))

Upon receiving Prepare(gv, lv, seq, digest):
Apply Prepare to Local _History
if Prepare_Certificate_Ready(seq)
prepare_certificate «— Local _Hi story[seq].Prepare_Certificate
pre-prepare «— prepare_certificate.Pre-Prepare
unsi gned_proposal « Construct Proposal (pre-prepare)

i nvoke THRESHOLD- SI G\( unsi gned_proposal, Server_id) //returns signed_proposal

Upon THRESHOLD- SI GN r et ur ni ng si gned_pr oposal :
Apply signed_proposal to d obal _History
Apply signed_proposal to Local _History
return signed_proposal

Fig. A-10: ASSIGN-SEQUENCE Protocol, used to bind an update to a sequence number and produce a threshold-signed Proposal

message.
ASS| GN- GLOBAL- ORDER( ) :
Al. Upon receiving or executing an update, or becom ng globally or locally constrained:
A2. if representative of |eader site
A3. if (globally_constrained and | ocally_constrained and | n_W ndow( G obal _seq))
Ad. u < Get_Next_To_Propose()
A5, if (u # NULL)
A6. i nvoke ASS|I GN- SEQUENCE(u) //returns Proposal
Bl. Upon ASSI G\ SEQUENCE r et urni ng Proposal:
B2. SEND to all sites: Proposal
Cl. Upon receiving Proposal (site_id, gv, |v, seq, u):
C2. Apply Proposal to d obal _History
C3. if representative
c4. SEND to all |ocal servers: Proposal
C5. unsi gned_accept « Construct Accept ( Proposal)
C6. i nvoke THRESHOLD- SI G\N( unsi gned_accept, Server_id) //returns signed_accept
D1. Upon THRESHOLD- SI GN returni ng si gned_accept:
D2. Apply signed_accept to G obal _Hi story
D3. if representative
D4. SEND to all sites: signed_accept
E1. Upon receiving Accept(site_id, gv, |v, seq, Digest(u)):
E2. Apply Accept to G obal _History
E3. if representative
E4. SEND to all |ocal servers: Accept
E5. if dobally_Ordered_Ready(seq)
E6. gl obal | y_ordered_update < Construct Or der edUpdat e(seq)
E7. Apply globally_ordered_update to d obal _History

Fig. A-11: ASSIGN-GLOBAL-ORDER Protocol. The protocol runs among all sites and is similar to Paxos. It invokes the ASSIGN-

SEQUENCE and THRESHOLD-SIGN intra-site protocols to allow a site to emulate the behavior of a Paxos participant.
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Get _Next _To_Propose():
Al. u «— NULL
A2. if(d obal _History[d obal _seq].Proposal is not enpty)

A3. u «— d obal _History[d obal _seq] . Proposal . Updat e

Ad. else if(Local _History[d obal _seq].Prepare_Certificate is not enpty)
A5. u < Local _History[d obal _seq].Prepare_Certificate. Update

A6. else if(Unconstrained_Updates is not enpty)

A7. u < Unconstrai ned_Updat es. Pop_Front ()

A8. return u

Fig. A-12: Get_Next_To_Propose Procedure. For a given sequence number, the procedure returns (1) the update currently bound
to that sequence number, (2) some update not currently bound to any sequence number, or (3) NULL if the server does not
have any unbound updates.
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Initial State:

Local _view = 0

nmy_preinstall _proof = a priori proof that view 0 was preinstalled
RESET- LOCAL- TI MER()

LOCAL- VI EW CHANGE( )
Al. Upon Local _T expiration:

A2. Local _vi ew++

A3. local l y_constrained «— Fal se

Ad. unsi gned_new_rep « Construct_New Rep(Local _vi ew)

A5. i nvoke THRESHOLD- SI G\(unsi gned_new_rep, Server_id) //returns New Rep

Bl. Upon THRESHOLD- SI GN returni ng New _Rep(lv):
B2. Apply New_Rep()
B3. SEND to all servers in site: New Rep

Cl. Upon receiving New Rep(lv):
C2. Apply New Rep()

D1. Upon increasing Local _preinstalled_view

D2 RELI ABLE- SEND- TO- ALL- SI TES( New_Rep)

D3. SEND to all servers in site: New_Rep

D4. RESET- LOCAL- TI MER(); Start Local _T

D5 if representative of |eader site

D6 i nvoke CONSTRUCT- LOCAL- CONSTRAI NT( Pendi ng_pr oposal _ar u)

D7. if NOT globally_constrained

D8. i nvoke GLOBAL_VI EW CHANGE

D9. el se

D10. nmy_gl obal _constraints < Construct_Col | ect ed_Gd obal _Constrai nts()
D11. SEND to all servers in site: My_global _constraints

Fig. A-13: LOCAL-VIEW-CHANGE Protocol, used to elect a new site representative when the current one is suspected to have
failed. The protocol also ensures that the servers in the leader site have enough knowledge of pending decisions to preserve
safety in the new local view.

GLOBAL- LEADER- ELECTI ON:
Al. Upon G obal _T expiration:
A2. d obal _vi ew++

A3. gl obal | y_constrai ned «— Fal se
Ad. unsi gned_gl obal _vc « Construct_d obal _VC()
A5. i nvoke THRESHOLD- SI G\( unsi gned_gl obal _vc, Server_id)

Bl. Upon THRESHOLD- SI GN returni ng G obal _VC(gv):
B2. Apply G obal _VC to data structures
B3. Rel i abl eSendToAl | Si t es(d obal _VC)

Cl. Upon receiving d obal _VC(gv):
C2. Apply G obal _VC to data structures

D1. Upon receiving G obal _Preinstall_Proof(gv):
D2. Apply G obal _Preinstal | _Proof ()

E1l. Upon increasing G obal _preinstalled_view
E2. sorted_vc_nessages « sort Latest_Qd obal _VC by gv

E3. proof « last |[N/2] +1 G obal _VC nessages in sorted_vc_messages
E4. Rel i abl eSendToAl | Sites( proof )

E5. SEND to all |ocal servers: proof

E6. RESET- GLOBAL- TI MER(); Start dobal _T

E7. if representative of |eader site

E8. i nvoke GLOBAL- VI EW CHANGE

Fig. A-14: GLOBAL-LEADER-ELECTION Protocol. When the Global_T timers of at least 2f + 1 servers in a majority of sites
expire, the sites run a distributed, global protocol to elect a new leader site by exchanging threshold-signed Global_VC messages.

RESET- GLOBAL- PROGRESS- TI MER() :
Al.  Qobal T « GLOBAL-TI MEOUT()

RESET- LOCAL- TI MER() :

B1. if in leader site

B2. Local _T «— GLOBAL-TI MEQUT() /(f + 3)

B3. el se

B4. Local _T «— GLOBAL- TI MEQUT() /(f 4+ 3)(f + 2)

GLOBAL_TI MEQUT() : ,
Cl. return K 2]’Global_vzcw/N'\

Fig. A-15: RESET-GLOBAL-TIMER and RESET-LOCAL-TIMER procedures. These procedures establish the relationships between
Steward’s timeout values at both the local and global levels of the hierarchy. Note that the local timeout at the leader site is
longer than at the non-leader sites to ensure a correct representative of the leader site has enough time to communicate with
correct representatives at the non-leader sites. The values increase as a function of the global view.
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GLOBAL- VI EW CHANGE:
Al. Upon invoking:
A2. I nvoke CONSTRUCT- ARU( G obal _aru)// returns (d obal _Constraint, Aru_Message)

Bl. Upon CONSTRUCT- ARU returning (G obal _Constraint, Aru_Message):
B2. Store G obal _Constraint

B3. if representative of |eader site

B4. SEND to all sites: Aru_Message

Cl. Upon receiving Aru_Message(site_id, gv, site_aru):

c2. if representative site

C3. SEND to all servers in site: Aru_Message

C4. i nvoke CONSTRUCT- GLOBAL- CONSTRAI NT( Aru_Message) //returns d obal _Constrai nt
D1. Upon CONSTRUCT- GLOBAL- CONSTRAI NT returni ng G obal _Constraint:

D2. if representative of non-|eader site

D3. SEND to representative of |eader site: d obal _Constraint

E1. Upon collecting GC_SET with majority distinct G obal _Constraint nmessages:

E2. if representative

E3. Col | ect ed_G obal _Constraints < Construct Bundl e( GC_SET)
E4. SEND to all in site: Collected_d obal _Constraints

E5. Apply Col | ected_d obal _Constraints to G obal _History
E6. gl obal I y_constrai ned «— True

F1. Upon receiving Coll ected_d obal _Constraints:

F2. Apply Col |l ected_d obal _Constraints to G obal _History
F3. gl obal | y_constrai ned «— True

F4. Pendi ng_proposal _aru «— d obal _aru

Fig. A-16: GLOBAL-VIEW-CHANGE Protocol, used to globally constrain the servers in a new leader site. These servers obtain
information from a majority of sites, ensuring that they will respect the bindings established by any updates that were globally
ordered in a previous view.

CONSTRUCT- LOCAL- CONSTRAI NT(i nt seq):

Al. if representative

A2. Request _Local _State « Construct Request St at e(d obal _vi ew, Local _view, seq)
A3. SEND to all local servers: Request_Local _State

Bl. Upon receiving Request_Local _State(gv, lv, s):

B2. invocation_aru «— s

B3. if (Pending_Proposal _Aru < s)

B4. Request missing Proposals or G obally_Ordered_Update nessages fromrepresentative
B5. if (Pending_Proposal _Aru > s)

B6. Local _Server_State « Construct_Local _Server_State(s)

B7. SEND to the representative: Local _Server_State

Cl. Upon collecting LSS Set with 2f+1 distinct Local _Server_State(invocation_aru) nessages:
C2. Local _Col | ected_Servers_State «— Construct_Bundl e(LSS_Set)
C3. SEND to all local servers: Local _Collected_Servers_State

D1. Upon receiving Local _Collected_Servers_State:

D2. if (all Local _Server_State nessages in bundle contain invocation_aru)
D3. if (Pending_Proposal _Aru > invocation_aru)

D4. Apply Local _Col |l ected_Servers_State to Local _History

D5. local | y_constrained «— True

D6. return Local _Col | ected_Servers_State

Fig. A-17: CONSTRUCT-LOCAL-CONSTRAINT Protocol. The protocol is invoked by a newly-elected leader site representative
and involves the participation of all servers in the leader site. Upon completing the protocol, a server becomes locally constrained
and will act in a way that enforces decisions made in previous local views.
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CONSTRUCT- ARU(i nt seq):

Al. if representative

A2. Request _Q obal _State < Construct Request St at e(d obal _vi ew, Local _view, seq)
A3. SEND to all local servers: Request_d obal _State

B1l. Upon receiving Request _d obal _State(gv, Iv, s):

B2. invocation_aru «— s

B3. if (dobal_aru < s)

B4. Request missing G obally_Ordered_Updates fromrepresentative
B5. if (dobal_aru > s)

B6. G obal _Server_State «— Construct_Qd obal _Server_State(s)

B7. SEND to the representative: G obal _Server_State

Cl. Upon collecting GSS_Set with 2f+1 distinct G obal _Server_State(invocation_aru) nessages:
C2. G obal _Col | ected_Servers_State «— Construct_Bundl e( GSS_Set)
c3 SEND to all local servers: d obal _Collected_Servers_State

D1. Upon receiving d obal _Col |l ected_Servers_State:

D2. if (all G obal _Server_State nessage in bundle contain invocation_aru)
D3. if(dobal _aru > invocation_aru)

D4 uni on < Conpute_d obal _Uni on(d obal _Col | ect ed_Servers_St at e)
D5 for each Prepare Certificate, PC(gv, Iv, seq, u), in union

D6 I nvoke THRESHOLD- SI GN(PC, Server_id) //Returns Proposal

E1l. Upon THRESHOLD- SI GN returni ng Proposal P(gv, |v, seq, u):
E2. d obal _Hi story[seq].Proposal «— P

F1. Upon conpl eting THRESHOLD- SI GN on all Prepare Certificates in union:
F2. I nvoke THRESHOLD- SI G\(uni on, Server_id) //Returns d obal _Constrai nt

Gl. Upon THRESHOLD- SI GN returning d obal _Constraint:

Q2. Apply each @ obally_Ordered_Update in Constraint Message to G obal _History
G3. uni on_aru « Extract_Aru(union)

4. I nvoke THRESHOLD- SI G\(uni on_aru, Server_id) //Returns Aru_Message

H1l. Upon THRESHOLD- SI GN returni ng Aru_Message:
H2. return (d obal _Constraint, Aru_Message)

Fig. A-18: CONSTRUCT-ARU Protocol, used by the leader site to generate an Aru_Message during a global view change. The
Aru_Message contains a sequence number through which at least f + 1 correct servers in the leader site have globally ordered
all updates.

CONSTRUCT- GLOBAL- CONSTRAI NT( Ar u_Message A):

Al. invocation_aru «— A seq

A2. dobal _Server_State « Construct_Gd obal _Server_State(gl obal _context, A seq)
A3. SEND to the representative: G obal _Server_State

B1l. Upon collecting GSS_Set with 2f+1 distinct G obal _Server_State(invocation_aru) nessages:
B2. G obal _Col | ected_Servers_State «— Construct_Bundl e( GSS_Set)
B3. SEND to all local servers: d obal _Collected_Servers_State

Cl. Upon receiving G obal _Collected_Servers_State:

c2. if (all G obal _Server_State nessages in bundle contain invocation_aru)
C3. uni on « Conput e_Qd obal _Uni on(d obal _Col | ect ed_Servers_St at e)

4 for each Prepare Certificate, PC(gv, Iv, seq, u), in union

c5 I nvoke THRESHOLD- SI G\N(PC, Server_id) //Returns Proposal

D1. Upon THRESHOLD- SI GN returni ng Proposal P(gv, |v, seq, u):
D2. d obal _Hi story[seq].Proposal «— P

E1. Upon conpl eting THRESHOLD- SI GN on all Prepare Certificates in union:
E2. I nvoke THRESHOLD- SI G\(uni on, Server_id) //Returns Q obal _Constraint

F1. Upon THRESHOLD- SI GN returning G obal _Constraint:
F2. return d obal _Constraint

Fig. A-19: CONSTRUCT-GLOBAL-CONSTRAINT Protocol, used by the non-leader sites during a global view change to
generate a Global_Constraint message. The Global_Constraint contains Proposals and Globally_Ordered_Updates for all sequence
numbers greater than the sequence number contained in the Aru_Message, allowing the servers in the leader site to enforce
decisions made in previous global views.
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Construct _Local _Server_State(seq):
Al. state_set « 0
A2. For each sequence nunber i from(seq + 1) to (G obal _Aru + W:

A3. if Local _History[i].Proposal, P, exists

A4, state_set «— state_set U P

A5. else if Local _History[i].Prepare_Certificate, PC, exists:
A6. state_set « state_set U PC

A7. return Local _Server_State(Server_id, gv, |lv, seq, state_set)

Construct _Gd obal _Server_State(seq):

Bl. state_set «

B2. For each sequence nunber i from(seq + 1) to (Qdobal _aru + W:
B3. if Gobal_History[i].d obally_Ordered_Update, G exists

B4. state_set « state_set U G

B5. else if Gobal _H story[i].Proposal, P, exists:

B6. state_set «— state_set U P

B7. else if Gobal_History[i].Prepare_Certificate, PC, exists:
B8. state_set « state_set U PC

B9. return d obal _Server_State(Server_id, gv, lv, seq, state_set)

Fig. A-20: Construct Server State Procedures. During local and global view changes, individual servers use these procedures
to generate Local Server_State and Global_Server_State messages. These messages contain entries for each sequence number,
above some invocation sequence number, to which a server currently has an update bound.

/1 Assunption: all entries in css are from d obal _vi ew

Conput e_Local _Uni on(Local _Col | ected_Servers_State css):

Al. union « 0

A2. css_unique «— Renopve duplicate entries fromcss

A3. seq_list <« Sort entries in css_unique by increasing (seq, |v)

Bl. For each itemin seq_list

B2. if any Proposal P

B3. P* < Proposal fromlatest |ocal view
B4. uni on « union U P*

B5. else if any Prepare Certificate PC

B6. PC* «— PC fromlatest local view

B7. union « union U PC*

B8. return union

Conput e_d obal _Uni on(d obal _Col | ect ed_Servers_State css):

Cl. union «— 0

C2. css_unique «— Renove duplicate entries fromcss

C3. seq_list «— Sort entries in css_unique by increasing (seq, gv, lv)

D1. For each itemin seq_list

D2. if any dobally_Ordered_Update

D3. G* «— Gobally_Odered_Update with Proposal fromlatest view (gv, |v)
D4. union « union U G*

D5. el se

D6. MAX_GV « gl obal view of entry with [atest global view
D7. if any Proposal from MAX_GV

D8. P* «— Proposal from MAX_GV and | atest |ocal view
D9. union « union U P*

D10. else if any Prepare Certificate PC from MAX_GV

D11. PC* «— PC from MAX_GV and | atest |ocal view

D12. uni on « union U PC*

D13. return union

Conput e_Constrai nt _Uni on(Col | ect ed_Gd obal _Constraints cgc):

El. union « 0

E2. css_unique <« Renpbve duplicate entries from cgc

E3. seq_list <« Sort entries in css_unique by increasing (seq, gv)

F1. For each itemin seq_list

F2. if any d obally_Ordered_Update

F3. G* «— Gobally_Odered_Update with Proposal fromlatest view (gv, |v)
F4. union « union U G*

F5. el se

F6. MAX_GV < gl obal view of entry with | atest global view

F7. if any Proposal from MAX_GV

F8. P* « Proposal from MAX_GV and | atest |ocal view

F9 union « union U P*

F10. return union

Fig. A-21: Compute_Union Procedures. The procedures are used during local and global view changes. For each entry in the
input set, the procedures remove duplicates (based on sequence number) and, for each sequence number, take the appropriate
entry from the latest view.
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LOCAL- RECONCI LI ATI ON:
Al. Upon expiration of LOCAL_RECON Tl MER:
A2. | ocal _sessi on_seq++

A3. requested_aru «— G obal _aru
Ad. Local _Recon_Request « Construct Request (server_id, |ocal _session_seq, requested_aru)
A5. SEND to all local servers: Local _Recon_Request

AG. Set LOCAL_RECON TI MER

B1. Upon receiving Local _Recon_Request (server_id, |ocal _session_seq, requested_aru):

B2. if local _session_seq < |ast_session_seq[server_id]

B3. i gnore Local _Recon_Request

B4. if (current_time - last_local _request_tine[server_id]) < LOCAL_RECON THROTTLE_PERI OD
B5. ignore Local _Recon_Request

B6. if requested_aru < |ast_|ocal _requested_aru[server_id]

B7. i gnore Local _Recon_Request

B8. | ast _l ocal _sessi on_seq[server_id] < local _session_seq

B9. | ast _| ocal _request_tine[server_id] < current_tine

B10. |ast_local _requested_aru[server_id] <« requested_aru
B11. if dobal _aru > requested_aru
B12. THROTTLE- SEND(r equest ed_aru, G obal _aru, LOCAL_RATE, W to server_id

Fig. A-22: LOCAL-RECONCIILIATION Protocol, used to recover missing Globally_Ordered_Updates within a site. Servers limit
both the rate at which they will respond to requests and the rate at which they will send requested messages.

GLOBAL- RECONCI LI ATI ON:
Al. Upon expiration of GLOBAL_RECON TI MER:

A2. gl obal _sessi on_seq++

A3. requested_aru «— G obal _aru

Ad. g «— G obal _H story[requested_aru].d obally_Ordered_Update

A5. d obal _Recon_Request <« Construct Request (server_id, gl obal _sessi on_seq, requested_aru, g)
A6. SEND to all local servers: d obal _Recon_Request

AT7. Set GLOBAL_RECON_TI MER

B1l. Upon receiving G obal _Recon_Request (server_id, global _session_seq, requested_aru, g):

B2. if global _session_seq < |ast_gl obal _session_seq[server_id]
B3. i gnore G obal _Recon_Request

B4. if (current_tinme - last_global _request_tine[server_id]) < GLOBAL_RECON THROTTLE_PERI CD
B5. ignore d obal _Recon_Request

B6. if requested_aru < | ast_gl obal _requested_aru[server_id]

B7. i gnore G obal _Recon_Request

B8. if gis not avalid dobally_Ordered_Update for requested_aru
B9. ignore d obal _Recon_Request

B10. | ast_gl obal _session_seq[server_id] <« global _session_seq

B11l. | ast_global _request_tine[server_id] « current_tinme

B12. | ast_gl obal _requested_aru[server_id] « requested_aru

B13. if Qdobal _aru > requested_aru

B14. si g_share « GENERATE_SI GNATURE_SHARE( )

B15. SEND to server_id: sig_share

B16. if G obal _aru < requested_aru

B17. when d obal _aru > requested_aru:

B18. si g_share «— GENERATE_SI GNATURE_SHARE( )

B19. SEND si g_share to server_id

Cl. Upon collecting 2f+ 1 Partial_sig nessages for gl obal _session_seq:
C2. GLOBAL_RECON « COMBI NE(partial _sigs)
Cc3 SEND to peer server in each site: GLOBAL_RECON

Upon receiving GLOBAL_RECON(site_id, server_id, global_session_seq, requested_aru):
if max_gl obal _requested_aru[site_id] < requested_aru
max_gl obal _requested_aru[site_id] « requested_aru
el se
i gnore GLOBAL_RECON
if (site_id == Site_id) or (server_id # Server_id)
i gnore GLOBAL_RECON
if global _session_seq < |ast_gl obal _session_seq[site_id]
. i gnore GLOBAL_RECON
D10. if (current_time - last_global _request_tine[site_id]) < GLOBAL_RECON THROTTLE_PERI OD

BEIEERBRE

D11. i gnore GLOBAL_RECON
D12. SEND to all local servers: G.OBAL_RECON
D13. | ast_gl obal _session_seq[site_id] « gl obal _session_seq

D14. |ast_global _request_tine[site_id] < current_tine
D15. if dobal _aru > requested_aru
D16. THROTTLE- SEND(r equest ed_aru, G obal _aru, GLOBAL_RATE, W to server_id

Fig. A-23: GLOBAL-RECONCIILIATION Protocol, used by a site to recover missing Globally_Ordered_Updates from other wide
area sites. Each server generates threshold-signed reconciliation requests and communicates with a single server at each other
site.
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REL| ABLE- SEND- TO- ALL- SI TES( nessage m ):

Al. Upon invoking:

A2. rel _message < ConstructRel i abl eMessage(m)
A3. SEND to all servers in site: rel_nessage
Ad. SendToPeer s(m)

Bl. Upon receiving nessage Reliabl e_Message(m):
B2. SendToPeer s(m)

Cl. Upon receiving nessage m froma server with ny id:

c2. SEND to all servers in site: m

SendToPeers(m):

D1. if mis a threshold signed nessage fromny site and ny Server_id <2f+ 1:
D2. nmy_server_id «— Server_id

D3. for each site S:

D4. SEND to server in site S with Server_id = ny_server_id: m

Fig. A-24: RELIABLE-SEND-TO-ALL-SITES Protocol. Each of 2f + 1 servers within a site sends a given message to a peer server
in each other site. When sufficient connectivity exists, the protocol reliably sends a message from one site to all other servers in
all other sites sites despite the behavior of faulty servers.
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APPENDIX B
PROOFS OF CORRECTNESS

In this section we show that Steward provides the service
properties specified in Section 5. We begin with a proof
of safety and then consider liveness.

B.1 Proof of Safety

Our goal in this section is to prove that Steward meets
the following safety property:

S1 - SAFETY If two correct servers execute the i
update, then these updates are identical.

Proof Strategy: We prove Safety by showing that two
servers cannot globally order conflicting updates for the
same sequence number. We show this using two main
claims. In the first claim, we show that any two servers
which globally order an update in the same global view
for the same sequence number will globally order the
same update. To prove this claim, we show that a leader
site cannot construct conflicting Proposal messages in
the same global view. A conflicting Proposal has the
same sequence number as another Proposal, but it has
a different update. Since globally ordering two different
updates for the same sequence number in the same
global view would require two different Proposals from
the same global view, and since only one Proposal can
be constructed within a global view, all servers that
globally order an update for a given sequence number
in the same global view must order the same update. In
the second claim, we show that any two servers which
globally order an update in different global views for the
same sequence number must order the same update. To
prove this claim, we show that a leader site from a later
global view cannot construct a Proposal conflicting with
one used by a server in an earlier global view to globally
order an update for that sequence number. The value
that may be contained in a Proposal for this sequence
number is thus anchored. Since no Proposals can be
created that conflict with the one that has been globally
ordered, no correct server can globally order a different
update with the same sequence number. Since a server
only executes an update once it has globally ordered an
update for all previous sequence numbers, two servers
executing the i*" update will therefore execute the same
update.

We now proceed to prove the first main claim:

Claim A.1: Let u be the first update globally ordered
by any server for sequence number seq, and let gv
be the global view in which u was globally ordered.
Then if any other server globally orders an update for
sequence number seq in global view gv, it will globally
order u.

To prove this claim, we use the following lemma,
which shows that conflicting Proposal messages cannot

be constructed in the same global view:

Lemma A.1: Let Pl(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S for sequence number seq. Then no
other Proposal message P2(gv, lv/, seq, v') for lv' > lv,
with «’ # u, can be constructed.

We prove Lemma A.1 with a series of lemmas. We
begin with two preliminary lemmas, proving that two
servers cannot collect conflicting Prepare Certificates or
construct conflicting Proposals in the same global and
local view.

Lemma A.2: Let PCl(gv, lv, seq, u) be a Prepare
Certificate collected by some server in leader site S.
Then no server in S can collect a different Prepare
Certificate, PC2(gv, lv, seq, u'), with (u # u').

Proof: We assume that both Prepare Certificates
were collected and show that this leads to a contra-
diction. PC1 contains a Pre-Prepare(gv, lv, seq, u) and
2f Prepare(gv, lv, seq, Digest(u)) messages from distinct
servers. Since there are at most f faulty servers in
S, at least f + 1 of the messages in PC1 were from
correct servers. PC2 contains similar messages, but with
u’ instead of u. Since any two sets of 2f + 1 messages
intersect on at least one correct server, there exists a
correct server that contributed to both PC1 and PC2.
Assume, without loss of generality, that this server con-
tributed to PC1 first (either by sending the Pre-Prepare
message or by responding to it). If this server was the
representative, it would not have sent the second Pre-
Prepare message, because, from Figure A-10 line A3,
it increments Global_seq and does not return to seq in
this local view. If this server was a non-representative,
it would not have contributed a Prepare in response to
the second Pre-Prepare, since this would have generated
a conflict (Figure A-8, line A8). Thus, this server did not
contribute to PC2, a contradiction. ]

Lemma A.3: Let Pl(gv, lv, seq, u) be a Proposal
message constructed by some server in leader site S.
Then no other Proposal message P2(gv, lv, seq, u') with
(u # ') can be constructed by any server in S.

Proof: By Lemma A.2, only one Prepare Certificate
can be constructed in each view (gv, lv) for a given
sequence number seq. For P2 to be constructed, at least
f + 1 correct servers would have had to send partial
signatures on P2, after obtaining a Prepare Certificate
PC2 reflecting the binding of seq to v’ (Figure A-10, line
C7). Since P1 was constructed, there must have been a
Prepare Certificate PC1 reflecting the binding of seq to
u. Thus, the f 4 1 correct servers cannot have obtained
PC2, since this would contradict Lemma A.2. ]

We now show that two conflicting Proposal messages



32 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

cannot be constructed in the same global view, even
across local view changes. In proving this, we use the
following invariant:

INVARIANT A.1: Let P(gv, [v, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S for sequence number seq in global
view gv. We say that Invariant A.1 holds with respect to
P if the following conditions hold in leader site S in
global view guv:

1) There exists a set of at least f + 1 correct servers

with a Prepare Certificate PC(gv, [v/, seq, u) or
a Proposal(gv, ', seq, w), for v/ > lv, in
their Local_History[seq] data structure, or a Glob-
ally_Ordered_Update(gv’, seq, u), for gv’ > gv, in
their Global_History[seq] data structure.

2) There does not exist a server with any conflict-

ing Prepare Certificate or Proposal from any view
(gv, W), with v > lv, or a conflicting Glob-
ally_Ordered_Update from any global view gv’ >
gu.

We first show that the invariant holds in the first
global and local view in which any Proposal might
have been constructed for a given sequence number.
We then show that the invariant holds throughout the
remainder of the global view. Finally, we show that if the
invariant holds, no Proposal message conflicting with
the first Proposal that was constructed can be created.
In other words, once a Proposal has been constructed
for sequence number seg, there will always exist a set
of at least f + 1 correct servers which maintain and
enforce the binding reflected in the Proposal.

Lemma A.4: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view
gv. Then when P is constructed, Invariant A.1 holds
with respect to P, and it holds for the remainder of (gv,
).

Proof: Since P is constructed, there exists a set of at
least f +1 correct servers which sent a partial signature
on P (Figure A-10, line C7). These servers do so after
collecting a Prepare Certificate(gv, (v, seq, u) binding
seq to u (Figure A-10, line C3). By Lemmas A.2 and
A.3, any server that collects a Prepare Certificate or a
Proposal in (gv, {v) collects the same one. Since this is
the first Proposal that was constructed, and a Proposal
is required to globally order an update, the only Glob-
ally_Ordered_Update that can exist binds seq to u. Thus,
the invariant is met when the Proposal is constructed.

According to the rules for updating the Local_History
data structure, a correct server with a Prepare Certificate
from (gv, lv) will not replace it and may only add a
Proposal message from the same view (Figure A-10, line
D3). By Lemma A.3, this Proposal is unique, and since it
contains the same update and sequence number as the

unique Prepare Certificate, it will not conflict with the
Prepare Certificate.

A correct server with a Proposal will not replace
it with any other message while in global view gv.
A correct server with a Globally_Ordered_Update will
never replace it. Thus, Invariant A.1 holds with respect
to P for the remainder of (gv, [v). O

We now proceed to show that Invariant A.1 holds
across local view changes. Before proceeding, we
introduce the following terminology:

DEFINITION A.1: We say that an execution of the
CONSTRUCT-LOCAL-CONSTRAINT protocol completes
at a server within the site in a view (gv, lv) if
that server successfully generates and applies a
Local_Collected_Servers_State message for (gv, lv).

We first prove the following property of CONSTRUCT-
LOCAL-CONSTRAINT:

Lemma A.5: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view gv.
If Invariant A.1 holds with respect to P at the beginning
of a run of CONSTRUCT-LOCAL-CONSTRAINT, then it is
never violated during the run.

Proof: During the run of CONSTRUCT-LOCAL-
CONSTRAINT, a server only alters its Local_History[seq]
data structure during the reconciliation phase (which
occurs before sending a Local_Server_State message,
Figure A-17 line B7) or when processing the resultant
Local_Collected_Servers_State message. During the rec-
onciliation phase, a correct server will only replace a
Prepare Certificate with a Proposal (either independently
or in a Globally_Ordered_Update), since the server and
the representative are only exchanging Proposals and
Globally_Ordered_Updates. Since Invariant A.1 holds at
the beginning of the run, any Proposal from a later
local view than the Prepare Certificate held by some
correct server will not conflict with the Prepare Certifi-
cate. A server with a Globally_Ordered_Update in its
Global_History data structure does not remove it. Thus,
the invariant is not violated by this reconciliation.

If one or more correct servers processes the resultant
Local_Collected_Servers_State message, we must show
that the invariant still holds.

When a correct server processes the Lo-
cal_Collected_Servers_State message (Figure A-3,
block D), there are two cases to consider. First, if the
message contains an entry for seq (i.e., it contains either
a Prepare Certificate or a Proposal binding seq to an
update), then the correct server adopts the binding.
In the second case, the Local Collected_Servers_State
message does not contain an entry for seq, and the
correct server clears out its Prepare Certificate for seg, if
it has one. We need to show that in both cases, Invariant
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A.1 is not violated.

The Local_Server_State message from at least one
correct server from the set of at least f + 1 correct
servers maintained by the invariant appears in any
Local_Collected_Servers_State message, since any two
sets of 2f + 1 servers intersect on at least one correct
server. We consider the contents of this server’s Lo-
cal_Server_State message. If this server received a Re-
quest_Local_State message with an invocation sequence
number lower than seq, then the server includes its
entry binding seq to u in the Local _Server_State mes-
sage (Figure A-20, Block A), after bringing its Pend-
ing_Proposal_Aru up to the invocation sequence number
(if necessary). Invariant A.1 guarantees that the Prepare
Certificate or Proposal from this server is the latest entry
for sequence number seq. Thus, the entry binding seq
to u in any Local_Collected_Servers_State bundle will
not be removed by the Compute_Local_Union function
(Figure A-21 line B3 or B6).

If this server received a Request_Local_State message
with an invocation sequence number greater than or
equal to seq, then the server will not report a binding
for seq, since it will obtain either a Proposal or a Glob-
ally_Ordered_Update via reconciliation before sending
its Local_Server_State message. In turn, the server only
applies the Local_Collected_Servers_State if the 2f +
1 Local_Server_State messages contained therein con-
tain the same invocation sequence number, which was
greater than or equal to seq (Figure A-17, line D2).
Since a correct server only sends a Local_Server_State
message if its Pending_Proposal_Aru is greater than or
equal to the invocation sequence number it received
(Figure A-17, line B5), this implies that at least f + 1
correct servers have a Pending Proposal _Aru greater
than or equal to seq. The invariant ensures that all such
Proposals or Globally_Ordered_Updates bind seq to u.
Since only Proposals with a sequence number greater
than the invocation sequence number may be removed
by applying the Local_Collected_Servers_State message,
and since Globally_Ordered_Update messages are never
removed, applying the message will not violate Invariant
Al O

Our next goal is to show that if Invariant A.1 holds
at the beginning of a view after the view in which a
Proposal has been constructed, then it holds throughout
the view.

Lemma A.6: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server
in leader site S for sequence number seq in global
view gv. If Invariant A.1 holds with respect to P at the
beginning of a view (gv, Iv’), with {v’ > [v, then it holds
throughout the view.

Proof: To show that the invariant
will not be violated during the view, we
show that no server can collect a Prepare

Certificate(gv, lv', seq, u'), Proposal(gv, lv/, seq, u'),
or Globally_Ordered_Update(gv, seq,u’), for u # «’/, that
would cause the invariant to be violated.

Since Invariant A.1 holds at the beginning of the
view, there exists a set of at least f + 1 correct servers
with a Prepare Certificate or a Proposal in their Lo-
cal_History[seq] data structure binding seq to u, or a
Globally_Ordered_Update in their Global_History[seq]
data structure binding seq to w. If a conflicting Pre-
pare Certificate is constructed, then some server col-
lected a Pre-Prepare(gv, lv/, seq, u') message and 2f
Prepare(gv, v/, seq, Digest(u')) messages. At least f+1 of
these messages were from correct servers. This implies
that at least one correct server from the set maintained
by the invariant contributed to the conflicting Prepare
Certificate (either by sending a Pre-Prepare or a Prepare).
This cannot occur because the server would have seen
a conflict in its Local_History[seg] data structure (Figure
A-8, A8) or in its Global_History[seq] data structure (Fig-
ure A-8, A18). Thus, the conflicting Prepare Certificate
cannot be constructed.

Since no server can collect a conflicting Prepare Cer-
tificate, no server can construct a conflicting Proposal.
Thus, by the rules of updating the Local_History data
structure, a correct server only replaces its Prepare Cer-
tificate (if any) with a Prepare Certificate or Proposal
from (gv, lv’), which cannot conflict. Since a Proposal is
needed to construct a Globally_Ordered_Update, no con-
flicting Globally_Ordered_Update can be constructed,
and no Globally_Ordered_Update is ever removed from
the Global History data structure. Thus, Invariant A.1
holds throughout (gv, [v'). O

We can now prove Lemma A.1:

Proof: By Lemma A.4, Invariant A.1 holds with re-
spect to P throughout (gv, {v). By Lemma A.5, the invari-
ant holds with respect to P during and after CONSTRUCT-
LOCAL-CONSTRAINT. By Lemma A.6, the invariant holds
at the beginning and end of view (gv, lv + 1). Repeated
applications of Lemma A.5 and Lemma A.6 shows that
the invariant always holds in global view gv.

In order for P2 to be constructed, at least f + 1
correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure A-
10, line C3). Since the invariant holds throughout gv, at
least f + 1 correct servers do not collect such a Prepare
Certificate and do not send such a partial signature. This
leaves only 2f servers remaining, which is insufficient
to construct the Proposal. Since a Proposal is needed
to construct a Globally_Ordered_Update, no conflicting
Globally_Ordered_Update can be constructed. ]

Finally, we can prove Claim A.1:
Proof: To globally order an update u in global

view gv for sequence number seq, a server needs a
Proposal(gv, *, seq, u) message and |S/2| Accept corre-
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sponding Accept messages. By Lemma A.1, all Proposal
messages constructed in global view gv are for the same
update, which implies that all servers which globally
order an update in global view gv for sequence number
seq globally order the same update. O

We now prove the second main claim:

Claim A.2: Let u be the first update globally ordered
by any server for sequence number seg, and let gv be
the global view in which u was globally ordered. Then if
any other server globally orders an update for sequence
number seq in a global view gv’, with gv’ > gv, it will
globally order w.

We prove Claim A.2 using the following lemma,
which shows that, once an update has been globally
ordered for a given sequence number, no conflicting
Proposal messages can be generated for that sequence
number in any future global view.

Lemma A.7: Let u be the first update globally
ordered by any server for sequence number seq with
corresponding Proposal P1(gv, lv, seq, u). Then no other
Proposal message P2(gv’, *, seq, v') for gv' > gv, with
u’ # u, can be constructed.

We prove Lemma A.7 using a series of lemmas. We
use a strategy similar to the one used in proving Lemma
A.1 above, and we maintain the following invariant:

INVARIANT A.2: Let u be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which u was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. We say that Invariant A.2 holds
with respect to P if the following conditions hold:

1) There exists a majority of sites, each with at
least f + 1 correct servers with a Prepare
Certificate(gv, Iv', seq, u), a Proposal(gv’, *, seq, ),
ora
Globally_Ordered_Update(gv’, seq, u), with gv’ >
gv and v > lv, in its Global_History[seq] data
structure.

2) There does not exist, at any site in the
system, a server with any conflicting Prepare
Certificate(gv’, Iv', seq, u'), Proposal(gv’, *, seq, u'),
or Globally_Ordered_Update(gv’, seq, u'), with
gv' > gvu, W' >lv, and v’ # u.

We first show that Invariant A.2 holds when the first
update is globally ordered for sequence number seq and
that it holds throughout the view in which it is ordered.

Lemma A.8: Let u be the first update globally ordered
by any server for sequence number seg, and let gv be
the global view in which u was globally ordered.

Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. Then when u is globally ordered,
Invariant A.2 holds with respect to P, and it holds for
the remainder of global view gu.

Proof: Since u was globally ordered in gv, some
server collected a Proposal(gv, *, seq, u) message and
|S/2] Accept(gv, *, seq, Digest(u)) messages. Each of
the | S/2] sites that generated a threshold-signed Accept
message has at least f+1 correct servers that contributed
to the Accept, since 2f + 1 partial signatures are re-
quired to construct the Accept and at most f are faulty.
These servers store P in Global_History[seq].Proposal
when they apply it (Figure A-4, block A). Since the
leader site constructed P and P is threshold-signed,
at least f + 1 correct servers in the leader site have
either a Prepare Certificate corresponding to P in
Global_History[seq].Prepare_Certificate or the Proposal
P in Global_History[seq].Proposal. Thus, Condition 1 is
met.

By Lemma A.1, all Proposals generated by the leader
site for sequence number seq in gv contain the same
update. Thus, no server can have a conflicting Proposal
or Globally_Ordered_Update, since gv is the first view in
which an update has been globally ordered for sequence
number seq. Since Invariant A.1 holds in gv, no server
has a conflicting Prepare Certificate from (gv, [v'), with
[v' > lv. Thus, Condition 2 is met.

We now show that Condition 1 is not violated
throughout the rest of global view gv. By
the rules of updating the Global History data
structure in gv, a correct server with an entry in
Global_History[seq].Prepare_Certificate only removes
it if it generates a Proposal message from the
same global view (Figure A-4, lines A7 and Al4),
which does not conflict with the Prepare_Certificate
because it contains w, and thus it does not violate
Condition 1. Similarly, a correct server in gv only
replaces an entry in Global History[seq].Proposal
with a  Globally_Ordered_Update. = Since a
Globally_Ordered_Update  contains a  Proposal
from gv, and all Proposals from gv for sequence
number seq contain u, Condition 1 is still met.
No correct server ever replaces an entry in
Global_History[seq].Globally_Ordered_Update. O

We now show that Invariant A.2 holds across global
view changes. We start by showing that the CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT protocols,
used during a global view change in the leader site
and non-leader sites, respectively, will not cause the
invariant to be violated. We then show that if any
correct server in the leader site becomes globally
constrained by completing the global view change
protocol, the invariant will still hold after applying
the Collected_Global_Constraints message to its data
structure.
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Lemma A.9: Let u be the first update globally ordered
by any server for sequence number seg, and let gv be
the global view in which u was globally ordered.
Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. Assume Invariant A.2 holds with
respect to P, and let S be one of the (majority) sites
maintained by the first condition of the invariant. Then
if a run of CONSTRUCT-ARU begins at S, the invariant
is never violated during the run.

Proof: During a run of CONSTRUCT-ARU, a correct
server only modifies its Global_History[seq] data struc-
ture in three cases. We show that, in each case, Invariant
A.2 will not be violated if it is already met.

The first case occurs during the reconciliation phase of
the protocol. In this phase, a correct server with either
a Prepare Certificate or Proposal in Global History[seq]
may replace it with a Globally_Ordered_Update, since
the server and the representative only exchange Glob-
ally_Ordered_Update messages. Since Invariant A.2
holds at the beginning of the run, no server has a
Globally_Ordered_Update from any view gv’ > gv that
conflicts with the binding of seq to u. Since u could only
have been globally ordered in a global view gv’ > gv,
no conflicting Globally_Ordered_Update exists from a
previous global view. Thus, Invariant A.2 is not violated
during the reconciliation phase.

In the second case, a correct server with a Prepare
Certificate in Global_History[seg] tries to construct cor-
responding Proposals (replacing the Prepare Certificate)
by invoking THRESHOLD-SIGN (Figure A-18, line D6).
Since the Proposal is for the same binding as the Prepare
Certificate, the invariant is not violated.

In the third case, a correct
any Globally_Ordered_Updates
Global_Constraint message to its Global_ History
data structure (Figure A-18, line G2). Since
Invariant A.2 holds at the beginning of the run,
no Globally_Ordered_Update exists from any view
gv’ > gv that conflicts with the binding of seq to u. Since
u could only have been globally ordered in a global
view gv’ > gv, no conflicting Globally_Ordered Update
exists from a previous global view.

server applies
appearing in the

Since these are the only cases in which
Global_History[seq] is modified during the protocol, the
invariant holds throughout the run. O

Lemma A.10: Let v be the first update globally
ordered by any server for sequence number seq, and let
gv be the global view in which u was globally ordered.
Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. Assume Invariant A.2 holds with
respect to P, and let S be one of the (majority) sites
maintained by the first condition of the invariant. Then
if a run of CONSTRUCT-GLOBAL-CONSTRAINT begins at

S, the invariant is never violated during the run.

Proof: During a run of CONSTRUCT-GLOBAL-
CONSTRAINT, a correct server only modifies its
Global_History[seq] data structure when trying to con-
struct Proposals corresponding to any Prepare Certifi-
cates appearing in the union (Figure A-19, line C5). Since
the Proposal resulting from THRESHOLD-SIGN is for the
same binding as the Prepare Certificate, the invariant is
not violated. O

We now show that if Invariant A.2 holds at the
beginning of a run of the GLOBAL-VIEW-CHANGE
protocol after the global view in which an update was
globally ordered, then the invariant is never violated
during the run.

Lemma A.11: Let u be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which u was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal
message constructed by any server in the leader site
in gv for sequence number seq. Then if Invariant A.2
holds with respect to P at the beginning of a run of the
Global_View_Change protocol, then it is never violated
during the run.

Proof: During a run of GLOBAL-VIEW-CHANGE, a
correct server may only modify its Global_History[seq]
data structure in three cases. The first occurs in the leader
site, during a run of CONSTRUCT-ARU (Figure A-16, line
A2). By Lemma A.9, Invariant A.2 is not violated during
this protocol. The second case occurs at the non-leader
sites, during a run of CONSTRUCT-GLOBAL-CONSTRAINT
(Figure A-16, line C4). By Lemma A.10, Invariant A.2 is
not violated during this protocol.

The final case occurs at the leader site when a correct
server becomes globally constrained by applying a Col-
lected_Global_Constraints message to its Global_History
data structure (Figure A-16, lines E5 and F2). We must
now show that Invariant A.2 is not violated in this case.

Any Collected_Global_Constraints message received
by a correct server contains a Global_Constraint message
from at least one site maintained by Invariant A.2, since
any two majorities intersect on at least one site. We con-
sider the Global_Constraint message sent by this site, S.
The same logic will apply when Global_Constraint mes-
sages from more than one site in the set maintained by
the invariant appear in the Collected_Global_Constraints
message.

We first consider the case where S is a non-leader site.
There are two sub-cases to consider.

Case 1a: In the first sub-case, the Aru_Message gen-
erated by the leader site in CONSTRUCT-ARU contains
a sequence number less than seq. In this case, each
of the f + 1 correct servers in S maintained by In-
variant A.2 reports a Proposal message binding seq
to u in its Global_Server_State message (Figure A-20,
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Block B). At least one such message will appear in
the Global_Collected_Servers_State bundle, since any
two sets of 2f + 1 intersect on at least one correct
server. Invariant A.2 maintains that the entry binding
seq to u is the latest, and thus it will not be removed
by the Compute_Global_Union procedure (Figure A-
21, Blocks C and D). The resultant Global_Constraint
message therefore binds seq to u. Invariant A.2 also
guarantees that this entry or one with the same binding
will be the latest among those contained in the Col-
lected_Global_Constraints message, and thus it will not
be removed by the Compute_Constraint Union func-
tion run when applying the message to Global_History
(Figure A-21, Blocks E and F) By the rules of applying
the Collected_Global_Constraints message (Figure A-4,
Block D), the binding of seq to u will be adopted by the
correct servers in the leader site that become globally
constrained, and thus Invariant A.2 is not violated.

Case 1b: In the second sub-case, the Aru_Message
generated by the leader site in CONSTRUCT-ARU contains
a sequence number greater than or equal to seq. In
this case, no entry binding seq to u will be reported in
the Global_Constraint message. In this case, we show
that at least f + 1 correct servers in the leader site
have already globally ordered seq. The invariant guar-
antees that those servers which have already globally
ordered an update for seq have globally ordered wu.
To construct the Aru_Message, at least f + 1 correct
servers contributed partial signatures to the result of
calling Extract_Aru (Figure A-18, line G3) on the union
derived from the Global_Collected_Servers_State bun-
dle. Thus, at least f + 1 correct servers accepted the
Global_Collected_Servers_State message as valid, and,
at Figure A-18, line D3, enforced that their Global aru
was at least as high as the invocation sequence num-
ber (which was greater than or equal to seq). Thus,
these servers have Globally_Ordered_Update messages
for seq, and the invariant holds in this case.

We must now consider the case where S is the leader
site. As before, there are two sub-cases to consider. We
must show that Invariant A.2 is not violated in each
case. During CONSTRUCT-ARU, the Global_Server_State
message from at least one correct server from the set of
at least f -+ 1 correct servers maintained by the invariant
appears in any Collected_Global_Servers_State message,
since any two sets of 2f 4 1 servers intersect on at
least one correct server. We consider the contents of this
server’s Global_Server_State message.

Case 2a: In the first sub-case, if this server received
a Request_Global_State message with an invocation se-
quence number lower than seg, then the server includes
its entry binding seq to u in the Global_Server_State
message, after bringing its Global_Aru up to the in-
vocation sequence number (if necessary) (Figure A-18,
lines B5 and B7). Invariant A.2 guarantees that the Pre-
pare Certificate, Proposal, or Globally_Ordered_Update
binding seq to u is the latest entry for sequence num-
ber seq. Thus, the entry binding seq to w in any

Global_Collected_Servers_State bundle will not be re-
moved by the Compute_Global Union function (Fig-
ure A-21, Blocks C and D) and will appear in the
resultant Global_Constraint message. Thus, the Col-
lected_Global_Constraints message will bind seq to wu,
and by the rules of applying this message to the
Global_History[seq] data structure, Invariant A.2 is not
violated when the correct servers in the leader site
become globally constrained by applying the mesasge
(Figure A-4, block D).

Case 2b: If this server received a Request_Global_State
message with an invocation sequence number greater
than or equal to seq, then the server will not re-
port a binding for seq, since it will obtain a Glob-
ally_Ordered_Update via reconciliation before send-
ing its Global_Server_State message (Figure A-18, lines
B4). In turn, the server only contributes a partial
signature on the Aru_Message if it received a valid
Global_Collected_Servers_State message, which implies
that the 2f + 1 Global_Server_State messages in the
Global_Collected_Servers_State bundle contained the
same invocation sequence number, which was greater
than or equal to seq (Figure A-18, line D2). Since a correct
server only sends a Global Server_State message if its
Global_Aru is greater than or equal to the invocation
sequence number it received (Figure A-18, line D3),
this implies that at least f + 1 correct servers have a
Global_Aru greater than or equal to seq. The invariant
ensures that all such Globally_Ordered_Updates bind
seq to u. Thus, even if the Collected_Global_Constraints
message does not contain an entry binding seq to u,
the leader site and |S/2] non-leader sites will maintain
Invariant A.2. O

Corollary A.12: Let u be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which u was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal
message constructed by any server in the leader site
in gv for sequence number seq. Then if Invariant A.2
holds with respect to P at the beginning of a run of
the GLOBAL-VIEW-CHANGE protocol, then if at least
f + 1 correct servers in the leader site become globally
constrained by completing the GLOBAL-VIEW-CHANGE
protocol, the leader site will be in the set maintained by
Condition 1 of Invariant A.2.

Proof: We consider each of the four sub-cases de-
scribed in Lemma A.11. In Cases 1a and 2a, any correct
server that becomes globally constrained binds seq to
u. In Cases 1b and 2b, there exists a set of at least f + 1
correct servers that have globally ordered u for sequence
number seq. Thus, in all four cases, if at least f + 1
correct servers become globally constrained, the leader
site meets the data structure condition of of Condition 1
of Invariant A.2. O

Our next goal is to show that if Invariant A.2 holds at
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the beginning of a global view after which an update has
been globally ordered, then it holds throughout the view.

Lemma A.13: Let « be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which gv was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal
message constructed by any server in the leader site in
gv for sequence number seq. Then if Invariant A.2 holds
with respect to P at the beginning of a global view
(gv', *), with gv" > gv, then it holds throughout the view.

Proof: To show that the invariant will not be violated
during global view gv’, we show that no conflicting Pre-
pare Certificate, Proposal, or Globally_Ordered_Update
can be constructed during the view that would cause the
invariant to be violated.

We assume that a conflicting Prepare Certificate PC
is collected and show that this leads to a contradiction.
This then implies that no conflicting Proposals or Glob-
ally_Ordered_Updates can be constructed.

If PC is collected, then some server col-
lected a Pre-Prepare(gv’, lv, seq, u') and 2f
Prepare(gv’, lv, seq, Digest(u’)) for some local view
lv and v # u. At least f + 1 of these messages were
from correct, servers. Moreover, this implies that at least
f + 1 correct servers were globally constrained.

By Corollary A.12, since at least f + 1 correct servers
became globally constrained in gv’, the leader site meets
Condition 1 of Invariant A.2, and it thus has at least f+1
correct servers with a Prepare Certificate, Proposal, or
Globally_Ordered_Update binding seq to u. At least one
server from the set of at least f+1 correct servers binding
seq to u contributed to the construction of PC. A correct
representative would not send such a Pre-Prepare mes-
sage because the Get_Next_To_Propose() routine would
return the constrained update « (Figure A-12, line A3
or A5). Similarly, a correct server would see a conflict
(Figure A-8, line A10 or A13).

Since no server can collect a conflicting Prepare
Certificate, no server can construct a conflicting Pro-
posal. Thus, no server can collect a conflicting Glob-
ally_Ordered_Update, since this would require a con-
flicting Proposal.

Thus, Invariant A.2 holds throughout global view gv'.

U

We can now prove Lemma A.7:

Proof: By Lemma A.8, Invariant A.2 holds with
respect to P1 throughout global view gv. By Lemma
A.11, the invariant holds with respect to P1 during and
after the GLOBAL-VIEW-CHANGE protocol. By Lemma
A.13, the invariant holds at the beginning and end of
global view gv + 1. Repeated application of Lemma A.11
and Lemma A.13 shows that the invariant always holds
for all global views gv’ > gv.

In order for P2 to be constructed, at least f + 1

correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure A-
10, line C3). Since the invariant holds, at least f+1 correct
servers do not collect such a Prepare Certificate and do
not send such a partial signature. This leaves only 2f
servers remaining, which is insufficient to construct the
Proposal. O

Finally, we can prove Claim A.2:

Proof: We assume that two servers globally order
conflicting updates with the same sequence number in
two global views gv and gv" and show that this leads to
a contradiction.

Without loss of generality, assume that a server glob-
ally orders update v in gv, with gv < gv’. This server
collected a a Proposal(gv, *, seq, u) message and |S/2]
corresponding Accept messages. By Lemma A.7, any fu-
ture Proposal message for sequence number seq contains
update u, including the Proposal from gv'. This implies
that another server that globally orders an update in gv’
for sequence number seq must do so using the Proposal
containing u, which contradicts the fact that it globally
ordered v’ for sequence number seq. O

We can now prove SAFETY - S1.

Proof: By Claims A.1 and A.2, if two servers globally
order an update for the same sequence number in any
two global views, then they globally order the same
update. Thus, if two servers execute an update for
any sequence number, they execute the same update,
completing the proof. O

We now prove that Steward meets the following
validity property:

52 - VALIDITY Only an update that was proposed by
a client may be executed.

Proof: A server executes an update when it has
been globally ordered. To globally order an update,
a server obtains a Proposal and |S/2| corresponding
Accept messages. To construct a Proposal, at least f + 1
correct servers collect a Prepare Certificate and invoke
THRESHOLD-SIGN. To collect a Prepare Certificate, at
least f + 1 correct servers must have sent either a
Pre-Prepare or a Prepare in response to a Pre-Prepare.
From the validity check run on each incoming message
(Figure A-6, lines A7 - A9), a Pre-Prepare message is
only processed if the update contained within has a valid
client signature. Since we assume that client signatures
cannot be forged, only a valid update, proposed by a
client, may be globally ordered. O

B.2 Liveness Proof

We now prove that Steward meets the following liveness
property:
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L1 - GLOBAL LIVENESS If the system is stable with
respect to time T, then if, after time T, a stable server
receives an update which it has not executed, then
global progress eventually occurs.

Proof Strategy: We prove Global Liveness by contra-
diction. We assume that global progress does not occur
and show that, if the system is stable and a stable server
receives an update which it has not executed, then the
system will reach a state in which some stable server
will execute an update, a contradiction. We prove Global
Liveness using three main claims. In the first claim, we
show that if no global progress occurs, then all stable
servers eventually reconcile their Global_History data
structures to a common point. Specifically, the stable
servers set their Global aru variables to the maximum
sequence number through which any stable server has
executed all updates. By definition, if any stable server
executes an update beyond this point, global progress
will have been made, and we will have reached a contra-
diction. In the second claim, we show that, once this rec-
onciliation has occurred, the system eventually reaches
a state in which a stable representative of a stable leader
site remains in power for sufficiently long to be able to
complete the global view change protocol, which is a
precondition for globally ordering an update that would
cause progress to occur. To prove the second claim,
we first prove three subclaims. The first two subclaims
show that, eventually, the stable sites will move through
global views together, and within each stable site, the
stable servers will move through local views together.
The third subclaim establishes relationships between the
global and local timeouts, which we use to show that
the stable servers will eventually remain in their views
long enough for global progress to be made. Finally, in
the third claim, we show that a stable representative of a
stable leader site will eventually be able to globally order
(and execute) an update which it has not previously
executed, which contradicts our assumption.

In the claims and proofs that follow, we assume that
the system has already reached a stabilization time, T,
at which the system became stable. Since we assume
that no global progress occurs, we use the following
definition:

DEFINITION B.1: We say that a sequence number
is the max_stable_seq if, assuming no further global
progress is made, it is the last sequence number for
which any stable server has executed an update.

We now proceed to prove the first main claim:
Claim B.1: If no global progress occurs, then all stable
servers in all stable sites eventually set their Global_aru

variables to max_stable_seq.

To prove Claim B.1, we first prove two lemmas

relating to LOCAL-RECONCILIATION and GLOBAL-
RECONCILIATION.

Lemma B.1: Let aru be the Global_aru of some stable
server, s, in stable Site S at time 7. Then all stable
servers in S eventually have a Global_aru of at least aru.

Proof: The stable servers in S run LOCAL-
RECONCILIATION by sending a Local_Recon_Request
message every LOCAL-RECON-THROTTLE-PERIOD time
units (Figure A-22, line Al). Since S is stable, s will
receive a Local_Recon_Request message from each stable
server within one local message delay. If the requesting
server, r, has a Global_aru less than aru, s will send to r
Globally_Ordered_Update messages for each sequence
number in the difference. These messages will arrive
in bounded time. Thus, each stable server in S sets it
Global_aru to at least aru. ]

Lemma B.2: Let S be a stable site in which all stable
servers have a Global_aru of at least aru at time 7. Then
if no global progress occurs, at least one stable server in
all stable sites eventually has a Global_aru of at least aru.

Proof: Since no global progress occurs, there exists
some sequence number aru/, for each stable site, R, that
is the last sequence number for which a stable server
in R globally ordered an update. By Lemma B.1, all
stable servers in R eventually reach aru’ via the LOCAL-
RECONCILIATION prOtOCOl.

The stable servers in R run GLOBAL-RECONCILIATION
by sending a Global_Recon_Request message every
GLOBAL-RECON-THROTTLE-PERIOD time units (Figure
A-23, line Al). Since R is stable, each stable server in R
receives the request of all other stable servers in R within
a local message delay. Upon receiving a request, a stable
server will send a Partial_Sig message to the requester,
since they have the same Global_aru, aru'. Each stable
server can thus construct a threshold-signed GLOBAL-
RECON message containing aru’. Since there are 2f + 1
stable servers, the pigeonhole principle guarantees that
at least one of them sends a GLOBAL-RECON message
to a stable peer in each other stable site. The message
arrives in one wide area message delay.

If all stable sites send a GLOBAL-RECON message
containing a requested_aru value of at least aru, then
the lemma holds, since at least f + 1 correct servers
contributed a Partial sig on such a message, and at
least one of them is stable. If there exists any stable
site R that sends a GLOBAL-RECON message with a
requested_aru value lower than aru, we must show that
R will eventually have at least one stable server with a
Global_aru of at least aru.

Each stable server in S has a Global_aru of aruv/,
with arv’ > aru. Upon receiving the GLOBAL-RECON
message from R, a stable server uses the THROTTLE-
SEND procedure to send all Globally_Ordered_Update
messages in the difference to the requester (Figure A-
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23, line D16). Since the system is stable, each Glob-
ally_Ordered_Update will arrive at the requester in
bounded time, and the requester will increase its
Global_aru to at least aru. O

We now prove Claim B.1:

Proof: Assume, without loss of generality, that
stable site S has a stable server with a Global_aru of
max_stable_seq. By Lemma B.1, all stable servers
in S eventually set their Global aru to at least
max_stable_seq. Since mno stable server sets its
Global_aru beyond this sequence number (by the
definition of max_stable_seq), the stable servers in
S set their Global_aru to exactly max_stable_seq. By
Lemma B.2, at least one stable server in each stable site
eventually sets its Global_aru to at least max_stable_seq.
Using similar logic as above, these stable servers set
their Global_aru variables to exactly maz_stable_seq. By
applying Lemma B.1 in each stable site and using the
same logic as above, all stable servers in all stable sites
eventually set their Global_aru to maxz_stable_seq. O

We now proceed to prove the second main claim,
which shows that, once the above reconciliation has
taken place, the system will reach a state in which
a stable representative of a stable leader site can
complete the GLOBAL-VIEW-CHANGE protocol, which is
a precondition for globally ordering a new update. This
notion is encapsulated in the following claim:

Claim B.2: If no global progress occurs, and the
system is stable with respect to time 7, then there exists
an infinite set of global views gv;, each with stable
leader site S;, in which the first stable representative
in S; serving for at least a local timeout period can
complete GLOBAL-VIEW-CHANGE.

Since completing GLOBAL-VIEW-CHANGE requires all
stable servers to be in the same global view for some
amount of time, we begin by proving several claims
about the GLOBAL-LEADER-ELECTION protocol. Before
proceeding, we prove the following claim relating
to the THRESHOLD-SIGN protocol, which is used by
GLOBAL-LEADER-ELECTION:

Claim B.3: If all stable servers in a stable site invoke
THRESHOLD-SIGN on the same message, m, then
THRESHOLD-SIGN returns a correctly threshold-signed
message m at all stable servers in the site within some
finite time, Ag;gp.-

To prove Claim B.3, we use the following lemma:

Lemma B.3: If all stable servers in a stable site invoke
THRESHOLD-SIGN on the same message, m, then all
stable servers will receive at least 2f + 1 correct partial
signature shares for m within a bounded time.

Proof: When a correct server invokes THRESHOLD-
SIGN on a message, m, it generates a partial signature
for m and sends this to all servers in its site (Figure
A-9, Block A). A correct server uses only its threshold
key share and a deterministic algorithm to generate a
partial signature on m. The algorithm is guaranteed to
complete in a bounded time. Since the site is stable, there
are at least 2f + 1 correct servers that are connected to
each other in the site. Therefore, if the stable servers
invoke THRESHOLD-SIGN on m, then each stable server
will receive at least 2f + 1 partial signatures on m from
correct servers. O

We can now prove Claim B.3.

Proof: A correct server combines 2 f+1 correct partial
signatures to generate a threshold signature on m. From
Lemma B.3, a correct server will receive 2f + 1 correct
partial signatures on m.

We now need to show that a correct server will even-
tually combine the correct signature shares. Malicious
servers can contribute an incorrect signature share. If the
correct server combines a set of 2f + 1 signature shares,
and one or more of the signature shares are incorrect,
the resulting threshold signature is also incorrect.

When a correct server receives a set of 2 f +1 signature
shares, it will combine this set and test to see if the
resulting signature verifies (Figure A-9, Block B). If the
signature verifies, the server will return message m with
a correct threshold signature (line B4). If the signature
does not verify, then THRESHOLD-SIGN does not return
message m with a threshold signature. On lines B6-B11,
the correct server checks each partial signature that it has
received from other servers. If any partial signature does
not verify, it removes the incorrect partial signature from
its data structure and adds the server that sent the partial
signature to a list of corrupted servers. A correct server
will drop any message sent by a server in the corrupted
server list (Figure A-6, lines A10-All). Since there are
at most f malicious servers in the site, these servers
can prevent a correct server from correctly combining
the 2f + 1 correct partial signatures on m at most
f times. Therefore, after a maximum of f verification
failures on line B3, there will be a verification success
and THRESHOLD-SIGN will return a correctly threshold
signed message m at all correct servers, proving the
claim. O

We now can prove claims about GLOBAL-LEADER-
ELECTION. We first introduce the following terminology
used in the proof:

DEFINITION B.2: We say that a server preinstalls
global view gv when it collects a set of Global_VC(gv;)

messages from a majority of sites, where gv; > gv.

DEFINITION B.3: A global preinstall proof for global
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view gv is a set of Global VC(gv;) messages from a
majority of sites where gv; > gv. The set of messages is
proof that gv preinstalled.

Our goal is to prove the following claim:

Claim B.4: If global progress does not occur, and
the system is stable with respect to time 7, then all
stable servers will preinstall the same global view, gv,
in a finite time. Subsequently, all stable servers will:
(1) preinstall all consecutive global views above gv
within one wide area message delay of each other and
(2) remain in each global view for at least one global
timeout period.

To prove Claim B.4, we maintain the following
invariant and show that it always holds:

INVARIANT B.1: If a correct server, s, has Global_view
gv, then it is in one of the two following states:

1) Global_T is running and s has global preinstall
proof for gv.

2) Global_T is not running and s has global preinstall
proof for gv — 1.

Lemma B.4: Invariant B.1 always holds.

Proof: We show that Invariant B.1 holds using an
argument based on a state machine, SM. SM has the
two states listed in Invariant B.1.

We first show that a correct server starts in state (1).
When a correct server starts, its Global_view is initialized
to 0, it has an a priori global preinstall proof for 0, and its
Global_T timer is running. Therefore, Invariant B.1 holds
immediately after the system is initialized, and the server
is in state (1).

We now show that a correct server can only transition
between these two states. SM has the following two
types of state transitions. These transitions are the only
events where (1) the state of Global_T can change (from
running to stopped or from stopped to running), (2) the
value of Global_T changes, or (3) the value of global
preinstall proof changes. In our pseudocode, the state
transitions occur across multiple lines and functions.
However, they are atomic events that always occur
together, and we treat them as such.

o Transition (1): A server can transition from state
(1) to state (2) only when Global T expires and it
increments its global view by one.

o Transition (2): A server can transition from state
(2) to state (1) or from state (1) to state (1) when
it increases its global preinstall proof and starts
Global_T.

We now show that if Invariant B.1 holds before a state
transition, it will hold after a state transition.

We first consider transition (1). We assume that Invari-
ant B.1 holds immediately before the transition. Before

transition (1), SM is in state (1) and Global_view is equal
to Global_preinstalled_view, and Global T is running.
After transition (1), SM is in state (2) and Global_view
is equal to Global_preinstalled_view + 1, and Global_T
is stopped. Therefore, after the state transition, Invariant
B.1 holds. This transition corresponds to Figure A-14,
lines Al and A2. On line A1, Global_T expires and stops.
On line A2, Global view is incremented by one. SM
cannot transition back to state (1) until a transition (2)
occurs.

We next consider transition (2). We assume that Invari-
ant B.1 holds immediately before the transition. Before
transition (2) SM can be in either state (1) or state (2).
We now prove that the invariant holds immediately after
transition (2) if it occurs from either state (1) or state (2).

Let gv be the value of Global_view before the tran-
sition. If SM is in state (1) before transition (2), then
global preinstall proof is gv, and Global T is running.
If SM is in state (2) before transition (2), then global
preinstall proof is gv — 1, and Global_T is stopped. In
either case, the following is true before the transition:
global preinstalled proof > gv — 1. Transition (2) occurs
only when global preinstall proof increases (Figure A-
14, block E). Line E6 of Figure A-14 is the only line
in the pseudocode where Global_T is started after ini-
tialization, and this line is triggered upon increasing
global preinstall proof. Let global preinstall proof equal
gp after transition (2) and Global_view be gv’. Since
the global preinstall proof must be greater than what
it was before the transition, gp > gv. On lines E5 - E7
of Figure A-4, when global preinstall proof is increased,
Global_view is increased to global preinstall proof if
Global_view < global preinstall proof. Thus, gv’ > gp.
Finally, gv" > gv, because Global_view either remained
the same or increase.

We now must examine two different cases. First,
when gv’ > gv, the Global_view was increased to gp,
and, therefore, gv’ = gp. Second, when gv' = gv (i.e.,
Global_view was not increased), then, from gp > gv and
gv’ > gp, gv" = gp. In either case, therefore, Invariant B.1
holds after transition (2).

We have shown that Invariant B.1 holds when a server
starts and that it holds after each state transition. O

We now prove a claim about RELIABLE-SEND-TO-
ALL-SITES that we use to prove Claim B.4:

Claim B.5: If the system is stable with respect to time
T, then if a stable server invokes RELIABLE-SEND-TO-
ALL-SITES on message m, then all stable servers will
receive m.

Proof: When a stable server invokes RELIABLE-SEND-
TO-ALL-SITES on message m, it first creates a Reli-
able_Message(m) message and sends it to all of the
servers in its site, S, (Figure A-24, lines A2 and A3).
Therefore, all stable servers in S will receive message m
embedded within the Reliable_Message.
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The server that invoked RELIABLE-SEND-TO-ALL-SITES
calls SendToPeers on m (line A4). All other servers call
SendToPeers(m) when they receive Reliable_Message(m)
(line B2). Therefore, all stable servers in S will call
SendToPeers(m). This function first checks to see if the
server that called it has a Server_id between 1 and 2f+1
(line D1). Recall that servers in each site are uniquely
numbered with integers from 1 to 3f + 1. If a server is
one of the 2f + 1 servers with the lowest values, it will
send its message to all servers in all other sites that have
a Server_id equal to its server id (lines D2-D4).

Therefore, if we consider S and any other stable site
S’, then message m is sent across 2f + 1 links, where
the 4f 4 2 servers serving as endpoints on these links
are unique. A link passes m from site S to S’ if both
endpoints are stable servers. There are at most 2 f servers
that are not stable in the two sites. Therefore, if each of
these non-stable servers blocks one link, there is still one
link with stable servers at both endpoints. Thus, message
m will pass from S to at least one stable server in all
other sites. When a server on the receiving endpoint
receives m (lines C1-C2), it sends m to all servers in its
site. Therefore, we have proved that if any stable server
in a stable system invokes RELIABLE-SEND-TO-ALL-SITES
on m, all stable servers in all stable sites will receive m.

[

We now show that if all stable servers increase their
Global_view to gv, then all stable servers will preinstall
global view gv.

Lemma B.5: If the system is stable with respect to
time T, then if, at a time after T, all stable servers
increase their Global_view variables to gv, all stable
servers will preinstall global view gv.

Proof: We first show that if any stable server in-
creases its global view to gv because it receives global
preinstall proof for gv, then all stable servers will pre-
install gv. When a stable server increases its global
preinstall proof to gv, it reliably sends this proof to all
servers (Figure A-14, lines E4 and E5) By Claim B.5, all
stable servers receive this proof, apply it, and preinstall
global view gwv.

We now show that if all stable servers increase their
global views to gv without first receiving global prein-
stall proof for gv, all stable servers will preinstall gv. A
correct server can increase its Global_view to gv without
having preinstall proof for gv in only one place in the
pseudocode (Figure A-14, line A2). If a stable server
executes this line, then it also constructs an unsigned
Global_VC(gv) message and invokes THRESHOLD-SIGN
on this message (lines A4-A5).

From Claim B.3, if all stable servers in a stable
site invoke THRESHOLD-SIGN on Global_VC(gv), then a
correctly threshold signed Global VC(gv) message will
be returned to all stable servers in this site. When
THRESHOLD-SIGN returns a Global_VC message to a

stable server, this server reliably sends it to all other
sites. By Claim B.5, all stable servers will receive the
Global_VC(gv) message. Since we assume all stable
servers in all sites increase their global views to gv, all
stable servers will receive a Global_VC(gv) message from
a majority of sites. O

We next prove that soon after the system becomes
stable, all stable servers preinstall the same global view
gv. We also show that there can be no global preinstall
proof for a global view above guv:

Lemma B.6: If global progress does not occur, and the
system is stable with respect to time 7', then all stable
servers will preinstall the same global view gv before
time 7'+ A, where gv is equal to the the maximum
global preinstall proof in the system when the stable
servers first preinstall gv.

Proof: Let $p,q5 be the stable server with the high-
est preinstalled global view, gpmas, at time 7', and let
gpSYSmaa be the highest preinstalled view in the system
at time 7. We first show that gpme: + 1 > 9psyYSmaz-
Second, we show that all stable servers will preinstall
JPmaz- Then we show that the Global_T timers will
expire at all stable servers, and they will increase their
global view to ¢gpmae + 1. Next, we show that when
all stable servers move to global view gpma. + 1, each
site will create a threshold signed Global_VC(gpaz + 1)
message, and all stables servers will receive enough
Global_VC messages to preinstall gp,,qz + 1.

In order for gpsysmaes to have been preinstalled,
some server in the system must have collected
Global_VC(gpsysmaz) messages from a majority of sites.
Therefore, at least f + 1 stable servers must have had
global views for gpsysmas, because they must have in-
voked THRESHOLD-SIGN on Global_VC(gpsysmaz). From
Invariant B.1, if a correct server is in gpsysqq, it must
have global preinstall proof for at least gpsysmas — 1.
Therefore, gpmar + 1 > gPSYSmaz-

When sy,4, preinstalls gpmes, it reliably sends
global preinstall proof for gpma.. to all stable sites
(via the RELIABLE-SEND-TO-ALL-SITES protocol). By
Claim B.5, all stable servers will receive and ap-
ply Global_Preinstall_Proof(gpmqe;) and increase their
Global_view variables to ¢gpmq.. Therefore, within ap-
proximately one widea-area message delay of T, all
stable servers will preinstall gp,,q.. By Invariant B.1, all
stable servers must have global view ¢gp,qz O gPmaz + 1.
Any stable server with Global_view gp;q;+1 did not yet
preinstall this global view. Therefore, its timer is stopped
as described in the proof of Lemma B.4, and it will not
increase its view again until it receives proof for a view
higher than gpmqz-

We now need to show that all stable servers with
Global_view gp,nq. will move to Global_view gpq. + 1.
All of the servers in gpmq., have running timers be-
cause their global preinstall proof = Global_view. The
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Global_T timer is reset in only two places in the pseu-
docode. The first is on line E6 of Figure A-14. This
code is not called unless a server increases its global
preinstall proof, in which case it would also increase its
Global_view to gpmqz+1. The second case occurs when a
server executes a Globally_Ordered_Update (Figure A-
4, line C8), which cannot happen because we assume
that global progress does not occur. Therefore, if a stable
server that has view gp.... does not increase its view
because it receives preinstall proof for gpme., + 1, its
Global_T timer will expire and it will increment its global
view to gpmas + 1.

We have shown that if global progress does not occur,
and the system is stable with respect to time T, then
all stable servers will move to the same global view,
IPmaz + 1. A server either moves to this view because
it has preinstall proof for gpmq, + 1 or it increments its
global view to gpmaqz+1. If any server has preinstall proof
for gpmas, it sends this proof to all stable servers using
RELIABLE-SEND-TO-ALL-SITES and all stable servers will
preinstall gp,,q. + 1. By Lemma B.5, if none of the stable
servers have preinstall proof for gp,.q.+1 and they have
incremented their global view to gp.,q.+1, then all stable
servers will preinstall gpq, + 1.

We conclude by showing that time A is finite. As
soon as the system becomes stable, the server with the
highest global preinstall proof, gp,q., sends this proof to
all stable servers as described above. It reaches them in
one wide area message delay. After at most one global
timeout, the stable servers will increment their global
views because their Global_T timeout will expire. At this
point, the stable servers will invoke THRESHOLD-SIGN,
Global_VC messages will be returned at each stable site,
and the stable servers in each site will reliably send
their Global VC messages to all stable servers. These
messages will arrive in approximately one wide area
delay, and all servers will install the same view, gp.,qq+1.

U

We now prove the last lemma necessary to prove
Claim B.4:

Lemma B.7: If the system is stable with respect to
time 7', then if all stable servers are in global view gv,
the Global_T timers of at least f + 1 stable servers must
timeout before the global preinstall proof for gv + 1 can
be generated.

Proof: A stable system has a majority of sites each
with at least 2f + 1 stable servers. If all of the servers in
all non-stable sites generate Global_VC(gv+ 1) messages,
the set of existing messages does not constitute global
preinstall proof for gv + 1. One of the stable sites must
contribute a Global_VC(gv+1) message. In order for this
to occur, 2f + 1 servers at one of the stable sites must
invoke THRESHOLD-SIGN on Global_VC(gv + 1), which
implies f + 1 stable servers had global view gv+ 1. Since
global preinstall proof could not have been generated

without the Global_VC message from their site, Global_T
at these servers must have expired. O

We now use Lemmas B.5, B.6, and B.7 to prove Claim
B.4:

Proof: By Lemma B.6, all servers will preinstall the
same view, gv, and the highest global preinstall proof in
the system is gv. If global progress does not occur, then
the Global_T timer at all stable servers will eventually
expire. When this occurs, all stable servers will increase
their global view to gv + 1. By Lemma B.5, all stable
servers will preinstall gv + 1. By Lemma B.5, Global T
must have expired at at least f + 1 stable servers. We
have shown that if all stable servers are in the same
global view, they will remain in this view until at least
f + 1 stable servers Global T timer expires, and they
will definitely preinstall the next view when all stable
servers’ Global_T timer expires.

When the first stable server preinstalls global view
gv+1, it reliably sends global preinstall proof gv+1 to all
stable servers (Figure A-14, line E4). Therefore, all stable
servers will receive global preinstall proof for gv + 1
at approximately the same time (within approximately
one wide area message delay). The stable servers will
reset their Global_T timers and start them when they
preinstall. At this point, no server can preinstall the next
global view until there is a global timeout at at least
f+1 stable servers. If the servers don’t preinstall the next
global view before, they will do so when there is a global
timeout at all stable servers. Then the process repeats.
The stable servers preinstall all consecutive global views
and remain in them for a global timeout period. O

We now prove a similar claim about the local
representative election protocol. The protocol is
embedded within the LOCAL-VIEW-CHANGE protocol,
and it is responsible for the way in which stable servers
within a site synchronize their Local_view variable.

Claim B.6: If global progress does not occur, and the
system is stable with respect to time 7', then all stable
servers in a stable site will preinstall the same local
view, lv, in a finite time. Subsequently, all stable servers
in the site will: (1) preinstall all consecutive local views
above v within one local area message delay of each
other and (2) remain in each local view for at least one
local timeout period.

To prove Claim B.6, we use a state machine based
argument to show that the following invariant holds:

INVARIANT B.2: If a correct server, s, has Local view
lv, then it is in one of the following two states:

1) Local T is running and s has local preinstall proof

lv
2) Local T is not running and s has local preinstall
proof lv — 1.
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Lemma B.8: Invariant B.2 always holds.

Proof: When a correct server starts, Local T is
started, Local_view is set to 0, and the server has an
a priori proof (New_Rep message) for local view O.
Therefore, it is in state (1).

A server can transition from one state to another only
in the following two cases. These transitions are the only
times where a server (1) increases its local preinstall
proof, (2) increases its Local_view, or (3) starts or stops
Local_T.

o Transition (1): A server can transition from state
(1) to state (2) only when Local T expires and it
increments its local view by one.

o Transition (2): A server can transition from state (2)
to state (1) or from state (1) to state (1) when it
increases its local preinstall proof and starts Local_T.

We now show that if Invariant B.2 holds before a state
transition, it will hold after a state transition.

We first consider transition (1). We assume that Invari-
ant B.2 holds immediately before the transition. Before
transition (1), the server is in state (1) and Local_view
is equal to local preinstalled view, and Local_T is run-
ning. After transition (1), the server is in state (2) and
Local _view is equal to local preinstalled view + 1, and
Local_T is stopped. Therefore, after the state transition,
Invariant B.2 holds. This transition corresponds to lines
Al and A2 in Figure A-13. On line Al, Local_T expires
and stops. On line A2, Local_view is incremented by one.
The server cannot transition back to state (1) until there
is a transition (2).

We next consider transition (2). We assume that Invari-
ant B.2 holds immediately before the transition. Before
transition (2) the server can be in either state (1) or state
(2). We now prove that the invariant holds immediately
after transition (2) if it occurs from either state (1) or state
2).

Let [v be the value of Local_view before transition.
If the server is in state (1) before transition (2), then
local preinstall proof is lv, and Local_T is running. If
the server is in state (2) before transition (2), then local
preinstall proof is lv—1, and Local_T is stopped. In either
case, the following is true before the transition: local
preinstall proof > gv— 1. Transition (2) occurs only when
local preinstall proof increases (Figure A-13, block D).
Line D4 of the LOCAL-VIEW-CHANGE protocol is the only
line in the pseudocode where Local_T is started after ini-
tialization, and this line is triggered only upon increasing
local preinstall proof. Let local preinstall proof equal Ip
after transition (2) and Local_view be [v’. Since the local
preinstall proof must be greater than what it was before
the transition, Ip > lv. On lines E2-E4 of Figure A-3,
when local preinstall proof is increased, Local view is
increased to local preinstall proof if Local view < local
preinstall proof. Thus, (v > lp. Finally, lv' > lv, because
Local_view either remained the same or increased.

We now must examine two different cases. First, when
lv' > lv, Local_view was increased to Ip, and, therefore,
Iv' = Ip. Second, when [v' = lv (i.e., Local_view was not
increased), then, from Ip > lv and v’ > Ip and simple
substituition, v’ = Ip’. In either case, therefore, Invariant
B.2 holds after transition (2).

We have shown that Invariant B.2 holds when a
server starts and that it holds after each state transition,
completing the proof. O

We can now prove Claim B.6.

Proof: Let sy, be the stable server with the highest
local preinstalled view, Ip,,q4, in stable site S. Let lvq4
be server Spqz’s local view. The local preinstall proof is
a New_Rep(Ipmq.) message threshold signed by site S.
Server spq, sends its local preinstall proof to all other
servers in site S when it increases its local preinstall
proof (Figure A-13, line D3). Therefore, all stable servers
in site S will receive the New_Rep message and prein-
stall Ipmaz-

From Invariant B.2, Ip1az = Wmaz—1 OT {Prmaz = Wmaz-
Therefore, all stable servers are within one local view of
each other. If Ip,a0 = lUmas, then all servers have the
same local view and their Local_T timers are running. If
not, then there are two cases we must consider.

1) Local T will expire at the servers with local view
IPmaz and they will increment their local view to
lWmaa (Figure A-13, line D3). Therefore, all stable
servers will increment their local views to lv,,qa,
and invoke THRESHOLD-SIGN on New_Rep({vynq4)
(Figure A-13, line A5). By Claim B.3, a correctly
threshold signed New_Rep(lv;q,) message will
be returned to all stable servers. They will in-
crease their local preinstall proof to lv,,q,, send the
New_Rep message to all other servers, and start
their Local_T timers.

2) The servers with local view Ip,,., will receive a
local preinstall proof higher than Ip,,... In this
case, the servers increase their local view to the
value of the preinstall proof they received, send
the preinstall proof, and start their Local_T timers.

We have shown that, in all cases, all stable servers will
preinstall the same local view and that their local timers
will be running. Now, we need to show that these stable
servers will remain in the same local view for one local
timeout, and then all preinstall the next local view.

At least 2f + 1 servers must first be in a local view
before a New_Rep message will be created for that
view. Therefore, the f malicious servers cannot create a
preinstall proof by themselves. When any stable server
increases its local preinstall proof to the highest in the
system, it will send this proof to all other stable servers.
These servers will adopt this preinstall proof and start
their timers. Thus, all of their Local T timers will start
at approximately the same time. At least f + 1 stable
servers must timeout before a higher preinstall proof can
be created. Therefore, the stable servers will stay in the
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same local view for a local timeout period. Since all sta-
ble servers start Local_T at about the same time (within a
local area message delay), they will all timeout at about
the same time. At that time, they all invoke THRESHOLD-
SIGN and a New_Rep message will be created for the
next view. At this point, the first server to increase its
preinstall proof sends this proof to all stable servers.
They start their Local T timers, and the process repeats.
Each consecutive local view is guaranteed to preinstall,
and the stable servers will remain in the same view for
a local timeout. O

We now establish relationships between our timeouts.
Each server has two timers, Global_T and Local_T, and
a corresponding global and local timeout period for
each timer. The servers in the leader site have a longer
local timeout than the servers in the non-leader site
so that a correct representative in the leader site can
communicate with at least one correct representative in
all stable non-leader sites. The following claim specifies
the values of the timeouts relative to each other.

Claim B.7: All correct servers with the same global
view, gv, have the following timeouts:

1) The local timeout at servers in the non-leader sites
is local_to_nls

2) The local timeout at the servers in the leader site
is local_to_ls = (f + 2)local_to_nls

3) The global timeout is global_to =
3)local_to_ls = K x 2[Global_view/N

(f +

Proof: The timeouts are set by functions specified
in Figure A-15. The global timeout global_to is a de-
terministic function of the global view, global_to = K x
2[Global_view/N| ywhere K is the minimum global timeout
and N is the number of sites. Therefore, all servers in
the same global view will compute the same global
timeout (line C1). The RESET-GLOBAL-TIMER function
sets the value of Global_T to global_to. The RESET-
LOCAL-TIMER function sets the value of Local T de-
pending on whether the server is in the leader site. If
the server is in the leader site, the Local_T timer is
set to local_to_ls = (global_to/(f + 3)) (line B2). If the
server is not in the leader site, the Local T timer is set
local_to_nls = local_to_ls/(f+2) (line B4). Therefore, the
above ratios hold for all servers in the same global view.

U

We now prove that each time a site becomes the
leader site in a new global view, correct representatives
in this site will be able to communicate with at least
one correct representative in all other sites. This follows
from the timeout relationships in Claim B.7. Moreover,
we show that each time a site becomes the leader, it
will have more time to communicate with each correct
representative. Intuitively, this claim follows from the
relative rates at which the coordinators rotate at the
leader and non-leader sites.

Claim B.8: If LS is the leader site in global
views gv and gv' with gv > g¢v/, then any stable
representative elected in gv can communicate with a
stable representative at all stable non-leader sites for
time Ay, and any stable representative elected in gv’
can communicate with a stable representative at all
stable non-leader sites for time Ay, and Ay, > 2% Agyr.

Proof: From Claim B.6, if no global progress occurs,
(1) local views will be installed consecutively, and (2)
the servers will remain in the same local view for one
local timeout. Therefore, any correct representative at the
leader site will reign for one local timeout at the leader
site, local_to_ls. Similarly, any correct representative at
a non-leader site will reign for approximately one local
timeout at a non-leader site, local_to_nls.

From Claim B.7, the local timeout at the leader site
is f + 2 times the local timeout at the non-leader site
(local_to_ls = (f + 2)local_to_nls). If stable server r is
representative for local_to_ls, then, at each leader site,
there will be at least f + 1 servers that are representative
for time local_to_nls during the time that r is represen-
tative. Since the representative has a Server_id equal to
Local_view mod(3f + 1), a server can never be elected
representative twice during f+1 consecutive local views.
It follows that a stable representative in the leader site
can communicate with f + 1 different servers for time
period local_to_ls. Since there are at most f servers that
are not stable, at least one of the f + 1 servers must be
stable.

From Claim B.7, the global timeout doubles every N
consecutive global views, where N is the number of sites.
The local timeouts are a constant fraction of a global
timeout, and, therefore, they grow at the same rate as
the global timeout. Since the leader site has Site_id =
Global_view mod N, a leader site is elected exactly once
every N consecutive global views. Therefore, each time
a site becomes the leader, the local and global timeouts
double. O

Claim B.9: If global progress does not occur and the
system is stable with respect to time 7, then in any
global view gv that begins after time 7', there will be at
least two stable representatives in the leader site that
are each leaders for a local timeout at the leader site,
local_to_ls.

Proof: From Claim B.6, if no global progress occurs,
(1) local views will be installed consecutively, and (2) the
servers will remain in the same local view for one local
timeout. From Claim B.4, if no global progress occurs, the
servers in the same global view will remain in this global
view for one global timeout, global_to. From Claim B.7,
global_to = (f +3)local_to_ls. Therefore, during the time
when all stable servers are in global view gv, there will
be f + 2 representatives in the leader site that each serve
for local_to_ls. We say that these servers have complete
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reigns in gv. Since the representative has a Server_id
equal to Local view mod(3f + 1), a server can never
be elected representative twice during f 4 2 consecutive
local views. There are at most f servers in a stable site
that are not stable, therefore at least two of the f + 2
servers that have complete reigns in gv will be stable. []

We now proceed with our main argument for proving
Claim B.2, which will show that a stable server will be
able to complete the GLOBAL-VIEW-CHANGE protocol.
To complete GLOBAL-VIEW-CHANGE in a global view gv,
a stable representative must coordinate the construction
of an Aru_Message, send the Aru_Message to the other
sites, and collect Global Constraint messages from a
majority of sites. We leverage the properties of the global
and local timeouts to show that, as the stable sites move
through global views together, a stable representative
of the leader site will eventually remain in power
long enough to complete the protocol, provided each
component of the protocol completes in finite time. This
intuition is encapsulated in the following lemma:

Lemma B.9: If global progress does not occur and
the system is stable with respect to time 7', then there
exists an infinite set of global views gv;, each with an
associated local view lv; and a stable leader site .S;, in
which, if CONSTRUCT-ARU and CONSTRUCT-GLOBAL-
CONSTRAINT complete in bounded finite times, then if
the first stable representative of S; serving for at least a
local timeout period invokes GLOBAL-VIEW-CHANGE, it
will complete the protocol in (gv;, lv;).

Proof: By Claim B.4, if the system is stable and no
global progress is made, all stable servers move together
through all (consecutive) global views gv above some
initial synchronization view, and they remain in gv for
at least one global timeout period, which increases by
at least a factor of two every N global view changes.
Since the stable sites preinstall consecutive global views,
an infinite number of stable leader sites will be elected.
By Claim B.9, each such stable leader site elects three
stable representatives before the Global T timer of any
stable server expires, two of which remain in power
for at least a local timeout period before any stable
server in S expires its Local_T timeout. We now show
that we can continue to increase this timeout period
(by increasing the value of gv) until, if CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT complete in
bounded finite times A, and Ag,., respectively, the
representative will complete GLOBAL-VIEW-CHANGE.

A stable representative invokes CONSTRUCT-ARU after
invoking the GLOBAL-VIEW-CHANGE protocol (Figure A-
16, line A2), which occurs either after preinstalling the
global view (Figure A-14, line E8) or after completing a
local view change when not globally constrained (Figure
A-13, line D8). Since the duration of the local timeout
period local_to_ls increases by at least a factor of two
every N global view changes, there will be a global view

gv in which the local timeout period is greater than A,
at which point the stable representative has enough time
to construct the Aru_Message.

By Claim B.8, if no global progress occurs, then a stable
representative of the leader site can communicate with
a stable representative at each stable non-leader site in
a global view gv for some amount of time, Ag,, that
increases by at least a factor of two every N global
view changes. The stable representative of the leader site
receives a New_Rep message containing the identity of
the new site representative from each stable site roughly
one wide area message delay after the non-leader site
representative is elected. Since Ay is finite, there is a
global view sufficiently large such that (1) the leader site
representative can send the Aru_Message it constructed
to each non-leader site representative, the identity of
which it learns from the New_Rep message, (2) each
non-leader site representative can complete CONSTRUCT-
GLOBAL-CONSTRAINT, and (3) the leader site represen-
tative can collect Global Constraint messages from a
majority of sites. We can apply the same logic to each
subsequent global view gv’ with a stable leader site. [J

We call the set of views for which Lemma B.9 holds
the completion views. Intuitively, a completion view is a
view (gv, lv) in which the timeouts are large enough
such that, if CONSTRUCT-ARU and CONSTRUCT-GLOBAL-
CONSTRAINT complete in some bounded finite amounts
of time, the stable representative of the leader site S of gv
(which is the first stable representative of .S serving for at
least a local timeout period) will complete the GLOBAL-
VIEW-CHANGE protocol.

Given Lemma B.9, it just remains to show that
there exists a completion view in which CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT terminate
in bounded finite time. We use Claim B.1 to lever-
age the fact that all stable servers eventually reconcile
their Global_History data structures to maz_stable_seq
to bound the amount of work required by each protocol.
Since there are an infinite number of completion views,
we consider those completion views in which this rec-
onciliation has already completed.

We first show that there is a bound on the size of the
Global_Server_State messages used in CONSTRUCT-ARU
and CONSTRUCT-GLOBAL-CONSTRAINT.

Lemma B.10: If all stable servers have a
Global_aru of max_stable_seq, then no server
can have a Prepare Certificate, Proposal, or

Globally_Ordered_Update for any sequence number
greater than (max_stable_seq + 2 x W).

Proof: Since obtaining a Globally_Ordered_Update
requires a Proposal, and generating a Proposal requires
collecting a Prepare Certificate, we assume that a Pre-
pare Certificate with a sequence number greater than
(max_stable_seq + 2 + W) was generated and show that
this leads to a contradiction.
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If any server collects a Prepare Certificate for a se-
quence number seq greater than (max_stable_seq+2%W),
then it collects a Pre-Prepare message and 2f Prepare
messages for (max_stable_seq+ 2+ W ). This implies that
at least f 4+ 1 correct servers sent either a Pre-Prepare
or a Prepare. A correct representative only sends a Pre-
Prepare message for seq if its Global _aru is at least
(seq — W) (Figure A-11, line A3), and a correct server
only sends a Prepare message if its Global_aru is at least
(seq — W) (Figure A-8, A23). Thus, at least f + 1 correct
servers had a Global_aru of at least (seq — W).

For this to occur, these f + 1 correct servers ob-
tained Globally_Ordered_Updates for those sequence
numbers up to and including (seq — W). To obtain a
Globally_Ordered_Update, a server collects a Proposal
message and |S/2] corresponding Accept messages. To
construct a Proposal for (seq — W), at least f + 1 correct
servers in the leader site had a Global aru of at least
(seq — 2W) > max_stable_seq. Similarly, to construct an
Accept message, at least f + 1 correct servers in a non-
leader site contributed a Partial_sig message. Thus, there
exists a majority of sites, each with at least f 4 1 correct
servers with a Global_aru greater than max_stable_seq.

Since any two majorities intersect, one of these sites
is a stable site. Thus, there exists a stable site with
some stable server with a Global_aru greater than
max_stable_seq, which contradicts the definition of
max_stable_seq. O

Lemma B.11: If all stable servers have a Global_aru
of maz_stable_seq, then if a stable representative
of the leader site invokes CONSTRUCT-ARU, or if a
stable server in a non-leader site invokes CONSTRUCT-
GLOBAL-CONSTRAINT with an Aru_Message containing
a sequence number at least max_stable_seq, then any
valid Global_Server_State message will contain at most
2 % W entries.

Proof: A stable server invokes CONSTRUCT-ARU with
an invocation sequence number of max_stable_seq. By
Lemma B.10, no server can have a Prepare Certifi-
cate, Proposal, or Globally_Ordered_Update for any se-
quence number greater than (maz_stable_seq + 2 « W).
Since these are the only entries reported in a valid
Global_Server_State message (Figure A-20, Block B), the
lemma holds. We use the same logic as above in the case
of CONSTRUCT-GLOBAL-CONSTRAINT. [

The next two lemmas show that CONSTRUCT-ARU
and CONSTRUCT-GLOBAL-CONSTRAINT will complete in
bounded finite time.

Lemma B.12: If the system is stable with respect to
time 7' and no global progress is made, then there
exists an infinite set of views (gv;, lv;) in which a run of
CONSTRUCT-ARU invoked by the stable representative
of the leader site will complete in some bounded finite
time, Ay

Proof: By Claim B.1, if no global progress is
made, then all stable servers eventually reconcile their
Global_aru to max_stable_seq. We consider those com-
pletion views in which this reconciliation has already
completed.

The representative of the completion view invokes
CONSTRUCT-ARU upon completing GLOBAL-LEADER-
ELECTION (Figure A-16, line A2). It sends a Re-
quest_Global_State message to all local servers contain-
ing a sequence number reflecting its current Global_aru
value. Since all stable servers are reconciled up to
max_stable_seq, this sequence number is equal to
max_stable_seq. Since the leader site is stable, all stable
servers receive the Request_Global_State message within
one local message delay.

When a stable server receives the Re-
quest_Global_State message, it immediately sends
a Global _Server_State message (Figure A-18, lines
B5-B7), because it has a Global_aru of max_stable_seq.
By Lemma B.11, any valid Global_Server_State message
can contain entries for at most 2 * W sequence numbers.
We show below in Claim B.11 that all correct servers
have contiguous entries above the invocation sequence
number in their Global History data structures. From
Figure A-20 Block B, the Global_Server_State message
from a correct server will contain contiguous entries.
Since the site is stable, the representative collects
valid Global Server_State messages from at least
2f + 1 servers, bundles them together, and sends the
Global_Collected_Servers_State message to all local
servers (Figure A-18, line C3).

Since the representative is stable, and all stable servers
have a Global_aru of max_stable_seq (which is equal to
the invocation sequence number), all stable servers meet
the conditionals at Figure A-18, lines D2 and D3. They do
not see a conflict at Figure A-7, line F4, because the rep-
resentative only collects Global_Server_State messages
that are contiguous. They construct the union message
by completing Compute_Global_Union (line D4), and
invoke THRESHOLD-SIGN on each Prepare Certificate in
the union. Since there are a finite number of entries in the
union, there are a finite number of Prepare Certificates.
By Lemma B.3, all stable servers convert the Prepare
Certificates into Proposals and invoke THRESHOLD-SIGN
on the union (line F2). By Lemma B.3, all stable servers
generate the Global Constraint message (line G1) and
invoke THRESHOLD-SIGN on the extracted union_aru
(line G4). By Lemma B.3, all stable servers generate the
Aru_Message and complete the protocol.

Since gv; can be arbitrarily high, with the timeout
period increasing by at least a factor of two every N
global view changes, there will eventually be enough
time to complete the bounded amount of computation
and communication in the protocol. We apply the same
logic to all subsequent global views with a stable leader
site to obtain the infinite set. O
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Lemma B.13: Let A be an Aru_Message containing
a sequence number of max_stable_seq. If the system is
stable with respect to time 7" and no global progress is
made, then there exists an infinite set of views (guv;, lv;)
in which a run of CONSTRUCT-GLOBAL-CONSTRAINT
invoked by a stable server in local view [v;, where the
representative of lv; is stable, in a non-leader site with
argument A, will complete in some bounded finite time,
Age.

Proof: By Claim B.1, if no global progress is
made, then all stable servers eventually reconcile their
Global_aru to max_stable_seq. We consider those com-
pletion views in which this reconciliation has already
occurred.

The Aru_Message A has a value of at max_stable_seq.
Since the representative of [v' is stable, it sends A to all
servers in its site. All stable servers receive A within one
local message delay.

All stable servers invoke CONSTRUCT-GLOBAL-
CONSTRAINT  upon receiving A and send
Global_Server_State messages to the representative.
By Lemma B.11, the Global Server_ State messages
contain entries for at most 2 x W sequence numbers.
We show below in Claim B.11 that all correct servers
have contiguous entries above the invocation sequence
number in their Global History data structures.
From Figure A-20 Block B, the Global_Server_State
message from a correct server will contain contiguous
entries. The representative will receive at least
2f 4+ 1 wvalid Global_Server_State messages, since
all messages sent by stable servers will be valid. The
representative bundles up the messages and sends a
Global_Collected_Servers_State message (Figure A-19,
line B3).

All stable servers receive the
Global_Collected_Servers_State message within one
local message delay. The message will meet the
conditional at line C2, because it was sent by a stable
representative. They do not see a conflict at Figure
A-7, line F4, because the representative only collects
Global_Server_State messages that are contiguous.
All stable servers construct the union message by
completing Compute_Global Union (line C3), and
invoke THRESHOLD-SIGN on each Prepare Certificate in
the union. Since all valid Global_Server_State messages
contained at most 2 x W entries, there are at most 2 x W
entries in the union and 2 * W Prepare Certificates in
the union. By Lemma B.3, all stable servers convert
the Prepare Certificates into Proposals and invoke
THRESHOLD-SIGN on the union (line E2). By Lemma
B.3, all stable servers generate the Global_Constraint
message (line F2).

Since gv; can be arbitrarily high, with the timeout
period increasing by at least a factor of two every N
global view changes, there will eventually be enough
time to complete the bounded amount of computation
and communication in the protocol. We apply the same

logic to all subsequent global views with a stable leader
site to obtain the infinite set. O

Finally, we can prove Claim B.2:

Proof: By Lemma B.9, the first stable representa-
tive of some leader site S can complete GLOBAL-VIEW-
CHANGE in a completion view (gv, lv) if CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT complete in
bounded finite time. By Lemmas B.12, S can complete
CONSTRUCT-ARU in bounded finite time. This message
is sent to a stable representative in each non-leader site,
and by Lemma B.13, CONSTRUCT-GLOBAL-CONSTRAINT
completes in bounded finite time. We apply this logic
to all global views with stable leader site above gv,
completing the proof. O

We now show that either the first or the second stable
representative of the leader site serving for at least a
local timeout period will make global progress, provided
at least one stable server receives an update that it has
not previously executed. This then implies our liveness
condition.

We begin by showing that a stable representative of
the leader site that completes GLOBAL-VIEW-CHANGE
and serves for at least a local timeout period will
be able to pass the Global_Constraint messages it
collected to the other stable servers. This implies that
subsequent stable representatives will not need to run
the GLOBAL-VIEW-CHANGE protocol (because they will
already have the necessary Global_Constraint messages
and can become globally constrained) and can, after
becoming locally constrained, attempt to make progress.

Lemma B.14: If the system is stable with respect to
time 7', then there exists an infinite set of global views
gv; in which either global progress occurs during the
reign of the first stable representative at a stable leader
site to serve for at least a local timeout period, or any
subsequent stable representative elected at the leader
site during gv; will already have a set consisting of a
majority of Global_Constraint messages from gv;.

Proof: By Claim B.2, there exists an infinite
set of global views in which the first stable
representative serving for at least a local timeout
period will complete GLOBAL-VIEW-CHANGE. To
complete GLOBAL-VIEW-CHANGE, this representative
collects Global_Constraint_Messages from a majority
of sites. The representative sends a signed
Collected_Global_Constraints message to all local
servers (Figure A-13, line D11). Since the site is stable,
all stable servers receive this message within one local
message delay. If we extend the reign of the stable
representative that completed GLOBAL-VIEW-CHANGE
by one local message delay (by increasing the value
of gv), then in all subsequent local views in this
global view, a stable representative will already have
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Global_Constraint_Messages from a majority of servers.
We apply the same logic to all subsequent global views
with a stable leader site to obtain the infinite set. O

We now show that if no global progress is made
during the reign of the stable representative that
completed GLOBAL-VIEW-CHANGE, then a second stable
representative that is already globally constrained will
serve for at least a local timeout period.

Lemma B.15: If the system is stable with respect to
time 7', then there exists an infinite set of global views
gv; in which either global progress occurs during the
reign of the first stable representative at a stable leader
site to serve for at least a local timeout period, or a
second stable representative is elected that serves for
at least a local timeout period and which already has
a set consisting of a majority of Global Constraint(gv;)
messages upon being elected.

Proof: By Lemma B.14, there exists an infinite set
of global views in which, if no global progress occurs
during the reign of the first stable representative to
serve at least a local timeout period, all subsequent
stable representatives already have a set consisting of
a majority of Global Constraint messages upon being
elected. We now show that a second stable representative
will be elected.

By Claim B.8, if no global progress is made, then the
stable leader site of some such gv will elect f + 3 repre-
sentatives before any stable server expires its Global T
timer, and at least f + 2 of these representatives serve
for at least a local timeout period. Since there are at
most f faulty servers in the site, at least two of these
representatives will be stable. O

Since globally ordering an update requires the servers
in the leader site to be locally constrained, we prove the
following lemma relating to the CONSTRUCT-LOCAL-
CONSTRAINT protocol:

Lemma B.16: If the system is stable with respect to
time 7" and no global progress occrs, then there exists
an infinite set of views (gv;, lv;) in which a run of
CONSTRUCT-LOCAL-CONSTRAINT invoked by a stable
representative of the leader site will complete at all
stable servers in some bounded finite time, A;..

To prove Lemma B.16, we use the following two
lemmas to bound the size of the messages sent in
CONSTRUCT-LOCAL-CONSTRAINT:

Lemma B.17: If the system is stable with respect
to time 7', no global progress is made, and all stable
servers have a Global_aru of max_stable_seq, then
no server in any stable leader site S has a Prepare
Certificate or Proposal message in its Local History
data structure for any sequence number greater than

(max_stable_seq + W).

Proof: We show that no server in S can have a
Prepare Certificate for any sequence number s’, where
s’ > (mazx_stable_seq + W). This implies that no server
has a Proposal message for any such sequence number
s', since a Prepare Certificate is needed to construct a
Proposal message.

If any server has a Prepare Certificate for a sequence
number s’ > (max_stable_seq + W), it collects a Pre-
Prepare and a Prepare from 2f + 1 servers. Since at
most f servers in S are faulty, some stable server sent
a Pre-Prepare or a Prepare for sequence number s'. A
correct representative only sends a Pre-Prepare message
for those sequence numbers in its window (Figure A-
11, line A3). A non-representative server only sends
a Prepare message for those sequence numbers in its
window, since otherwise it would have a conflict (Figure
A-8, line A23). This implies that some stable server
has a window that starts after max_stable_seq, which
contradicts the definition of max_stable_seq. 0

Lemma B.18: If no global progress occurs, and all
stable servers have a Global_aru of max_stable_seq
when installing a global view gv, then if a stable
representative of a leader site S invokes CONSTRUCT-
LOCAL-CONSTRAINT in some local view (gv, lv), any
valid Local_Server_State message will contain at most
W entries.

Proof: When the stable representative installed global
view gv, it set Pending_Proposal_Aru to its Global_aru
(Figure A-16, line F4), which is max_stable_seq. Since
Pending_Proposal_Aru only increases, the stable repre-
sentative invokes CONSTRUCT-LOCAL-CONSTRAINT with
a sequence number of at least max_stable_seq. A valid
Local_Server_State message contains Prepare Certificates
or Proposals for those sequence numbers greater than
the invocation sequence number (Figure A-8, line D6).
By Lemma B.17, no server in S has a Prepare Certifi-
cate or Proposal for a sequence number greater than
(max_stable_seq + W), and thus, a valid message has
at most W entries. O

We now prove Lemma B.16:

Proof: By Claim B.1, if no global progress is
made, then all stable servers eventually reconcile their
Global_Aru to max_stable_seq. We consider the global
views in which this has already occurred.

When a stable server becomes globally constrained in
some such view gv, it sets its Pending_Proposal_Aru
variable to its Global_aru (Figure A-16, line F4), which is
equal to maz_stable_seq, since reconciliation has already
occurred. A stable representative only increases its Pend-
ing_Proposal_Aru when it globally orders an update
or constructs a Proposal for the sequence number one
higher than its current Pending_Proposal_Aru (Figure
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A-4, lines A5, Al12, and C11). The stable representative
does not globally order an update for (max_stable_seq+
1), since when the server globally ordered an update
for (max_stable_seq + 1), it would have increased its
Global_Aru and executed the update, which violates the
definition of max_stable_seq. By Lemma B.17, no server
in S has a Prepare Certificate or a Proposal message for
any sequence number s > (maz_stable_seq + W). Thus,
the stable representative’s Pending_Proposal_Aru can be
at most max_stable_seq+W when invoking CONSTRUCT-
LOCAL-CONSTRAINT

Since the representative of [v is stable, it sends a
Request_Local_State message to all local servers, which
arrives within one local message delay. All stable servers
have a Pending_Proposal_Aru of at least max_stable_seq
and no more than (max_stable_seq + W). Thus, if a
stable server’s Pending Proposal_Aru is at least as
high as the invocation sequence number, it sends a
Local_Server_State message immediately (Figure A-17,
lines B5 - B7). Otherwise, the server requests Proposals
for those messages in the difference, of which there are
at most W. Since the site is stable, these messages will
arrive in some bounded time that is a function of the
window size and the local message delay.

By Lemma B.18, any valid Local Server_State mes-
sage contains at most W entries. We show below in
Claim B.11 that all correct servers have contiguous en-
tries above the invocation sequence number in their
Local_History data structures. From Figure A-20 Block
A, the Local_Server_State message from a correct server
will contain contiguous entries. The representative will
receive at least 2f + 1 valid Local_Server_State mes-
sages, since all messages sent by stable servers will
be valid. The representative bundles up the messages
and sends a Local_Collected_Servers_State message. All
stable servers receive the Local Collected_Servers_State
message within one local message delay. The message
will meet the conditionals in Figure A-17, lines D2 and
D3, at any stable server that sent a Local_Server_State
message. They do not see a conflict at Figure A-§,
line E4, because the representative only collects Lo-
cal_Server_State messages that are contiguous. All stable
servers apply the Local_Collected_Servers_State mes-
sage to their Local_History data structures.

Since gv can be arbitrarily high, with the timeout pe-
riod increasing by at least a factor of two every N global
view changes, there will eventually be enough time for
all stable servers to receive the Request_Local_Server
state message, reconcile their Local History data struc-
tures (if necessary) and send a Local_Server_State mes-
sage, and process a Local_Collected_Servers_State mes-
sage from the representative. Thus, there will eventually
be enough time to complete the bounded amount of
computation and communication in the protocol, and we
can apply this argument to all subsequent global views
with stable leader sites to obtain the infinite set. O
the notion

The following lemma encapsulates

that all stable servers will become globally and locally
constrained shortly after the second stable representative
to serve for at least a local timeout period is elected:

Lemma B.19: If the system is stable with respect
to time 7' and no global progress occurs, then there
exists an infinite set of views in which all stable servers
become globally and locally constrained within A,
time of the election of the second stable representative
serving for at least a local timeout period.

Proof: By Lemma B.14, the second stable representa-
tive serving for at least a local timeout period will have a
set of a majority of Global_Constraint messages from its
current global view upon being elected. This server bun-
dles up the messages, signs the bundle, and send it to all
local servers as a Collected_Global_Constraints message
(Figure A-13, line D11). Since the site is stable, all stable
servers receive the message within one local message
delay and become globally constrained. The stable repre-
sentative also invokes CONSTRUCT-LOCAL-CONSTRAINT
upon being elected (line D6). Since we consider those
global views in which reconciliation has already oc-
curred, Lemma B.16 implies that all stable servers be-
come locally constrained within some bounded finite
time. O

Since all stable servers are globally and locally
constrained, the preconditions for attempting to make
global progress are met. We use the following term in
the remainder of the proof:

DEFINITION B.4: We say that a server is a
Progress_Rep if (1) it is a stable representative of
a leader site, (2) it serves for at least a local timeout
period if no global progress is made, and (3) it can cause
all stable servers to be globally and locally constrained
within A;. time of its election.

The remainder of the proof shows that, in some view,
the Progress_Rep can globally order and execute an
update that it has not previously executed (i.e., it can
make global progress) if no global progress has other-
wise occurred.

We first show that there exists a view in which
the Progress Rep has enough time to complete the
ASSIGN-GLOBAL-ORDER protocol (i.e., to globally order
an update), assuming it invokes ASSIGN-SEQUENCE.
To complete ASSIGN-GLOBAL-ORDER, the Progress_Rep
must coordinate the construction of a Proposal message,
send the Proposal message to the other sites, and collect
Accept messages from |S/2]| sites. As in the case of
the GLOBAL-VIEW-CHANGE protocol, we leverage the
properties of the global and local timeouts to show
that, as the stable sites move through global views
together, the Progress Rep will eventually remain in
power long enough to complete the protocol, provided
each component of the protocol completes in some
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bounded, finite time. This intuition is encapsulated in
the following lemma:

Lemma B.20: If the system is stable with respect to
time 7" and no global progress occurs, then there exists
a view (gv, lv) in which, if ASSIGN-SEQUENCE and
THRESHOLD-SIGN complete in bounded finite times,
and all stable servers at all non-leader sites invoke
THRESHOLD-SIGN on the same Proposal from gv, then
if the Progress_Rep invokes ASSIGN-SEQUENCE at least
once and u is the update on which it is first invoked, it
will globally order u in (gv, lv).

Proof: By Claim B.1, if no global progress oc-
curs, then all stable servers eventually reconcile their
Global_aru to maz_stable_seq. We consider the global
views in which this has already occurred.

Since the Progress Rep has a Global aru of
max_stable_seq, it assigns u a sequence number of
max_stable_seq + 1. Since ASSIGN-SEQUENCE completes
in some bounded, finite time A,.,, the Progress_Rep
constructs P(gv, lv, max_stable_seq + 1, u), a Proposal
for sequence number max_stable_seq + 1.

By Claim B.8, if no global progress occurs, then a stable
representative of the leader site can communicate with
a stable representative at each stable non-leader site in
a global view gv for some amount of time, Ay, that
increases by at least a factor of two every N global
view changes. Since we assume that THRESHOLD-SIGN
is invoked by all stable servers at the stable non-leader
sites and completes in some bounded, finite time, Ag;gp,
there is a global view sufficiently large that (1) the leader
site representative can send the Proposal P to each non-
leader site representative, (2) each non-leader site repre-
sentative can complete THRESHOLD-SIGN to generate an
Accept message, and (3) the leader site representative
can collect the Accept messages from a majority of sites.

U

We now show that, if no global progress occurs
and some stable server received an update that it had
not previously executed, then some Progress_Rep will
invoke ASSIGN-SEQUENCE. We assume that the recon-
ciliation guaranteed by Claim B.1 has already com-
pleted (i.e., all stable servers have a Global_aru equal
to max_stable_seq). From the pseudocode (Figure A-
11, line A1), the Progress_Rep invokes ASSIGN-GLOBAL-
ORDER after becoming globally and locally constrained.
The Progress_Rep calls Get_Next_To_Propose to get the
next update, u, to attempt to order (line A4). The only
case in which the Progress_Rep will not invoke ASSIGN-
SEQUENCE is when v is NULL. Thus, we must first show
that Get_Next_To_Propose will not return NULL.

Within Get_Next_To_Propose, there are two possible
cases:

1) Sequence number max_stable_seq + 1 is

constrained: The Progress_Rep has a Prepare-
Certificate or Proposal in Local_History and/or a

Proposal in Global_History for sequence number
max_stable_seq + 1.

2) Sequence number max_stable_seq + 1 is uncon-
strained.

We show that, if max_stable_seq + 1 is constrained,
then u is an update that has not been executed by any
stable server. If max_stable_seq+1 is unconstrained, then
we show that if any stable server in site S received an
update that it had not executed after the stabilization
time, then u is an update that has not been executed by
any stable server.

To show that the wupdate returned by
Get_Next_To_Propose is an update that has not
yet been executed by any stable server, we must first
show that the same update cannot be globally ordered
for two different sequence numbers. Claim B.10 states
that if a Globally_Ordered_Update exists that binds
update u to sequence number seg, then no other
Globally_Ordered_Update exists that binds u to se¢/,
where seq # seq’. We use this claim to argue that if
a server globally orders an update with a sequence
number above its Global_aru, then this update could not
have been previously executed. It follows immediately
that if a server globally orders any update with a
sequence number one greater than its Global_aru, then
it will update execute this update and make global
progress. We now formally state and prove Claim B.10.

Claim B.10: If a Globally_Ordered_Update(seq, u)
exists, then there does not exist a Glob-
ally_Ordered_Update(seq’, u), where seq # seq’.

We begin by showing that, if an update is bound to
a sequence number in either a Pre-Prepare, Prepare-
Certificate, Proposal, or Globally_Ordered_Update,
then, within a local view at the leader site, it cannot be
bound to a different sequence number.

Lemma B.21: If in some global and local views (gv, {v)
at least one of the following constraining entries exist
in the Global_History or Local_History of f + 1 correct
servers:

1) Pre-Prepare(gv, lv, seq, u)

2) Prepare-Certificate(*, *, seq, u)

3) Proposal(*, *, seq, u)

4) Globally_Ordered_Update(*, *, seq, u)

Then, neither a Prepare-Certificate(gv, lv, seq’, u) nor
a Proposal(gv, lv, seq’, u) can be constructed, where

seq # seq’.

Proof: When a stable server receives a Pre-
Prepare(gv, v, seq, u), it checks its Global_History and
Local_History for any constraining entries that contains
update u. Lemma B.21 lists the message types that are
examined. If there exists a constraining entry binding
update u to seq’, where seq # seq, then Pre-Prepare, p,
is ignored (Figure A-8, lines 25-26).
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A Prepare-Certificate consists of 2 f Prepares and a Pre-
Prepare message. We assume that there are no more than
f malicious servers and a constraining entry binding
(seq, u), b, exists, and we show that there is a contra-
diction if Prepare-Certificate(gv, lv, seq’, u), pc, exists. At
least f + 1 correct servers must have contributed to pec.
By assumption (as stated in Lemma B.21), at least f + 1
correct servers have constraining entry b. This leaves 2 f
servers (at most f that are malicious and the remaining
that are correct) that do not have b and could contribute
to pc. Therefore, at least one correct server that had
constraint b must have contributed to pc. It would not do
this if it were correct; therefore, we have a contradiction.

A correct server will not invoke THRESHOLD-SIGN
to create a Proposal message unless a corresponding
Prepare-Certificate exists. Therefore, it follows that, if
Prepare-Certificate(gv, lv, seq’, u) cannot exist, then
Proposal(gv, lv, seq’, u) cannot exist. O]

We now use Invariant A.1 from Proof of Safety:

Let P(gv, lv, seq, u) be the first threshold-signed Pro-
posal message constructed by any server in leader site .S
for sequence number seq in global view gv. We say that
Invariant A.1 holds with respect to P if the following
conditions hold in leader site S in global view guv:

1) There exists a set of at least f + 1 correct servers

with a Prepare Certificate PC(gv, [v/, seq, u) or
a Proposal(gv, ', seq, w), for v/ > lv, in
their Local_History[seq] data structure, or a Glob-
ally_Ordered_Update(gv’, seq, u), for gv’ > gv, in
their Global_History[seq] data structure.

2) There does not exist a server with any conflicting
Prepare Certificate or Proposal from any
view (gv, Iv'), with v/ > lv, or a conflicting
Globally_Ordered_Update from any global view
gv’ > gu.

We use the Invariant A.1 to show that if a
Proposal(gv, lv, seq, u) is constructed for the first
time in global view gv, then a constraining entry that
binds u to seq will exist in all views (gv, [v'), where
W' > .

Lemma B.22: Let P(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S binding update u to sequence
number seq in global view gv. No other Proposal
binding u to seq’ can be constructed in global view gv,
where seq # seq’.

Proof: We show that Invariant A.1 holds within the
same global view in Proof of Safety. We now show that
two Proposals having different sequence numbers and
the same update cannot be created within the same global
view.

From Lemma B.21 , if Proposal(gv, lv, seq, u), P,
is constructed, then no constraining entries binding «

to seq’ exist in (gv, lv). Therefore, from Invariant A.1,
no Proposal(gv, (v, seq’, u), P’ could have been con-
structed, where [v” < [v. This follows, because, if P’ was
constructed, then Invariant A.l states that a constraint
binding u to seq’ would exist in view (gv, lv), in which
case P could not have been constructed. In summary, we
have proved that if P, binding u to seg, is constructed
for the first time in some local view in gv, then no other
proposal binding u to seq’ was constructed in global view
gv or earlier.

We assume that we create P. From Invariant A.1, after
P was constructed, constraining messages will exist in
all local views > [v. These constraining messages will
always bind u to seq. Therefore, from Lemma B.21 no
Proposal can be constructed that binds u to a different
sequence number than in P in any local view [v’, where
' > lv. O

We now use Invariant A.2 from Proof of Safety in a
similar argument:

Let u be the first update globally ordered by any server
for sequence number seq, and let gv be the global view
in which » was globally ordered. Let P(gv, lv, seq, w)
be the first Proposal message constructed by any server
in the leader site in gv for sequence number seq. We say
that Invariant A.2 holds with respect to P if the following
conditions hold:

1) There exists a majority of sites, each with at
least f + 1 correct servers with a Prepare
Certificate(gv, Iv', seq, u), a Proposal(gv’, *, seq, u),
or a Globally_Ordered_Update(gv’, seq, u), with
gv" > gv and lv' > lv, in its Global_History[seq]
data structure.

2) There does not exist a server with any
conflicting Prepare Certificate(gv’, v/, seq, u'),
Proposal(gv’, * seq, u'), or Glob-
ally_Ordered_Update(gv’, seq, u’), with gv' > gv,
v >lv, and v’ # u.

We wuse the Invariant A.2 to show that if
Globally_Ordered_Update(gv, lv, seq, u) is constructed,
then there will be a majority of sites where at least
f + 1 correct servers in each site have a constraining
entry that binds u to seq in all global views greater
than or equal to gv. From this, it follows that any set
of Global_Constraint messages from a majority of sites
will contain an entry that binds u to seq.

Lemma B.23: Let G(gv, lv, seq, u) be the first
Globally_Ordered_Update constructed by any server.
No other Prepare-Certificate or Proposal binding u to
seq’ can be constructed.

Proof: We show that Invariant A.2 holds across
global views in Proof of Safety. We now show that if Glob-
ally_Ordered_Update(gv, v, seq, u), G, is constructed
at any server, then no Prepare-Certificate or Proposal
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having different sequence numbers and the same update
can exist.

If G exists, then Proposal(gv, lv, seq, u), P, must
have been created. From Lemma B.21, if P was con-
structed, then no constraining entries binding u to seq’
exist in (gv, (v). Therefore, from Invariant A.2, no Glob-
ally_Ordered_Update(gv, v”, seq’, w), G' could have
been constructed, where [v” < [v. This follows, because,
if G’ was constructed, then Invariant A.1 implies that a
constraint binding u to seq’ would exist in views (gv, lv),
in which case G could not have been constructed. Proof
of Satefy proves this in detail. To summarize, if a majority
of sites each have at least f + 1 correct servers that have
a global constraining entry, b, then these sites would all
generate Global Constraint messages that include b. To
become globally constrained, correct servers must apply
a bundle of Global_Constraint messages from a majority
of sites, which includes one Global_Constraint message
that contains b. A correct server will never send a Prepare
or Pre-Prepare message without first becoming globally
constrained. Therefore, if G’ was constructed, then there
would have been a constraint binding u to seq’ in the
site where G was constructed. We have already shown
that this was not possible, because G' was constructed.
In summary, we have proved that if G, binding u to
seq, is constructed for the first time in some global view
gv, then no Globally_Ordered_Update binding u to seq’ was
constructed in global view gv or earlier.

We assume that we construct G. Invariant A.2, implies
that in all global views > gv, constraining messages,
binding u to seq, will exist in at least f + 1 servers at
the leader site when a leader site constructs a Proposal.
Therefore, from Lemma B.21 no Proposal can be con-
structed that binds u to a different sequence number than
in seq in any local view [v’, where v’ > [v. 0

We now return to the first case within
Get_Next_To_Propose, where (max_stable_seq + 1)
is constrained at the Progress_Rep.

Lemma B.24: If sequence number (max_stable_seq +
1) is constrained when a Progress_Rep calls
Get_Next_To_Propose, then the function returns an
update v that has not previously been executed by any
stable server.

Proof: From Figure A-12 lines A2 - A5, if
(max_stable_seq+ 1) is constrained at the Progress Rep,
then Get_Next_To_Propose returns the update u to
which the sequence number is bound.

We assume that u has been executed by some stable
server and show that this leads to a contradiction. Since
u was executed by a stable server, it was executed
with some sequence number s less than or equal to
max_stable_seq. By Lemma B.23, if u has already been
globally ordered with sequence number s, no Prepare
Certificate, Proposal, or Globally_Ordered_Update can
be constructed for any other sequence number s’ (which

includes (max_stable_seq + 1)). Thus, the constraining
update u cannot have been executed by any stable server,
since all executed updates have already been globally
ordered. O

We now consider the second case within
Get_Next_To_Propose, in which (maz_stable_seq + 1)
is unconstrained at the Progress Rep (Figure A-12,
lines A6 - A7). In this part of the proof, we divide the
Update_Pool data structure into two logical parts:

DEFINITION B.5: We say an update that was added to
the Update_Pool is in a logical Unconstrained_Updates
data structure if it does not appear as a Prepare
Certificate, Proposal, or Globally_Ordered_Update
in either the Local History or Global_History data
structure.

We begin by showing that, if some stable server in
site R received an update u that it had not previously
executed, then either global progress occurs or the
Progress Rep of R eventually has u either in its
Unconstrained_Updates data structure or as a Prepare
Certificate, Proposal, or Globally_Ordered_Update
constraining some sequence number.

Lemma B.25: If the system is stable with respect to
time T, and some stable server r in site R receives
an update w that it has not previously executed
at some time 7” > T, then either global progress
occurs or there exists a view in which, if sequence
number (max_stable_seq + 1) is unconstrained when
a Progress_Rep calls Get_Next_To_Propose, then the
Progress_Rep has u either in its Unconstrained_Updates
data structure or as a Prepare_Certificate, Proposal, or
Globally_Ordered_Update.

Proof: 1If any stable server previously executed wu,
then by Claim B.1, all stable servers (including ) will
eventually execute the update and global progress oc-
curs.

When server r receives u, it broadcasts © within its site,
R (Figure A-3, line F2). Since R is stable, all stable servers
receive v within one local message delay. From Figure A-
3, line F5, they place u in their Unconstrained_Updates
data structure. By definition, u is only removed from
the Unconstrained_Updates (although it remains in the
Update_Pool) if the server obtains a Prepare Certifi-
cate, Proposal, or Globally_Ordered_Update binding «
to a sequence number. If the server later removes this
binding, the update is placed back into the Uncon-
strained_Updates data structure. Since u only moves
between these two states, the lemma holds. O

Lemma B.25 allows us to consider two cases, in which
some new update u, received by a stable server in site
R, is either in the Unconstrained_Updates data structure
of the Progress_Rep, or it is constraining some other
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sequence number. Since there are an infinite number of
consecutive views in which a Progress_Rep exists, we
consider those views in which R is the leader site. We
first examine the former case:

Lemma B.26: If the system is stable with respect to
time T, and some stable server r in site R receives
an update u that it has not previously executed
at some time 7' > T, then if no global progress
occurs, there exists a view in which, if sequence
number (max_stable_seq 4+ 1) is unconstrained when
a Progress_Rep calls Get_Next_To_Propose and wu is
in the Unconstrained_Updates data structure of the
Progress_Rep, Get_Next_To_Propose will return an
update not previously executed by any stable server.

Proof: By Lemma B.25, u is either in the Uncon-
strained_Updates data structure of the Progress_Rep or
it is constraining some other sequence number. Since
u is in the Unconstrained_Updates data structure of
the Progress Rep and (max_stable_seq + 1) was uncon-
strained, v or some other unconstrained update will be
returned from Get Next_To_Propose (Figure A-12, line
A7). The returned update cannot have been executed by
any stable server, since by Claim B.1, all stable servers
would have executed the update and global progress
would have been made. O

We now examine the case in which (maz_stable_seq+
1) is unconstrained at the Progress_Rep, but the new
update u is not in the Unconstrained_Updates data
structure of the Progress_Rep. We will show that this
case leads to a contradiction: since u is constraining some
sequence number in the Progress_Rep’s data structures
other than (maxz_stable_seq+ 1), some other new update
necessarily constrains (max_stable_seq+1). This implies
that if (max_stable_seq + 1) is unconstrained at the
Progress_Rep, u must be in the Unconstrained_Updates
data structure. In this case, Get_Next_To_Propose will
return either v or some other unconstrained update that
has not yet been executed by any stable server.

To aid in proving this, we introduce the following
terms:

DEFINITION B.6: We say that a Prepare Certificate,
Proposal, or Globally_Ordered_Update is a constraining
entry in the Local History and Global History data
structures.

DEFINITION B.7: We say that a server is contiguous
if there exists a constraining entry in its Local_History
or Global_History data structures for all sequence
numbers up to and including the sequence number of
the server’s highest constraining entry.

We will now show that all correct servers are always
contiguous. Since correct servers begin with empty data
structures, they are trivially contiguous when the system

starts. Moreover, all Local Collected_Servers_State and
Collected_Global_Constraints bundles are empty
until the first view in which some server collects a
constraining entry. We now show that, if a server begins
a view as contiguous, it will remain contiguous. The
following lemma considers data structure modifications
made during normal case operation; specifically, we
defer a discussion of modifications made to the data
structures by applying a Local_Collected_Servers_State
or Collected_Global_Constraints message, which we
consider below.

Lemma B.27: If a correct server is contiguous before
inserting a constraining entry into its data structure
that is not part of a Local Collected_Servers_State
or Collected_Global Constraints message, then it is
contiguous after inserting the entry.

Proof: There are three types of constraining entries
that must be considered. We examine each in turn.

When a correct server inserts a Prepare Certificate into
either its Local_History or Global_History data structure,
it collects a Pre-Prepare and 2f corresponding Prepare
messages. From Figure A-3, lines B2 - B33, a correct
server ignores a Prepare message unless it has a Pre-
Prepare for the same sequence number. From Figure
A-8, line A21, a correct server sees a conflict upon
receiving a Pre-Prepare unless it is contiguous up to
that sequence number. Thus, when the server collects
the Prepare Certificate, it must be contiguous up to that
sequence number.

Similarly, when a server in a non-leader site receives a
Proposal message with a given sequence number, it only
applies the update to its data structure if it is contiguous
up to that sequence number (Figure A-7, line A9). For
those servers in the leader site, a Proposal is generated
when the THRESHOLD-SIGN protocol completes (Figure
A-10, lines D2 and D3). Since a correct server only
invokes THRESHOLD-SIGN when it collects a Prepare
Certificate (line C7), the server at least has a Prepare
Certificate, which is a constraining entry that satisfies
the contiguous requirement.

A correct server will only apply a Glob-
ally_Ordered_Update to its Global History data
structure if it is contiguous up to that sequence number
(Figure A-4, line C2).

During CONSTRUCT-ARU or CONSTRUCT-GLOBAL-
CONSTRAINT, a server converts its Prepare Certificates
to Proposals by invoking THRESHOLD-SIGN, but a con-
straining entry still remains for each sequence number
that was in a Prepare Certificate after the conversion

completes. 0

The only other time a contiguous server
modifies its data  structures is when it
applies a Local Collected_Servers_State or
Collected_Global_Constraints message to its data
structures. We will now show that the union
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computed on any Local Collected_Servers_State or
Collected_Global_Constraints message will result in a
contiguous set of constraining entries directly above the
associated invocation sequence number. We will then
show that, if a contiguous server applies the resultant
union to its data structure, it will be contiguous after

applying.

We begin by showing that any valid
Local Collected_Servers_State message contains
contiguous constraining entries beginning above

the invocation sequence number.

Lemma B.28: If all correct servers are contiguous
during a run of CONSTRUCT-LOCAL-CONSTRAINT, then
any contiguous server that applies the resultant
Local_Collected_Servers_State = message  will  be
contiguous after applying.

Proof: A correct server sends a Local_Server_State
message in response to a Request_Local State mes-
sage containing some invocation sequence number, seq
(Figure A-17, line B7). The server includes all con-
straining entries directly above seq (Figure A-20, Block
A). Each Local Server_State message sent by a con-
tiguous server will therefore contain contiguous con-
straining entries beginning at seq + 1. The represen-
tative collects 2f + 1 Local_Server_State messages. By
Figure A-8 line E4, each Local Server_State message
collected is enforced to be contiguous. When the Lo-
cal Collected_Servers_State bundle is received from the
representative, it contains 2f + 1 messages, each with
contiguous constraining entries beginning at seq + 1.
The Local_Collected_Servers_State message is only ap-
plied when a server’s Pending_Proposal_Aru is at least
as high as the invocation sequence number contained
in the messages within (Figure A-17, lines D3 - D4).
Since the Pending Proposal_Aru reflects Proposals and
Globally_Ordered_Updates, the server is contiguous up
to and including the invocation sequence number when
applying.

When Compute_Local_Union is computed on the bun-
dle (Figure A-3, line D2), the result must contain contigu-
ous constraining entries beginning at seq + 1, since it is
the union of contiguous messages. After applying the
union, the server removes all constraining entries above
the highest sequence number for which a constraining
entry appeared in the union, and thus it will still be
contiguous. O

We now use a similar argument to show that any con-
tiguous server applying a Collected_Global_Constraints
message to its data structure will be contiguous after

applying:

Lemma B.29: If all correct servers are contiguous

during a run of GLOBAL-VIEW-CHANGE, then
any contiguous server applying the resultant
Collected_Global_Constraints message to its data

structure will be contiguous after applying.

Proof: Using the same logic as in Lemma B.28
(but using the Global_History and Global_aru instead
of the Local_History and Pending_Proposal_Aru), any
Global_Constraint message generated will contain con-
tiguous entries beginning directly above the invoca-
tion sequence number contained in the leader site’s
Aru_Message. The Collected_Global Constraints mes-
sage thus consists of a majority of Global_Constraints
messages, each with contiguous constraining entries be-
ginning directly above the invocation sequence num-
ber. When Compute_Constraint_Union is run (Fig-
ure A-4, line D2), the resultant union will be con-
tiguous. A contiguous server only applies the Col-
lected_Global_Constraints message if its Global_aru is at
least as high as the invocation sequence number reflected
in the messages therein (Figure A-7, lines H5 - H6),
and thus it is contiguous up to that sequence number.
When Compute_Constraint_Union is applied (Figure A-
21, Blocks E and F) the server only removes constraining
entries for those sequence numbers above the sequence
number of the highest constraining entry in the union,
and thus the server remains contiguous after applying.

U

We can now make the following claim regarding
contiguous servers:

Claim B.11: All correct servers are always contiguous.

Proof: When the system starts, a correct server
has no constraining entries in its data structures.
Thus, it is trivially contiguous. We now consider the
first view in which any constraining entry was con-
structed. Since no constraining entries were previously
constructed, any Local_Collected_Servers_State or Col-
lected_Global_Constraints message applied during this
view must be empty. By Lemma B.27, a contiguous
server inserting a Prepare Certificate, Proposal, or Glob-
ally_Ordered_Update into its data structure during this
view remains contiguous. Thus, when CONSTRUCT-
LOCAL-CONSTRAINT or GLOBAL-VIEW-CHANGE are in-
voked, all correct servers are still contiguous. By Lemma
B.28, any contiguous server that becomes locally con-
strained by applying a Local_Collected_Servers_State
message to its data structure remains contiguous af-
ter applying. By Lemma B.29, any contiguous server
that becomes globally constrained by applying a Col-
lected_Global_Constraints message remains contiguous
after applying. Since these are the only cases in which a
contiguous server modifies its data structures, the claim
holds. O

We can now return to our examination of the
Get_Next_To_Propose function to show that, if
(max_stable_seq + 1) is unconstrained at the
Progress_Rep, then some new update must be in
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the Unconstrained_Updates data structure of the
Progress_Rep.

Lemma B.30: If the system is stable with respect to
time 7T, and some stable server r in site R receives
an update u that it has not previously executed
at some time 7' > T, then if no global progress
occurs, there exists a view in which, if sequence
number (max_stable_seq 4+ 1) is unconstrained when
a Progress_Rep calls Get_Next_To_Propose, u must be
in the Unconstrained Updates data structure of the
Progress_Rep.

Proof: Since the Progress_Rep is a stable, cor-
rect server, by Claim B.11, it is contiguous. This
implies that, since (max_stable_seq + 1) is uncon-
strained, the Progress_Rep does not have any constrain-
ing entry (i.e., Prepare Certificate, Proposal, or Glob-
ally_Ordered_Update) for any sequence number higher
than (maz_stable_seg+1). By Lemma B.25, v must either
be in the Unconstrained_Updates data structure or as
a constrained entry. It is not a constrained entry, since
the Progress_Rep has a Global_aru of max_stable_seq
and has not executed u (since otherwise progress would
have been made). Thus, « must appear in the Uncon-
strained_Updates data structure. ]

Corollary B.31: If the system is stable with respect
to time 7', and some stable server r in site R receives
an update u that it has not previously executed at
some time 7" > T, then if no global progress occurs,
there exists an infinite set of views in which, if the
Progress_Rep invokes Get_Next To_Propose, it will
return an update u that has not been executed by any
stable server.

Proof: Follows immediately from Lemmas B.26 and
B.30. a

Corollary B.31 implies that there exists a view in
which a Progress_Rep will invoke ASSIGN-SEQUENCE
with an update that has not been executed by any stable
server, since it does so when Get_Next_To_Propose does
not return NULL. We now show that there exists an
infinite set of global views in which ASSIGN-SEQUENCE
will complete in some bounded finite time.

Lemma B.32: If global progress does not occur, and
the system is stable with respect to time 7', then there
exists an infinite set of views in which, if a stable
server invokes ASSIGN-SEQUENCE when Global_seq
= seq, then ASSIGN-SEQUENCE will return Proposal
with sequence number seq in finite time.

Proof: From Lemma B.14, there exists a view (gv, lv)
where a stable representative, r, in the leader site S
has Global_Constraint(gv) messages from a majority of
sites. Server r will send construct and send a Col-

lected_Global_Constraints(gv) to all stable servers in S.
The servers become globally constrained when they pro-
cess this message. From Lemma B.16, all stable servers in
S will become locally constrained. To summarize, there
exists a view (gv, lv) in which:

1) Stable representative r has sent Col-
lected_Global_Constraints and a Lo-
cal_Collected_Servers_State message to all stable
servers. This message arrives at all stable servers
in one local area message delay.

2) All stable servers in S have processed the constrain
collections sent by the representative, and, there-
fore, all stable servers in S are globally and locally
constrained.

We now proceed to prove that ASSIGN-SEQUENCE will
complete in a finite time in two steps. First we show that
the protocol will complete if there are no conflicts when
the stable servers process the Pre-Prepare message from
r. Then we show that there will be no conflicts.

When r invokes ASSIGN-SEQUENCE, it sends a Pre-
Prepare(gv, lv, seq, u) to all servers in site S (Fig-
ure A-10, line A2). All stable servers in S will re-
ceive this message in one local area message delay.
When a non-representative stable server receives a Pre-
Prepare message (and there is no conflict), it will send
a Prepare(gv, lv, seq, u) message to all servers in S
(line B3). Therefore, since there are 2f stable servers that
are not the representative, all stable servers in S will
receive 2 f Prepare messages and a Pre-Prepare message
for (gv, lv, seq, u) (line C3). This set of 2f + 1 messages
forms a Prepare-Certificate(gv, lv, seq, u), pc. When a
stable server receives pc, it invokes THRESHOLD-SIGN on
an unsigned Proposal(gv, (v, seq, u) message (line C7).
By Claim B.3, THRESHOLD-SIGN will return a correctly
threshold signed Proposal(gv, lv, seq, u) message to all
stable servers.

Now we must show that there are no conflicts when
stable servers receive the Pre-Prepare message from 7.
Intuitively, there will be no conflicts because the repre-
sentative of the leader site coordinates the constrained
state of all stable servers in the site. To formally prove
that there will not be a conflict when a stable server
receives a Pre-Prepare(gv, lv, seq, u), preprep from r, we
consider block A of Figure A-8. We address each case in
the following list. We first state the condition that must
be true for there to be a conflict, then, after a colon, we
state why this case cannot occur.

1) not locally constrained or not globally constrained:
from the above argument, all servers are locally
and globally constrained

2) preprep is not from r: in our scenario, r sent the
message

3) gv # Global_view or (v # Local_view: all servers
in site S are in the same local and global views

4) There exists a Local History[seq].Pre-
Prepare(gv, lv, seq, u’), where u' # w: If there are
two conflicting Pre-Prepare messages for the same
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5)

6)

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

global and local views, then the representative at
the leader site must have generated both messages.
This will not happen, because r is a correct server
and will not send two conflicting Pre-Prepares.
There exists either a Prepare-
Certificate(gv, lv, seq, u') or a
Proposal(gv, lv, seq, u') in Local History[seq],
where u' # w: A correct representative makes
a single Local_Collected_Servers_State message,
less. All stable servers become locally constrained
by applying lcss to their local data structures.
Block D of Figure A-3 shows how this message
is processed. First, the union is computed using
a deterministic function that returns a list of
Proposals and Prepare-Certificates having unique
sequence numbers. The union also contains the
invocation aru, the aru on which it was invoked.
On Lines D5 - D11, all Pre-Prepares, Prepare-
Certificates, and Proposals with local views <
lv (where [v is the local view of both the server
and the Local_Collected_Servers_State message)
are removed from the Local History. Since no
Pre-Prepares have been created in (gv, lv), no
Prepare-Certificates or Proposals exist with higher
local views than Ilv. Then, on D12 - D17, all
Proposals and Prepare-Certificates in the union
are added to the Local_History. Since all stable
servers compute identical unions, these two
steps guarantee that all stable servers will have
identical Local History data structures after they
apply lcss. A correct representative will never
invoke ASSIGN-SEQUENCE such that it sends Pre-
Prepare(*, *, seq’, *) where se¢’ < the invocation
aru. Therefore, when r invokes ASSIGN-SEQUENCE,
it will send a Pre-Prepare(gv, v, seq, u) that doesn’t
conflict with the Local_History of any stable server
inS.

There exists either a Proposal(gv, v, seq, u’)
or a Globally_Ordered Update(gv, lv, seq, ')
in Global History[seq], where «’ #+ u:
A correct representative makes a single
Collected_Global_Constraints message, cge.
All stable servers become globally constrained
by applying cgc to their global data structures.
Block D of Figure A-4 shows how this message
is processed. First, the wunion is computed
using a deterministic function that returns a
list of Proposals and Globally_Ordered_Updates
having unique sequence numbers. The union
also contains the invocation aru, the aru on
which  GLOBAL-VIEW-CHANGE was invoked.
On Lines D5 - D9, all Prepare-Certificates
and Proposals with global views < gv (where
gv is the local view of both the server and
the Collected_Global Constraints message) are
removed from the Global History. Any Pre-
Prepares or Proposals that have global views equal
to gv must also be in the union and be consistent

with the entry in the union. Then, on D10 - D14,
all Proposals and Globally_Ordered_Updates in
the union are added to the Global History. Since
all stable servers compute identical unions, these
two steps guarantee that all stable servers will
have identical Global _History data structures
after they apply cgc. A correct representative
will never invoke ASSIGN-SEQUENCE such that it
sends Pre-Prepare(*, *, seq’, *) where seq’ < the
invocation aru. Therefore, when r invokes ASSIGN-
SEQUENCE, it will send a Pre-Prepare(gv, (v, seq, u)
than doesn’t conflict with the Global History of
any stable server in S.

7) The server is not contiguous up to
seqg: A correct server applies the same
Local_Collected_Servers_State and Col-
lected_Global Constraints messages as T.
Therefore, as described in the previous two
cases, the correct server has the same constraints
in its Local_History and Global_History as r. By
Lemma B.11, all correct servers are contiguous.
Therefore, there will never be a conflict when a
correct server receives an update from r that is
one above r’s Global_aru.

8) seq is not in the servers window: If there is no
global progress, all servers will reconcile up to
the same global sequence number, max_stable_seq.
Therefore, there will be no conflict when a correct
server receives an update from r that is one above
r’s Global_aru.

9) There exists a constraint binding update
u to seq in either the Local History or
Global_History: Since a correct server applies
the same Local Collected_Servers State and
Collected_Global_Constraints messages as 1,
the correct server has the same constraints
in its Local_History and Global_History as r.
Representative r will send a Pre-Prepare(*, ¥, seq, u)
where either (1) v is in ’s unconstrained update
pool or (2) w is constrained. If u is constrained,
then from Lemmas B.21, B.22, and B.23 the u must
be bound to seq at both r and the correct server.
This follows because two bindings (seq, u) and
(seq’, u) cannot exist in any correct server.

We have shown that a Pre-Prepare sent by = will not
cause a conflict at any stable server. This follows from
the fact that the local and global data structures of all
stable servers will be in the same state for any sequence
number where r sends Pre-Prepare(gv, lv, seq, u), as
shown above. Therefore, Prepare messages sent by stable
servers in response to the first Pre-Prepare message
sent by r in (gv, lv) will also not cause conflicts. The
arguments are parallel to those given in detail in the
above cases.

We have shown that Pre-Prepare and Prepare mes-
sages sent by the stable servers will not cause conflicts
when received by the stable servers. We have also shown
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that ASSIGN-SEQUENCE will correctly return a Proposal
message if this is true, proving Lemma B.20. O

Having shown that ASSIGN-SEQUENCE will complete
in a finite amount of time, we now show that the stable
non-leader sites will construct Accept messages in a
finite time. Since Claim B.3 states that THRESHOLD-SIGN
completes in finite time if all stable servers invoke it on
the same message, we must simply show that all stable
servers will invoke THRESHOLD-SIGN upon receiving
the Proposal message generated by ASSIGN-SEQUENCE.

Lemma B.33: If the system is stable with respect
to time T and no global progress occurs, then there
exists an infinite set of views (gv, [v) in which all stable
servers at all non-leader sites invoke THRESHOLD-SIGN
on a Proposal(gv, *, seq, u).

Proof: We consider the global views in which all
stable servers have already reconciled their Global_aru
to max_stable_seq and in which a Progress_Rep ex-
ists. By Corollary B.31, the Progress_Rep will in-
voke ASSIGN-SEQUENCE when Global_seq is equal to
max_stable_seq+ 1. By Lemma B.32, there exists an infi-
nite set of views in which ASSIGN-SEQUENCE will return
a Proposal in bounded finite time. By Claim B.8, there
exists a view in which the Progress_Rep has enough time
to send the Proposal to a stable representative in each
stable non-leader site.

We must show that all stable servers in all stable
non-leader sites will invoke THRESHOLD-SIGN on an
Accept message upon receiving the Proposal. We first
show that no conflict will exist at any stable server.
The first two conflicts cannot exist (Figure A-7, lines A2
and A4), because the stable server is in the same global
view as the stable servers in the leader site, and the
server is in a non-leader site. The stable server cannot
have a Globally_Ordered_Update in its Global History
data structure for this sequence number (line A6) be-
cause otherwise it would have executed the update,
violating the definition of maz_stable_seq. The server
is contiguous up to (maz_stable_seq + 1) (line A9)
because its Global_aru is max_stable_seq and it has
a Globally_Ordered_Update for all previous sequence
numbers. The sequence number is in its window (line
All) since max_stable_seq < (max_stable_seq + 1) <
(max_stable_seq + W).

We now show that all stable servers will apply the Pro-
posal to their data structures. From Figure A-4, Block A,
the server has either applied a Proposal from this view
already (from some previous representative), in which
case it would have invoked THRESHOLD-SIGN when it
applied the Proposal, or it will apply the Proposal just
received because it is from the latest global view. In both
cases, all stable servers have invoked THRESHOLD-SIGN
on the same message. O

Finally, we can prove L1 - GLOBAL LIVENESS:

Proof: By Claim B.1, if no global progress oc-
curs, then all stable servers eventually reconcile their
Global_aru to max_stable_seq. We consider those views
in which this reconciliation has completed. By Lemma
B.19, there exists an infinite set of views in which all
stable servers become globally and locally constrained
within a bounded finite time A;. of the election of the
second stable representative serving for at least a local
timeout period (i.e., the Progress_Rep). After becoming
globally and locally constrained, the Progress_Rep calls
Get_Next_To_Propose to get an update to propose for
global ordering (Figure A-11, line A4). By Corollary B.31,
there exists an infinite set of views in which, if some
stable server receives an update that it has not previously
executed and no global progress has otherwise occurred,
Get_Next_To_Propose returns an update that has not
previously been executed by any stable server. Thus, the
Progress_Rep will invoke ASSIGN-SEQUENCE (Figure A-
11, line A6).

By Lemma B.20, some Progress_Rep will have enough
time to globally order the new update if ASSIGN-
SEQUENCE and THRESHOLD-SIGN complete in bounded
time (where THRESHOLD-SIGN is invoked both dur-
ing ASSIGN-SEQUENCE and at the non-leader sites
upon receiving the Proposal). By Lemma B.32, ASSIGN-
SEQUENCE will complete in bounded finite time, and
by Lemma B.33, THRESHOLD-SIGN will be invoked by
all stable servers at the non-leader sites. By Claim B.3,
THRESHOLD-SIGN completes in bounded finite time in
this case. Thus, the Progress_Rep will globally order the
update for sequence number (maz_stable_seq + 1). It
will then execute the update and make global progress,
completing the proof. O



