
A Cost-Benefit Flow Control for Reliable Multicast
and Unicast in Overlay Networks

Yair Amir, Baruch Awerbuch, Claudiu Danilov, Jonathan Stanton
{yairamir, baruch, claudiu}@cs.jhu.edu, jstanton@gwu.edu

Abstract— When many parties share network resources on an
overlay network, mechanisms must exist to allocate the resources
and protect the network from overload. Compared to large
physical networks such as the Internet, in overlay networks the
dimensions of the task are smaller, so new and possibly more
effective techniques can be used. In this work we take a fresh
look at the problem of flow control in multi-sender multi-group
reliable multicast and unicast and explore a cost-benefit approach
that works in conjunction with Internet standard protocols such
as TCP.

In contrast to existing window-based flow control schemes we
avoid end-to-end per sender or per group feedback by looking
only at the state of the virtual links between participating nodes.
This produces control traffic proportional only to the number of
overlay network links and independent of the number of groups,
senders or receivers. We show the effectiveness of the resulting
protocol through simulations and validate the simulations with
live Internet experiments. We demonstrate near optimal utiliza-
tion of network resources, fair sharing of individual congested
links and quick adaptation to network changes.

I. INTRODUCTION

THIS paper presents a flow control strategy for multi-group
multi-sender reliable multicast and unicast in overlay

networks, based on competitive analysis. Our work focuses
on maximizing the total throughput achieved by all senders in
overlay networks where many participants reliably multicast
messages to a large number of groups.

Our framework assigns costs to network resources, and
benefits to achieving user goals such as multicasting a message
to a group or receiving a message from a group. Intuitively, the
cost of a network resource, such as buffers in routers, should
go up as the resource is depleted. When the resource is not
utilized at all its cost should be zero, and when the resource
is fully utilized its cost should be prohibitively expensive.
Finding the best cost function is an open question; however,
it has been shown theoretically [1] that using a cost function
that increases exponentially with the resource’s utilization is
competitive with the optimal off-line algorithm. Competitive
ratio is defined as the maximum, over all possible scenarios,
of the ratio between the benefit achieved by the optimal offline
algorithm and the benefit achieved by the online algorithm.

Our online algorithm allows the use of resources if the
benefit attached to that use is greater than the total cost of

Y. Amir, B. Awerbuch and C. Danilov are with the Department of Computer
Science at the Johns Hopkins University, Baltimore, MD 21218

J. Stanton is with the Department of Computer Science at George Wash-
ington University, Washington, DC 20052

This work was partially supported by DARPA and NSA under grants
F30602-00-2-0626 and F30602-00-2-0550

allowing the use. The choice of benefit function enables us to
optimize for various goals. By adjusting the benefit function,
performance issues such as throughput and policy issues such
as fairness can be taken into account when making flow
control decisions. For example, the benefit can be the number
of packets sent (sending throughput), the number of packets
received by all receivers (receiving throughput), or the average
latency given some throughput constraints. In this paper we
only use the sending throughput benefit function, seeking to
optimize the total sending throughput of all the participants in
the network.

Reliability is provided both on each link of the overlay
network, and end to end between the multicast members
through a membership service. In our approach, each overlay
link provides local retransmissions for reliability and uses a
standard congestion control protocol that adapts the available
bandwidth to the network congestion. This results in a dynamic
capacity being available to our flow control framework on
every overlay network link. All the traffic generated by our
system on a link is seen as one TCP flow on that link,
regardless of the number of senders or receivers. This provides
a very conservative level of fairness between our multicast
traffic and competing TCP flows.

The global flow control problem deals with managing the
available bandwidth of the overlay links and the buffers in the
overlay nodes. One may also view this problem as congestion
control for end-to-end overlay paths. The reason we define it
as flow control is that at the physical network level, congestion
control is achieved by TCP that runs between overlay nodes,
while managing the buffers in the overlay routers is seen as
an application level flow control task.

Our framework requires the sender to be able to assign cost
to a packet based on the aggregate cost of the links on which
it travels. We develop the framework in the context of overlay
networks, where the number of network nodes is relatively
small compared to the global Internet, while the number of
senders, receivers and groups can be very large. For such
systems, assigning the aggregate link cost is relatively cheap
because dissemination tree information can be available at the
sender. Also, as overlay network routers are flexible, it is easy
to implement our protocol in the overlay nodes.

Our Cost-Benefit framework is evaluated through simula-
tions and live tests on an emulated testbed and the Internet.
The simulations use the ns2 simulator [2] and examine the
behavior of several overlay network configurations. To conduct
actual network tests we extended the available Spread group
communication system [3] to implement our flow control

2

protocols, and conducted experiments using this software on
both Emulab [4] and the CAIRN network [5].

The contribution of this work is a practical distributed proto-
col that achieves near optimal global flow control for reliable
multicast and unicast in overlay networks. We demonstrate
that under varying number of sending and receiving clients,
changing link characteristics, external competition from other
traffic on the links, and internal competition from clients
sending to identical or different groups, the protocol provides
a fair sharing of individual congested links between both
individual clients in a flow and between different flows. We
demonstrate a quick adaptation to changing capacities on the
network and to competing traffic. We further demonstrate that
senders can each achieve their own near optimal sending rate
without being constrained by the ability (or lack thereof) of
other senders.

II. RELATED WORK

Many different approaches exist in the flow control litera-
ture, including TCP-like window based protocols [6], [7], one
or two bit feedback schemes [8], [9], [10], and optimization
based flow control [11], [12], [13], [14], [15], [16]. The
economic framework for flow and congestion control used
in many optimization based protocols [12], [14] has some
similarity with the cost-benefit model used in our work. In
both, the links have some cost and packets that are sent
must have sufficient benefit to pay the cost of the network
resources they require. A significant difference is that our cost-
benefit model takes an algorithmic approach using a simple
formula to decide when a packet can be sent, and is not
based on economic theory. Unlike many economic models
our cost-benefit model does not try to reach an equilibrium
state based on the rationality of the participants, or influence
non-cooperative processes to behave, but rather optimizes the
throughput under the assumption of minimally cooperative
(non-rational or even malicious) senders.

This paper builds on our previous work applying the Cost-
Benefit Framework in various resource management problems
such as virtual circuit routing [1], job assignment in metacom-
putes [17], and our earlier work on multicast flow control [18]
which forms the foundation for this paper.

Research on protocols to support group communication
across wide area networks such as the Internet has begun to ex-
pand. Recently, new group communication protocols designed
for such wide area networks have been proposed [19], [20],
[21], [22] which continue to provide the traditional strong
semantic properties such as reliability, ordering, and mem-
bership. These systems predominantly extend a flow control
model previously used in local area networks, such as the
Totem Ring protocol [21], or adapt a window-based algorithm
to a multi-sender group [23], [22]. Our work presents a flow
control algorithm designed explicitly for wide-area overlay
networks which is motivated more by networking protocols
and resource optimization research, than by existing group
communication systems.

Work on flow control for multicast sessions has occurred
mainly in the context of the IP-Multicast model. Much of

Actual node in the physical network

Actual overlay network daemon

Overlay network node

Physical network link

Physical link used by the overlay network

Virtual overlay network link

Fig. 1. Overlay Network Architecture

this work has focused on the congestion control problem,
avoiding extra packet loss and providing fairness, and has left
flow control up to higher level protocols (such as reliability,
ordering, or application level services). Research has explored
the difficult problems associated with multicast traffic such
as defining fairness [24], [25] and determining appropriate
metrics for evaluation of multicast traffic [26]. A number of
congestion control protocols have been developed with the
goal of providing some level of fairness with TCP traffic, while
taking advantage of the unique characteristics of multicast
traffic. These include window based protocols [27], [28], rate
based protocols [29], [18], multi-layer based protocols [24],
and protocols that use local recovery to optimize congestion
control [30]. While IP-Multicast focuses on a single sender,
single group approach that scales to many receivers and many
intermediate routers, our approach addresses a multi-group
multi-sender problem that scales with the number of groups,
senders and receivers, but is defined in an overlay network
setting rather than on every router in the Internet.

III. ARCHITECTURE

The overlay network model used is a graph with nodes
and overlay links. Each node on the graph represents a host
running a daemon program. Each overlay link is a unicast
link between two nodes, which may be a long path traversing
multiple routers and physical links in the Internet as seen
in Figure 1. Based on the network topology, each daemon
chooses a tree from this graph, in which it will multicast
messages. This tree is rooted at the daemon node and may
differ from other daemons’ trees. In this work, we use the
standard TCP protocol on each of the overlay overlay links.
The choice of TCP gives us a clean baseline to evaluate the
behavior of our Cost-Benefit framework without side effects
introduced by a different protocol. However, any other point-
to-point reliable protocol could be used instead of TCP.

We define a client as an individual connection between a
user application and an overlay daemon. A user application

3

may choose to open multiple connections to an overlay dae-
mon, but then each connection will be treated independently
by the daemon. The daemon provides multicast services to
clients, and each daemon can have many clients connected
to it. Each client may join an arbitrary number of groups,
and may send multicast messages to any number of groups,
including ones it has not joined. Clients connect to any
daemon (preferably the closest one) and that daemon handles
the forwarding of their traffic and provides all the required
semantics, including reliability and ordering. The connection
from a client to a daemon is either a TCP/IP connection or
a local IPC mechanism such as Unix Domain Sockets. Each
client can reliably multicast and receive messages at any time.
In this approach each daemon may support many distinct
clients who are actually running on many different hosts.

The entire protocol described in this paper is implemented
only at the daemon level and is completely transparent to the
multicasting clients. What the clients see is just a TCP/IPC
connection to a daemon, and they send their messages via
a blocking or non-blocking socket. It is the responsibility of
our flow control to regulate the acceptance rate of the client-
daemon connection.

Each message carries some information about its source and
destination nodes or groups. When an intermediate daemon
receives a message, it forwards it through its links that have
downstream destinations.

In a multi-group multiple sender system, each sender may
have a different rate at which it can reach an entire re-
ceiver group, and different senders may reach that group
over different multicast trees. Therefore, the bottleneck link
for one sender may not be the bottleneck for other senders.
The obvious goal is to allow each sender to achieve their
highest sending rate to the group, rather than limiting them
by what other senders can send to that group. To achieve
this, rate regulation must occur on a per-sender per group
basis rather than as a single flow control limit for the entire
group or system. The result is a flow control that provides fine
granularity of control (per-sender, per-group).

The Spread group communication toolkit: We imple-
mented our global flow control algorithm in the Spread wide
area group communication system [3], [31]. The Spread sys-
tem provides a similar architecture to our model with daemons
running on end-hosts acting as routers in an overlay network.
Spread provides strong semantics for messages including
reliable multicast, message ordering guarantees (unordered,
fifo, total order), and a membership service supporting Ex-
tended Virtual Synchrony (EVS) [32] and Virtual Synchrony
(VS) [33] models. It is designed to support a small to medium
number of members of a group (1-1000’s), with a large number
of active groups and many senders. As such, it has different
design goals than most IP-Multicast systems, which support
larger groups but focus on the best-effort, single-sender model,
and require state in every network router for every group.

Routing in Spread is based on shortest-path multicast trees
rooted at each daemon. The routing is recalculated whenever
the set of connected daemons changes (and not when clients
join or leave groups, or connect or disconnect from the
system).

The Spread system provides end-to-end reliability by using
a reliable point-to-point protocol for each link on the overlay
network [22] and through a group membership service.

IV. GLOBAL FLOW CONTROL FOR WIDE AREA OVERLAY
NETWORKS

The algorithmic foundation for our work can be summa-
rized as follows: We price links based on their “opportunity
cost”, which increases exponentially with link utilization. We
compare different connections based on the total opportunity
cost of the links they use, and slow down connections with
large costs, by delaying their packets at the entry point.

A. Algorithmic foundation

Whether a message is accepted or not into the system
by a daemon is an online decision problem. At the time of
acceptance it is not known how much data the sending client
(or the other clients) will be sending in the future, nor at what
specific times in the future.

The general problem with online allocation of resources is
that it is impossible to optimally make irreversible decisions
without knowing the future nor the correlations between
past and future. Thus, our goal is to design a “competitive”
algorithm whose total accrued benefit is comparable to that
achieved by the optimal offline algorithm, on all scenarios
(i.e. input sequences). The maximum possible performance
degradation of an online algorithm (as compared with the
offline) is called the “competitive ratio”. Specifically,

ρ = max
x

Boffline(x)

Bonline(x)
(1)

where x is the input sequence, Bonline(x) is the benefit of the
online algorithm, and Boffline(x) is the benefit of optimal
offline algorithm on sequence x.

Our goal is to design an algorithm with a small competitive
ratio ρ; such an algorithm is very robust in the sense that
its performance is not based on unjustified assumptions about
probability distributions or specific correlation between past
and future.

Theoretical background for the cost-benefit framework:
Our framework is based on the theoretical result in [1]. The
framework contains the following components:

• User benefit function is defined, representing how much
benefit a given user extracts out of their ability to gain
resources, e.g., ability to communicate at a certain rate.

• Resource opportunity cost is defined based on the uti-
lization of the resource. The cost of a completely unused
resource is equal to the lowest possible connection ben-
efit, and the cost of a fully used resource is equal to the
maximum connection benefit.

• A connection is admitted into the network if the opportu-
nity cost of resources it wishes to consume is lower than
its benefit.

• Flow control is accomplished, conceptually, by dividing
the traffic stream into packets and applying the above
admission control framework for each packet.

4

Model of the resource – Cost function: The basic frame-
work revolves around defining, for each resource, the current
opportunity cost, which is, intuitively, the benefit that may be
lost by higher-benefit connections as a result of consumption
of the above resource by lower-benefit connections.

Since the goal is to maximize the total benefit, it is “waste-
ful” to commit resources to applications (connections) that
are not “desperate” for that resource, i.e., not enjoying the
maximal possible benefit from obtaining this resource. On
the other hand, it is equally dangerous to gamble that each
resource can be used with maximal benefit gained without
knowing the sequence of requests ahead of time.

For the purpose of developing the reader’s intuition, it is
useful to consider a somewhat restrictive setting where the
resources are either assigned forever, or rented out for a
specific time. For a given resource l, (e.g., bandwidth of a
given link l), denote by ul the normalized utilization of the
resource, i.e., ul = 1 means the resource is fully utilized and
ul = 0 means that the resource is not utilized at all. Also, let
α be the minimum benefit value of a unit of a resource used
by a connection and β be the maximum value. Let γ = β/α.
In our framework, the opportunity cost of a unit of resource
is:

C(ul) = γul (2)

As we will describe later, in our approach a unit of resource
is a packet slot in the link buffers. Such an exponential cost
function leads to a strategy where each 1/ log2 γ of the fraction
of the utilized resource necessitates doubling the price.

For a path or a multicast tree consisting of multiple links,
the opportunity cost of the path is the sum of opportunity costs
of all the links which make up the path.

Model of the user – Benefit function: This is part of
the users specifications, and is not part of our algorithms.
Each user (connection) associates a certain “benefit function”
f(R) with its rate R. The simplest function f(R) = R means
that we are maximizing network throughput; a linear function
means we are maximizing weighted throughput.

More interestingly, a concave function (second derivative
negative, e.g.

√
R) means that there is a curve of diminish-

ing return associated with rate allocation for this user. For
example, imagine that a traffic stream is encoded in a layered
manner, and it consists of a number of streams, e.g., first 2KB
is voice, next 10KB is black and white video, and last 50KB
is color for the video stream. In this case, a concave benefit
function may allocate $10 for the voice part, additional $5 for
video, and additional $2 for color.

Notice that concave functions enable one to implement
some level of fairness: given 50KB of bandwidth, it is most
“beneficial” to provide voice component for 25 connections,
rather than voice + black and white video + color for a single
connection since $10 x 25 = $250 is the total benefit in the
former case, and $10 + $5 + $2 = $17 is the total benefit in
the latter case.

An online auction model: Let us focus on the following
simple case of auctioning off an arbitrary resource, say link
capacity, in an online setting where the bids arrive sequentially
and un-predictably.

The input to the problem is a sequence of bids with benefits
B1, B2, Bk that are positive numbers in the range from α to β,
generated online at times t1, t2, tk; each bid requests fraction
ri of the total resource.

The output is a sequence of decisions Di made online, i.e. at
times t1, t2, tk, so that Di = 1 if the bid is accepted and Di =
0 otherwise. The total benefit of the auction is

∑
Bi · ri · Di

and the inventory restriction is that
∑

Di · ri ≤ C where C
is the resource capacity.

The question is what is the optimal online strategy for
decision making without knowing the future bids, given that
decisions to accept “low” bids cannot be reversed after know-
ing about future higher bids. On the other hand, it is dangerous
to wait for high bids since they may never arrive.

This problem of designing a competitive online algorithm
for allocating link bandwidth was shown in [1] to have a lower
bound of Ω(log γ) on the competitive ratio ρ, where γ is the
ratio γ = β/α between maximal and minimal benefit. It is
achievable if 1/ log2 γ of the fraction of the utilized resource
necessitates doubling the price of the resource.

Specifically, at time ti, the cost of the resource is defined
as Ci = C(ul) = γul , and the decision to accept Di = 1 takes
place if and only if Ci < Bi.

Let P be the highest bid accepted by an optimal offline
algorithm, but rejected by our algorithm. Since 1/ log2 γ of
the fraction of the utilized resource necessitates doubling the
price, then in order to reject a bid with benefit P , our algorithm
should have set the resource cost higher than P , which means
that at least 1/ log

2
γ fraction of the utilized capacity was

already sold for at least half of P . So the benefit Bonline

achieved by our online algorithm is at least

Bonline > P/(2 · log2 γ) (3)

The total “lost” benefit, i.e. benefit of all the bids accepted
by the offline algorithm and rejected by our algorithm, is at
most P , achievable if the entire resource was sold at maximum
price P by the offline algorithm. If we define Boffline as the
total benefit achieved by the offline algorithm, then:

Boffline − Bonline < P (4)

If we plug P from Equation 4 into Equation 3 we get
Bonline > (Boffline − Bonline)/(2 · log2 γ) which follows
to a competitive ratio ρ of:

ρ =
Boffline

Bonline
< 1 + 2 · log2 γ (5)

This shows that our strategy of assigning an exponential cost
to the resource leads to a competitive ratio that is within a
logarithmic factor of γ.

B. Adapting the model to practice

The above theory section shows how bandwidth can be
rationed with a Cost-Benefit framework leading to a near-
optimal (competitive) throughput in the case of managing
permanent connections in circuit-switched environments [1].

The core theory has several assumptions which do not
exactly match the reality in overlay networks. We will examine

5

these assumptions and adapt the ideas of the Cost-Benefit
framework to work in overlay networks.

• The framework applies to permanent connections in
circuit-switched environment, rather than to handling
individual packets in packet-switched networks.

• The theoretical model assumes that the senders have
instantaneous knowledge of the current costs of all the
links at the instant they need to make a decision. It is
also assumed that fine-grained clocks are available and
essentially zero-delay responses to events are possible.

• The natural application of the framework, as in the case of
managing permanent virtual circuits, is to use bandwidth
as the basic resource being rationed. However, available
bandwidth, defined as the link capacity that can be used
by our overlay protocols while fairly sharing the total
capacity with the other external traffic, is not under
the overlay nodes’ control. Competing external Internet
flows may occupy at any point an arbitrary and time-
varying fraction of the actual link capacity. Moreover, it is
practically impossible to measure instantaneous available
bandwidth without using invasive methods. Therefore,
while available bandwidth is an essential component for
performance, our protocols cannot meaningfully ration
(save or waste) it, as its availability is primarily at the
mercy of other applications that share the network with
our overlay. (Recall that our application has to share the
link bandwidth “fairly” with other external TCP flows.)

This leads to the following adaptations:
1) Accommodating Packet Switching: Although the model

assumed admission control of connections in a circuit switched
environment, it can be applied to packet switching in a
straight-forward way. The path of each packet can be viewed
as a short time circuit that is assigned by the source of the
packet. For each packet, we can make a decision to accept or
delay that packet individually.

2) Rationed Resource: The underlying model does not
specify which resources are to be managed by it. One of
the most important issues is deciding what resource is to
be controlled (rationed) since not all of the resources used
are controllable. Figuratively speaking, available bandwidth
to flow control is like wind to sailing: it is controlled by
adversarial forces rather than by us. We must try to adapt
as much as possible to changing circumstances, rationing the
controllable resources.

Thus, we chose buffer space in each overlay node as the
scarce resource we want to control. Conceptually, we model
our software overlay node as a router with fixed size output
link buffers where packets are placed into the appropriate
output link queues as soon as the packet is received by
the overlay node. Note that the number of queues is equal
to the number of outgoing links, and does not depend on
the number of senders, receivers or groups in the system.
If a link is not congested, its corresponding queue will be
empty. In this case, once a packet arrives in the buffer, it is
immediately sent (maybe with a short delay due to operating
system scheduling). If the incoming traffic is more than the
capacity of an outgoing link, some packets will accumulate in
the corresponding outgoing link buffer.

3) Practical Cost Function: Each overlay node establishes
the cost for each of its outgoing links and advertises this
cost to all the other nodes. The price for a link is zero if
its corresponding buffer is empty. This means that the cost
is zero as long as the link is not congested, i.e. the link
can accommodate all the incoming traffic. As the link gets
congested and packets accumulate in the buffer, the cost of
the link increases. The price can theoretically go as high as
infinite when the buffer is full. In practice, the cost of the link
will increase until a given value Cmax when no user will be
able to buy it.

Equation 2 from Section IV-A gives the basic form of our
cost function. The utilization of a link buffer is given by n/M
where n is the average number of packets in the buffer and
M is the desired capacity of the buffer. The cost of a link l
as a function of packets in its buffer is Cl(n) = γn/M which
ranges from 1 to γ. We scale the cost of each resource from
0 to Cmax (the prohibitive cost), so the cost becomes:

Cl(n) = Cmax · γn/M − 1

γ − 1
(6)

The theory does not make any assumptions about the user
benefit function, or about the minimum and maximum user
benefit that define the base of the exponent γ. If we use a large
base of the exponent, then the cost function stays near zero
until the buffer utilization is almost 1, and then the cost goes up
very quickly. This would be acceptable if we had instantaneous
feedback, but as we can only get delayed information from
the network our reaction to a cost increase might be too late,
allowing the number of used buffers to increase above our
desired soft limit before any protocol could react and slow
down the sending rate. A practical mechanism will provide
incremental feedback on costs before the utilization becomes
high, which calls for a small base of the exponent. For
simplicity we chose e as the base of the exponent, so finally
we get:

Cl(n) = Cmax · en/M − 1

e − 1
(7)

Each router will periodically advertise the cost of its links by
multicasting a cost update message to all the other daemons
through the overlay network. In Section V we show how to
minimize the control traffic while maximizing the information
it contains.

Each sending daemon can compute the cost of a packet by
summing up the cost of all the links that packet will traverse
in the multicast tree, plus a constant ∆ that will be discussed
below in Section IV-B.5 . If we consider MT the set of the
links belonging to a multicast tree of a packet p, then the total
cost of the packet, Cp, is computed as:

MT = {l|l ∈ Multicast tree of p}

Cp = ∆ +
∑

l∈MT

Cl (8)

Given the exponential nature of our cost function, it may
be possible to approximate the cost of a path with the cost
of the single link having the highest utilization, as a higher
utilization is likely to yield a dramatically higher cost value.

6

This approximation can be useful in systems that do not use a
link-state propagation mechanism to reduce the control traffic
in a way similar to distance vector algorithms. In this work
we do not need to use such an approximation as we already
have all of the necessary information to compute the cost of
a path as the sum of the cost of all the links it uses.

4) Benefit Assignment: The choice of benefit is tightly
intertwined with the goal we want to achieve. In this work
we chose to maximize the total sending throughput, which
means we aim to send globally the maximum number of
packets within a unit of time. As we delay packets at the entry
point thorough our admission control mechanism, intuitively,
the benefit of each packet increases with the time it waits
to be sent. A user that has its packets delayed is more
“desperate” than a user that has its packets sent immediately.
In addition, we would like to encourage users that use cheap,
non-congested links to forward their packets, and slow down
the ones that use highly congested links.

Although one would like to handle the benefit as a pure rate,
in practice giving several units of benefit to a client at a time
is more efficient due to the low granularity of the operating
system scheduling. This is why we scale both the resource cost
and the benefit functions to a value Cmax higher than γ. We
define a “salary” as the amount of benefit units (say dollars) a
client is given from time to time. A client is allowed to save up
to S = Cmax dollars of its salary. The mechanism implements
a token bucket of dollars with S, the maximum cost of a link,
as the bucket size. We define the minimum benefit of a packet
to be α = 1, and the maximum benefit to be β = e, achieved
when the amount of accumulated tokens is S. This leads to a
range from 1 to γ = e, as our initial link cost function, and we
scale it in a linear function from 1 to Cmax, the prohibitive
cost of a link. If the number of tokens available in the bucket
is k, with 0 ≤ k ≤ S, the benefit of sending a packet is

B = 1 + k/S · (Cmax − 1) (9)

The sending rate of the clients is regulated by the daemon a
client is connected to. The daemon acts as the client’s “agent”,
purchasing packets whenever possible for the sending client.

If the client wants to send a packet that costs more benefit
dollars than it currently has in its budget, the daemon blocks
the client by not reading from its socket anymore, and keeps
the expensive packet until the client affords to buy it. This
happens when the client receives more benefit dollars, or when
the cost for the sending tree goes down. Since the sender
will continue to accrue benefit and the links have a maximum
possible cost, the packet will eventually be sent.

5) Packet Processing Costs: A link that is not congested
has a cost of zero, and a client that sends through it will see
it this way until the next cost update arrives. Therefore, any
client would be allowed to send an infinite number of packets
on a non congested link between two cost updates, obviously
leading to high burstiness and congestion on these links. A
solution for this problem is to have a minimum cost per link
greater than zero, however this will not scale with the size of
the network (long paths could have a very large cost even if
idle). Our solution is to keep the minimum link cost at zero,
but add a constant cost per packet (like a processing fee). This

cost is the constant ∆ referred to in Equation 8, and in our
implementation we define it to be $1. Therefore we put a cap
on the number of packets each client can send between two
cost updates, even when the network cost is zero, because of
the limited salary.

6) Non-intrusive Bandwidth Estimation: Since we do not
know the network capacity (assumed known by the theory),
we approximate such knowledge by adaptively probing for the
current network bandwidth. We chose to do this in a way very
similar to TCP. When a client receives a salary, the daemon
checks whether the client was blocked during the last salary
period (due to an intention to buy a packet more expensive
that it could afford). If the client was not blocked, it means
that he was able to buy, and therefore send, all the packets he
initiated, so the next salary period will be exactly the same
as the previous one. However, if the client was blocked, the
daemon compares the cost of the most expensive packet that
the client bought during the last salary period with a certain
threshold H . If the maximum cost is less than the threshold,
the time between two salaries is decreased, as the client might
have been blocked due to processing fees on a relatively idle
network. If the maximum cost is larger then the threshold H , it
means that the client tried to buy expensive packets, therefore
contributing to congestion in the network. The threshold H can
be any arbitrary value larger than the processing fee. However,
the larger the threshold is, the more likely each client will get
an increase in the salary rate, even in a congested network,
resulting in higher buffer occupancy. In our implementation we
chose H = 2, slightly bigger than the processing fee ∆ = 1.

The way we adjust the salary period follows the TCP
congestion control algorithm. If the salary period should be
decreased then the new salary period is:

Tnew =
Told · Tupdate

Told + Tupdate
(10)

where Told is the previous salary period and Tupdate is the
minimum time between two cost updates. In our experiments,
the initial salary period is 1 second.

If the salary period should be increased, the new salary
period will be:

Tnew = 2 · Told (11)

This algorithm resembles the TCP congestion control [7]
where Tnew and Told would be the average time between
two packets sent, and Tupdate would be the round trip time.
Equation 10 is algebraically equivalent to adding 1 to the
congestion window in TCP, while equation 11 is equivalent
to reducing the congestion window by half.

7) Cost Update Synchronization: Finally, the coarse gran-
ularity of cost updates causes a high degree of synchroniza-
tion between clients at the time an update is received. This
synchronization phenomenon could cause oscillations in the
overlay node buffers as every client buys/sends at the same
time, then the cost goes up, then everybody waits for the
price to go down, etc. To prevent the synchronization, the
overlay node may delay a packet even though the client has
sufficient funds to send it immediately. This delay will last
until either another packet arrives in the sending queue, a

7

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

M
ax

. b
uf

fe
r

ut
ili

za
tio

n
(p

ac
ke

ts
)

Time (sec)

Buffer utilization
No Randomization

With Randomization

Fig. 2. Randomization effect on buffer utilization

new cost update arrives, or a short timeout elapses. Note that
this scheduling delay does not reduce the client’s budget, so
the main mechanism of admission control remains unchanged.
Ideally, this scheduling randomization should depend on the
number of senders in the system competing for a link. As
we do not have this information we use an approximation in
which the client will choose to send a packet with probability
1/Cp, where Cp is the total cost of the packet, otherwise delay
the packet.

The experiment depicted in Figure 2 demonstrates the
benefit of randomization. In this experiment, our flow control
is deployed on a single 2Mbps link serving 100 streams that
compete over the link capacity. The figure shows the maximum
buffer utilization with and without randomization.

V. FAIRNESS AND SCALABILITY

What definition of fairness is best in a multicast environment
is an area of active research. For this work we chose a
conservative approach of considering each link on our overlay
network as one TCP flow. We fairly share each link with all
the external competing traffic. Some might argue that this is
too conservative, as many people may be using our multicast
service at once, and each one would receive their own TCP
flow if they were using a separate unicast service, but here they
will share only one TCP flow. This is true. However, for the
purpose of this paper we tried to provide an overlay network
flow control that works in any environment and thus made the
conservative choice.

The difference between looking at the receiving throughput
and at the sending throughput when comparing a multicast pro-
tocol with TCP is big, as there can be more than one receiver
for one sender. However, we try to be very conservative by
taking into account the worst case scenario and analyze only
the sending throughput.

Giving a “fair” amount of traffic to all the senders, regard-
less of their intended use of network resources, is at odds
with maximizing throughput of the network as a whole. We
choose, by default, to provide a fair share of our overlay
network resources to all senders who have the same cost per
packet. That could be because their packets travel over the
same multicast tree, or just by coincidence. However, senders

who have higher costs, e.g. because they cross more congested
links, will be allowed to send at a lower rate. This is depicted
in Section VII Scenario 3, where sender A-F who uses all the
network links receives much less then its “fair” share of the
resources.

A. Router State Scalability

The cost-benefit flow control protocol provides a fine-
grained level of control (per-group, per-sender, per-packet
flow control) in a complex multi-group multi-sender multi-
cast environment, without keeping any per-flow state in the
intermediate routers. The only required router state is one
cost record for each outgoing link of the router. Moreover,
the amount of control traffic does not depend on the number
of groups, senders, or receivers in the system, neither does
it carry any information about them. The cost updates carry
information only about the state (buffer sizes) of the links
- edges in the overlay network graph. Thus, a much larger
number of clients and groups, in the order of thousands to
tens of thousands can be supported.

B. Frequency of Cost Updates

Each daemon in the overlay network multicasts a cost
update at every Tmax interval as long as its outgoing links
are not congested, or their costs did not change significantly.
However, if at least one of its links becomes congested -
the link cost increases - the daemon will send more frequent
cost updates, at Tmin intervals. This mechanism is based on
the observation that, in general, in a multicast tree there are
only a few bottleneck links that will limit the speed of the
entire tree. Moreover, it is likely that the bottleneck links for
different senders or groups will be the same. Therefore, only
the daemons that control bottleneck links will send frequent
cost updates, while the others will not contribute much to
the control traffic. Since the cost updates are very small (64
bytes in our implementation), they are piggy-backed with the
data packets whenever possible. Electing the values of the
advertising intervals Tmax and Tmin is a compromise between
the control traffic we allow in the network and the performance
degradation due to additionally delayed feedback. They also
depend on the diameter of the network, the maximum client
link bandwidth, and the size of buffers in the intermediate
nodes. In our experiments we show that in practical overlay
networks with delays in order of tens of milliseconds and
throughput in the order of megabits per second, values in
the order of Tmax = 2.5 seconds, and Tmin 50 milliseconds,
coupled with overlay buffers of about 100 packets, achieve
good performance. For an overlay network with the average
link bandwidth of 2Mbps this leads to a control traffic of
about 0.5 percent per congested link, and 0.01 percent per non-
congested link. We believe that for higher throughput networks
we may either send cost updates more often or increase the
size of the overlay buffers.

VI. THE COST-BENEFIT PROTOCOL

To summarize, we present the Cost-Benefit protocol below:

8

A B

C

E

F

G

A-CFG

5ms
10Mbps

20ms
10Mbps

10
m

s
10

M
bp

s

25
m

s
2M

bp
s

30m
s

10M
bps

A-CFG

Congested link

Flow of multicast senders

..
.

Sacfgn

Sacfg2

Sacfg1

0.1
m

s;
100M

bps

..
.

Scdgn

Scdg2

Scdg1

D

15m
s

1M
bps

C-DG

0.1ms; 100Mbps

Fig. 3. Scenario 1: Network Configuration

• On each topology change, the overlay routers compute
their routing tables, and the set of links in the overlay
that will be used by their clients to multicast packets

• When an overlay node needs to forward a packet, if a
reliability window of a downstream link is full, the over-
lay node will buffer the packet. For all its downstream
links that have at least a packet in their buffer, the overlay
node computes the link cost Cl and multicasts it to the
other routers every Tmin interval. For all other links, the
overlay node advertises a zero cost every Tmax interval.

• Overlay nodes maintain a token-bucket budget and a
token rate for each of their clients. The cost of a packet
is computed based on the cost of the links that packet
will use, and is subtracted from the budget of the client
that sent it.

• Clients that cannot afford sending their current packet are
blocked until either their budget increases (they get more
tokens) or the cost of their current packet decreases.

• The token rate of the clients “salary period” is adjusted
only for clients that are blocked: If the most expensive
packet they bought over the last salary period was higher
than the threshold, their salary period doubles (the rate is
reduced by half). Otherwise, the new salary period Tnew

becomes:
Tnew =

Told · Tupdate

Told + Tupdate
(12)

where Told is the previous salary period and Tupdate is
the minimum time between two cost updates.

VII. SIMULATION RESULTS

We used the ns2 network simulator [2] to evaluate the
performance and behavior of our flow control protocol. The
main issues we focused on are:

• Optimal network resource utilization;
• Automatic adjustment for dynamic link capacities;
• Optimal sharing of network resources to achieve maxi-

mum throughput;
• Fairness between flows using the same congested links;
• Scalability with number of clients, groups and diameter

of the network;
Scenario 1 – achieving the optimal network throughput:

We used the multicast tree shown in Figure 3, with the
link capacities and latencies as shown in the figure. All the

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Sending flows
A - CFG

C - DG

Fig. 4. Scenario 1, Simulation: Throughput

0

20

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400 450 500

M
ax

. b
uf

fe
r

ut
ili

za
tio

n
(p

ac
ke

ts
)

Time (sec)

 Queues
 E - F
 B - D

Fig. 5. Scenario 1, Simulation: Buffers

intermediate buffers in the network have a soft limit of 100
packets. Clients receive a $10 salary, and they can save up to
S = Cmax = $20 in their budget. The processing fee is ∆ =
$1/packet.

Two classes of 20 separate clients each initiate multicast
messages, Sacfg and Scdg. Receiver clients are connected to
nodes C, D, F and G. For simplicity we do not show the
receiving clients, but only the daemons they are connected to.
The Sacfg clients multicast to receivers connected to nodes C,
F and G, and the Scdg clients multicast to receivers connected
to nodes D and G, sharing the links B-E and E-G. Sacfg

clients are limited by the 2Mb bottleneck link E − F , and
Scdg clients are limited by the 1Mb link B−D. There are no
other bottleneck links in the system.

The aggregate sending throughput of the two flows is shown
in Figure 4. The two flows achieve maximal network usage,
Sacfg clients getting on average 1.977 Mbps and Scdg getting
0.992 Mbps.

Rather than looking at the instantaneous buffer occupancy
which is very dynamic and depends on the sampling frequency,
we chose to analyze the evolution of the upper bound of the
buffer utilization. We measure the maximum buffer size over
the last sampling period and present it in Figure 5.

The reason for a higher buffer utilization on link E − F
is that there is a higher feedback delay from node E to
node A (25 milliseconds) than from node B to node C (10

9

A B

C

E

F

G

A-CFG

5ms
10Mbps

20ms
10Mbps

10
m

s
10

M
bp

s

25
m

s
10

M
bp

s

30m
s

2M
bps

A-CFG

Congested link

Flow of multicast senders

..
.

Sacfgn

Sacfg2

Sacfg1

0.1
m

s;
100M

bps

..
.

Scdgn

Scdg2

Scdg1

D

15m
s

10M
bps

C-DG

0.1ms; 100Mbps

Fig. 6. Scenario 2: Network Configuration

0

10000

20000

30000

40000

50000

0 5 10 15 20

T
hr

ou
gh

pu
t (

bi
ts

/s
ec

)

Sender Number

Fig. 7. Scenario 2, Simulation: Fairness

milliseconds), as in Figure 3. Link E − F also experiences
higher variability in buffer utilization and throughput. In
general, higher latency paths will experience higher variability
in throughput and buffer occupancy.

Scenario 2 – fair sharing of network resources: To
examine the effect of a congested link, the network shown
in Figure 6 is used. Here, link E−G forms the bottleneck for
both flows. Each flow represents 20 sending clients.

The two flows share the bottleneck link fairly equal. Flow
Sacfg gets an average of 997.3 Kbps and flow Scdg gets an
average of 997.6 Kbps, while the buffer of the link G−E stays
below 150 packets. The various clients who make up each
flow also share the bandwidth fairly. In Figure 7, we show the
sending throughput achieved by each of the 20 Sacfg clients.
The variance of the clients throughput was less then 4.6%.

A second experiment uses the same tree configuration as
Figure 6 but starts the second group of senders Scdgg only
after 200 seconds, and also changes the bandwidth of the link
E-G to 1Mbps after 400 seconds. Figure 8 shows the maximum
buffer utilization on the links E-G, B-D and E-F. After 200
seconds, as well as after 400 seconds we do not see any
major change in the buffer utilization on the bottleneck link.
Specifically, there is no large spike in maximum utilization
when the second group of clients begins sending all at once,
or when the bottleneck link reduces its capacity by half. This
is because the link has an existing non-zero cost and so the
clients must pay that cost before sending. Figure 9 shows how
the throughput of the two groups of clients responds to the new

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600

M
ax

. b
uf

fe
r

ut
ili

za
tio

n
(p

ac
ke

ts
)

Time (sec)

 Queues
 E - G

Fig. 8. Scenario 2, Simulation: Buffers with delayed senders

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

 Flows
 A - CFG

 C - DG

Fig. 9. Scenario 2, Simulation: Throughput with delayed senders

load, or change in the available bandwidth, sharing fairly the
congested link. The response time for adjusting the rate of the
flow Sacfg when the second flow is introduced was under 5
seconds.

Scenario 3 – unicast behavior and comparison with
TCP:

Our flow control tries to maximize throughput by allowing
low cost packets to pass, and reducing high cost traffic. A
simple way to demonstrate this is to set up a chain network in
which some clients try to send their packets across the entire
network, while other clients use only one link in the chain.
Figure 10 shows such a network with 5 links connected in a
chain. One client sends from node A to node F, and 5 other
clients send only over one link, i.e. from B to C or from E to
F.

Figure 11 shows the throughput on the chain network as
short path connections start up every 150 seconds. The client
A-F starts trying to use the entire capacity of the network.
When the client A-B starts, they share the congested link,
AB, about equally. When the third client, B-C, starts at time
300, the long flow A-F slows down letting short flows use
the available bandwidth. As we add more congested links by
starting more short connections, the throughput of the flow
A-F goes almost to zero, thus almost maximizing the global
throughput of the system. If the flow control had been fair,
the aggregate throughput would be 6 Mbps, 1 Mbps for each

10

A B C D E F

A-F

E-F

7ms
2Mbps

7ms
2Mbps

7ms
2Mbps

7ms
2Mbps

7ms
2Mbps

Unicast flow

0.1ms
100Mbps

Sab

C-DB-CA-B D-E

Sbc Scd Sde Sef

Saf

0.1ms
100Mbps

0.1ms
100Mbps

0.1ms
100Mbps

0.1ms
100Mbps

0.1ms
100Mbps

Fig. 10. Scenario 3: Network Configuration

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Senders
 A - F
 A - B
 B - C
 C - D
 D - E
 E - F

Fig. 11. Scenario 3, Simulation: Throughput

client. We achieved an aggregate throughput after all clients
have started of 9.677 Mbps, while the theoretical maximum is
10 Mbps.

The results of the previous simulation present a definite bias
toward short flows and show how such a bias can increase
network throughput. One can view reliable unicast connections
as a special case of reliable multicast, and in this experiment
we show that our cost-benefit flow control achieves similar
behavior to that of a set of end-to-end connections using TCP
on the same network.

Figure 12 presents the throughput on the same chain net-
work, only instead of hop-by-hop connections regulated by
our flow control, we run end-to-end TCP connections. With
end-to-end TCPs, the long A-F connection is biased against in
the same way as our flow control. Moreover, when competing
with only one other TCP flow A-B, the longer flow A-F
receives less bandwidth. We believe this is because TCP is
biased against both long RTT connections as well as having to
cross multiple congested links. So even when only one link is
congested, the longer RTT of the A-F flow causes it to receive
lower average bandwidth then the short RTT A-B flow.

Scenario 4 – scalability with number of nodes and
groups: In order to see how a large number of clients multi-
casting to many different groups share the network resources,
we set up the network presented in Figure 13. The overlay
network consists of 1602 nodes, and there are 1600 clients,
each of them connected to a separate daemon, joining 800
different groups. We could not run a bigger scenario due to
memory limitation using the ns simulator on our machines.

Each of the clients S1 to S800 multicasts to a different group
composed of three different receivers. S1 sends to R1, R2 and

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Senders
 A - F
 A - B
 B - C
 C - D
 D - E
 E - F

Fig. 12. Scenario 3, Simulation: TCP throughput

S1

A B
10ms

2Mbps

…

S2

…

R1

R2

0.1ms
100Mbps

0.1ms
100Mbps

0.1ms
100Mbps

5m
s

10M
bps

5m
s

10M
bps

0.1ms
100Mbps

0.1ms
100Mbps

0.1ms
100Mbps

5m
s

10
M

bp
s

5m
s10M

bps

C2

C1

D2

D1

Sn
Cn

Rn
Dn

8
0

0
 s

en
d

er
s

8
0

0
 receiv

ers

Fig. 13. Scenario 4: Network Configuration

R3, S2 sends to R2, R3 and R4, and so on, until S800 that
sends to R800, R1 and R2. All the senders share the same
bottleneck link, A-B.

We ran the simulation with different number of senders,
from 5 to 800. As shown in Figure 14 the maximum buffer
utilization on the bottleneck link A-B stays about the same
until the number of senders reaches to the buffer soft limit
(in our case, 100), and then it starts increasing. However, the
Cost-Benefit framework kept the buffer size under controllable
limits (under 170 packets for 800 senders). The aggregate
throughput was not affected by the number of senders, getting
an average of 1.979Mbps for the aggregate sending rate of
800 senders.

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

M
ax

. b
uf

fe
r

ut
ili

za
tio

n
(p

ac
ke

ts
)

Number of senders

Fig. 14. Scenario 4, Simulation: Buffers

11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Sending flows
A_CFG

C-DG

Fig. 15. Scenario 1, Emulab: Sending throughput

VIII. SIMULATION VALIDATION ON AN EMULATED WIDE
AREA TESTBED

In order to validate our simulation experiments we extended
the Spread toolkit [3] to use our Cost-Benefit framework for
global flow control. We then run Spread on Emulab [4] where
we created the network setups of Scenario 1 and Scenario 2
presented in Section VII.

Emulab allows real instantiation in a hardware network
(composed of actual computers and switches) of a simulation
topology, simply by using the ns script in the configuration
setup. Link latencies and bandwidths are emulated with ad-
ditional nodes that hold packets for a while, or drop them
when the traffic increases above the bandwidth requirement.
The emulated link latencies measured with ping were accurate
up to a precision of ± 3ms, while the throughput measured
by TCP flooding was 1.91Mbps for the 2Mbps bottleneck link
and 0.94Mbps for the 1Mbp link.

Spread has its own overhead of about 15% of data sent due
to headers required for routing, group communication specific
ordering and safety guarantees, as well as to provide user-
friendly group names of up to 32 characters. In addition, any
node that is not part of receiver set of a multicast message
does not receive the actual message, but must receive a 96 byte
ordering header required for group communication guarantees
to be maintained, no matter how big the message is. Therefore,
receiver D in Scenario 1 recives a message header for each
message sent in the SACFG flow. Note that Spread allows
messages to be as large as 100 KB.

What we measured in our results is actual user data sent
and received by clients connected to Spread, sending 1200
byte messages. For these experiments we gave each client a
$10 salary, and allowed up to $20 of savings. The processing
fee was $1. All the overlay network links had a soft buffer
limit of 100 packets.

Figure 15 shows the sending throughput of the two flows in
Scenario 1, while Figure 16 shows the receiving throughput
at the nodes behind bottleneck links.

The Sacfg flow achieved a sending rate of 1.53Mbps
while the Scdg flow achieved 664Kbps. Taking into account
the Spread overhead and meta-headers this leads to a total
throughput of 1.9Mbps for the Sacfg flow and 904Kbps for

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Receiving flows
A_CFG

C-DG

Fig. 16. Scenario 1, Emulab: Receiving throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Sending flows
A_CFG

C-DG

Fig. 17. Scenario 2, Emulab: Sending throughput

the Scdg flow. Comparing these numbers with the available
bandwidth offered by the Emulab setup, we obtain a difference
of about 4% between what we get and the available network
resources.

Figure 17 and Figure 18 show the sending and receiving
throughput achieved by Spread clients in Scenario 2. As we
start the Scdg flow at time 300 we see the two flows fairly share
the bottleneck link. Similarly, when the available bandwidth
on the bottleneck link drops to 1Mbps at time 600, both flows
adapt to the network conditions by reducing their rate to half.

The above experiments show that the system implemen-
tation of our cost-benefit flow control achieves good perfor-
mance on a controlled emulated testbed with real computers
and networks. We achieve similar results to the simulated
experiments, showing the feasibility of our adaptation of the
theoretical model to practical networked environments.

IX. REAL-LIFE INTERNET EXPERIMENTS

To further validate our results and demonstrate real-life
behavior we conduct experiments over a portion of the CAIRN
network [5]. This is a wide-area network that crosses the entire
United States, and consists of links that range from 1.5Mbps
to 100 Mbps. The CAIRN routers are Intel machines that run
FreeBSD. Figure 19 shows the portion of the CAIRN network
that we used for our experiments. We measured individual
link latencies using ping under zero traffic, and the available

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Receiving flows
A_CFG

C-DG

Fig. 18. Scenario 2, Emulab: Receiving throughput

C D
33.7ms

1.89Mbps

A

B

E

G

F
0.07ms

71.23Mbps

H
5.15ms

12.0Mbps

kupc.cairn.net tisepc.cairn.net

isipc.cairn.net

isipc2.cairn.net

isiepc3.cairn.net

isiepc2.cairn.net

isipec.cairn.net

mitpc2.cairn.net

25.6m
s

2.14M
bps

0.
09

m
s

92
.6

M
bp

s

2.8m
s

1.46M
bps

0.07m
s

70.01M
bps

S1

S2

RA

RB

S3

RB
RA

RB

RB

RA

Fig. 19. CAIRN: Network Configuration

bandwidth with point to point TCP connections for each link.
Note that our flow control uses the available bandwidth given
by the underlying TCP link protocol, and not the physical
bandwidth of the network.

Sender S1 multicasts messages to a group A joined by the
receivers RA, while senders S2 and S3 multicast to a group
B joined by the receivers RB . All the clients run directly
on the overlay network machines, connected to the daemons
through Unix Domain Sockets. Obviously, S1 was limited by
the bottleneck link C-D, while S2 and S3 had to share the
bottleneck link D-E. Taking into account the data overhead
in Spread, we can see in Figure 20 that the sending clients

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300 350 400 450 500

T
hr

ou
gh

pu
t (

M
bi

ts
/s

ec
)

Time (sec)

Sending flows
S1
S2
S3

Fig. 20. CAIRN: Sending throughput

use the network resources optimally and share them fairly
between senders S2 and S3, S1 getting 1.417 Mbps, while
S2 and S3 got 0.618 and 0.640 Mbps respectively. Comparing
these numbers with the available bandwidth offered by CAIRN
we achieve a difference between 1% and 14%.

The uncontrollability of the Internet network conditions
did not affect the performance of our protocol. The real-
life Internet experiments show that different senders located
at different sites and multicasting messages to the same or
different groups achieve near optimal bandwidth utilization
and fairly share the network resources.

X. CONCLUSIONS

This paper presented a global flow control approach for
multicast and unicast in overlay networks that is scalable
with the number of groups and participants and is based on
sound theoretical foundations. Our Cost-Benefit framework
provides a simple and flexible way to optimize flow control
to achieve several desirable properties such as near optimal
network throughput and automatic adjustment to dynamic link
capacities. The resulting algorithm provides fairness between
equal cost internal flows and is fair with outside traffic,
such as TCP. We implemented the framework in the ns2
simulator and showed results similar to those predicted by
theory. We then implemented the framework in the Spread
group communication system and conducted live experiments
on Emulab and CAIRN network to validate the simulations
and show the real-world performance of the framework.

REFERENCES

[1] B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput-competitive on-line
routing,” in Proceedings of 34th IEEE Symposium on Foundations of
Computer Science, vol. 30, 1993, pp. 32–40.

[2] “ns2 network simulator,” Available at http://www.isi.edu/nsnam/ns/.
[3] “Spread group communication system,” http://www.spread.org/.
[4] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,

M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in OSDI02. Boston,
MA: USENIXASSOC, Dec. 2002, pp. 255–270.

[5] “Cairn network,” Information available at http://www.cairn.net/, 2001.
[6] S. Floyd and V. Jacobson, “Random early detection gateways for

congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
pp. 397–413, August 1993.

[7] V. Jacobson, “Congestion avoidance and control,” ACM Computer
Communication Review; Proceedings of the Sigcomm ’88 Symposium
in Stanford, CA, August, 1988, vol. 18, 4, pp. 314–329, 1988.

[8] K. K. Ramakrishnan and R. Jain, “A binary feedback scheme for
congestion avoidance in computer networks with a connectionless
network layer,” Proceedings of the 1988 SIGCOMM Symposium on
Communications Architectures and Protocols; ACM; Stanford, CA, pp.
303–313, 1988.

[9] S. Floyd, “TCP and explicit congestion notification,” ACM Computer
Communication Review, vol. 24, no. 5, October 1994.

[10] K. K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion
notification (ECN) to IP,” RFC 2481, January 1999.

[11] R. G. Gallager and S. J. Golestaani, “Flow control and routing algorithms
for data networks,” in Proceedings of 5th International Conference on
Computers and Communication, 1980, pp. 779–784.

[12] R. J. Gibbens and F. P. Kelly, “Resource pricing and the evolution of
congestion control,” Automatica, vol. 35, December 1999.

[13] S. J. Golestani and S. Bhatacharyya, “End-to-end congestion control
for the Internet: A global optimization framework,” in Proceedings of
International Conference on Network Protocols, October 1998, pp. 137–
150.

13

[14] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for com-
munication networks: shadow prices, proportional fairness and stability,”
Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252,
March 1998.

[15] D. Lapsley and S. Low, “An IP implemention of optimization flow
control,” in Proceedings of IEEE Globecom, 1998, pp. 3023–3028.

[16] D. E. Lapsley and S. Low, “Random early marking for Internet con-
gestion control,” in Proceedings of IEEE Globecom, vol. 3, 1999, pp.
1747–1752.

[17] Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, and A. Keren, “An
opportunity cost approach for job assignment and reassignment,” IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 7, pp.
760–768, July 2000.

[18] Y. Amir, B. Awerbuch, C. Danilov, and J. Stanton, “Global flow control
for wide area overlay networks: A cost-benefit approach,” in Proceedings
of IEEE Openarch, June 2002.

[19] I. Keidar, J. Sussman, K. Marzullo, and D. Dolev, “A client-server ori-
ented algorithm for virtually synchronous group membership in wans,”
in Proceedings of the 20th IEEE International Conference on Distributed
Computing Systems. Taipei, Taiwan: IEEE Computer Society Press, Los
Alamitos, CA, April 2000, pp. 356–365.

[20] I. Keidar and R. Khazan, “A client-server approach to virtually syn-
chronous group multicast: Specifications and algorithms,” in Proceed-
ings of the 20th IEEE International Conference on Distributed Com-
puting Systems. Taipei, Taiwan: IEEE Computer Society Press, Los
Alamitos, CA, April 2000, pp. 344–355.

[21] D. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia, “The
totem multiple-ring ordering and topology maintenance protocol,” ACM
Transactions on Computer Systems, vol. 16, no. 2, pp. 93–132, May
1998.

[22] Y. Amir, C. Danilov, and J. Stanton, “A low latency, loss tolerant
architecture and protocol for wide area group communication,” in
Proceeding of International Conference on Dependable Systems and
Networks. IEEE Computer Society Press, Los Alamitos, CA, June
2000, pp. 327–336, fTCS 30.

[23] T. M. Hickey and R. van Renesse, “Incorporating system resource in-
formation into flow control,” Department of Computer Science, Cornell
University, Ithaca, NY, Tech. Rep. TR 95-1489, 1995.

[24] D. Rubenstein, J. Kurose, and D. Towsley, “The impact of multicast
layering on network fairness,” in Proceedings of ACM SIGCOMM, ser.
Computer Communication Review, vol. 29, October 1999, pp. 27–38.

[25] T. Bonald and L. Massoulie, “Impact of fairness on Internet perfor-
mance,” in SIGMETRICS/Performance, 2001, pp. 82–91.

[26] R. C. Chalmers and K. C. Almeroth, “Developing a multicast metric,”
in Proceedings of GLOBECOM 2000, vol. 1, 2000, pp. 382–386.

[27] H. A. Wang and M. Schwartz, “Achieving bounded fairness for multicast
and TCP traffic in the Internet,” in Proceedings of ACM SIGCOMM,
1998.

[28] L. Rizzo, “pgmcc: a TCP-friendly single-rate multicast congestion con-
trol scheme,” in ACM Computer Communications Review: Proceedings
of SIGCOMM 2000, vol. 30, October 2000, pp. 17–28.

[29] T. Montgomery, “A loss tolerant rate controller for reliable multicast,”
West Virginia University, Tech. Rep. NASA-IVV-97-011, August 1997.

[30] S. Chang, H. J. Chao, and X. Guo, “TCP-friendly window congestion
control with dynamic grouping for reliable multicast,” in Proceedings
of GLOBECOM 2000, vol. 1, 2000, pp. 538–547.

[31] Y. Amir and J. Stanton, “The Spread wide area group communication
system,” Johns Hopkins University Department of Computer Science,
Tech. Rep. 98-4, 1998.

[32] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal, “Ex-
tended virtual synchrony,” in Proceedings of the IEEE 14th International
Conference on Distributed Computing Systems. IEEE Computer Society
Press, Los Alamitos, CA, June 1994, pp. 56–65.

[33] R. Vitenberg, I. Keidar, G. V. Chockler, and D. Dolev, “Group commu-
nication specifications: A comprehensive study,” Institute of Computer
Science, The Hebrew University of Jerusalem, Tech. Rep. CS99-31,
1999.

Yair Amir is a Professor in the Department of Com-
puter Science, Johns Hopkins University where he
served as Assistant Professor since 1995, Associate
Professor since 2000, and Professor since 2004. He
holds a BS (1985) and MS (1990) degrees from
the Technion, Israel Institute of Technology, and a
PhD degree (1995) from the Hebrew University of
Jerusalem. Prior to his PhD, he gained extensive
experience building C3I systems. He is a creator of
the Spread and Secure Spread messaging toolkits,
the Backhand and Wackamole clustering projects,

and the Spines overlay network platform. He has been a member of the
program committees of the IEEE International Conference on Distributed
Computing Systems (1999, 2002, 2005), the ACM Conference on Principles
of Distributed Computing in 2001, and the IEEE International Conference on
Dependable Systems and Networks (2001, 2003, 2005). He is a member of
the ACM and the IEEE Computer Society.

Baruch Awerbuch is currently a (full) professor
at the Computer Science Dept. at Johns Hopkins
University (www.cs.jhu.edu/ baruch). His current
Research interests include: Security, Online Algo-
rithms, Distributed and Peer-to-Peer Systems, Rec-
ommendation Systems, and Wireless Networks.

Baruch Awerbuch has published more than 100
papers in journals and refereed conferences in the
general area of design and analysis of online al-
gorithms, combinatorial and network optimization,
distributed algorithms, learning, fault tolerance, net-

work architecture, and others.
Baruch Awerbuch is a co-director of the JHU Center for Networks and

distributed systems http://www.cnds.jhu.edu.
Dr. Awerbuch served as a member of the Editorial Board for Journal

of Algorithms, Wireless Networks and Interconnection Networks. He was
a program chair of the 1995 ACM Conference on Wireless Computing &
Communication and a member of the program committees of the 2004 ACM
Mobihoc, as well as PC member ACM PODC Principles of Distributed
Computing (PODC) Conference in 1989 and of the Annual ACM STOC
(Symposium on Theory of Computing) Conference in 1990 and 1991.

Claudiu Danilov is an Assistant Research Scien-
tist in the Department of Computer Science, Johns
Hopkins University. He received the BS degree in
Computer Science in 1995 from Politehnica Univer-
sity of Bucharest, and the MSE and PhD degrees in
Computer Science from The Johns Hopkins Univer-
sity in 2000 and 2004. His research interests include
distributed systems, survivable messaging systems
and network protocols. He is a creator of the Spines
overlay network platform.

Jonathan Stanton received the BA degree in Math-
ematics in 1995 from Cornell University, and the
MSE and PhD degrees in Computer Science from
The Johns Hopkins University in 1998 and 2002.
He is currently an Assistant Professor in the Com-
puter Science department of the George Washington
University. He also holds an appointment as an
adjunct assistant professor in the Computer Science
department of The Johns Hopkins University. His
research interests include distributed systems, secure
distributed messaging, network protocols, and mid-

dleware support for clustered systems. He is a member of the ACM and the
IEEE Computer Society.

